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Abstract. There exists a critical speed of propagation of the line solitons in the Zakharov–
Kuznetsov (ZK) equation such that small transversely periodic perturbations are unstable
for line solitons with larger-than-critical speeds and orbitally stable for those with smaller-
than-critical speeds. The normal form for transverse instability of the line soliton with
a nearly critical speed of propagation is derived by means of symplectic projections and
near-identity transformations. Justification of this normal form is provided with the en-
ergy method. The normal form predicts a transformation of the unstable line solitons with
larger-than-critical speeds to the orbitally stable transversely modulated solitary waves.

1. Introduction

Starting with the pioneer work of Kadomtsev & Petviashvili [6] and Zakharov & Rubenchik
[31], it is well known that the line solitons are spectrally unstable with respect to the long
transverse perturbations in many nonlinear evolution equations such as the Kadometsev–
Petviashvili (KP) and nonlinear Schrödinger (NLS) equations (see review in [9]). The
spectral instability persists to the short transverse perturbations of any period in the hy-
perbolic version of the two-dimensional NLS equation [4, 22], whereas it disappears for short
transverse perturbations in many other equations such as the elliptic version of the two-
dimensional NLS equation and the KP-I equation [23, 24]. Alternatively, for a fixed period
of the transverse perturbation, the transverse instability occurs for the line solitons with
larger-than-critical speeds of propagation and disappears for those with smaller-than-critical
speeds.

In the prototypical case of the KP-I equation, it was shown in [25] that if the line solitons
are spectrally stable with respect to the periodic perturbations, they remain nonlinearly sta-
ble, whereas if they are spectrally unstable, they remain nonlinearly unstable. The spectral
stability analysis is inconclusive for the line soliton with the critical speed of propagation
since the linearized operator has an additional zero eigenvalue beyond the one induced
by the translational symmetry of the KP-I equation. The presence of the additional zero
eigenvalue implies a bifurcation of the new travelling solutions which are spatially localized
along the longitudinal direction and are periodic along the transverse perturbations. Such
travelling solitary waves with periodic transverse modulations were discovered for the KP-I
equation by Zaitsev [28].

Analytical solutions for the unstable eigenmode were derived for the KP-I equation by
Zakharov [29]. Exact solutions for the nonlinear evolution of the unstable line solitons
were obtained and analyzed in [15, 20]. If the transverse perturbation is proportional to

Date: May 31, 2017.
The results of this work were obtained with the financial support from the state task of Russian Federation

in the sphere of scientific activity (Task No. 5.5176.2017/BCh).
1



2 DMITRY PELINOVSKY

a single unstable eigenmode, it results in the monotonic transformation of the unstable
line soliton with a larger-than-critical speed of propagation to the travelling solitary wave
with the periodic transverse modulation of the same period and an ejection of a stable line
soliton with a smaller-than-critical speed. In the case of multi-mode perturbations, several
modulated travelling waves and the residual line soliton are generated in the dynamics of
an unstable line soliton, according to the exact solutions of the KP-I equation [20].

Transformation of the unstable line solitons with a nearly critical speed of propagation
was studied in the framework of the KP-I equation with an asymptotic multi-scale expansion
method [5]. An integrable Eckhaus equation was derived from the integrable KP-I equation.
This Eckhaus equation correctly represents the monotonic transition of the unstable line
soliton to the transversely modulated solitary wave and a “radiation” of a stable line soliton
of a smaller speed of propagation, in comparison with the exact solutions to the KP-I
equation (see Section 4.7 in [9]). Similar asymptotic reductions were reported in [21] for
the line dark solitons of the defocusing elliptic NLS equation.

The present work is devoted to the justification of the asymptotic model describing the
nonlinear dynamics of the transverse perturbations on the line soliton with a nearly critical
speed of propagation. Stability of these line solitons and transversely modulated solitary
waves are derived as a by-product of this asymptotic model. Unfortunately, the analytical
setup does not apply to the KP-I equation, partly, because the continuous spectrum of the
linearized operators does not move to the left-half plane in exponentially weighted spaces.
For a better model, where this difficulty does not arise, we consider the Zakharov–Kuznetsov
(ZK) equation,

(1.1) ut + 12uux + uxxx + uxyy = 0,

which features a similar phenomenon. The ZK equation is an anisotropic generalization
of the Korteweg–De Vries (KdV) equation in two spatial dimensions [30]. Justification of
the ZK equation in the context of the Euler–Poisson equations for magnetized plasmas
was recently reported in [11]. Transverse stability of line solitons is very similar between
the ZK and KP-I equations [23, 24], but the ZK equation can be analyzed successfully by
using exponentially weighted Sobolev spaces, similar to the analysis of the KdV equation
[16, 17]. Instability of line solitons in the ZK equation is known for quite some time in
physics literature (see, e.g., [1]).

We shall derive and justify the first-order differential equation

(1.2)
db

dt
= λ′(c∗)(c+ − c∗)b+ γ|b|2b, t > 0,

where λ′(c∗) > 0, γ < 0 are real-valued numerical coefficients, c∗ is the critical speed of the
line soliton, c+ ∈ R depends on the initial conditions, and b(t) : R+ → C is an amplitude of
transverse perturbation. The differential equation (1.2) describes the nonlinear dynamics
of a small transverse perturbation of a fixed period to the line soliton with a nearly critical
speed c∗ and is referred to as “normal form for transverse instability of the line soliton with
a nearly critical speed of propagation”.

If c+ < c∗, the normal form equation (1.2) describes a monotonic exponential decay
b(t) → 0 as t → +∞ and suggests that the line solitons with the smaller-than-critical
speeds are asymptotically stable with respect to small transverse perturbations of a fixed
period [27]. If c+ > c∗, the normal form equation (1.2) describes a monotonic algebraic
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decay b(t) → b∗ as t→ ∞, where

(1.3) |b∗| =

√
λ′(c∗)(c+ − c∗)

|γ|
, c+ > c∗.

This solution suggests a transition from the unstable line solitons with the larger-than-
critical speeds to stable transversely modulated solitary waves, which are also asymptotically
stable with respect to small transverse perturbations of the same fixed period [27].

Bifurcations and stability of the line solitons under the transverse perturbations of a
critical period were addressed recently by Yamazaki for the elliptic version of the NLS
equation in [26] and for the ZK equation (1.1) in [27].

In [26], the bifurcation problem is analyzed with the Lyapunov–Schmidt reduction method
and the nonlinear orbital stability is deduced from the energy method based on convexity
of the action functional for the NLS equation, which is the same as for the ZK equation
(1.1). Similarly to our work here, it is reported in [26] that the transversely modulated
solitary waves are orbitally stable for the case of quadratic nonlinearities. Dynamics near
such waves was not studied in [26].

In [27], asymptotic stability of the line solitons with the smaller-than-critical speeds and
the transversely modulated solitary waves with the larger-than-critical speeds was shown
for the ZK equation (1.1) with a Liouville-type theorem and virial type estimates.

Asymptotic stability of two-dimensional solitary waves was considered in the L2-subcritical
ZK equations [3], which includes the ZK equation (1.1).

The remainder of this paper is organized as follows. Section 2 contains results on trans-
verse instability of line solitons and bifurcations of transversely modulated solitary waves
in the ZK equation (1.1). Formal derivation and justification of the normal form (1.2) is
given in Section 3.

Acknowledgement. This paper was mostly written in 2014-15 after discussions with
F. Rousset (Paris–Sud) and N. Tzvetkov (Cergy–Pontoise) before papers [26] and [27] were
first posted on arXiv and then published. The author thanks the collaborators for useful
discussions and valuable comments.

