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Abstract

The massive Thirring system is a completely integrable system of nonlinear partial differen-

tial equations in (1+1) dimensions. Computational approaches to understanding the solutions

of this system require that the spatial variable be discretized. In a recent paper, Joshi and

Pelinovsky (2019) obtain an integrable semi-discretization of the massive Thirring system in

laboratory coordinates. In this thesis, we use von Neumann stability analysis to demonstrate

that while explicit methods of numerically solving this system are unconditionally unstable,

there are alternative, neutrally stable, semi-implicit schemes that are available. Furthermore,

we generate a numerical scheme that begins with initial data and inverts two finite difference

equations before using a semi-implicit solver to find the solution at the next timestep. Despite

the unconditional stability of this implicit solver, the error between the numerical and exact

solution grows with each iteration, preventing the acquisition of stable numerical solutions.
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1 Introduction to the Massive Thirring Model

The massive Thirring model (MTM) was released in 1958 by Walter Thirring after many years of

stagnation in relativistic field theory [10]. This model can be understood as a nonlinear adaptation

of the Dirac equation [2]. In (1 + 1) dimensions and in laboratory coordinates, the MTM consists

of two nonlinear partial differential equations

i

(
∂u

∂t
+
∂u

∂x

)
+ v = |v|2u (1)

i

(
∂v

∂t
− ∂v

∂x

)
+ u = |u|2v (2)

where u(x, t), v(x, t) : R × R → C. Prior to the release of the MTM, quantum field models such

as the Lee model, static neutral scalar theory, and the static isotropic spin independent pair theory

only pertained to systems in the non-relativistic limit [10]. The MTM differs in this regard as it is

in fact a relativistic field theory.

The MTM is a completely integrable system. This was shown in the work of Kuznetsov

and Mikhailov in [6] in which the Hamiltonian of the system was expressed purely with canonical

momenta. This implies several properties, including the existence of exact N-soliton solutions, an

infinite number of conserved quantities, and the existence of Lax operators [1]. Furthermore, it

also ensures that a Backlund transformation exists between solutions [3]. Given these interesting

properties, it is desirable to be able to study the solutions of the MTM numerically. To do this, an

integrable semi-discretization of the MTM is required. While discretizations of the MTM exist in

characteristic coordinates [7, 11], no integrable discretization of the MTM in laboratory coordinates

has been available until Joshi and Pelinovsky obtained one in [5]. This semi-discretization, in which

time remains continuous and the spatial variable is discretized, is given by



4idUn

dt
+Qn+1 +Qn + 2i

h
(Rn+1 −Rn) + U2

n(R̄n + R̄n+1)

− Un(|Qn+1|2 + |Qn|2 + |Rn+1|2 + |Rn|2)− ih
2
U2
n(Q̄n+1 − Q̄n) = 0

−2i
h

(Qn+1 −Qn) + 2Un − |Un|2(Qn+1 +Qn) = 0

Rn+1 +Rn − 2Un + ih
2
|Un|2(Rn+1 −Rn) = 0.

(3)
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In this semi-discretization, the spatial coordinate is evaluated on a lattice of grid points

given by xh = hn where h denotes the spacing between lattice sites and n is an integer. One

natural and necessary condition that must be satisfied by (3) is that as h approaches 0, (1) - (2) are

recovered. As h approaches 0, the second equation in (3) is

−2i
∂Q

∂x
+ 2U − 2|U |2Q = O(h).

In the limit as h approaches 0 we obtain

−i∂Q
∂x

+ U − |U |2Q = 0. (4)

Likewise, for the third equation of (3), we get the following in the continuum limit:

2R− 2U = O(h)

so that

R = U.

Finally, for the first equation of (3), we get the following in the continuum limit:

2i
∂U

∂t
+Q+ i

∂R

∂x
+ U2R̄− U |Q|2 − U |R|2 = O(h).

Replacing R with U in the above equation, we obtain, in the limit as h approaches 0,

2i
∂U

∂t
+Q+ i

∂U

∂x
− U |Q|2 = 0. (5)
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Let us now set U(x, t) = u(x, t− x) and Q(x, t) = v(x, t− x). Then, the partial derivatives of U

and Q are obtained by using the chain rule:

∂U

∂t
=
∂u

∂t
∂U

∂x
=
∂u

∂x
− ∂u

∂t
∂Q

∂t
=
∂v

∂t
∂Q

∂x
=
∂v

∂x
− ∂v

∂t
.

