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Stable vortex and dipole vector solitons in a saturable nonlinear medium
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We study both analytically and numerically the existence, uniqueness, and stability of vortex and dipole
vector solitons in a saturable nonlinear medium in+-(®) dimensions. We construct perturbation series ex-
pansions for the vortex and dipole vector solitons near the bifurcation point, where the vortex and dipole
components arsmall We show that both solutions uniquely bifurcate from the same bifurcation point. We also
prove that both vortex and dipole vector solitons are lineatfblein the neighborhood of the bifurcation
point. Far from the bifurcation point, the family of vortex solitons becomes linearly unstable via oscillatory
instabilities, while the family of dipole solitons remains stable in the entire domain of existence. In addition,
we show that an unstable vortex soliton breaks up either into a rotating dipole soliton or into two rotating
fundamental solitons.
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[. INTRODUCTION tence and stability of the vortex and dipole vector solitons
are challenging problems due to their complexity. The exis-
Spatial solitons have been a subject of many studies sindence of vortex and dipole solitons was established numeri-
their first theoretical predictiofil]. The previous research on cally [20,23 and with a heuristic variational methd@8].
spatial solitons was driven by their promising applications inHowever, analytical expressions for radial-angular depen-
all-optical devices, in which the light guides and steers thelences of vortex and dipole solitons have not been found. On
light itself [2]. Early works studied optical materials with the the stability of vortex solitons, the numerical results of Ref.
Kerr (cubic nonlinearity, which exhibit stable fundamental [20] suggest that vortex solitons wittmall vortex compo-
(single-hump solitons in one spatial dimensidi3—5] and nents are stable and observable for large propagation dis-
collapse in two and three spatial dimensidits7]. Later  tances, while vortex solitons with large vortex components
works focused on optical materials with saturable nonlineaare unstable. Numerical results of REZ3] show, however,
response such as photorefractive crystake Ref[8], and thatall vortex solitons are linearly unstable, and the instabil-
references therein The nonlinearity saturation suppressesity leads to the breakup of vortex solitons into rotating dipole
the collapse of fundamental solitons in two and three dimensolitons. The discrepancy between R¢)] and[23] raises
sions[9—11], which opens the door for their experimental an open question: are vortex vector solitons with small vor-
observation in multidimensional optical beams. The instabiltex components really stable or not? On the other hand, di-
ity of higher-orderimultihump solitons is, however, not sup- pole solitons were found numerically to be always stable in
pressed by the nonlinearity saturatign2—16. Internal Ref.[23].
modes of fundamental solitons in saturable optical materials In this paper, we clarify the issues of existence and sta-
have also been reportdd6,17]. These modes are respon- bility of vortex and dipole vector solitons in a saturable non-
sible for long-lived shape oscillations. linear medium such as photorefractive crystals. First, we ad-
Recently, incoherent coupling of spatial solitons in photo-dress the existence and uniqueness of vortex and dipole
refractive crystals was proposed and experimentally demorsolitons with the perturbation techniq(ig6,37. We derive
strated[11,18. The mutual trapping of incoherent optical perturbation series expansions for the vortex and dipole soli-
beams leads to many novel spatial solitons such as vortetons near the bifurcation point, where the vortex and dipole
and dipole vector solitord9—28. The incoherently coupled components arsmall The analytical formulas for these soli-
spatial solitons are described by a system of coupled nonlintons are in an excellent agreement with our numerical re-
ear Schrdinger (NLS) equations. A similar system of equa- sults. We also prove that those vector solitons are unique up
tions also describes temporal solitons in birefringent opticato phase, translation, and rotation invariances. Next, we
fibers and wavelength-division-multiplexed systefi®®—  study the linear stability of vortex and dipole solitons with
34]. Additionally, vortex vector solitons are known in the both the spectral analysis and numerical methods. We show
Bose-Einstein condensation guided by a magnetic [{B&f that dipole solitons are linearly stable in the entire existence
Vortex and dipole vector solitons in saturable optical ma-domain, while the vortex solitons witlarge vortex compo-
terials are interesting for both physical and mathematical reanents are linearly unstable, in agreement with Hef].
sons. Physically, these spatial solitons are novel nonlineddowever, we prove that vortex solitons wimall vortex
objects. They bifurcate from a coupled state, where a fundacomponents are lineartable confirming the results of Ref.
mental soliton in one component guides a small higher-ordef20], not Ref.[23]. Lastly, we study the nonlinear evolution
mode in the other component. Far from the bifurcationof linearly unstable vortex solitons. We show that an unstable
threshold, both components strongly trap each other andortex soliton breaks up into a rotating dipole soliton only
form a fully coupled vector soliton. Mathematically, exis- when the vortex component is below a certain threshold.
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Above this threshold, an unstable vortex soliton breaks ufhe simplest vortex soliton has=0 andm=1 [20,23. The

into two fundamental vector solitons instead.