2. Transverse instability of line solitons for the ZK equation (1.1)

We are concerned here with the transverse instability of the line solitons under periodic
transverse perturbations in the ZK equation (1.1). First, we review relevant properties of the
line solitons of the KdV equation. Next, we obtain spectral transverse stability results for
the line solitons with a nearly critical speed of propagation. Further, we study bifurcations
of the transversely modulated solitary waves. Finally, we present the main result on the
normal form for transverse instability of the line solitons with a nearly critical speed of
propagation.

2.1. Properties of line solitons of the KdV equation. Line solitons are expressed
analytically as the two-parameter family

(2.1) uc(ξ) = c sech2(
√
cξ), ξ = x− 4ct− x0,
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where c > 0 is the speed parameter and x0 ∈ R is the translation parameter. The line
soliton (2.1) for a fixed c > 0 is a critical point of the action functional

(2.2) Λc(u) :=
1

2

∫
R

[
(∂ξu)

2 − 4u3 + 4cu2
]
dξ,

which is a linear combination of the energy and momentum of the KdV equation. The
second variation of the action functional (2.2) at the line soliton (2.1) is defined by the
Hessian operator Lc : H

2(R) → L2(R), the differential expression of which is given by

(2.3) Lc := −∂2ξ + 4c− 12c sech2(
√
cξ).

The Schrödinger operator Lc : H
2(R) → L2(R) is known [10] to have the essential spectrum

located on [4c,∞) and three simple isolated eigenvalues λ1 < λ2 < λ3 < 4c. More precisely,
the eigenvalues and the corresponding non-normalized eigenfunctions of Lc are given by

λ1 = −5c, φ1 = sech3(
√
cξ),(2.4)

λ2 = 0, φ2 = sech2(
√
cξ) tanh(

√
cξ),(2.5)

λ3 = 3c, φ3 = 4sech(
√
cξ)− 5sech3(

√
cξ).(2.6)

The first two eigenvalues and eigenfunctions are particularly important in the spectral
transverse stability analysis of the line solitons (2.1).

2.2. Spectral transverse stability analysis of line solitons. Let us consider the 2π-
periodic transverse perturbation to the line solitons (2.1). Therefore, we fix the length of
the transverse periodic perturbation and vary the speed parameter c. Substituting u(x, t) =
uc(ξ)+U(ξ)e

λt+iky with k ∈ Z into the ZK equation (1.1) and dropping the quadratic terms
in U yields the spectral problem

(2.7) ∂ξ(Lc + k2)U = λU, k ∈ Z,

where k is the wave number of the 2π-periodic transverse perturbation and ∂ξLc : H
3(R) →

L2(R) is the linearized operator for the KdV equation.
For k = 0, the spectral problem (2.7) coincides with the one for the KdV equation. It is

known from the work of Pego & Weinstein [16] that the spectrum of ∂ξLc : H
3(R) → L2(R)

consists of a double zero eigenvalue and a continuous spectrum on iR. The double zero
eigenvalue is associated with the following Jordan block of the operator ∂ξL:

(2.8) ∂ξLc∂ξuc = 0, ∂ξLc∂cuc = −4∂ξuc,

where the derivatives of uc in ξ and c are exponentially decaying functions of ξ. The
following lemma characterizes the spectral problem (2.7) for any k ∈ N.

Lemma 2.1. For any k ∈ N, the spectral problem (2.7) has a pair of real eigenvalues ±λk(c)
if c > ck :=

k2

5
. No eigenvalues with Re(λ) ̸= 0 exist if c ∈ (0, ck).

Proof. For any k ∈ N, the self-adjoint Schrödinger operator Lc + k2 : H2(R) → L2(R)
is strictly positive for c ∈ (0, ck) and admits a simple negative eigenvalue for c > ck, where

ck := k2

5
. It follows from the main theorem in [7, 18] that the spectrum of ∂ξ(Lc + k2) :

H3(R) → L2(R) has exactly one pair of real eigenvalues ±λk(c) if c > ck and no eigenvalues
with Re(λ) ̸= 0 if c ∈ (0, ck).
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Remark 2.1. By using the energy method in [25], one can easily prove nonlinear orbital
stability of the line solitons with c ∈ (0, c∗) and nonlinear instability of the line solitons with
c > c∗, where

c∗ := min
k∈N

ck ≡
1

5
.

The following result gives a precise characterization of the unstable eigenvalue bifurcating
at c = c∗ in the spectral problem (2.7) with k = 1. To do so, we introduce the exponentially
weighted space

(2.9) Hs
µ(R) =

{
u ∈ Hs

loc(R) : eµξu ∈ Hs(R)
}
, s > 0, µ > 0.

This weighted space is used to push the continuous spectrum of the operator ∂ξLc : H
3
µ(R) →

L2
µ(R) to the left-half plane for µ > 0 sufficiently small [16, 17]. In the generalized KdV

equation with a triple zero eigenvalue, the exponentially weighted space is used to construct
the Jordan block for the triple zero eigenvalue in [2, 13].

Lemma 2.2. There is µ0 > 0 such that for every µ ∈ (0, µ0), the spectral problem (2.7) with
k = 1 and c = c∗ considered in L2

µ(R) admits a simple zero eigenvalue with the eigenfunction

ψ∗ ∈ H3
µ(R) and the adjoint eigenfunction η∗ ∈ H3

−µ(R), where

(2.10) ψ∗(ξ) = sech3(
√
c∗ξ), η∗(ξ) =

∫ ξ

−∞
sech3(

√
c∗ξ

′)dξ′,

hence,

(2.11) ⟨η∗, ψ∗⟩L2 =
1

2

(∫
R
sech3(

√
c∗ξ)dξ

)2

=
π2

8c∗
.

Moreover, for a given µ ∈ (0, µ0), there exist an interval (c−, c+) with c− < c∗ < c+ such
that the spectral problem (2.7) with k = 1 and c ∈ (c−, c+) considered in L2

µ(R) admits a
small eigenvalue λ(c), where the mapping c 7→ λ is smooth and is given by

(2.12) λ(c) = λ′(c∗)(c− c∗) +O((c− c∗)
2) as c→ c∗,

with

(2.13) λ′(c∗) =
128

3π2

√
c∗.

Proof. Existence of the zero eigenvalue of ∂ξ(Lc∗ + 1) : H3(R) → L2(R) follows from
existence of the negative eigenvalue−1 of Lc∗ in (2.4). The eigenfunction ψ∗ = φ1 at c = c∗ is
exponentially decaying in ξ, therefore, there is a positive µ0 such that eµξψ∗ is exponentially
decaying in ξ for every µ ∈ (0, µ0). Thus, the operator ∂ξ(Lc∗ + 1) : H3

µ(R) → L2
µ(R) has a

simple zero eigenvalue.
If H3

µ(R) is the domain of ∂ξ(Lc∗ +1), then H3
−µ(R) is the domain of the adjoint operator

−(Lc∗ + 1)∂ξ. For µ > 0, the eigenfunction η∗ of the kernel of −(Lc∗ + 1)∂ξ : H3
−µ(R) →

L2
−µ(R) must decay faster than e−µξ grows as ξ → −∞. Since ∂ξη∗ is proportional to ψ∗

and η∗(ξ) → 0 as ξ → −∞, we set

η∗(ξ) :=

∫ ξ

−∞
ψ∗(ξ

′)dξ′
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and obtain (2.10). The nonzero inner product in (2.11) ensures that the Jordan block for
the zero eigenvalue of ∂ξ(Lc∗ + 1) : H3

µ(R) → L2
µ(R) with µ ∈ (0, µ0) is simple.