Making these replacements into (4) yields

i

(
∂v

∂t
− ∂v

∂x

)
+ u = |u|2v

which is the same as (2). Likewise, making the same replacements in (5) yields

i

(
∂u

∂t
+
∂u

∂x

)
+ v = |v|2u

which is the same as (1). Thus we can conclude that the semi-discretization (3) returns the MTM

(1) - (2) in the continuum limit.

2 Stability of the Time Evolution near the Zero Equilibrium

In this section, we discuss the stability of the solutions, Un, Qn, and Rn, near the zero equilibrium.

Under this condition, (3) can be linearized as follows


4idUn

dt
+Qn+1 +Qn + 2i

h
(Rn+1 −Rn) = 0

−2i
h

(Qn+1 −Qn) + 2Un = 0

Rn+1 +Rn − 2Un = 0.

(6)

Recall that the given a system of linear partial differential equations, the general solution can be

constructed using a linear combination of separable solutions [8]. To assess the time evolution of
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the solutions of the semi-discrete linear system, we consider a single mode in a possible linear

combination. If an arbitrary mode grows in time, we can conclude that the solution is not stable.

These modes are of the form

Un = Ûeinθe−iωt

Rn = R̂einθe−iωt,

Qn = Q̂einθe−iωt

where θ ranges from 0 to π. In substituting these solutions into the linearized system, we obtain a

dispersion relation, ω(θ), which encodes information about the behavior of a given mode. There

are three possibilities: Im(ω) > 0, Im(ω) = 0, Im(ω) < 0.

If Im(ω)> 0 for a real value of θ, the mode grows exponentially in time and the solution

is unstable. Conversely, if Im(ω) < 0 the mode decays exponentially in time, and the solution is

stable. Finally, when Im(ω) = 0, the solution does not decay nor grow, but generally propagates

as a linear wave [1]. Substituting these solutions into (6), we generate the following system of

equations.


4ω eiθ + 1 2i

h
(eiθ − 1)

2 −2i
h

(eiθ − 1) 0

−2 0 eiθ + 1



Û

Q̂

R̂

 =


0

0

0

 (7)

If we are to avoid the trivial solution, (Û , Q̂, R̂) 6= (0, 0, 0), we must ensure the determinant of the

matrix is 0. Thus, (7) is true if and only if det(A) = 0. That is if

8

h2
(eiθ − 1)2 + (eiθ + 1)

[
− 2(eiθ + 1)− 8iω

h
(eiθ − 1)

]
= 0.
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Using the identities

sin(θ) =
eiθ − e−iθ

2i
cos(θ) =

eiθ + e−iθ

2

we obtain the following equation

− 32

h2
sin2

(
θ

2

)
eiθ − 8eiθ cos2

(
θ

2

)
− 8iω

h
2ieiθ sin(θ) = 0

which can be simplified to

ω sin θ =
h

16

[
32

h2
sin2

(
θ

2

)
+ 8 cos2

(
θ

2

)]

ω =
h

2 sin θ

[
cos2

(θ
2

)
+

4

h2
sin2

(θ
2

)]
∈ R

ω is a real number, and thus Im(ω) = 0. From this, we can conclude that near the zero equilibrium,

the Fourier mode will not grow or decay, but propagate as a linear wave.

3 Numerical Investigations of the Semi-Discrete MTM

The goal of the numerical simulation was to obtain stable numerical solutions U(x = hn, t), Q(x =

hn, t), and R(x = hn, t) to (3) for time t > 0 beginning with initial data U(x = hn, 0) at t = 0.

The initial data U(x = hn, 0) was obtained by evaluating the exact solution of the the semi-discrete

MTM at t = 0. This solution, given by (8), is a soliton and was obtained by Pelinovsky and Xu

using the Backlund-Darboux transformation in [9].

U =
2iλ̄γ̄(λ2 − λ̄2)e

¯η(t)+ξ(t)

λ2(hλ̄2 − 2i)e
¯ξ(t)+ξ(t) + |γ|2|λ|2(hλ2 − 2i)e

¯η(t)+η(t)
(8)

where ξn(t) and ηn(t) are given by

ξn(t) = n log
(
λ+

2i

hλ

)
+

1

2
iλt2 ηn(t) = n log

(
− λ+

2i

hλ

)
− it

2λ2
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and λ affects the characteristic width of the soliton. The first part of the numerical procedure was to

obtainQ andR at t = 0. This was achieved by inverting the second and third equations of (3) under

Dirichlet boundary conditions. The function used for this inversion can be found in Appendix C.

