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nonlinear Schrödinger equation

Dmitry E. Pelinovsky
Department of Mathematics, McMaster University, Hamilton, Ontario L8S 4K1, Canada

Jianke Yanga�

Department of Mathematics and Statistics, University of Vermont, Burlington, Vermont 05401

�Received 16 February 2005; accepted 21 April 2005; published online 21 October 2005�

We study the generalized third-order nonlinear Schrödinger �NLS� equation which admits a one-
parameter family of single-hump embedded solitons. Analyzing the spectrum of the linearization
operator near the embedded soliton, we show that there exists a resonance pole in the left half-plane
of the spectral parameter, which explains linear stability, rather than nonlinear semistability, of
embedded solitons. Using exponentially weighted spaces, we approximate the resonance pole both
analytically and numerically. We confirm in a near-integrable asymptotic limit that the resonance
pole gives precisely the linear decay rate of parameters of the embedded soliton. Using conserved
quantities, we qualitatively characterize the stable dynamics of embedded solitons. © 2005 Ameri-
can Institute of Physics. �DOI: 10.1063/1.1929587�
Embedded solitons are solitary waves that reside inside
the continuous spectrum of a nonlinear-wave system.
Even though these solitons are in resonance with the con-
tinuous spectrum and thus have a tendency to shed ra-
diation, they can still be semistable, or more surprisingly,
fully stable. Full stability of embedded solitons is under-
stood poorly so far. This article addresses stability of em-
bedded solitons in a generalized third-order NLS
equation.

I. INTRODUCTION

Embedded solitons are nonlinear localized states resid-
ing inside the continuous spectrum of the underlying nonlin-
ear wave system.10,34 The existence of embedded solitons is
a little surprising, as inside the continuous spectrum, nonlo-
cal solitons with continuous-wave tails, rather than localized
embedded solitons, are normally anticipated.3 So far, embed-
ded solitons have been reported in a wide array of nonlinear-
wave systems such as the fifth-order Korteweg–de Vries
�KdV� equations,5,6,21,31 the fourth-order nonlinear
Schrödinger �NLS� equations,4,13 the coupled KdV
equations,16 the second-harmonic-generation system,34 mas-
sive Thirring model,7,8 three-wave interaction system,9 the
third-order NLS equations,12,17,18,23,32,33 the coupled Bragg-
grating system,22 and the discrete fourth-order NLS
equation.14 Recently, moving discrete breathers were linked
to embedded solitons as well.28

What makes embedded solitons even more surprising is
their unusual dynamical properties. Because embedded soli-
tons are in resonance with the continuous spectrum, one
tends to expect that these solitons will continuously leak en-
ergy through continuous-wave radiation and thus break up
eventually. This is not true, however, it has been shown that
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many embedded solitons are actually nonlinearly semistable,
i.e., if the initial perturbation increases the energy of the
embedded soliton, the soliton tends to persist; on the other
hand, if the initial perturbation decreases the energy of the
embedded soliton, the soliton disappears. This semistability
holds not only for isolated embedded solitons,27,30,31,34 but
also for continuous families of embedded solitons.33 Even
more interestingly, it was discovered for the generalized
third-order NLS equation17,32 and the coupled Bragg-grating
system22 that embedded solitons can be fully stable as well,
no matter what initial perturbations are imposed.

Full stability of embedded solitons is not yet well under-
stood either mathematically or physically. Even though these
solitons have a natural tendency to leak energy due to reso-
nance with the continuous spectrum, they can still resist that
tendency and remain robust. Motivated by numerical simu-
lations by Gromov et al.,17 Yang32 constructed a soliton per-
turbation theory and analytically proved the full stability of
embedded solitons in the asymptotic limit where the third-
order NLS equation is close to the integrable Hirota equa-
tion. 20 This work leads to the following general question:
How do we explain the stability of embedded solitons within
the framework of a general third-order NLS equation?

In this paper, we study the stability of embedded solitons
in the generalized third-order NLS equation where a continu-
ous family of single-hump embedded solitons exists in an
analytical form. First, we study the spectrum of the linear-
ization operator near the embedded soliton and show that
there exists a resonance pole in the left half-plane of the
spectral parameter. Resonant poles correspond to spatially
unbounded eigenfunctions, which become decaying in expo-
nentially weighted spaces.26 Such eigenfunctions represent
radiative modes of the continuous spectrum that explain the
exponential decay of perturbations of embedded solitons in

11,24
time evolution.
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We approximate the resonance pole analytically in the
asymptotic limit where the third-order NLS equation is close
to the Hirota equation. We also compute the resonance pole
numerically for a general set of parameter values. We found
that the asymptotic formulas and numerical values agree
very well. In addition, the resonance pole gives precisely the
linear decay rate of parameters of embedded solitons com-
puted in Ref. 32 for the perturbed Hirota equation. Finally,
using conserved quantities, we qualitatively derive the
normal-form equations for nonlinear dynamics of small per-
turbations of embedded solitons. These dynamical equations
establish the linear and nonlinear stability of embedded soli-
tons within the framework of the general third-order NLS
equation.