It remains to prove the last assertion of the lemma with the expansion (2.12). Since
the simple zero eigenvalue of ∂ξ(Lc + 1) : H3

µ(R) → L2
µ(R) at c = c∗ is isolated from

the continuous spectrum of this operator for any fixed µ ∈ (0, µ0), one can use analytic
perturbation theory [8]. In particular, the operator Lc : H2(R) 7→ L2(R) is analytic at
c = c∗ and admits the following expansion

(2.14) Lc = Lc∗ + L′
c∗(c− c∗) + L̃c(c− c∗)

2,

where

(2.15) L′
c∗ = 4− 12sech2(

√
c∗ξ) + 12

√
c∗ξ sech

2(
√
c∗ξ) tanh(

√
c∗ξ)

and L̃c is an exponentially decaying and bounded potential as c→ c∗. By using perturbation
expansions,

(2.16) λ(c) = λ1(c− c∗) +O((c− c∗)
2), ψ(c) = ψ∗ + ψ1(c− c∗) +OH3

µ
((c− c∗)

2),

we obtain the linear inhomogeneous equation at the order of O(c− c∗):

(2.17) ∂ξ(Lc∗ + 1)ψ1 + ∂ξL
′
c∗ψ∗ = λ1ψ∗.

This equation is considered in L2
µ(R) for a fixed µ ∈ (0, µ0). Projecting (2.17) to η∗, the

eigenfunction in the kernel of the adjoint operator −(Lc∗ + 1)∂ξ in L
2
−µ(R), we obtain

(2.18) λ1⟨η∗, ψ∗⟩L2 = ⟨η∗, ∂ξL′
c∗ψ∗⟩L2 = −⟨ψ∗, L

′
c∗ψ∗⟩L2 .

From (2.11), (2.15), and (2.18), we obtain

⟨ψ∗, L
′
c∗ψ∗⟩L2 = − 16

3
√
c∗

hence λ1 =
128

3π2

√
c∗,

which agrees with (2.13) because λ1 = λ′(c∗). Justification of the asymptotic expansion
(2.16) is developed with the analytic perturbation theory (Theorem 1.7 in [8, Chapter
VII]).

Remark 2.2. Since the continuous spectrum of ∂ξ(Lc + 1) : H3
µ(R) → L2

µ(R) is located
in the left-half plane for µ > 0 [16], whereas the eigenvalue λ(c) is positive for c > c∗, we
can send µ → 0+ without affecting the eigenvalue λ(c) > 0. Therefore, the eigenvalue λ(c)
persists for the operator ∂ξ(Lc + 1) : H3(R) → L2(R). By symmetry ξ 7→ −ξ and λ 7→ −λ,
the operator ∂ξ(Lc + 1) : H3(R) → L2(R) also admits the eigenvalue −λ(c) < 0 for the
same case c > c∗. Thus, the spectral problem (2.7) with k = 1 has a pair of real eigenvalues
±λ(c) for c > c∗, in agreement with Lemma 2.1.

Remark 2.3. Since the eigenvalue λ(c) in L2
µ(R) is negative for c < c∗, we cannot send

µ → 0+ without affecting the eigenvalue λ(c) < 0 by the deformation of the continuous
spectrum of ∂ξ(Lc + 1) : H3

µ(R) → L2
µ(R). As is well-known [16], the eigenvalue λ(c) < 0

of the operator ∂ξ(Lc + 1) : H3
µ(R) → L2

µ(R) becomes a resonant pole of the operator

∂ξ(Lc + 1) : H3(R) → L2(R) for c < c∗.
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Remark 2.4. Perturbation expansions (2.14) and (2.16) can also be used to characterize
the shift of the zero eigenvalue of the operator Lc + 1 in L2(R) for c ̸= c∗. In this case, ψ1

satisfies

(Lc∗ + 1)ψ1 + L′
c∗ψ∗ = λ1ψ1,

from which we obtain

λ1∥ψ∗∥2L2 = ⟨ψ∗, L
′
c∗ψ∗⟩L2 .

Since ⟨ψ∗, L
′
c∗ψ∗⟩L2 < 0, we have λ1 < 0. Therefore, the zero eigenvalue of the operator

Lc∗+1 in L2(R) becomes a negative eigenvalue of this operator for c > c∗. This shift induces
the spectral instability of the line soliton, in agreement with Lemma 2.1.

2.3. Transversely modulated solitary waves. The instability bifurcation of the line
solitons in Lemma 2.2 is related to the bifurcation of a new family of travelling solitary
waves with the periodic transverse modulation. Such transversely modulated solitary waves
satisfy the nonlinear elliptic problem

(2.19) −∂
2u

∂ξ2
− ∂2u

∂y2
+ 4cu− 6u2 = 0, (x, y) ∈ R× T,

where T is a 2π-periodic torus. In order to eliminate translational symmetries in ξ and y,
we define the space of even functions both in ξ and y:

(2.20) Hs
even = {u ∈ Hs(R× T) : u(−ξ, y) = u(ξ, y) = u(ξ,−y)} , s > 0.

The following lemma describes bifurcation of the transversely modulated solitary waves
from the line soliton with a nearly critical speed of propagation.

Lemma 2.3. There exists c+ > c∗ such that for every c ∈ (c∗, c+), the nonlinear elliptic
problem (2.19) has a nontrivial solution ub in H2

even in addition to the line soliton (2.1).
The solution ub is expressed by the expansion

(2.21) ub(ξ, y) = uc∗(ξ) + 2b cos(y)ψ∗(ξ) + ũb(ξ, y),

where b ∈ R is a nonzero root of the algebraic equation

(2.22) α(c− c∗)b+ βb3 = 0

and ũb ∈ H2
even satisfies the bound ∥ũb∥H2 6 Ab2 for a positive constant A independently of

b and c. Here

α = −⟨ψ∗, L
′
c∗ψ∗⟩L2 =

16

3
√
c∗
> 0

and β < 0 is a numerical coefficient given by (2.38) below.

Proof. The algorithm follows the method of Lyapunov–Schmidt reduction and it is
relatively well known, see, e.g., [19]. We write the decomposition (2.21) in H2

even equipped
with the orthogonality condition ⟨v1, ũb⟩L2(R×T) = 0, where v1(ξ, y) := cos(y)ψ∗(ξ) is the
eigenfunction of the kernel of Lc∗ − ∂2y : H2

even → L2
even. For every c = c∗ + δ with δ ∈ R

being sufficiently small, the correction term ũb ∈ H2
even and the parameter b ∈ R are defined

by the projection equations of the Lyapunov–Schmidt reduction method:

(2.23) (Lc∗ − ∂2y + 4δ)ũb = −4δuc∗ − 8δb cos(y)ψ∗ + 6(2b cos(y)ψ∗ + ũb)
2
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and

(2.24) −4δb∥ψ∗∥2L2(R) +
3

π
⟨cos(y)ψ∗, (2b cos(y)ψ∗ + ũb)

2⟩L2(R×T) = 0.

Due to the bifurcation equation (2.24) and the symmetry constraints in (2.20), the linear
operator in the left-hand side of equation (2.23) can be inverted with a bounded inverse
in L2

even for every small δ ∈ R. As a result, for every small b ∈ R and δ ∈ R, the fixed-
point argument can be applied to solve equation (2.23) and to obtain a unique ũb ∈ H2

even

satisfying the bound

(2.25) ∥ũb∥H2 6 A(|δ|+ b2),

where the positive constant A is independent of δ and b. However, the solution ũb ∈ H2
even

with the bound (2.25) is insufficient for the derivation of the algebraic equation (2.22) from
the bifurcation equation (2.24) [19].