With U,Q, and R known at t = 0, one can proceed to find U at the next timestep using the first

equation of (3) . At this point, the newly computed U is used to obtain R and Q. This process

repeats itself until the procedure has completed the specified number of iterations. As is seen in

the next section, explicit calculation U at the next timestep using Euler’s method or Heun’s method

is a numerically unstable procedure. That is, any numerical error present in the initial conditions

accumulates with each timestep. This is in contrast to a stable or neutrally stable procedure, in

which errors decay or remain constant respectively with each iteration [4].

3.1 Stability of the Explicit Scheme

The stability of the evolutionary step is analyzed using von Neumman stability analysis [4]. This

method of stability analysis works by expressing the numerical solution of (6) as a Fourier series

Un =
M∑
i=1

Û(t)einθ, Rn =
M∑
i=1

R̂(t)einθ, Qn =
M∑
i=1

Q̂(t)einθ.

If the coefficient, Û(t) grows in time, we can conclude that the numerical solutions and correspond-

ing error experience growth as well. This indicates an unstable numerical scheme. We define the

amplification factor G as the ratio of amplitude of a mode at the next timestep to the amplitude at

the current timestep. That is

G =
Ûk+1

Ûk
.

Inserting a single mode of U and R into the third equation of (6) , we see that R̂ is related to Û by

R̂ =
2Û

eiθ + 1
.
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Likewise, inserting a single mode of Q̂ and Û into the second equation of (6), we see that Û and Q̂

are related by

Q̂ =
−ihÛ
eiθ − 1

.

These relations are then inserted into the first equation of (6), yielding

dÛ

dt
=

[
h

4

eiθ + 1

eiθ − 1
− 1

h

eiθ − 1

eiθ + 1

]
Û = −i

[
h

4
cot

(
θ

2

)
+

1

h
tan

(
θ

2

)]
Û .

Replacing the derivative with a finite difference yields

Ûk+1 − Ûk

τ
= −i

[
h

4
cot

(
θ

2

)
+

1

h
tan

(
θ

2

)]
Ûk.

Under Euler’s method, we see that Ûk+1 at the next timestep is

Ûk+1 = Ûk − iτ
[
h

4
cot

(
θ

2

)
+

1

h
tan

(
θ

2

)]
Ûk (9)

Under this scheme, the modulus of G is

|G| =

√
1 + τ 2

[
h

4
cot

(
θ

2

)
+

1

h
tan

(
θ

2

)]2

which exceeds 1 for all τ . Thus, we can conclude that the Euler explicit method is unconditionally

unstable. Under Heun’s method, the explicit scheme is

Ûk+1 = Ûk − iτ

2

[
h

4
cot

(
θ

2

)
+

1

h
tan

(
θ

2

)]
Û − iτ

2

[
h

4
cot

(
θ

2

)
+

1

h
tan

(
θ

2

)]
Ûk+1.

Replacing Ûk+1 using (9), we see that G is given by

G = 1− iτ
[
h

4
cot

(
θ

2

)
+

1

h
tan

(
θ

2

)]
− τ 2

2

[
h

4
cot

(
θ

2

)
+

1

h
tan

(
θ

2

)]2
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and likewise that |G| is given by

|G| =

√
1 +

τ 4

4

[
h

4
cot

(
θ

2

)
+

1

h
tan

(
θ

2

)]4

.

Again |G| > 1, thus the explicit Heun’s method is unconditionally unstable. Therefore, an implicit

scheme is required for the evolution step.

3.2 Stability of the Semi-Implicit Scheme

In the semi-implicit scheme, we start with

Ûk+1 − Ûk

τ
= − i

2

[
h

4
cot

(
θ

2

)
+

1

h
tan

(
θ

2

)]
(Ûk+1 + Ûk).

The corresponding amplification factor is

G =

1− iτ
2

[
h
4

cot

(
θ
2

)
+ 1

h
tan

(
θ
2

)]
1 + iτ

2

[
h
4

cot

(
θ
2

)
+ 1

h
tan

(
θ
2

)]

so that |G| = 1. From this, we can conclude that an implicit scheme is neutrally stable. Since the

implicit method is stable, we devised a semi-implicit numerical scheme which is given by

4i
Uk+1 − Uk

τ
+

1

2
(Qk+1

n+1 +Qk+1
n ) +

1

2
(Qk

n+1 +Qk
n) +

i

h
(Rk+1

n+1 −Rk+1
n ) +

i

h
(Rk

n+1 −Rk
n) = F k

n

(10)

where F k
n is given by

F k
n = Un(|Qn+1|2 + |Qn|2 + |Rn+1|2 + |Rn|2) +

ih

2
U2
n(Q̄n+1 − Q̄n)− U2

n(R̄n + R̄n+1).