II. EXISTENCE AND UNIQUENESS OF VORTEX
AND DIPOLE SOLITONS

The mathematical model for two incoherently coupled la-
ser beams in a photorefractive crystal is well kno(see,
e.g., Refs[20,23)). After variable rescalings, the model ca
be written as a system of coupled equations,

n

Ei(|Eq|*+[Eo®)

I_ - ] (1)
9z " 1 s(|Ey 2 |Eo?)

If9_|52 Eo(|E1]?+]|E4?) _ @
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whereA is the two-dimensional Laplacian, asds the satu-
ration parameter.
Vector solitons in this model take the form

iNz

)

where the frequency of thEe; wave has been normalized to
one, and the frequency of th&, wave isA. The amplitude
functionsu(x,y) andw(x,y) satisfy the nonlinear boundary-
value problem with zero boundary conditions on they]
plane:

E;=u(x,y)e?, E,=w(xy)e

Ay gy HAuPHW @

T L s(uEe R
w(|u|?+|wl?)

Aw—Aw+ = (5)

1s(lulZ+|w?)

The systemg4) and(5) may have several types of vector
solitons localized in two dimensions. Thendamentalzector
solitons take the form

u=c,d(r), w=c,d(r), (6)
where ®(r) is a real-valued, single-hump functiom,
=Xx?>+y?, andc, andc,, are arbitrary complex parameters
constrained by the relatioft,|?+|c,|?=1. These solitons
exist atA=1, where the system&}) and (5) reduce to a
scalar equation fob(r), see EQ.(10) below. Thevortex

vector solitons take a general form

u=d,(r)e"’, w=d,(r)e™m’ 7
wheren and m are topological charges of vortices in the
andw componentsg (r) and®,(r) are real-valued func-
tions, and (, #) are the polar coordinates on they) plane.

multipole vector solitons take yet another general form

u=U(r,0), w=W(r,0), 8
where U(r,#) and W(r,0) are real-valued functions and
may have multihump profiles on the,f) plane. The multi-
pole solitons with a single hump far(x,y) and multiple
humps forw(x,y) were approximated in the variational ap-

proach[28] by the ansatz,

u=U(r), w=W(r)cosmé,

(©)

where the number of humps in tecomponent is th. The
simplest multipole soliton is a dipole soliton, which has
=1.

In this paper, we study the simplest vortex and multipole
vector solitons. We will refer to them simply as the vortex
soliton and dipole soliton, hereafter. The existence and
uniqueness of the vortex and dipole solitons can be studied
by perturbation methods. The perturbation series expansions
are derived in the neighborhood of the bifurcation value
=\o(S), where thew component is small. With the pertur-
bation arguments, we show that the bifurcation valyés)
is the same for both branches of vortex and dipole solitons,
and these solitons bifurcate uniquely frons \q(S).

Settingw=0 in Eq. (4), we find the nonlinear boundary-
value problem for the scalar solitan=ug(r),

us
1+si

whereug(r) is a real-valued function. We taka(r) to be
the fundamental soliton, i.eug(r)>0 for finiter=0. When
w is small in Eq.(5), we get a linear eigenvalue problem for
the first-order correctiomw=w,(X,y),

1
Ug+ —Ug—Uo+ 0, (10

u2

AWl_)\W1+ 0 (ll)
1+

wherew,(X,y) is a complex-valued function, in general, and
\ is the eigenvalue. The linear equatigii) supports local-
ized solutions of the formp(r)e*'™? for some discrete val-
ues of A. Since, we study the simplest vortex and dipole
solitons, we sein=1, and requires(r) to be a non-negative
function forr=0. The corresponding eigenvalyg(s) and
eigenfunctione(r) satisfy the following reduced equation:

2
Uog

1+su

The eigenvalue\ is unique onces is fixed. We normalize
the eigenfunctiong(r) such that it has a maximum value
one. Numerically, we computey(s) and ¢(r) by the shoot-
ing method. Figure (B shows the dependence ®§ versus

)\+1

1
T p+r——¢=0. (12

016608-2



STABLE VORTEX AND DIPOLE VECTOR SOLITONS IN.. .. PHYSICAL REVIEW B7, 016608 (2003

(a) (b) computee from A in the expansior{16). Oncee is found,
1 4 together with functionsig,u, ,w;,wWs, ..., we camapproxi-
o7 uO mate the vector soliton by the expansidftd) and(15). Be-
e 3 low, we will carry out the perturbative calculations to the
7
05 2y 5 order of €.

d o Substituting the perturbation seri€¢$4), (15), and (16)
=~ A A 1 into the original Egs.(4) and (5), at ordere?, we get an
MN inhomogeneous equation fap,