In order to obtain the algebraic equation (2.22), we perform a near-identity transforma-
tion

(2.26) ũb(ξ, y) = 2b2 cos(2y)w2(ξ) + b2w0(ξ) + δ∂cuc∗(ξ) + w(ξ, y),

where

(2.27) ∂cuc∗(ξ) = sech2(
√
c∗ξ)−

√
c∗ξ tanh(

√
c∗ξ)sech

2(
√
c∗ξ),

the correction terms w0 and w2 are found from the linear inhomogeneous equations:

(2.28) Lc∗w0 = 12ψ2
∗

and

(2.29) (Lc∗ + 4)w2 = 6ψ2
∗,

whereas w satisfies the transformed equation

(Lc∗ − ∂2y + 4δ)w = −4δ2∂cuc∗ − 8δb2 cos(2y)w2 − 4δb2w0

−8δb cos(y)ψ∗ + 24b cos(y)ψ∗ũb + 6ũ2b ,(2.30)

where ũb is related to w by (2.26). By the same argument as above, for every small b ∈ R
and δ ∈ R, there exists a unique solution w ∈ H2

even of equation (2.30) satisfying the bound

(2.31) ∥w∥H2 6 A(δ2 + |δ||b|+ |b|3),

where the positive constant A is independent of δ and b.
Substituting the near-identity transformation (2.26) into the bifurcation equation (2.24)

and using the bound (2.31) for the component w ∈ H2
even, we rewrite (2.24) in the equivalent

form

(2.32) αδb+ βb3 +O(δb2, b4) = 0,

where we have introduced numerical coefficients α and β as follows:

(2.33) α := −4∥ψ∗∥2L2 + 12⟨ψ2
∗, ∂cuc∗⟩L2

and

(2.34) β := 12⟨ψ2
∗, w0 + w2⟩L2 .
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We have also removed O(δ2) from the remainder term in (2.32), because the bifurcation
equation (2.24) is identically satisfied in the case of the line soliton with b = 0 for every
small δ ∈ R.

Comparison of (2.27) and (2.33) with (2.15) shows that

α ≡ −⟨ψ∗, L
′
c∗ψ∗⟩L2 =

16

3
√
c∗
.

On the other hand, the coefficient β in (2.34) is less explicit. In order to show that β < 0, we
obtain the unique even solution of the linear inhomogeneous equation (2.28) in the explicit
form

(2.35) w0(ξ) = −15sech2(
√
c∗ξ) +

15

2
sech4(

√
c∗ξ),

where we have used c∗ = 1
5
. Because Lc∗ + 4 : H2(R) → L2(R) is strictly positive, there

exists a unique solution of the linear inhomogeneous equation (2.29). Unfortunately, it is
not available in the explicit form. Nevertheless, we can represent this unique solution of
equation (2.29) in the form

(2.36) w2(ξ) = 5sech2(
√
c∗ξ) +

15

4
sech4(

√
c∗ξ)− w̃2(ξ),

where w̃2 is found from the inhomogeneous equation

(2.37) (Lc∗ + 4)w̃2(ξ) = 20sech2(
√
c∗ξ).

By the maximum principle for the elliptic operator (Lc∗ + 4), the component w̃2 satisfies
w̃2(ξ) > 0 for all ξ ∈ R. After computing the integrals in (2.34), we obtain

(2.38) β = 12⟨ψ2
∗, w0 + w2⟩L2 = −12⟨ψ2

∗, w̃2⟩L2 < 0.

The cubic equation (2.22) follows from the truncation of the bifurcation equation (2.32) at
the first two terms. This is justified because if b ̸= 0, then it follows from (2.32) that

δ = −β
α
b2 +O(b3)

and if b0 is a root of the cubic equation (2.22) for a given small δ = c− c∗, then

|b− b0| 6 Ab20,

where the positive constant A is independent of δ. Then, it follows from the bound (2.25)
that ∥ũb∥H2 6 Ab20, which justifies the decomposition (2.21) after the change of notation
b0 7→ b.

Remark 2.5. Since α > 0 and β < 0, the nonzero solutions for b exists in the cubic equation
(2.22) if and only if c > c∗. By Lemma 2.1, the line soliton with c > c∗ is spectrally unstable
with respect to the transverse 2π-periodic perturbations.
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2.4. Statement of the main theorem. The ZK equation (1.1) was shown in [12] to be
locally well-posed in Hs(R× T) for s > 3

2
and globally well-posed for perturbations of the

line solitons (2.1) in H1(R2). More recently, the ZK equation (1.1) was shown in [14] to be
globally well-posed in H1(R× T). The latter well-posedness result allows us to employ the
energy method in the justification of the normal form for transverse instability of the line
soliton with a nearly critical speed of propagation.

Let us denote by Hs
µ(R× T) the exponentially weighted version of the space Hs(R× T),

s > 0 with the weight µ > 0 applied in the ξ axis only.
In order to characterize the dynamics of solutions of the ZK equation (1.1) in time t near

the line solitons (2.1), we introduce varying parameters a(t) and c(t) of the line solitons as
well as its perturbation ũ(t) defined in H1(R × T) ∩ H1

µ(R × T) for every t ∈ R+. Hence,
we introduce the travelling coordinate ξ = x− 4a(t) and use the decomposition

(2.39) u(x, y, t) = uc(t)(ξ) + ũ(ξ, y, t), ξ = x− 4a(t).

The time evolution of the varying parameters a(t) and c(t) and the perturbation term ũ(t)
are to be found from the evolution problem

(2.40) ũt = ∂ξ(Lc − ∂2y + 4(ȧ− c))ũ+ 4(ȧ− c)∂ξuc − ċ∂cuc − 6∂ξũ
2,

where the differential expression for Lc is given by (2.3).
For c = c∗, the operators Lc∗ + k2 : H2(R) → L2(R) are coercive for any k ∈ Z\{0,±1}.

This property will be used to control perturbations with the corresponding Fourier wave
numbers. On the other hand, the operator ∂ξLc∗ : H3

µ(R) → L2
µ(R) has a double zero

eigenvalue associated with the Jordan block (2.8), whereas the operator ∂ξ(Lc∗ + 1) :
H3

µ(R) → L2
µ(R) has a simple zero eigenvalue by Lemma 2.2. The double zero eigenvalue

of ∂ξLc∗ : H3
µ(R) → L2

µ(R) is already incorporated in the decomposition (2.39), whereas

the simple zero eigenvalue of ∂ξ(Lc∗ + 1) : H3
µ(R) → L2

µ(R) will be used in the secondary
decomposition of the perturbation term ũ.

The following theorem represents the normal form for transverse instability of the line
soliton with a nearly critical speed of propagation.

Theorem 1. Consider the Cauchy problem for the evolution equation (2.40) with

ũ(0) ∈ H1(R× T) ∩H1
µ(R× T),

where µ > 0 is sufficiently small. There exist ε0 > 0 and C0 > 0 such that if the initial data
satisfy the bound

(2.41) ∥ũ(0)− 2ε cos(y)ψ∗∥H1(R×T)∩H1
µ(R×T) + |c(0)− c∗| 6 ε2,

for every ε ∈ (0, ε0), then there exist unique functions a, b, c ∈ C1(R+) and the unique
solution

ũ(t) ∈ C(R+;H
1(R× T) ∩H1

µ(R× T))
of the evolution equation (2.40) satisfying the bound

(2.42) ∥ũ(t)− (b(t)eiy + b̄(t)e−iy)ψ∗∥H1(R×T) + |c(t)− c∗| 6 C0ε
2, t ∈ R+,

Furthermore, there exists c+ ∈ R such that the function b(t) satisfies the normal form
equation

(2.43) ḃ = λ′(c∗)(c+ − c∗)b+ γ|b|2b, t ∈ R+,



NORMAL FORM FOR TRANSVERSE INSTABILITY 11

with b(0) = ε and |c+ − c∗| 6 C0ε
2, where λ′(c∗) > 0 is given by (2.13) and γ < 0 is a

specific numerical coefficient given by (3.31) below. Consequently, |b(t)| 6 C0ε for every
t ∈ R+.

Remark 2.6. The linear part of the normal form (2.43) reproduces the spectral stability
result of Lemma 2.2.