In practice, however, the future values of U are placed on the left hand side, and the

current values of U are placed on the right hand side. This yields

Uk+1
n +

τ

8i
(Qk+1

n+1 +Qk+1
n ) +

τ

4h
(Rk+1

n+1 −Rk+1
n ) = Uk

n −
τ

8i
(Qk

n+1 +Qk
n)− τ

4h
(Rk

n+1 −Rk
n) +

τ

4i
F k
n .
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The implementation of the scheme can be found in Appendix A.

3.3 Growth of the Error in Numerical Solutions

Despite the fact that |G| = 1 for all modes, the error between the numerical and exact solutions

increased with each iteration. The error was computed as the Euclidean norm of the quantity

U − Uexact where U is the numerical solution and Uexact is the solution solving (3) given by (8).

To see the growth in error, consider the following the example. In this example, we

define the computational domain to extend from -15 to 15. The number of lattice points in the

computational domain was selected to be 81, giving a lattice spacing of 0.375. The initial data was

obtained by evaluating (8) at t = 0 with the parameters λ = 1+i√
2

and γ = 1. The plot of this graph

can be found in Figure 1.

Figure 1: Plot of the initial data at time 0.

In this example, we set the timestep τ to be 0.0002 and allowed the procedure to run for

1000 iterations. The error between the exact solution and the numerical solution was recorded after

each iteration. As can be seen in Figure 2, the error grew with each iteration.
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Figure 2: The Euclidean norm of the difference between the exact solution and the numerical

solution. There is a drastic increase in the error.

The source of the error, as can be seen in Figure 3, is due to the growth in the solution

at the left end of the computational domain.

Figure 3: The plot of the modulus of the numerical solution at time 0.2, after 1000 iterations.

Ideally, the solution at the left side of the domain would look similar to the solution at

the right end of the domain. In Figure 4, we see both the numerical and exact solutions for U at

time 0.2.
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Figure 4: The modulus of the exact solution for U in red vs the modulus of numerical solution for

U in black. By time 0.2, a noticeable difference has accumulated between the two solutions. The

total error at this point was 0.5301.

Given the stability of the scheme established in section 3.2, other sources of error were

considered to explain why a dissonance between the numerical and exact solutions was observed.

It is believed that the source of the error is from truncation error arising as a result of operating

upon a finite computational domain.

3.4 Absorbing Layers

To address this possibility, absorbing layers were incorporated into the numerical scheme with the

intention of damping the growth of the solution at the edge of the domain. This involved selecting

a damping parameter, δ, as well as a depth, r, over which to apply the absorbing layers. However,

as the below data indicate, this was futile in suppressing the growth of the error.
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Error between the exact and numerically computed solution (|U − Uexact|2)

Depth (r)

Strength (δ)
0.01 0.1 1 10

1 grid point 4.8215 ×10−4 4.78 ×10−4 4.3787 ×10−4 1.4397 ×10−4

2 grid points 4.8281 ×10−4 4.8457 ×10−4 5.0152 ×10−4 6.2645 ×10−4

3 grid points 4.8159 ×10−4 4.7244 ×10−4 3.8493 ×10−4 2.1015 ×10−4

4 grid points 4.8353 ×10−4 4.9173 ×10−4 5.6991 ×10−4 1.1000 ×10−3

5 grid points 4.8018 ×10−4 4.5839 ×10−4 2.5177 ×10−4 1.1000 ×10−3

Each cell corresponds to the error between the numerical solution and the exact solution for a
given (δ, r). The error between the numerical solution and the exact solution in the absence of any

absorbing layers was 4.8261× 10−4. The data in this table corresponds to a timestep of 0.0002
with 1000 iterations. The domain extended from -15 to 15 and the number of lattice sites used was

51, corresponding to a lattice spacing, h, of 0.6. The exact solution has λ = 1+i√
2

and γ = 1.