The paper is structured as follows. Section II presents
transformation of the generalized third-order NLS equation
to a normalized form, from which time-independent embed-
ded solitons and the associated linearization operator are in-
troduced. Section III describes the spectrum of the lineariza-
tion operator, which includes the essential spectrum and the
nontrivial kernel. The adjoint linearization operator is studied
in Sec. IV. Exponentially weighted spaces are introduced in
Sec. V. The resonant pole of the linearization operator is
investigated in Sec. VI with perturbation methods and nu-
merical computations. Reduced equations for stable dynam-
ics of embedded solitons are derived from conserved quan-
tities and studied in Sec. VII. Section VIII concludes the
paper.

II. FORMULATION OF THE PROBLEM

We consider a generalized third-order NLS equation in
the form,

iut + iuxxx + ��u�2u + i��u�2ux + i���u�2�xu = 0, �2.1�

where � ,� ,� are real-valued parameters, and u�x , t� is a
complex-valued function. This equation has been used to
model ultra-short pulses in optical fibers.2,19 Normally, Eq.
�2.1� also contains the second-order derivative term. How-
ever, once the third-order derivative term is included, the
second-order derivative term can be removed by a gauge
transformation.29,32 When �=�=0, this equation is referred
to as the Hirota equation or the complex modified KdV equa-
tion, which is integrable with the inverse scattering transform
method.1,20 The Hirota equation has a two-parameter family
of embedded solitons, which are in resonance with dispersive
waves of the linear third-order equation ut+uxxx=0. This
family of embedded solitons is expressed explicitly as

u�x,t� = r sech�r�z�eikx+i�t, z = x − vt , �2.2�

where �k ,r� are arbitrary real parameters, �=�� /6, and
�v ,�� are expressed in terms of k, r, and � as

� = k�k2 − 3�2r2�, v = �2r2 − 3k2. �2.3�

When � and � are small compared to �, the family of em-
bedded solitons �2.2� and �2.3� is destroyed by the oscillatory
nondecaying tails at infinity,12,32 unless the parameters k and

� are fixed as
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k = −
�

2�
, � =�� + 2�

6
, �2.4�

while the parameter r remains arbitrary. This one-parameter
family of embedded solitons �2.2�–�2.4� gives an exact solu-
tion of the third-order NLS Eq. �2.1� for arbitrary values of
�, �, and � as long as �+2��0.18 It was shown with the
soliton perturbation theory32 that the one-parameter family of
embedded solitons with 0� ���+ ����� is linearly and non-
linearly stable in the time evolution of arbitrary localized
initial data. These analytical results explained previous nu-
merical computations of the generalized third-order NLS Eq.
�2.1�.17

We note that the family of embedded solitons �2.2� does
not exist in the third-order NLS Eq. �2.1� with �=�=0.5,15

Although multihumped embedded solitons still exist in this
case,5,33 we focus on the single-humped embedded solitons
and consider the general third-order NLS Eq. �2.1� under the
constraint ���+ ����0.

For the convenience of analysis, we first transform the
third-order NLS Eq. �2.1� with the following substitution:

u�x,t� = rU�X,T�eikx+i�t, X = r��x − vt�, T = r3�3t ,

�2.5�

where �� ,v� are defined by �2.3�, �k ,�� defined by �2.4�, and
r is arbitrary. The function U�x , t� solves the normalized
third-order NLS equation:

iUT + i�UXXX − UX + 6�U�2UX� + 	�UXX − U + 2�U�2U�

= i
�UXŪ − UŪX�U , �2.6�

where

	 =
3�

2��r
, 
 =

6�

� + 2�
. �2.7�

When �� ,� ,�� are fixed parameters of the general Eq. �2.1�,
the normalized NLS Eq. �2.6� has the free parameter 	 and
fixed parameter 
.

When 
=0, the normalized Eq. �2.6� has the Hamil-

tonian structure iU̇=�ŪH associated with the Hamiltonian:

H =
i

2
�

−�

�

�ŪXUXX − UXŪXX + ŪUX − UŪX + 3�U�2�ŪXU

− ŪUx��dX + 	�
−�

�

��UX�2 − �U�4 + �U�2�dX . �2.8�

When 
�0, Eq. �2.6� does not have a Hamiltonian structure,
even though it still has two conserved quantities �see Sec.
VII�.

Under the normalization �2.5�, the embedded solitons

�2.2� reduce to the time-independent localized solution
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U = 
�X� = sech X . �2.9�

Due to gauge and translation invariances, the function 
�X�
generates a two-parameter orbit of time-independent solu-
tions: U=
�X−X0�ei�0, where X0 and �0 are real constants.
Now we consider the linearization of the nonlinear Eq. �2.6�
around the embedded soliton �2.9�. For this purpose, we

write

persive wave equations.
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U = 
�X� + �V�X� + iW�X��e�t + �V̄�X� + iW̄�X��e�̄t,

�2.10�

where V and W are infinitesimal perturbations, and the over-
bar represents complex conjugation. Neglecting the quadratic
terms in V and W, we get the linear eigenvalue problem,

L
v = �v, v = �V,W�T, �2.11�
where the linearization operator L
=L0+2
L1 with
L0 = �−
d3

dX3 +
d

dX
− 6
2�X�

d

dX
− 12
�X�
��X� 		−

d2

dX2 + 1 − 2
2�X�

		 d2

dX2 − 1 + 6
2�X�
 −
d3

dX3 +
d

dX
− 6
2�X�

d

dX
� �2.12�
L1 = �0 0

0 
2�X�
d

dX
− 
�X�
��X� � , �2.13�

and the superscript T represents the transpose of a matrix.
When 	=0, the operator L
 decouples as

L
 = �M1 0

0 M2

 , �2.14�

where

M1 = −
d3

dX3 +
d

dX
− 6
2�X�

d

dX
− 12
�X�
��X� ,

M2 = −
d3

dX3 +
d

dX
− 6
2�X�

d

dX
+ 2
	
2�X�

d

dX

− 
�X�
��X�
 .