"2 05 o8 1 % 5 10
¥ ' g, UB2ESB) g
FIG. 1. (@ The cutoff frequency\, (dashed-dottedand the 27 H2 2.2 -2 2\2°20 o 22!
correction terms.,, (dashedland\ ,4 (solid) for vortex and dipole (1+st) (1+st) (1+Suo)(17)

solitons as a function of. (b) The scalarug(r) soliton and the
normalized eigenfunctior(r) ats=0.5. —, . . .
9 (") whereu is the complex conjugate ef The linearized opera-
saturation parametex Figure 1b) shows the scalar soliton OF in the left-hand side of Eq(17) has a nonempty null
Uo(r) and the normalized eigenfunctiod(r) at s=0.5, SPace spanned by three linearly independent localized eigen-

where),=0.2622. functions
When ¢(r) and\y(s) are known, a general solution for
w4 (r,6) can be written in the form u(z}])=iu0(r), u(zﬁ)=u(’)(r)cos¢9, u(z“?‘])=u(’)(r)sin0.
(18)
wy(r,0)=¢(r)(cosf+ipsiné), (13

These eigenfunctions correspond to the phase and transla-

wherep is an arbitrary real parameter. In this general solytional invariances of solitons in the scalarequation. The

tion, we have removed arbitrary rotations and translations ofight-hand side of Eq(17) is orthogonal tai§j) because it is

the (x,y) plane as well as an arbitrary phase shift in the real valued. It is also orthogonal t67) andu$;) because it

component. We note that the solutiéiB) is identical to the has different angular dependence of 1 and ebs&her than

variational ansatz in Ref28]. cos@ and sind). Therefore, up to phase, translation, and ro-
Below, we use the perturbative method and show thatation shifts, a localized solution to E¢L7) is constructed

there are only two continuations of the solutitiB): for p uniquely in the form

==+1 andp=0. Whenp==*1, the perturbation series ex-

pansion recovers the vortex solitqid) with n=0 andm

=+ 1. Whenp=0, _the perturbation expansion recovers the u2=3(1+ pz)uzo(r)Jrl(l_ p?)Uyy(r)cos 28, (19)

dipole soliton(8) with a single hump foru and a double 2 2

hump forw. For given values of and\, the two solutions

are unique up to phase, translation, and rotation invariance¥here functionsu,o(r) andu,y(r) satisfy the equations

At other values op, the solution withw’s leading-order term

as in Eq.(13) cannot exist.

2 2
The perturbation series expansions for vector solitons in Ul lu’ —u +“0(3+SU0) Uz — uo$®
systemg4) and(5) take the form 207y T20 F20 (1+su3)2 20 (1+su(2))2'

(20

U=Uq(r)+ €2Uy(r,0)+ e*uy(r,0) +O(€%), (14
. , 4 u3(3+sug) Ug?
_ 3 5 7 Ujpt —Upp— | 1+ — |Uppt ————S—Upp=— —————.
W= ewy(r,0)+ e3ws(r, 0) + e>ws(r, )+ O(e’), (15) r r2 (1+sW)? (1+su)?
(21)

and

We do not know exact analytical expressions tigg(r) and
A=No(S) + €2\ o(S) + €N 4(S) + O(€°), (16) Uy (r) but can compute them nqmerically.
At order €3, we get the equation far; as

wheree is a small parameteungy(r) is the scalar fundamental
soliton solving Eq(10), w,(r, ) is the first-order correction 5
in the form (13), and the cutoff frequency, is the eigen- B |wi|*+2uou,
value of Eq.(12). The objective of the perturbation analysis (1+su(2))2 !
is to uniquely determine the coefficients,\4, ... as well (22)
as expressions for functions, u,, ws,ws, and so on. Once
the coefficients\g,\5, ... have been obtained, we can We denote

2
Ug
AW3_)\0W3+ —2W3: )\2
1+suy
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(a)

solid: numerical
dashed: analytical

~
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A FIG. 2. (a) Amplitudes of the vortex vector
solitons obtained analyticallydashed ling and
numerically (solid line) for s=0.5 and various
frequencies\. (b) A numerical vortex-soliton so-

lution with s=0.5 and\ =0.4.

amplitudes of vortex solitons
Y V)

o 1 "
0.2 0.3 0.4 0.5 0.6 0.7 0 0
A -10 -10
24 2uou 2+ 2u,u ”
hy(r)= L2000 - = SR oy (-7 | rgthandr=o (27
2(1+su)? 2(1+su)? 0
and rewrite Eq(22) in the form The integral in Eq(27) only depends on the paramegenot
on p. We have checked numerically that this integral never
U(Z) vanishes for ang. Thus, the conditiori27) is satisfied only
AWz —NoW3+ ———Ws whenp==*1. In this case, it follows from Eqg13), (19),
1+su and (24) that w;=¢(r)e™?, u,=uy(r), and ws
1 =f(r)e"'’. We can continue the perturbation series expan-
=[)\2—(1+ pz)hl—z(l—pz)h2 ¢ cosé sions (14)—(16) to higher orders and find that all,, (n

=0) corrections are only functions of and allw,,,; (n
1 =0) corrections have the form(r)e='?. Thus, the pertur-
o= (1+p")hy+ 5(1-pP)h,

+ip ¢sind bation series solution gives a vortex vector solit@h with
n=0 andm=*1.