As is seen in the above table, moving horizontally across a given row does not result

in a significant reduction in the error. This implies that increasing the damping factor does not

conceal the truncation error. Likewise, moving down a given column does not result in a significant

change in the error. This shows that increasing the depth over which the absorbing layers are

applied has no significant effect on error growth. Due to the lack of success using absorbing layers,

a second, slightly improved numerical scheme was devised in which the terms U2
n(R̄n + R̄n+1) and

− ih
2
U2
n(Q̄n+1 − Q̄n) in the first equation of (3) are calculated in the implicit phase instead of being

calculated along with the terms in F k
n . The corresponding implicit scheme is given by

Uk+1
n +

τ

8i
(Qk+1

n+1 +Qk+1
n ) +

τ

4h
(Rk+1

n+1 −Rk+1
n ) +

τ

8i
U2
n(R̄n+1 + R̄n)− τh

16
U2
n(Q̄n+1 − Q̄n)

= Uk
n −

τ

8i
(Qk

n+1 +Qk
n)− τ

4h
(Rk

n+1 −Rk
n)− τ

8i
U2
n(R̄n+1 + R̄n) +

τh

16
U2
n(Q̄n+1 − Q̄n) +

τ

4i
F k
n

where F k
n is given by

F k
n = Un(|Qn+1|2 + |Qn|2 + |Rn+1|2 + |Rn|2).

The implementation of this scheme can be found in Appendix B. Under this new scheme, very

similar results were obtained. Beginning with the same initial data depicted in Figure 1, with a
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computational domain extending form -15 to 15 containing 81 grid points (h = 0.375), we see that

after 1000 iterations with timestep 0.0002, the emergence of the same phenomenon at the left hand

side of the domain as can be seen in Figure 5.

Figure 5: The plot of the modulus of the numerical solution at time 0.2, after 1000 iteration. This

result was obtained using the improved numerical scheme.

As was observed in the numerical scheme given by (10), a similar profile for error

growth was observed. The error at each iteration can be seen in Figure 6.

Figure 6: The Euclidean norm of the difference between the exact solution and the numerical

solution. This result was obtained using the improved numerical scheme.
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As before, the source of the error comes the disparity between the exact solution and

the numerical solution at the left side of the domain, as can be seen in Figure 7.

Figure 7: A comparison of the numerical solution of U in black and the exact solution for U in red

obtained using the improved numerical scheme. The error between the two solutions after 1000

iterations was 0.5272.

This modification did not result in a reduction in error, even with the use of absorbing

layers. In the below table, we show the error for a given strength, δ, and depth, r, as was done for

the original semi-implicit scheme (10).
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Error between the exact and numerically computed solution (|U − Uexact|2)

Depth (r)

Strength (δ)
0.01 0.1 1 10

1 grid point 5.9451 ×10−4 5.9041 ×10−4 5.5089 ×10−4 2.7348 ×10−4

2 grid points 5.9514 ×10−4 5.9664 ×10−4 6.112 ×10−4 7.2156 ×10−4

3 grid points 5.9395×10−4 5.8487 ×10−4 4.9848 ×10−4 1.8778 ×10−4

4 grid points 5.9581 ×10−4 6.0337 ×10−4 6.7587 ×10−4 1.2000 ×10−3

5 grid points 5.9258×10−4 5.7121 ×10−4 3.7274 ×10−4 9.8779 ×10−4

Each cell corresponds to the error between the numerical solution and the exact solution for a
given (δ, r). The error between the numerical solution and the exact solution in the absence of any

absorbing layers was 5.9497× 10−4. The data in this table corresponds to a timestep of 0.0002
with 1000 iterations. The domain extended from -15 to 15 and the number of lattice sites used was

51, corresponding to a lattice spacing, h, of 0.6. The exact solution has λ = 1+i√
2

and γ = 1.

As was the case for the original semi-implicit scheme, moving across a given row or down a given

column does not result in a significant reduction in error.

4 Conclusion

In this thesis, we have shown that near the zero-equilibrium, the solutions of (3) propagate as a

linear wave. We have further shown that explicit methods of obtaining numerical solutions to the

semi-discrete MTM are unstable, but that a neutrally stable, semi-implicit scheme exists. Despite

the stability of the scheme, the error between the numerical and exact solutions could not be con-

tained. Applying absorbing layers to the edges of the computational domain did not improve the

results. Further researchers may wish to determine the precise source of the error being observed.

A deeper analysis of the exact solutions of (3) may provide insight regarding the growth in the er-

ror of the numerical solution. Finally, different numerical schemes may be employed in obtaining

solutions in addition to the ones tried in this investigation.
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A Time Evolution Script (Original)

Below is an image of the original semi-implicit scheme used in finding U at the next timestep.
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Figure 8: The semi-implicit scheme used to generate U at the next timestep. This script calls the

function Inversion, which is displayed in Appendix C.

B Time Evolution Script (Improved)
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Figure 9: The improved semi-implicit scheme.
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C Inversion Function

Figure 10: The function ”Inversion”. This function solves for R and U using the last two equations

of (3).
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