Remark 2.7. The stationary part of the normal form (2.43) represents the bifurcation
result (2.22) in Lemma 2.3, except for the quantitative discrepancy between the numerical
coefficients (α, β) and numerical coefficients (λ′(c∗), γ), see Remark 3.1 below.

Remark 2.8. Similarly to the asymptotic stability result in [17], we anticipate that for µ > 0
sufficiently small, there exists b∞ and c∞ such that the solution in Theorem 1 satisfies the
following limits:

(2.44) c+ 6 c∗ : lim
t→∞

∥u(t)− uc∞∥H1
µ(R×T) = 0,

and

(2.45) c+ > c∗ : lim
t→∞

∥u(t)− ub∞∥H1
µ(R×T) = 0,

where uc∞ is the line soliton (2.1) with c = c∞ and ub∞ is the transversely modulated solitary
wave defined by Lemma 2.2 with b = b∞. The limits (2.44) and (2.45) are in agreement with
the asymptotic stability results obtained in [27]. However, the proof of these limits requires
more control of the modulation equations for perturbations in H1

µ(R×T). The relevant tools

are not available from the previous work [17], where perturbations were considered in H1
µ(R).

3. Derivation and justification of the normal form (2.43)

We first derive the general modulation equations for the varying parameters a and c in the
decomposition (2.39) near the line solitons (2.1). Next, we introduce the varying parameter
b in the secondary decomposition along the neutral eigenmode ψ∗ in Lemma 2.2 and derive
the corresponding modulation equation for b. Further, we simplify the modulation equations
and derive the normal form (2.43) by means of nearly identity transformations. Finally, we
justify the bound (2.42) with the energy method.

3.1. Modulation equations for the varying parameters a and c. LetXc = span{∂ξuc, ∂cuc}
be an invariant subspace of L2(R) for the double zero eigenvalue of the linearized operator
∂ξLc : H3(R) → L2(R), according to the Jordan block (2.8). Thanks to the exponential
decay of uc(ξ) as |ξ| → ∞, there is µ0 > 0 such that Xc is also an invariant subspace
of L2

µ(R) for ∂ξLc : H3
µ(R) → L2

µ(R) for µ ∈ (0, µ0). Similarly, X∗
c = span{uc, ∂−1

ξ ∂cuc}
is an invariant subspace of L2

−µ(R) for the double zero eigenvalue of the adjoint operator

−Lc∂ξ : H
3
−µ(R) → L2

−µ(R). Recall that the exponentially weighted space is defined in (2.9)
and

∂−1
ξ u(ξ) :=

∫ ξ

−∞
u(ξ′)dξ′.

In order to avoid confusion between spaces L2
µ(R) and L2

µ(R × T), we specify whether the

spatial domain is R or R× T in the L2 inner products and their induced norms.
The following lemma states the validity of the decomposition (2.39).
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Lemma 3.1. There exists ε0 > 0, µ0 > 0, and C0 > 0 such that if u ∈ C(R+, H
1(R×T)∩

H1
µ(R× T)) with µ ∈ (0, µ0) is a global solution to the ZK equation (1.1) satisfying

(3.1) ε := inf
a∈R

∥u(x+ 4a, y, t)− uc∗(x)∥H1(R×T)∩H1
µ(R×T) 6 ε0, t ∈ R+,

then there exist a, c ∈ C(R+) and ũ ∈ C(R+, H
1(R × T) ∩ H1

µ(R × T)) such that the
decomposition

(3.2) u(x, y, t) = uc(t)(ξ) + ũ(ξ, y, t), ξ = x− 4a(t)

holds with ũ(t) ∈ [X∗
c(t)]

⊥ for every t ∈ R+, where

(3.3) [X∗
c(t)]

⊥ =
{
ũ ∈ L2

µ(R× T) : ⟨uc(t), ũ⟩L2(R×T) = ⟨∂−1
ξ ∂cuc(t), ũ⟩L2(R×T) = 0

}
.

Moreover, c(t) and ũ(t) satisfies

(3.4) |c(t)− c∗|+ ∥ũ(t)∥H1(R×T)∩H1
µ(R×T) 6 Cε, t ∈ R+.

Proof. The proof is relatively well-known, see Proposition 5.1 in [17]. It is based on the
implicit function theorem applied to the two constraints in the definition of [X∗

c(t)]
⊥ in (3.3).

By the global well-posedness theory for the ZK equation (1.1) [14], there exists a unique
global solution in class u ∈ C(R+, H

1(R × T) ∩ H1
µ(R × T)) for µ > 0 sufficiently small.

By the initial bound (2.41), the initial data satisfy (3.1) for some ε > 0 sufficiently small.
By the elementary continuation arguments, the decomposition (3.2) can be used as long
as the solution u satisfies (3.1). The component ũ in the decomposition (3.2) satisfies the
evolution equation (2.40) rewritten again as

(3.5) ũt = ∂ξ(Lc − ∂2y + 4(ȧ− c))ũ+ 4(ȧ− c)∂ξuc − ċ∂cuc − 6∂ξũ
2,

where the differential expression for Lc is given by (2.3).
Both parameters a and c depend on the time variable t. Modulation equations for a

and c are derived from the well-known projection algorithm, which has been applied to
similar problems in [2, 13, 17]. The two constraints on ũ in (3.3) represent the symplectic
orthogonality conditions, which specify uniquely a and c in the decomposition (3.2) as well
as the time evolution of a and c. Moreover, one can show that a, c ∈ C1(R+).

If ũ(0) ∈ [X∗
c(0)]

⊥ initially, then ũ(t) remains in [X∗
c(t)]

⊥ for every t ∈ R+, provided that

the varying parameters a, c ∈ C1(R+) satisfy the system of two modulation equations[
1
2
(M ′(c))2 − 1

2π
⟨∂−1

ξ ∂2cuc, ũ⟩L2(R×T) P ′(c) + 1
2π
⟨∂cuc, ũ⟩L2(R×T)

P ′(c)− 1
2π
⟨∂cuc, ũ⟩L2(R×T)

1
2π
⟨∂ξuc, ũ⟩L2(R×T)

] [
ċ

4(ȧ− c)

]
=

3

π

[
⟨∂cuc, ũ2⟩L2(R×T)
⟨∂ξuc, ũ2⟩L2(R×T)

]
,(3.6)

where M(c) =
∫
R uc(ξ)dξ and P (c) = 1

2

∫
R u

2
c(ξ)dξ. From the expression (2.1), we obtain

M ′(c) = 1/
√
c and P ′(c) =

√
c.
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3.2. A secondary decomposition for c = c∗. By Lemma 2.2, if c = c∗ =
1
5
and µ > 0 is

sufficiently small, then Yc∗ = span{ψ∗} is an invariant subspace of L2
µ(R) for the simple zero

eigenvalue of the linearized operator ∂ξ(Lc∗+1) : H3
µ(R) → L2

µ(R). Similarly, Y ∗
c∗ = span{η∗}

is an invariant subspace of L2
−µ(R) for the simple zero eigenvalue of the adjoint operator

−(Lc∗ +1)∂ξ : H
3
−µ(R) → L2

−µ(R). We note the double degeneracy of the Fourier harmonics

eiy and e−iy, when general transverse perturbations are considered.
The following lemma states the secondary decomposition of the solution ũ defined in the

primary decomposition (3.2).

Lemma 3.2. Under assumptions of Lemma 3.1, let ũ ∈ C(R+, H
1(R×T)∩H1

µ(R×T)) be
given by the decomposition (3.2) and (3.3). There exist b ∈ C(R+) and v ∈ C(R+, H

1(R×
T) ∩H1

µ(R× T)) such that the decomposition

(3.7) ũ(ξ, y, t) =
(
b(t)eiy + b̄(t)e−iy

)
ψ∗(ξ) + v(ξ, y, t),

holds with v(t) ∈ [Y ∗
c(t)]

⊥ for every t ∈ R+, where

(3.8) [Y ∗
c(t)]

⊥ =
{
v ∈ [X∗

c(t)]
⊥ : ⟨η∗eiy, v⟩L2(R×T) = ⟨η∗e−iy, v⟩L2(R×T) = 0

}
.