1 Whenp=*1, we find from Eq.25) that the coefficient
— 5(1=p*)hy¢p cos H \p is

1 . c 2
—§|p(1—p2)h2¢sm 36. (24) 2 . r¢ch,dr

No=Npy(S)=—2 (28)
The homogeneous part in E(4) supports two linearly in- j rp2dr
0

dependent localized solutiors(r)cosd and ¢(r)sinb. As a

result, a localized solution of the nonhomogeneous(E4). ) )
exists if and only if the following solvability conditions are 1N€ functional dependence bf, versussis computed from
satisfied: this formula and plotted in Fig.(a) (dashed lingalongside

the cutoff frequencyhy(s). Since the(non-negativg func-

w 1 tion ¢(r) is normalized to have a maximum one, the pertur-
J' r¢>2[ No—(1+p?)hy(r)— E(l—pz)hz(f)] dr=0, bation parametee determines the amplitud@naximun of
0 25) the vortex componentv with error at the order ok, see
Egs.(13) and(15). The dependence @f versus\ ands can
be obtained from the perturbation serig@$) with an error of

o 1
pJ. r¢2{x2——<1+—pz>hl(r>+-5(1——p2>h2<r>]dr::o. the order ofe”;
0

(26) /N=No(s)

e=\—— (29
We will show below that these solvability conditions define A2y(S)
only two perturbation series solutions for vector solitons.
These solutions correspond to the choge =1 or p=0,

which produce vortex and dipole solitons, respectively.

We compare the analytical formul29) with numerical re-
sults for s=0.5, where\y=0.2622 and\,,=0.1010. A
dashed line in Fig. @ shows the amplitude of the vortex
componentw computed from Eq(29). Numerically, vortex
solitons are computed from the original systef@sand (5)

If p#0, we eliminate parametar, from the system&5) by the shooting method. The amplitudes of thendw com-
and(26) and find the solvability condition in the form: ponents are also shown in Fig. 2. In Figbhg a profile of

A. Vortex solitons
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(@)
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w

FIG. 3. () Amplitudes of the dipole vector
solitons obtained analyticallydashed ling and
numerically (solid line) for s=0.5 and various
frequencies\. (b) A numerical dipole-soliton so-
lution with s=0.5 and\=0.5.

solid: numerical
dashed: analytical

amplitudes of dipole solitons
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u(x,y) and w(x,y) components fors=0.5 and\=0.4 is We note that in view of Eq428) and(30), the integral in
shown. We can see from Fig(& that the agreement be- Eq.(27) is actually

tween the analytical predictions and numerical values on the

amplitudes of thev component is good over a wide range of >, =,

\ values. Also, the numerically obtained amplitude of the fo ré h2(r)dr=(2)\2d—)\20)fo réedr. (32)
component depends linearly on which is in agreement
with the perturbation serig44) up to an error of the order of

& sincee?oc (A —\y). Inspection of thex,4(s) and\,,(s) curves in Fig. 1a) im-

mediately confirms that the integréd2) is always positive.
Thus, Eq.(27) holds only whemp=*1.

B. Dipole solitons To summarize, we have shown that there are only two
If p=0, the condition(26) is satisfied, while the condi- Vector solitons of the systerid) and (5), which bifurcate
tion (25) gives the correction term, in the form from the cutoff frequency =\ (s). They are either a vortex

soliton (7) or a real-valued dipole solito(8). The solutions
are determined in terms of perturbation series expansions up
to the order ofe3. Both solitons are unique up to phase,
- (30 position, and rotation invariances. The analytical results are
2] r>dr confirmed by numerical calculations. Computations of the
0 perturbation series expansions prove the existence and

. . . unigueness of vortex and dipole vector solitons observed nu-
The functional dependence af,q versuss is numerically merically in Refs[20,23,28

computed and plotted in Fig.(d (solid line). When ), is

given by Eq.(30), a localized solutiorws(r, 8) of Eq. (24)

exists, and this solution is real valued. We can further show Il LINEAR STABILITY OF VORTEX
that the perturbation series expansi¢h4)—(16) can be suc- AND DIPOLE SOLITONS

cessfully continued to higher orders &f and a dipole- In this section, we study the linear stability of vortex and
soliton solution(8) can be qbtamed. This solution is real dipole vector solitons by spectral analysis, supplemented by
valued and has the symmetries numerical computations. Since the linearization operators
differ for vortex and dipole solitons, we shall treat the two
u(—x,y)=u(x,y), u(x,—y)=u(x,y),
(=xy)=ulxy), ulx,=y)=ulxy) cases separately.

r¢2(2h,+h,)dr
0

No=No4(S)=

W(—=X,y)==W(Xy), W(X,—y)=w(xy). (31
. . . A. Vortex solitons
Similar to the vortex soliton case, the perturbation param-

eter e here gives the amplitudémaximum of the dipole To study the Iineqr stapility of the vortex solito@ with
componentv with accuracy of0(e3). The formula fore is ~ N=0 andm=1, we linearize the systeii) and(2) with the
still Eq. (29), but the, value is now given by Eq(30)  Perturbation in the form

instead of Eq(28). The comparison between the analytical o inbtez. N0+
results(29) and(30) and numerical results for dipole solitons Ei=e"[®y(r)+u(re """ +u_(r)e"" 7],

is shown in Fig. 8) for s=0.5. In this case\ ,=0.2622 and (33
Nog=0.1174. We see again that the agreement between nu- o A _ -
merical and analytical results is very good over a wide range E,=e*""[d (r)+w_(r)e """ 72+w_(r)e"?* 7).
of \ values. In Fig. &), the profiles ofu(x,y) andw(x,y) (34)
components of a dipole soliton, computed with numerical

iteration methods, are displayed. The linearization problem can be written in the form
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n2