We shall study the spectrum of the linearization operator
L
 in the L2�R ,C2� space, as well as in the exponentially
weighted space:

La
2 = �v�X�:eaXv � L2�R,C2��, a � 0. �2.15�

Here R and C are the real and complex sets, respectively, and
the functional space L2�R ,C2� is the space of square-
integrable functions f�X� from R to C2. The exponentially
weighted space has been used in the linearized KdV equation
by Pego and Weinstein26 in the proof of asymptotical orbital
stability of KdV solitons. Here we use the space La

2 in order
to shift the essential spectrum away from the origin �=0,
such that the essential spectrum is no longer in resonance
with the nonempty kernel of L
. The resonance between the
essential spectrum and the kernel of L
 in L2 is the standard
feature of KdV solitons25 and also embedded solitons in dis-

27,30
In the Hamiltonian case 
=0, the generalized kernel of
L0 in L2�R ,C2� is spanned by two eigenfunctions and two
generalized eigenfunctions. In what follows, we will show
that when 
�0, one of the two generalized eigenfunctions of
L
 is no longer in L2�R ,C2�. Using the exponentially
weighted space La

2, we will compute for 
�0 the splitting of
a double zero eigenvalue into a simple zero eigenvalue and a
nonzero negative eigenvalue, which results in the linear sta-
bility of embedded solitons. This new discrete eigenvalue in
La

2 corresponds to a resonant pole in L2 with exponentially
growing eigenfunctions in space. Similar results on appear-
ance of resonant poles and their role in stability of solitary
waves were discovered with the Evans function in the expo-
nentially weighted spaces for the Kawahara equation,11,24

which is the KdV equation with a singular dissipative pertur-
bation.

III. SPECTRUM OF OPERATOR L�

The essential spectrum of L
 is defined in the limit �X�
→�, where 
�X� decays to zero. In this limit, substituting
the Fourier modes

v± → 	 1

±i

eiKX, as �X� → � , �3.1�

into the eigenvalue problem �2.11� with K�R, we find that
the essential spectrum is located on the two curves:

S± = �� � C:� = i�1 + K2��K ± 	�,K � R� . �3.2�

The two branches of the continuous spectrum overlap on the
entire iR axis. At �=0, the two branches are in resonance
with the nonempty kernel of L
.

The kernel of L
 is at least two-dimensional, since it

contains the two eigenfunctions
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v1 = 	 0


�X�

, v2 = 	
��X�

0

 , �3.3�

which are generated by the phase and space translations of
the time independent solutions U=
�X−�0�ei�0. The kernel
of L
 also contains other functions which are not in L2. Since
these functions, especially those which are bounded at infin-
ity, play an important role in the stability analysis of embed-
ded solitons,27,30 we will study them in more detail here.

When 	=0, the operator L
 is decoupled as �2.14�. The
three functions in the kernel of M1 are plotted in Fig. 1�a�
�note that operator M1 is independent of 
�. The localized
function is 
��X�, the bounded function is 1−2
2�X�, while

FIG. 1. Kernels of operators M1 and
wnloaded 02 Nov 2005 to 130.113.105.64. Redistribution subject to AI
the third function is unbounded. The other operator M2 de-
pends on 
 and the functions in its kernel are plotted in Figs.
2�a� and 2�c� at 
=0 and 
=1, respectively. When 
=0, the
localized function is 
�X�, the bounded solution is a con-
stant, and the third solution is unbounded. When 
=1, the
localized function 
�X� persists, but the bounded solution
disappears. The same property holds for all 
�0 except for

=1.5, when the bounded solution appears again. The case
	=0 and 
=1.5 is also special as it corresponds to another
integrable equation called the Sasa–Satsuma equation.29

We have numerically investigated functions in the kernel
of L
 in the general case of 	�0 and 
�0. For a general set

, shown in �a� and �b�, respectively.

FIG. 2. �a� and �c� Kernels of the op-
erator M2 with 
=0 and 
=1, respec-
tively; �b� and �d� kernels of the opera-
tor M2

A with 
=0 and 
=1,
respectively.
A
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of parameters, the kernel of L
 contains two decaying eigen-
functions �3.3�, one bounded eigenfunction with oscillatory
tails at infinity v= �v1 ,v2�T, where v1�X� is even and v2�X� is
odd, and three unbounded solutions.