Proof. The proof is straightforward thanks to the fact ⟨η∗, ψ∗⟩L2(R) ̸= 0 by (2.11).

We introduce the decomposition

(3.9) a(t) =

∫ t

0

c(t′)dt′ + h(t), c(t) = c∗ + δ(t),

in addition to the decomposition (3.7). To simplify notations, we also write Lc = Lc∗+∆Lc,
where ∆Lc ∈ L∞(R) satisfies the bound ∥∆Lc∥L∞ 6 A|c− c∗| for |c− c∗| sufficiently small
with a c-independent positive constant A.

The correction term v in the decomposition (3.7) satisfies the time evolution equation

vt = ∂ξ(Lc∗ − ∂2y + 4ḣ+∆Lc)v + 4ḣ∂ξuc∗+δ − δ̇∂cuc∗+δ − (ḃeiy + ˙̄be−iy)ψ∗

+∂ξ

(
4ḣ+∆Lc

)
(beiy + b̄e−iy)ψ∗ − 6∂ξ

(
(beiy + b̄e−iy)ψ∗ + v

)2
.(3.10)

The two constraints in (3.8) represent the symplectic orthogonality conditions, which
specify uniquely the complex parameter b in the secondary decomposition (3.7). Again, one
can show that b ∈ C1(R+)

If v(0) ∈ [Y ∗
c(0)]

⊥ initially, then v(t) remains in [Y ∗
c(t)]

⊥ for every t ∈ R+, provided that

the varying parameter b ∈ C1(R+) satisfy the following modulation equation:

ḃ⟨η∗, ψ∗⟩L2(R) + b⟨ψ∗, (4ḣ+∆Lc)ψ∗⟩L2(R) +
1

2π
⟨ψ∗e

iy,∆Lcv⟩L2(R×T)

=
3

π
⟨ψ∗e

iy,
[
(beiy + b̄e−iy)ψ∗ + v

]2⟩L2(R×T).(3.11)
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Substituting (3.7) and (3.9) to the system (3.6) yields the equivalent form of the modulation
equations:[

1
2
(M ′(c))2 − 1

2π
⟨∂−1

ξ ∂2cuc, v⟩L2(R×T) P ′(c) + 1
2π
⟨∂cuc, v⟩L2(R×T)

P ′(c)− 1
2π
⟨∂cuc, v⟩L2(R×T)

1
2π
⟨∂ξuc, v⟩L2(R×T)

] [
δ̇

4ḣ

]
=

3

π

[
⟨∂cuc,

[
(beiy + b̄e−iy)ψ∗ + v

]2⟩L2(R×T)

⟨∂ξuc,
[
(beiy + b̄e−iy)ψ∗ + v

]2⟩L2(R×T)

]
,(3.12)

where c(t) = c∗ + δ(t). The system (3.11) and (3.12) determine the time evolution of
the varying parameters b, h, and δ, whereas the evolution problem (3.10) determines the
correction term v(t) ∈ [Y ∗

c(t)]
⊥.

3.3. Near-identity transformations. Because uc∗ and ψ
2
∗ are even functions of ξ, whereas

P ′(c∗) ̸= 0, the modulation equations (3.11) and (3.12) yields the following balance at the
leading order:

ḃ = O((|δ|+ |b|2)|b|), ḣ = O(|b|2),
whereas the source terms in the evolution problem (3.10) are of the order of O(|b|2). This
suggests the use of near-identity transformation, which mimics the ones used in the proof
of Lemma 2.3. In particular, we will remove the O(|b|2) terms in the equation for ḣ and vt.
Hence, we represent the correction term v in the decomposition (3.7) as follows:

(3.13) v(ξ, y, t) =
(
b(t)2e2iy + b̄(t)2e−2iy

)
w2(ξ) + |b(t)|2w0(ξ) + w(ξ, y, t),

where w0 and w2 are the same solutions of the linear inhomogeneous equations (2.28) and
(2.29), whereas w satisfies the transformed evolution equation

wt = ∂ξ(Lc∗ − ∂2y + 4ḣ+∆Lc)w + 4ḣ∂ξuc∗+δ − δ̇∂cuc∗+δ

−(ḃeiy + ˙̄be−iy)ψ∗ − (2bḃe2iy + 2b̄ ˙̄be−2iy)w2 − (b̄ḃ+ b ˙̄b)w0

+∂ξ

(
4ḣ+∆Lc

) [
(beiy + b̄e−iy)ψ∗ + (b2e2iy + b̄2e−2iy)w2 + |b|2w0

]
−12∂ξ(be

iy + b̄e−iy)ψ∗
[
(b2e2iy + b̄2e−2iy)w2 + |b|2w0

]
−6∂ξ

[
(b2e2iy + b̄2e−2iy)w2 + |b|2w0

]2
.(3.14)

We rewrite the first equation in the system (3.12) as follows:

(3.15) 4P ′(c∗)ḣ = 12|b|2⟨∂cuc∗ , ψ2
∗⟩L2 +O(|b|4) = 48

5
√
c∗
|b|2 +O(|b|4),

where the explicit expression (2.27) has been used. Since P ′(c∗) =
√
c∗ and c∗ = 1

5
, we

obtain

(3.16) ḣ = 12|b|2 +O(|b|4)

and

(3.17) w(ξ, y, t) = 12|b|2∂cuc∗ + w̃(ξ, y, t),

where w̃ satisfied a transformed evolution equation without the O(|b|2) terms in the right-
hand side of (3.14). Substituting (3.13), (3.16), and (3.17) into the modulation equation
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(3.11) yields

ḃ⟨η∗, ψ∗⟩L2 = 12|b|2b⟨ψ2
∗, w0 + w2⟩L2 + 144|b|2b⟨ψ2

∗, ∂cuc∗⟩L2

−b⟨ψ∗, (L
′
c∗δ + 48|b|2)ψ∗⟩L2 +O(δ2|b|+ |b|5),(3.18)

where L′
c∗ is given by (2.15) and we have used ∆Lc = L′

c∗δ + O(δ2) for δ = c − c∗. After
straightforward computations, equation (3.18) takes the form

(3.19) ḃ⟨η∗, ψ∗⟩L2 = −12|b|2b⟨ψ2
∗, w̃2⟩L2 +

64
√
c∗
|b|2b+ 16

3
√
c∗
bδ +O(δ2|b|+ |b|5),

where w̃2 is found from the solution of the linear inhomogeneous equation (2.37).
The normal form (3.19) is not closed because δ is related to |b|2 by the second equation

of the system (3.12). In fact, this equation relates δ̇ to b̄ḃ+ ˙̄bb, however, it yields δ = O(|b|2)
after integration. We write the second equation in the system (3.12) as follows:

(3.20) P ′(c∗)δ̇ =
6

π
⟨ψ∗∂ξuc∗ , (be

iy + b̄e−iy)w̃⟩L2(R×T) +O(|b|3|ḃ|).