1 Egs. (33) and (34), so do the eigenmodes —(o,
iou+=—u’L—Fu’++ 1+
;

u,—Vu,—V,(u, -n,u_,u,,w_,w,) and (~o,n,u, ,u_,w, ,w_).
According to the stability theory of solitary waves in the
system of coupled NLS equatiofi38], only eigenvaluesr

+u_)—V +w_), 35 4 . :
)= VunlWo W) 39 with negative or zero values of the energy quadratic form
1 2 (40) may bifurcate to the domain Re(>0, leading to in-
—iou_=—u"—-=-u' + ( 1+ —|u_—Vu stabilities. We shall apply this theory and study the spectrum
r r of the linearization problem35)—(38) at the cutoff fre-
quencyh=\q(s), where®  (r)=uq(r) and®,(r)=0. We
~Vuu(Us +U) = Vi(Ws +wWo), (36) Wil show that the vortex soliton is linearly stable in the
(n—1)? neighborhood of the cutoff frequencyy(s)<A<<\.(S),
- " / n- where\(s)<1 is the instability threshold. In the limi
=—wi——-w/_+| N+ — ¢
oW, = W =W r2 )W+ v, —\o(S), the linearization problem decomposes into two lin-
ear problems
_VUW(U++U_)_VWW(W++W_), (37)
1 n? u2
. , 1 (n+1)2 +igU.=—Ul— —u\+| 1+ —|u,— ——u.
—iow_=—-wW' ——w’' +| \+ w_—Vw_ S r2 1+su
r r2
2
ViU U2) = VW W), (38 _ Yolu ) 41
1+sw)? '
where ( %
D2+ P2 P2 and
V= (Dz (1)2 ! uu— (1)2 q)2 2’
1+s(di+Dy) [1+S(P;+Dy)] (n¥1)2
Fiow,=—WL——WL+| Ao+ ———|w.
Vo o D, v 2 r
olis@i+ o) M [14s(@i+ @)1 u2
— W . (42
The linearized problem can be formulated in the Hamiltonian 1+SU§
form [35]:

The first linear problent41l) is the stability problem of a
L _ ¢6h L _oh scalar fundamental solitom=uy(r) in a saturable medium.
FioUs=—, ZFioW.=—, 39 The linear stability of such solitons has been well established

~ du. OW ) i
- - (see Ref[16] for instancg, thus unstable eigenvaluesdo

whereh is the energy quadratic form associated with an ei-n0t exist in Eq.(41). The continuous spectrum of the system
genvector u=(u, ,u_,w, ,w_)T and a linearized self- (41)islocated at Raf)=0 and|Im(s)|=1. The continuous

adjoint operatorZ of the right-hand sides of the system SPectrum is irrelevant for stability of solitary waves in the
(35)—(398): system of coupled NLS equations when no embedded eigen-

values with negative energy quadratic fofd0) exist[38].
_ (" ) ) ) ) The discrete spectrum of E41) consists of isolated eigen-
h—<U,EU>—I0f0 rdr(Jus[*=fu_[*+|w, [*=|w_[?). valueso such that Ref) =0 and|Im(o)| <1, including the
(40)  Zero eigenvalue abh=0 andn==x1 with three eigenfunc-
tions (18) and three generalized eigenfunctions. Additional
The eigenvalue is defined by the spectrum of the linearized eigenvalues for internal modes exist in E¢l) for Re(o)
problem(35)—(38) whenu(r) is localized as —« such that =0 and 0#|Im(o)|<1. These modes have been determined
the integral(40) makes sense. The eigenvalues could be isonumerically in Ref[16]. Using those numerical results, we
lated or embedded into a continuous spectrum of théwave found that the energy quadratic foi0) is positive for
system (35)—(38). The vortex soliton is linearly unstable all internal modes of the systedl). For instance, only one
if there exists an eigenvaluer for some n such internal mode withn=0 exists and has positive value bf
that Reg)>0. We note that if ¢,n,u,,u_,w, ,w_) for s=0.5 (which corresponds te=—0.5 in Ref.[16], see
is a solution of the linear systeni35—(38), so are Fig. 3. We have also checked that no embedded eigenvalues
(o,—n,u_,u,.,w_,w,), (—o,—n,u_,u, ,w_,w,), and with [Im(¢)|=1 exist in the problent41) for s=0.5.
(—o,n,u; ,u_,w, ,w_). Thus, complex unstable eigenval-  The second linear problefd2) is uncoupled fow, and
ues o always come in quartets, while real and imaginaryw_ . Since the operator on the right-hand side of E®) is
eigenvalues o always come in pairs. We also self-adjoint, the spectrum o is purely imaginary, i.e.,
note that eigenmodes o(n,u,,u_,w,,w_) and Re(o)=0. The continuous spectrum of E¢42) is located at
(o,—n,u_,u, ,w_,w,) give the identical perturbation in |Im(c)|>\,. Its discrete spectrum consists of isolated ei-
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genvalues with Im¢)> —\ for w, and Im(o) <\, for w_ nal systemg1) and(2) invariant, and is one of the symme-
and can be embedded into a continuous spectrum. The digies of the present problem. Thus, although the solutgh
crete spectrum of Eq42) includes two zero eigenvalues at appears like internal oscillations of vortex solitons, this os-
n=0 with eigenfunctionsv. = ¢(r), two zero eigenvalues Cillation does not create any energy radiation and is funda-
atn==*2 with eigenfunctionsv. = ¢(r), and two nonzero Mmentally different from internal oscillations discussed in
eigenvaluesr=*i(1—\,) at n==*1 with eigenfunctions Refs.[16,17,38.