Next, we discuss the generalized eigenfunctions of op-
erator L
 at zero eigenvalue, which are solutions of the in-
homogeneous equations:

L
w1 = 	v1 − v2, L
w2 = v1 + 	v2. �3.4�

In the integrable case where 
=0, the generalized eigenfunc-
tions are given explicitly as

w1
�0� =

1

2
	
�X� + X
��X�

0

, w2

�0� = −
1

2
	 0

X
�X�

 ,

�3.5�

which motivates the use of linear combinations of �v1 ,v2� in
the right-hand-sides of Eq. �3.4�. The two solutions �3.5� are
related to the derivatives of the general two-parameter family
�2.2� with respect to parameters r and k, respectively. The

�0�
first solution w1 �X� persists in the general case 
�0, such

v1 =v1 �X�. The second eigenfunction v2 �X� is, however,
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that w1=w1
�0��X�, because parameter r is free. The second

solution w2
�0��X�, however, does not persist, since parameter k

is fixed when 
�0. Due to the resonance between the essen-
tial spectrum and the kernel of L
, the second solution w2�X�
generally contains oscillatory tails with nonzero amplitudes
at infinity. By preserving the symmetry of the solution
w2

�0��X� for 
�0, we represent the solution of the second
equation in �3.4� as follows:

w2 = 	��X�
��X�


, ��− X� = ��X�,��− X� = − ��X� . �3.6�

When 
=0, we have �=0 and �=− 1
2X
�X�. We can show

numerically that there exists a solution of the second equa-
tion in �3.4� in the form �3.6�, where ��X� and ��X� are not
decaying at infinity for a general value of 
�0.

IV. THE ADJOINT OPERATOR

The adjoint operator L

A takes the explicit form L


A=L0
A

A
+2
L1 , where
L0
A = �

d3

dX3 −
d

dX
+ 6
2�X�

d

dX
		 d2

dX2 − 1 + 6
2�X�

		−

d2

dX2 + 1 − 2
2�X�
 d3

dX3 −
d

dX
+ 6
2�X�

d

dX
+ 12
�X�
��X� � �4.1�

and

L1
A = − �0 0

0 
2�X�
d

dX
+ 3
�X�
��X� � . �4.2�

In the integrable case where 
=0, the linearization operator L0 takes the form L0=JH0, with

J = 	0 − 1

1 0



and

H0 = � 		−
d2

dX2 + 1 − 2
2�X�
 d3

dX3 −
d

dX
+ 6
2�X�

d

dX
+ 12
�X�
��X�

−
d3

dX3 +
d

dX
− 6
2�X�

d

dX
		−

d2

dX2 + 1 − 6
2�X�
 � .
As a result, the eigenfunctions of the adjoint operator
L0

A=−H0J are related to eigenfunctions of the operator L0.
The kernel of the adjoint operator L0

A includes two eigen-
functions:

ṽ1
�0� = 	
�X�

0

, ṽ2

�0� = 	 0


��X�

 . �4.3�

It is seen from the explicit formulas �4.1� and �4.2� that the
first eigenfunction ṽ1

�0��X� persists for any 
�0, such that
A ˜ �0� ˜ �0�
destroyed in the parameter continuation, such that the eigen-
function v2

A needs to be studied separately.
We use the fact that the adjoint equation L


AvA=0 admits
a reduction. Looking for solutions in the form

vA = 	 	��X�
− ���X�


 , �4.4�
we find that ��X� satisfies a fourth-order scalar equation:

P license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



037115-6 D. Pelinovsky and J. Yang Chaos 15, 037115 �2005�

Do
S
� = 0, �4.5�

where S
=S0−2
S1, and

S0 =
d4

dX4 −
d2

dX2 + 6
2�X�
d2

dX2 + 12
�X�
��X�
d

dX

− 	2	−
d2

dX2 + 1 − 2
2�X�
 , �4.6�

S1 = 
2�X�
d2

dX2 + 3
�X�
��X�
d

dX
. �4.7�

Thus we can use the fourth-order Eq. �4.5� to obtain four of
the six functions in the kernel of the adjoint operator L


A.
This fact is convenient both for analysis and numerical com-
putations. The remaining two solutions are a decaying solu-
tion v1

A= ṽ1
�0��X� as given in Eq. �4.3�, and an unbounded

solution which we are not interested in. When 
=0, the ho-
mogeneous Eq. �4.5� has a decaying solution �=
�X�, which
corresponds to ṽ2

�0��X�. However, this decaying solution does
not persist in the general nonintegrable case 
�0 due to a
resonance with the essential spectrum of L


A at �=0. The
second eigenfunction v2

A�X� generally contains oscillatory
tails at infinity.

Eigenfunctions in the kernel of L

A can be studied nu-

merically for 
�0. When 	=0, the operator L

A is decom-

posed as follows:

L

A = �M1

A 0

0 M2
A
 , �4.8�

where

M1
A =

d3

dX3 −
d

dX
+ 6
2�X�

d

dX
,

M2
A =

d3

dX3 −
d

dX
+ 6
2�X�

d

dX
+ 12
�X�
��X�

− 2
	
2�X�
d

dX
+ 3
�X�
��X�
 .

Functions in the kernel of M1
A are plotted in Fig. 1�b�. The

decaying solution is 
�X� which corresponds to the eigen-
function v1

A�X�, the bounded solution is a constant, and the
third solution is unbounded. The other operator M2

A is depen-
dent on 
 and the functions in its kernel are plotted in Figs.
2�b� and 2�d� for 
=0 and 
=1, respectively. When 
=0, the
decaying solution is 
��X� which corresponds to ṽ2

�0��X�, the
bounded solution is 1−2
2�X�, while the third solution is
unbounded. When 
=1, the decaying solution disappears and
two bounded solutions arise, where one solution is symmet-
ric and the other one is anti-symmetric. This property holds
for all 
�0 except for 
=1.5, when the decaying solution
appears again, as the case 	=0 and 
=1.5 corresponds to the
integrable Sasa–Satsuma equation.29