Note that many O(|b|4) terms in the second equation in the system (3.12) are identically
zero because the L2 scalar products are computed between odd and even functions. We are
now looking at the O(|ḃ|) terms in w̃, which contributes to the leading order of equation
(3.20). Substituting (3.17) into (3.14) yields the following evolution equation for w̃:

w̃t = ∂ξ(Lc∗ − ∂2y + 4ḣ+∆Lc)w̃ − (ḃeiy + ˙̄be−iy)ψ∗ + ∂ξ

(
48

5c∗
|b|2 + δL′

c∗

)
(beiy + b̄e−iy)ψ∗

−12∂ξ(be
iy + b̄e−iy)ψ∗

[
(b2e2iy + b̄2e−2iy)w2 + |b|2w0

]
+O(|b|4).(3.21)

The terms proportional to ḃ have different parity in spatial coordinate ξ compared to the
terms proportional to |b|2b and δb. Only odd terms in ξ give a nonzero contribution to
equation (3.20). Therefore, we single out the odd terms in ξ from the other terms in the
representation:

(3.22) w̃(ξ, y, t) =
(
ḃ(t)eiy + ˙̄b(t)e−iy

)
w3(ξ) + ˜̃w(ξ, y, t),

where w3 ∈ L2
µ(R) is a solution of the linear inhomogeneous equation

(3.23) ∂ξ(Lc∗ + 1)w3 = ψ∗ +
⟨η∗, ψ∗⟩L2

∥ψ∗∥2L2

∂ξψ∗,

whereas ˜̃w satisfies a transformed equation without the ḃ terms in the right-hand side of
(3.21). The additional projection term is added to the right-hand-side of equation (3.23) to
ensure that the Fredholm’s solvability condition is satisfied for this inhomogeneous equation
in L2

µ(R). Integrating equation (3.23) yields the inhomogeneous equation for w3 ∈ L2
µ(R):

(3.24) (Lc∗ + 1)w3 =

∫ ξ

+∞
ψ∗(ξ

′)dξ′ +
⟨η∗, ψ∗⟩L2

∥ψ∗∥2L2

ψ∗,

where the limits of integrations ensure the correct decay as ξ → +∞ in (2.9).
Let w4 ∈ H2(R) be a unique odd solution of the linear inhomogeneous equation

(3.25) (Lc∗ + 1)w4 = ψ∗∂ξuc∗ .
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The unique solution of equation (3.25) exists in the explicit analytical form

(3.26) w4(ξ) = −
√
c∗
4

tanh(
√
c∗ξ)sech

3(
√
c∗ξ) =

1

12
∂ξψ∗(ξ).

By using (3.24) and (3.26), we compute
(3.27)

⟨ψ∗∂ξuc∗ , w3⟩L2 = ⟨(Lc∗ + 1)w4, w3⟩L2 = ⟨w4, (Lc∗ + 1)w3⟩L2 = − 1

12
∥ψ∗∥2L2 = − 4

45
√
c∗
.

Equation (3.20) with (3.27) and P ′(c∗) =
√
c∗ yields

(3.28)
dδ

dt
=

12
√
c∗

d|b|2

dt
⟨ψ∗∂ξuc∗ , w3⟩L2 +O(|b|3|ḃ|) = −16

3

d|b|2

dt
+O(|b|3|ḃ|).

Integrating this equation in time, we finally obtain

(3.29) δ(t) = δ0 −
16

3
|b(t)|2 +O(|b(t)|4),

where δ0 is an arbitrary integration constant. Substituting equation (3.29) into the normal
form (3.19) yield

(3.30) ḃ⟨η∗, ψ∗⟩L2 = −12|b|2b⟨ψ2
∗, w̃2⟩L2 +

16

3
√
c∗

(
δ0 +

20

3
|b|2

)
b+O(δ20|b|+ δ0|b|3 + |b|5).

Defining δ0 := c+− c∗, using the explicit expression (2.11) and (2.13), and truncating (3.30)
yield the normal form (2.43) with

(3.31) γ :=
96

π2
√
c∗

(
−1

5

√
c∗⟨ψ2

∗, w̃2⟩L2 +
16

27

)
.

Under the assumption that |δ0| 6 C0ε
2 for some ε-independent positive constant C0, the

remainder terms in (3.30) is of the order O(ε5), which does not contribute to the leading
order of the bound (2.42). Therefore, the truncation of (3.30) into (2.43) is justified within
the approximation error in (2.42).

Remark 3.1. The numerical coefficients (λ′(c∗), γ) are different from the numerical coeffi-
cients (α, β). This difference is explained as follows. Expansions (3.9), (3.16), and (3.29)
yield

c = c∗ + δ0 −
16

3
|b|2 +O(|b|4), ȧ = c∗ + δ0 +

20

3
|b|2 +O(|b|4).

The normal form (3.30) in the stationary case ḃ = 0 corresponds to the effective speed
correction given by

ȧ− c∗ = δ0 +
20

3
|b|2 +O(|b|4) = 9

4

√
c∗|b|2⟨ψ2

∗, w̃2⟩L2 +O(|b|4) = −β
α
|b|2 +O(|b|4),

in agreement with the cubic algebraic equation (2.22). In the time-dependent case, the roles
of δ0 and 20

3
|b|2 are different because the former is constant in t but the latter changes in t.

Bifurcation analysis of Lemma 2.3 relies on the fact that the coefficient β of the cubic
term in the normal form (2.22) is negative. It is equally important for the stability analysis
near the line soliton that the coefficient γ of the cubic term in the normal form (2.43) is
negative. Since w̃2(ξ) > 0 for all ξ ∈ R, the first term in γ is negative. On the other hand,
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the second term is positive, so that γ < 0 if the negative term prevails. Let us show it
numerically.

We approximate the function w̃2 numerically by using the central-difference method for
the linear inhomogeneous equation (2.37) and then approximate the integral ⟨ψ2

∗, w̃2⟩L2

by using the composite trapezoidal method. Testing the codes on the function w0 which
satisfies the linear inhomogeneous equation (2.28) with the explicit solution (2.35), we obtain
numerically that

1

5

√
c∗⟨ψ2

∗, w0⟩L2 ≈ −1.5238

which corresponds to the exact value −32
21

within the computational error of O(10−5). Per-
forming the same task for w̃2 which satisfies the linear inhomogeneous equation (2.37), we
obtain

1

5

√
c∗⟨ψ2

∗, w̃2⟩L2 ≈ 1.2359,

which is essentially bigger than 16
27

≈ 0.5926. Therefore,

1

5

√
c∗⟨ψ2

∗, w̃2⟩L2 >
16

27
,

which implies that γ < 0 in (3.31).

3.4. Justification of the approximation error. It remains to justify the error bound
(2.42). We achieve it with the energy method pioneered in [17]. First, we recall that the
energy

(3.32) E(u) =
1

2

∫
R×T

[
u2x + u2y − 4u3

]
dxdy

and the momentum

(3.33) P (u) =
1

2

∫
R×T

u2dxdy

are conserved in time t for a global solution u ∈ C(R, H1(R×T)) to the ZK equation (1.1).
The line soliton (2.1) is a critical point of the action functional Λc(u) := E(u)+4cP (u), see
(2.2). Thanks to the translational invariance of the ZK equation (1.1), the decomposition
(2.39) yields

(3.34) Λc(uc + ũ)− Λc(uc) =
1

2
⟨(Lc − ∂2y)ũ, ũ⟩L2 +Nc(ũ),

where the differential expression for Lc is given by (2.3) and Nc is a nonlinear term satisfying

(3.35) |Nc(ũ)| 6 A∥ũ∥3H1 ,

for some positive constant A as long as ∥ũ∥H1 is small. By using the Fourier series

ũ(ξ, y, t) =
1√
2π

∑
k∈Z

ûk(ξ, t)e
iky

and Parseval’s equality, we can represent the second variation of Λc at uc in the form

(3.36) ⟨(Lc − ∂2y)ũ, ũ⟩L2(R×T) =
∑
k∈Z

⟨(Lc + k2)ûk, ûk⟩L2(R).