W. =U(r). The zero eigenvalues at=0 are induced by the ~ We show next that the zero eigenvaluesiat+2 move
phase invariance of th&, equation, while the zero eigenval- t0 the imaginary axigas conjugate paiysas A >\q(s) and
ues aln= *+2 are induced by the Symmetry of the uncoup|edd0 not create any |nStab|l|ty We will use the perturbation
problem(42). The eigenvalues= =i(1—\,) with n==1  series expansions and will present calculations only for the
are induced by the arbitrary polarizations in the fundamenta¢a@sen=2 (the casen=—2 is similay. When\ is close to
vector soliton(6) at A =\o(s). The latter eigenvalues result Mo(S), We construct an approximate solution to the lineariza-
in negative values of the energy quadratic fa@6), tion problem(35—(38) atn=2 in the form

w _ (D) 3 _ 2,/(2) 4
u.=euy’(r)+0 , Wi=¢(r)+ew(r)+0 ,
h=—(1—)\o)f u2(r)rdr <0. 43) = U (N +O(€), Wy =gr)+ Wi +0(e)
0
w_=ewA(r)+0(e%, o= o,+0(eY), (47
We have checked numerically that E@2) has no other
discrete eigenvalues far=0.5. _ wheree is the same small parameter as in expansiddAs-
Applying the stability theory of solitary wavelS8], we  (16). Substituting Eq(47) into the systent35)—(38), we find
count eigenvalues of the probler(®l) and(42), which pro-  an exact solution at ordee: u®=u®=u,yr), where
duce negative and zero va_lues of the energy quadrqtic forrgzz(r) solves the Eq(21). At order €2, we need to solve the
h. At A\=X\q(s), only two eigenvaluesr=*i(1—\g) give nonhomogeneous equation mff)(r),
the negative energi43). Several zero eigenvalues give zero
energy ain=0,+1,+2. However, zero eigenvalues mt 0

2
andn==*1 are preserved at>N\q(s) due to translation, w®" + }W(f)”_ )\O+i w@+ Yo w@
rotation, and complex-phase symmetries of the systeins r r2 1+su§
and (2). Only two zero eigenvalues of the problg@?) at
n==+2 are not preserved by the symmetry and they can _ 2¢(UgUgpt UgUppt ¢?)
move out of zero folm >\q(s). We shall now consider the =(Aa—ioz) ¢ (1+5@)? (48)

shift of these negative-energy and zero-energy eigenvalues

for A near the cutoff frequency(s). The solvability condition for this equation can be simplified

We show first that the negative-energy eigenvalves o yirtye of Eq.(28), and we find that the eigenvalue
==*i(1—\y) never bifurcate off the imaginary axis for coefficiento, is given as

>No(s) regardless whether they are embedded or not. In-
deed, at any value of, the linearization problem&5)—(38)

have the exact discrete eigenmode f r p2h,dr
Jo
U, =0, U_=—®y(r), W, =0y(r), w_=0 (44) op=2 T 49
J r¢2dr
forn=1 ando=i(1—X\), and 0

u,=—®,(r), u_=0, w,=0, w_=d,(r) (45 Utilizing Eq. (32), we see that

forn=—1 ando=—i(1—\). This result is in contrast with 02=2i[2N24(S) — N, (S)], (50)
what happens in the system of coupled NLS equations with
Kerr nonlinearities, where the negative-energy discrete eiwhose imaginary part is positive from Fig(al Thus, the

genvalues, which are embedded in the continuous spectrunapergy quadratic form of the bifurcated eigenmo@s and
bifurcate to the complex plane and lead to the instability(50) (up to the order?) is negative:

[36,39.
We note that the exact eigenmoddd) and(45) generate o
an approximate solution of the systexis and (2): h=—€e’Im(a,) fo rdr<o0. (52)