In the general case of 	�0 and 
�0, we have shown
numerically that the kernel of L


A includes one decaying
eigenfunction v1

A, three bounded and two unbounded solu-

tions. The bounded solutions have oscillatory tails at infinity,
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and can be represented as vA= �v1
A ,v2

A�, where v1
A�X� is even

for two solutions and odd for the third solution, while v2
A�X�

has the opposite symmetry.
We have shown above that the decaying eigenfunction

v1
A of L


A persists and remains in L2. We would expect that
the eigenfunction v1

A has a decaying generalized eigenfunc-
tion w1

A such that L

Aw1

A=v1
A. This is certainly true when 	

=0 where the decomposition �4.8� holds. In this case, the
problem reduces to the scalar equation M1

Aw1
A=
 which does

have a localized solution w1
A= 1

2X
�X�. In the general case
	�0, the existence of a decaying generalized eigenfunction
w1

A is yet to be confirmed.
In order to study persistence of the generalized eigenvec-

tor w2 in the generalized kernel of L
, one should define the
inner product in L2�R ,C2�:

�f,g� = �
R

�f1ḡ1 + f2ḡ2�dX . �4.9�

Assume that the eigenfunctions w2�X� and v2
A�X� are repre-

sented by �3.6� and �4.4� with nondecaying eigenfunctions
��X�, ��X�, and ��X�. If ��X� is even function of X �by pa-
rameter continuation from �=
�X� at 
=0�, the inner prod-
uct �v2

A ,w2� generally diverges, which indicates that the gen-
eralized eigenfunction w2 should not be considered in space
L2. Therefore, we study the generalized eigenfunction in the
exponentially weighted space La

2 for a�0.

V. EIGENFUNCTIONS IN EXPONENTIALLY WEIGHTED
SPACES

The eigenfunctions w2 and v2
A, which are decaying for


=0, do not persist in the L2 space when 
�0, since they
contain oscillatory tails at infinity. Therefore, here we con-
sider generalized kernels of L
 and L


A in the exponentially
weighted spaces. The exponentially weighted space shifts the
essential spectrum from the origin, where the generalized
kernels of linearization operators reside.25,26 In the space La

2,
the essential spectrum of L
 transforms as follows:

Sa
± = �� � C:� = �±�K� = �1 − �iK − a�2��iK ± i	 − a�,K

� R� . �5.1�

The curves Sa
± are shown in Figs. 3�a� and 3�b� for 	=1 and

	=2, where a=0.1 �solid curve� and a=0.3 �dashed curve�.
It is easy to check that Re �±�K� has maximum at K
= �	 /3 , a�0, where

Re �±�K��K=�
	
3

= a	a2 − 1 +
	2

3

 .

Therefore, the curves Sa
± are located in the left half-plane of

� if and only if �	���3 and 0�a��1−	2 /3. The transition
from �	���3 to �	���3 is clear from Figs. 3�a� and 3�b�.

First we consider the generalized kernel of L
. We have
shown that the eigenfunctions v1 , v2, and generalized eigen-
function w1 as defined in �3.3� and �3.4� persist in L2, but w2

does not. Taking into account the homogeneous solutions of
the operator L
 at infinity for �=0, we consider the Sommer-

feld radiation boundary condition for w2�X�:
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w�X� → a1
+e−X, as X → + � ,

w�X� → a1
−eX + a2

+ei	X + a2
−e−i	X, as X → − � , �5.2�

where a1,2
± are some vectors. If w2�X� satisfies �5.2�, then w2

belongs to the exponentially weighted space La
2 with 0�a

�1. Recall that w2�X� satisfies the second inhomogeneous
equation in �3.4�, which admits an inhomogeneous solution
in the form �3.6�. The components �� ,�� are oscillatory at
infinity when 
�0, with ��X� even and ��X� odd. On the
other hand, it follows from our numerical results that the
homogeneous part of �3.4� also admits a single bounded so-
lution with the same symmetry. Since two oscillatory func-
tions e±i	X as X→ +� cannot be removed with a single
bounded homogeneous solution, oscillatory tails in w2�X� al-
ways appear in both infinities and w2�X� cannot satisfy the
Sommerfeld radiation boundary condition �5.2�. This result
indicates that the double zero eigenvalue associated with the
subspace �v1+	v2 ,w2

�0�� for 
=0 splits in the weighted space
La

2 as 
�0.
Next we consider the kernel of L


A. We have shown that
the eigenfunction v1

A persists in L2 space, but v2
A does not.

Since the eigenfunctions of L
 are considered in the expo-
nentially weighted space La

2, the adjoint eigenfunctions of L

A

should be considered in the adjoint weighted space L−a
2 so

that the inner product �4.9� between eigenfunctions and ad-
joint eigenfunctions is independent of the artificial parameter
a. Taking into account the homogeneous solutions of the
operator L


A at infinity for �=0, we consider the adjoint Som-
merfeld radiation boundary condition for v2

A�X�:

vA�X� → b1
−eX, as X → − � ,

vA�X� → b1
+e−X + b2

+ei	X + b2
−e−i	X, as X → + � ,

�5.3�

where b1,2
± are some vectors. If v2

A�X� satisfies �5.3�, then v2
A

belongs to the exponentially weighted space L−a
2 with 0�a

�1. It follows from our numerical results that the kernel of
L


A contains three bounded solutions for 
�0, two of which
have the same symmetry, while the third has the opposite
symmetry. An appropriate linear combination of these
bounded solutions can satisfy the adjoint Sommerfeld condi-
tions �5.3�. For instance, in the case 	=0, by subtracting the
two bounded solutions in the kernel of operator M2

A �see Fig.
A
2�d��, the resulting eigenfunction v2 satisfies the condition
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�5.3�. Therefore, the adjoint eigenfunction v2�X� persists in
the exponentially weighted space L−a

2 where 0�a�1.