The following lemma summarizes the coercivity results for the second variation of Λc at uc.
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Lemma 3.3. For µ > 0 sufficiently small, there exists a constant A > 0 such that for every
ûk ∈ H1(R) and for every k ∈ Z\{0,±1}, it is true that

(3.37) ⟨(Lc∗ + k2)ûk, ûk⟩L2(R) > A∥ûk∥2H1(R),

whereas for every û0, û±1 ∈ H1(R) ∩H1
µ(R), it is true that

(3.38) ⟨Lc∗û0, û0⟩L2(R) > A∥û0∥2H1(R) if ⟨uc∗ , û0⟩L2(R) = ⟨∂−1
ξ ∂cuc|c=c∗ , û0⟩L2(R) = 0

and

(3.39) ⟨(Lc∗ + 1)û±1, û±1⟩L2(R) > A∥û±1∥2H1(R) if ⟨η∗, û±1⟩L2(R) = 0.

Proof. The spectral information on the Schrödinger operator Lc : H
2(R) → L2(R) with

the two lowest eigenvalues (2.4) and (2.5) is sufficient to conclude that Lc + k2 : H2(R) →
L2(R) is strictly positive for every k ∈ Z\{0,±1}. The bound (3.37) follows by the spectral
theorem and G̊arding’s inequality.

Since Lc∗ + 1 : H2(R) → L2(R) is non-negative with a one-dimensional kernel spanned
by ψ∗ and ⟨η∗, ψ∗⟩L2(R) ̸= 0 by (2.11), this operator is strictly positive under the constraint
in (3.39). The constraint in (3.39) is well-defined if û±1 ∈ H1

µ(R). The bound (3.39) follows
by the spectral theorem and G̊arding’s inequality.

Since Lc∗ : H
2(R) → L2(R) has one negative and one simple eigenvalues, whereas P ′(c∗) >

0, this operator is non-negative under the first constraint in (3.38) with a one-dimensional
kernel spanned by ∂ξuc∗ [16]. Since

⟨uc∗ , ∂ξuc∗⟩L2(R) = 0, ⟨∂−1
ξ ∂cuc|c=c∗ , ∂ξuc∗⟩L2(R) ̸= 0,

this operator is strictly positive under the two constraints in (3.38). The second constraint
in (3.38) is well-defined if û0 ∈ H1

µ(R). The bound (3.38) follows by the spectral theorem
and G̊arding’s inequality.

In order to justify the error bound (2.42), we construct the following energy function

F (c) := E(u)− E(uc∗) + 4c [P (u)− P (uc∗)]

= E(u0)− E(uc∗) + 4c [P (u0)− P (uc∗)] ,(3.40)

where the second equality holds thanks to the conservation of energy E and momentum
P in time t. Since c(t) depends on t, F (c(t)) depends on t but only linearly in c(t). By
Lemmas 3.1 and 3.2, we rewrite the decompositions (3.2), (3.7), and (3.9) in the form

(3.41) u(x, y, t) = uc∗+δ(t)(ξ) +
(
b(t)eiy + b̄(t)e−iy

)
ψ∗(ξ) + v(ξ, y, t).

Substituting the decomposition (3.41) into (3.40) yields the following

(3.42) F (c) = D(c) +
1

2
⟨(Lc − ∂2y)v, v⟩L2 +Nc((be

iy + b̄e−iy)ψ∗ + v),

where the expansion (3.34) has been used, Nc satisfies (3.35), and

D(c) := E(uc)− E(uc∗) + 4c [P (uc)− P (uc∗)]

=
1

2
D′′(c∗)(c− c∗)

2 + D̃(c).(3.43)



NORMAL FORM FOR TRANSVERSE INSTABILITY 19

The latter expansion is obtained from D(c∗) = D′(c∗) = 0 and D′′(c∗) = 4P ′(c∗) > 0 thanks
to the variational characterization of the line soliton (2.1) with the action functional (2.2).
Thanks to the smoothness of D in c, we have D̃(c) = O((c− c∗)

3) as c→ c∗.
The following result transfers the initial bound (2.41) to the energy function (3.40).

Lemma 3.4. There exists an ε-independent positive constant A such that

(3.44) |F (c∗)| 6 Aε4, |P (u0)− P (uc∗)| 6 Aε2.

Proof. The second bound in (3.44) follows from the initial bound (2.41) thanks to the
bound |c(0) − c∗| 6 ε2 and the triangle inequality. The first bound in (3.44) follows from
the expansion (3.42) with D(c∗) = 0, the cubic term vanishing

(3.45) Nc((be
iy + b̄e−iy)ψ∗) = 0,

the definition b(0) = ε, and the triangle inequality.

Under the two constraints in (3.3) and the two constraints in (3.8), it follows from Lemma
3.3 that there exists an ε-independent constant A such that

(3.46) ⟨(Lc − ∂2y)v, v⟩L2 > A∥v∥2H1(R×T).

It follows from the normal form (2.43) that |b(t)| 6 C0ε for every t ∈ R+ as long as b(0) = ε.
Since F (c) depends linearly on c and thanks to (3.46), we obtain the following lower bound
from (3.40) and (3.42):

F (c∗) > 2P ′(c∗)(c− c∗)
2 − 4(c− c∗)[P (u0)− P (uc∗)] + D̃(c)

+
1

2
A∥v∥2H1(R×T) +Nc((be

iy + b̄e−iy)ψ∗ + v).

Thanks to the bounds (3.44) in Lemma 3.4, the smallness of Nc in (3.35), and the cubic
term vanishing in (3.45), we obtain the bound (2.42) for |c(t)− c∗| and ∥v∥H1(R×T).

Theorem 1 is proven.

References

[1] D.C. Bettinson and G. Rowlands, “Transverse stability of plane solitons using the variational method”,
J. Plasma Physics 59 (1998), 543–554.

[2] A. Comech, S. Cuccagna, and D. Pelinovsky, “Nonlinear instability of a critical traveling wave in the
generalized Korteweg–de Vries equation”, SIAM J. Math. Anal. 39 (2007), 1–33.

[3] R. Cote, C. Munoz, D. Pilod, and G. Simpson, “Asymptotic stability of high-dimensional Zakharov–
Kuznetsov solitons”, Arch. Ration. Mech. Anal. 220 (2016), 639–710.

[4] B. Deconinck, D. Pelinovsky, and J.D. Carter, “Transverse instabilities of deep-water solitary waves”,
Proc. Royal Soc. Lond. A 462 (2006), 2039–2061.

[5] K.A.Gorshkov and D.E.Pelinovsky, “Asymptotic theory of plane soliton self-focusing in two-
dimensional wave media”, Physica D 85 (1995), 468–484.

[6] B.B. Kadomtsev and V.I. Petviashvili, “On the stability of solitary waves in weakly dispersive media”,
Sov. Phys. Dokl. 15 (1970), 539–541.

[7] T. Kapitula and A. Stefanov, “A Hamiltonian–Krein (instability) index theory for KdV-like eigenvalue
problems”, Studies in Applied Mathematics 132 (2014), 183–211.

[8] T. Kato, Perturbation theory for linear operators (Springer–Verlag, Berlin, Heidelberg, 1995).
[9] Yu.S. Kivshar and D.E. Pelinovsky, “Self-focusing and transverse instabilities of solitary waves”, Phys.

Rep. 331 (2000), 117–195.
[10] L.D. Landau and E.M. Lifshitz Quantum Mechanics (Volume 3 of A Course of Theoretical Physics)

(Pergamon Press, New York, 1965).



20 DMITRY PELINOVSKY

[11] D. Lannes, F. Linares, and J.C. Saut, “The Cauchy problem for the Euler–Poisson system and deriva-
tion of the Zakharov–Kuznetsov equation”, in Studies in Phase Space Analysis with Aplications to
PDEs, Series Progress in Nonlinear Differential Equations and Applications 84, M. Cicognani, F.
Colombini, D. Del Santo Eds., Birkhaüser, (2013), 183–215.
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