E1=®(r)e”—y®,(r)e'’ "+ 0(5?),
The analytical eigenvalue formul@47) and(50) atn=2 is
E,=®,(r)e'? "4 yd (r)e?+0(»?), (46) plotted in Fig. 4 versua for s=0.5 (dash-dotted ling Nu-
merically, we have determined these eigenvaluesfe0.5
where y is an arbitrary small parameter. Soluti@h6) is  and various values of, and the results are plotted in Fig. 4
nothing but the original vortex vector soliton under a small(solid line) as well. When\ is close to\,, the analytical
rotation in the E4,E,) plane. This rotation leaves the origi- formula agrees well with the numerical values.
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0.7 ; ; tions under random-noise initial perturbations. Figure 5 dis-
06l ] plays our numerical solutions for the vortex soliton and the
corresponding unstable eigenfunctiorsat0.5, A =0.5, and
051 n=2. Thus, for the case=0.5, unstable eigenvalues exist
al at A>\.~0.402, while vortex vector solitons exist at
c” >Ng~0.2622, see Fig. 4. In the intervah<A<\., i.e.,
0.3} 0.2622<\ <0.402 fors=0.5, unstable eigenvalues do not
02l exist and the vortex solitons are lineadiable
We conclude this analysis with two remarks. First, it fol-
017} lows from Fig. 4 fors=0.5 that the eigenvalues at n
=+2 merge into the continuous spectrum at=0.396,
02 while unstable eigenvalues appeaiat\ ;~0.402. Our nu-

merical results are inconclusive as to what happens in the
narrow interval 0.396.\ <0.402. This problem is left open
n=2. The cutoff frequencyr, is marked by(*). Solid line: f;])r futurif?tudles. And Sec?]nd’ whanis further f“"(ay fg.(]zm_
Im(o); dashed line: Ref); dash-dotted line: analytical formulas the CUtc.) requencio(s), the Vec.tor Vort(.:"x solution pifur
(47) and (50). cates into scalar vortex solutions with=0 and w
=®,(r)e'’, see Ref[28]. The scalar vortex soliton has ad-
itional unstable eigenmodes ft|#2 that have smaller
OSrowth rategsee Ref[15]). We do not study this bifurcation,

FIG. 4. Eigenvalues of vortex solitons versus ats=0.5 and

We have shown above that the two zero eigenvalues

the systen{42_) atn=2 move to the imaginary axis when where the family of vector vortex solitons terminates, nor the
A>N\o(S), while the two nonzero negative-energy eigenval-

. . . . number of unstable eigenvalues of vector vortex solitons
ues atn==*=1 remain on the imaginary axis. Thus, we con-

. ) fPear this bifurcation.
clude that vortex solitons are linearly stable near the cuto
frequency\ =\q(s), i.e., vortex solitons with small vortex
components are linearly stable. This result confirms the con-
clusions of Ref[20] and does not support conclusions of  To study the linear stability of the dipole solito(8), we

Ref. [23], whereall vortex vector solitons were claimed to linearize the systenil) and(2) with the perturbation,
be linearly unstable.

B. Dipole soliton

Unstable eigenvalues of vortex solitons may appear far Ei=e{U(x,y)+[u (x,y) +ui(x,y)]e”™
away from the cutoff frequencyy(s). Indeed, the two — — —
imaginary eigenvalues for n= =+ 2 that bifurcate from zero Hu (X y) —ui(x,y) Je77, (52
eigenvalues ah>\(s) have negative energ{pl). When o
these eigenvalues collide with eigenvalues of positive energy Ex=e™{W(X,y) +[w,(x,y) + wi(X,y)]e”
or with continuous spectrum, the oscillatory instability may — — put
arise[35,38. We confirm this scenario and compute unstable W (X, Y) —wi(x,y)]e”%}. (53)

eigenvaluesr of the linear system§35)—(38) with the nu-
merical shooting method. The unstable eigenvalues are fou
exactly atn==*=2 and are shown in Fig. 4 f@=0.5. The
unstable eigenvalues appear wher A .~0.402, wherex .
denotes the frequency for onset of instability. These results
agree with Fig. 3 of Ref[23], where the unstable eigenval-

fddere.ur, Ui, we, andw; are complex functions and are very
small. The linearization problem is then written in the form

ioui=—Au,+u,—(V+2V, )u,—2V,Ww,, (549

ues were found from time integration of the linearized equa- four=—Au+u—Vu, (59
; ; iow;=—Aw, + AW, — (V+2V )W, =2V U, , (56)
u u
05 * 05 - .
e~ /\_ oW, = — Aw;+ A — Vg, (57)
-05 o5l "~
0 5 10 0 5 10 where
! w ! w 2 2 2
+ - Us+W U
0.5 0.5
Ve V- ,
o T o/\,‘—— 1+s(U2+W?) L+ s(U2+WR) )2
05 o5 "~-"
10 0 5 10 0 5 10
r r r uUw W2

Viyw= , = .
FIG. 5. The vortex solitor(left) and its unstable eigenmode M1+ s(UZ+WA) 2 1+ s(u2+wWA) P
(right) at s=0.5, A=0.5, andn=2. In the right figure, solid lines
are the real parts of the eigenfunctions, and dashed lines are thhe linearized problem can be formulated in the same
imaginary parts. Hamiltonian form(39) with the energy quadratic for88]
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h=iaJ (U U; + U U, +w,w; +w;w, ) dxdy. (58)