VI. SPLITTING OF THE ZERO EIGENVALUE FOR
SMALL �Å0

When 
=0, the generalized kernel of L0 contains two
functions �v1+	v2 ,w2

�0��, where v1,2�X� and w2
�0��X� are

given by �3.3� and �3.5�. These functions correspond to a
double zero eigenvalue in the operator L0. When 
�0, the
generalized eigenfunction w2

�0��X� does not persist in the La
2

space �a�0�. Here we show that this double zero eigenvalue
splits into a simple zero eigenvalue and a real negative ei-
genvalue �=�0�
��0 with �0�0�=0 in the La

2 space. Our
analysis is based on a perturbation theory applied for 
�1.

When 
�1, we expand the solution to equation
L
v=�v into a perturbation series in powers of 
:

v = v�0��X� + �
k=1

�

�2
�kv�k��X�, � = �
k=1

�

�2
�k�k, v � La
2,

�6.1�

where v�0�=v1�X�+	v2�X�, and v�k��X�, k=1, 2, 3, 4 solve
the inhomogeneous equations:

L0v�1� = − L1v�0� + �1v�0�, �6.2�

L0v�2� = − L1v�1� + �1v�1� + �2v�0�, �6.3�

L0v�3� = − L1v�2� + �1v�2� + �2v�1� + �3v�0�, �6.4�

L0v�4� = − L1v�3� + �1v�3� + �2v�2� + �3v�1� + �4v�0�. �6.5�

Decaying solutions of the inhomogeneous Eqs. �6.2�–�6.5�
exist in La

2 only if the right-hand-side functions are orthogo-
nal to eigenfunctions in the kernel of L0

A, which are vectors
�
 ,0�T and �0,
��T. The orthogonality with respect to
�
 ,0�T is always satisfied for the series �6.1�, thus we con-
sider only the orthogonality with respect to �0,
��T. Since
v�0� can always be added to v�k� for k�1 but it coincides with
the leading-order term of �6.1�, we assume that the solution
v�k� for k�1 does not include the homogeneous solution v�0�.

It is remarkable that L1v�0�=0, such that the orthogonal-
ity condition is always satisfied for v�1��X�, with the exact

FIG. 3. Essential spectrum and kernel
of L
 on the complex plane � in expo-
nentially weighted space La

2 for �a� 	
=1 and �b� 	=2, where a=0.1 �solid
curve� and a=0.3 �dashed curve�.
solution:
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v�1� = �1w2
�0��X� , �6.6�

where

w2
�0� = 	 0

�0�X�

, �0 = − 1

2X
�X� . �6.7�

The orthogonality condition for v�2��X� takes the form:

�1
2�
�,�0� + �1�
2
� + 3
�
��2,�0� = 0. �6.8�

Due to the symmetry of 
�X�, the condition is satisfied if
and only if �1=0, such that

v�1� = 0, v�2� = �2w2
�0��X� . �6.9�

The orthogonality condition for v�3��X� is empty, such that
the bounded solution exists in the form:

v�3� = �2	�1�X�
�1�X�


 + �3	 0

�0�X�

 . �6.10�

The vector ��1 ,�1�T is defined by the inhomogeneous Eq.
�6.4�. It can be shown explicitly that the problem �6.4� is
simplified with the solution,

�1 =
1

	
	�1��X� +

1

8

�X�
 , �6.11�

where �1�X� solves the scalar inhomogeneous equation:

S0�1 = − 3
2
2�X�
��X� , �6.12�

and S0 is defined by �4.6�. It is understood that the solution
�1�X� of the scalar Eq. �6.12� satisfies the Sommerfeld radia-
tion conditions �5.2�, such that limX→+��1�X�=0.

The orthogonality condition for v�4��X� gives finally a
nontrivial equation:

�2
2�
�,�0� + �2�
2
� + 3
�
��2,�1� = 0, �6.13�

which admits two roots for �2. The zero root corresponds to
the eigenfunction v�0�=v1�X�+	v2�X�, while the nonzero
root corresponds to the new eigenfunction v�X�, defined by
the perturbation series expansion �6.1� for �=�0�
��0. At
the leading order, the nonzero eigenvalue �=�0�
� is com-
puted as:

�0�
� = − 8
2�
2
� + 3
�
��2,�1� + O�
3� , �6.14�

where we have used the numerical value �
� ,�0�=1/2.
We can further show that the splitting of the double zero

eigenvalue in La
2 occurs exactly when the adjoint eigenfunc-

tion v2
A�L−a

2 becomes nonorthogonal to the eigenfunction
v1+	v2�La

2. The inner product between these two functions
is

�v2
A,v1 + 	v2� = �1 + 	2��
�,�� , �6.15�

where the solution form �4.4� for v2 is utilized. To further
calculate this inner product, we note from �4.6� that S0

A=S0

and

S0�X
�X�� = 2�1 + 	2�
��X� , �6.16�
such that
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�1 + 	2��
�,�� = 1
2 �X
,S0�� = 
�X
,S1��

= 3
�
2
�,�� . �6.17�

Using the perturbation series expansions,

� = 
�X� + �
k=1

�

�2
�k�k�X� , �6.18�

we find that �1�X� is a solution of the inhomogeneous prob-
lem:

S0�1 = 
2
� + 3
�
��2, �6.19�

subject to the adjoint Sommerfeld radiation conditions �5.3�,
such that limX→−��1�X�=0. As a result, direct computations
show that

�
2
� + 3
�
��2,�1� = ��1,S0�1� = − 3
2 �
2
�,�1�

�6.20�

and

�0�
� = 2�v2
A,v1 + 	v2� + O�
3� . �6.21�

Therefore, the eigenvalue �=�0�
� in the weighted space La
2

is negative for small 
�0 if and only if

�v2
A,v1 + 	v2� � 0. �6.22�

We show that �0�
��0 for 
�0 in the particular case 	
=0. When 	=0, there exists an analytical solution of the
inhomogeneous Eq. �6.12� satisfying the Sommerfeld radia-
tion condition:

�1�X� =
1

8	�

2
− �

0

X


�X�dX
 . �6.23�

As a result, the integral in the inner product of �6.14� can be
evaluated analytically as follows:

�
2
� + 3
�
��2,�1� =
�

16
�
2
� + 3
�
��2,1� =

�2

128
.

�6.24�

The leading-order asymptotic result given by �6.14� and
�6.24� is shown in Fig. 4�a� as the dashed curve. It agrees
with the solid curve which is the function �0�
� obtained
directly by a numerical shooting method for 	=0. The
shooting method is based on the observation that when
Re����0, the solutions e�iX , i=1, 2, 3 to the eigenvalue
equation M2Y =�Y as �X�→� are such that �1��2�0��3.
Thus, based on similar numerical studies in Ref. 11, we re-
quire the underlying eigenfunction to decay as e�1X as X→
+� and to grow as e�2X as X→−�. Figure 4�b� shows the
eigenfunction of the operator M2 which corresponds to the
resonant pole �0�
� for 
=0.5 and 	=0. The eigenfunction
decays exponentially in the limit X→ +� but it diverges ex-
ponentially in the limit X→−�. Since the divergence is slow
for small values of �0�
�, the eigenfunction exists in the
exponentially weighted space La for sufficiently large a, such
that 0�a*�a�1. In fact, a*=−�2.

It follows from the theory of eigenvalues in exponen-
26
tially weighted spaces that the location of eigenvalues is

P license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



037115-9 Stability of embedded solitons Chaos 15, 037115 �2005�

Do
independent of the weight parameter a. When a�a* for
some a*�0, the nonzero eigenvalue �=�0�
� of the spec-
trum of L
 in La

2 is located to the right of the essential spec-
trum Sa

± defined in �5.1�. When a decreases, the essential
spectrum Sa

± crosses the eigenvalue �=�0�
� at some a=a*,
which remains on the left of Sa

± for 0�a�a*. It also follows
from the theory of exponentially weighted spaces26 that this
crossing results in the exponential growth of the eigenfunc-
tion v�X� at infinity in La

2 for 0�a�a*. As a result, the
eigenvalue �=�0�
� in La

2, for a�a* corresponds to a reso-
nant pole in L2 for a=0. Similar splitting of the zero eigen-
value occurs in the Kawahara equation.11,24

Lastly, we relate the resonant pole �0�
� to the linear
exponential decay of parameters of the embedded soliton
obtained in Ref. 32 for a perturbed Hirota equations �corre-
sponding to the limit 
→0 or equivalently ���+ ���→0�. For
simplicity, we consider the case 	=0 or equivalently �=0.
In this case, the resonant pole is approximated by Eqs. �6.14�
and �6.24�, which are rewritten in the original variables �2.5�
as follows:

�0��� = −
�2

16
�2r3 + O��3� . �6.25�

On the other hand, dynamical equations in Ref. 32 show that
when an embedded soliton is perturbed, the parameter k de-
cays exponentially with the decay rate:

�decay = −
�2

16
�2r3 + O��3� , �6.26�

which matches the approximation �6.25�. In the general case
where � is not small and ��0, the qualitative analysis in the
next section will show that parameter k of the embedded
soliton decays exponentially as well.

VII. STABLE DYNAMICS OF EMBEDDED SOLITONS

The �stable� resonant pole of L
 in L2�R ,C2� explains
linear stability of embedded solitons in the generalized third-
order NLS Eq. �2.1� with �+2��0, discovered in Refs. 17
and 32. We show that the same conclusion can be recovered
with a qualitative method based on conserved quantities of

FIG. 4. �a� Dependence of the resonance pole of operator M2 on 
 for 	=0. S
�b� the corresponding eigenfunction of M2 for the resonance pole at 
=0.5.
the NLS Eq. �2.1�. Moreover, the method allows us to illus-
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trate the stable dynamics of the time-dependent solutions
near the one-parameter family of embedded solitons
�2.2�–�2.4�. For clarity of presentation, we will be working
with the original NLS Eq. �2.1� for u�x , t� before renormal-
ization �2.5�. We shall use the two conserved quantities of
the NLS Eq. �2.1�:

I1�u� = �
−�

�

�u�2dx � �
−�

�

J1�u�dx �7.1�

and

I2�u� = �
−�

� 	 i�

2
�uūx − uxū� + ��ux�2 −

��� + 2��
6

�u�4
dx

� �
−�

�

J2�u�dx . �7.2�

Let us consider the family of embedded solitons:

us�x,t� = r sech�r�z�eikx+i�t, z = x − vt , �7.3�

where parameters �� ,v� are given in terms of parameters
�r ,k� by �2.3� and parameter � is given by �2.4�. If
k=k0=−� /2�, the above function is the exact embedded
soliton which propagates without change of shape. If k�k0,
this function is not an exact solution anymore �unless �=�
=0� and dynamics of embedded solitons shed continuous-
wave radiation. We consider dynamics of the embedded soli-
ton for small values of �k−k0�. Since the group velocity of
linear waves is vg�k�=−3k2 which is less than the speed v of
the embedded soliton, the continuous-wave radiation moves
to the left side of the embedded soliton, and the radiation
part uc�x , t� of the solution should satisfy the Sommerfeld
radiation boundary condition:

uc�x,t� → 0, as x → + � ,

uc�x,t� → h��r��k − k0�eik0x+i�0t, as x → − � , �7.4�

where �x� / t→vr as t→� and vr=vg�k0�−v=−�2r2.
We approximate the solution u�x , t� by the two parts: the

lines: Numerical values; dashed lines: Analytical formulas �6.14� and �6.24�;
olid
embedded soliton us�x , t�, given by �7.3� with two slowly

P license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



037115-10 D. Pelinovsky and J. Yang Chaos 15, 037115 �2005�

Do
varying parameters r�t� and k�t�, and the continuous-wave
radiation part uc�x , t�, given by �7.4�. We substitute the ap-
proximation,

u�x,t� � us�x,t� + uc�x,t� , �7.5�

into the two conserved quantities I1�u� and I2�u� and derive
the reduced equations:

d

dt
Ik�us� � −

d

dt
Ik�uc� � − �vr� lim

x→−�
Jk�uc�, k = 1,2.

�7.6�

Simple calculations show that

I1�us� =
2r

�
, I2�us� =

2r��k + �k2�
�

−
��� + 2��r3

9�
�7.7�

and

lim
x→−�

J1�uc� = �h��2�k − k0�2,

�7.8�
lim

x→−�
J2�uc� = ��k0 + �k0

2��h��2�k − k0�2.

As a result, the reduced Eqs. �7.6� are equivalent to the sys-
tem of two equations for r�t� and k�t�:

dr

dt
= −

1

2
�h��2�3r2�k − k0�2 �7.9�

dk

dt
= −

1

4
�h��2�5r3�k − k0� . �7.10�

It is important to note that the second Eq. �7.10� is linear in
�k−k0�. This is because the second conservation law I2 de-
pends on k through the combination �k+�k2, whose time
derivative is proportional to k−k0. Hence a factor of k−k0 is
canceled out from Eq. �7.6�. The method of conserved quan-
tities gives an approximation for the resonant pole studied in
the previous section as

�0 � − 1
4 �h��2�5r3, �7.11�

where r is an arbitrary parameter of the one-parameter family
of embedded solitons. This formula can be compared with
the asymptotic approximation �6.25� for �=0, from which
the approximation for �h��2 can be found in terms of �. We
note, however, that the qualitative method above produces
the formula �7.11� without assumptions of small �.

Dynamical Eqs. �7.9� and �7.10� for soliton parameters
�r ,k� admit a continuous family of equilibrium points where
k=k0 and r is arbitrary. It is easy to verify that these equilib-
rium points �and the corresponding embedded solitons� are
asymptotically stable, such that

lim
t→+�

r�t� = r�, lim
t→+�

k�t� = k0, �7.12�

where the value of r� is determined uniquely from the initial
condition �r�0� ,k�0��. The family of trajectories on the phase

plane are hyperbolas:
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r2 = r�
2 +

2

�2 �k − k0�2. �7.13�

We note that similar dynamical equations and trajectories of
solutions were obtained in Ref. 32 by a soliton perturbation
theory, applied to the generalized third-order NLS Eq. �2.1�
in the limit ���+ ���→0.

VIII. SUMMARY

In this paper, we have studied the stability of embedded
solitons in the generalized third-order NLS equation. We
have shown that the linearization operator associated with
the embedded soliton admits a resonance pole in the left
half-plane of the spectral parameter, which explains the lin-
ear stability, rather than nonlinear semistability, of these em-
bedded solitons. We have approximated the resonance pole
both analytically and numerically, and revealed that the reso-
nance pole gives precisely the linear decay rate of parameters
of the embedded soliton. In addition, using conserved quan-
tities, we have derived normal forms for embedded solitons
under internal perturbations. These normal forms establish
the stable dynamics of embedded solitons in the generalized
third-order NLS equation.

Results of this paper shed much light on the understand-
ing of stable embedded solitons. However, more work needs
to be done from the point of rigorous analysis. In particular,
derivation of the normal forms from conservation laws is
only qualitatively valid. Additionally, the connection be-
tween the resonance pole in the linearization operator and the
stable dynamics of embedded solitons was established only
for the generalized third-order NLS equation in the
asymptotic limit of Hirota equation, where the resonance
pole is small. It is highly desirable to extend this analysis to
a more general third-order NLS equation.
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