At the cutoff frequency\ =\y(s), the same analysis, as for

PHYSICAL REVIEW B7, 016608 (2003

=¢(r)sind and w; = ¢(r)coséh. The two eigenfunctions are
related to the symmetries of the systes and (2) with
respect to rotation ir¥ and shift of the complex phase. If
o,#0, however, the systert64) has only the trivial solu-

the vortex solitons, shows existence of a pair of eigenvalueion: ¢;=c,=d;=d,=0. Therefore, the other two zero ei-

o==*i(1—\y) with negative values oh and a number of
zero eigenvalues with zero valuesofWe show again that

the eigenvaluesr=*i(1—\y) with negative energy never

bifurcate into a complex domain for>\q(s). Indeed, for
any value of\, the linearization problem&4)—(57) have
the exact solution

ur=—W(xy), ui=W(xy), w,=U(xy), wi=U(Xy)
(59
atoc=i(1—\), and
Ur:W(X,y), ui:W(le)! Wr:_U(X,Y)- Wi:U(le)
(60)
ato=—i(1—-N\).
We study the zero eigenvalues of the systdB®—(57)
with perturbation series expansions for \y(S):
o=€%0,+0(e"), u=euM(r,0)+0(), u=0(ed,
w,=wO(r,0)+ w?(r,6)+O(e),

w=w(r,0)+ w3 (r,0)+O(e*). (61)

Here € is the same small parameter as in expansidds—
(16), while the functionsw((r,6) are linear combinations
of the eigenfunctions of the null space of the problg#)—
(57) at A=\(s):

w9=c,¢(r)cosh+c,p(r)sing,
wO=d; ¢(r)cosf+d,p(r)sing, (62

wherec,, c,, d;, andd, are constants. Substituting E§1)

into the system54)—(57), we find an exact solution at order

€,
UM =cqu,q(r) +(C1C08 20+ C,Sin 20)uyy(r), (63

whereu,(r) andu,,(r) solve the problem&0) and(21). At

order €2, four solvability conditions are needed for solving

the nonhomogeneous equationsvgf(r, 6) andw((r, 6).

Using Eq.(30), we transform the four solvability conditions

to the form

0'2C1:0, O'2d2:0, i0'2C2J r(l)zdr:dzj r¢2h2dr,
0 0

io'zdlfo I’¢2dl‘= _leo r¢2(2h1+h2)dr. (64)

If o,=0 thenc,=d,=0, while c,, d; are arbitrary con-

genvalues do not bifurcate to the imaginary axis but simply
disappear foin >\ (S).

We have analytically proved above that the dipole solitons
are linearly stable in the neighborhood of the cutoff fre-
guency\q(s). Moreover, contrary to vortex solitons, there
are only two eigenvalues of negative energy for \y(s),
and they remain on the imaginary axis for all valueshof
[see Eqgs(59) and(60)]. Thus, we conjecture that the dipole
solitons are linearly stable in the whole domain of their ex-
istence. This conjecture is in agreement with the numerical
work in Ref.[23]. We again confirm this result by numerical
simulations of the systemd) and(2) linearized around the
dipole soliton(8). Fors=0.5, we have simulated the linear-
ized system for several values hfbetween\ =0.3 andx
=0.85. We did not find any instability in the linearized sys-
tem. SinceA=0.3 is close to the cutoff frequency,
=0.2622 and\=0.85 is close to the end frequenay=1,
we conclude that dipole solitons are indeed lineatBblein
the whole existence interval.

IV. NONLINEAR EVOLUTION OF PERTURBED
VORTEX SOLITONS

Here, we study the nonlinear evolution of perturbed vor-
tex solitons. The unstable vortex soliton under small random-
noise perturbations was found in RE23] to break up into a
rotating dipole vector soliton. We will show below that such
a breakup scenario holds only when the vortex component of
the vortex soliton is below a certain threshold. Above that
threshold, unstable vortex solitons break up into two rotating
fundamental vector solitons instead. We will also show that
the vortex solitons with small vortex components are not
only linearly stable but also nonlinearly stable.

We consider first the nonlinear evolution of linearly stable
vortex solitons. For this purpose, we have simulated the sys-
tem (1) and (2) starting with a linearly stable vortex soliton
under various types of small initial perturbations such as
random-noise and amplitude scaling. We have found that the
vortex solitons are also nonlinearly stable for all small per-
turbations. To demonstrate, we seleet0.5 and\=0.38,
where the vortex soliton has been shown to be linearly stable
(see Fig. 4. As initial perturbations, we chose

E.(r,0,0)=(1+a)Py(r,N),

Ex(r,0,0)=(1+a)d,(r,\)e'’, (65)
wherea is a small perturbation parameter that measures am-
plification of the vortex soliton by a factorf«. The simu-
lation result witha=0.05 is shown in Fig. 6. This figure
shows that the perturbed vortex soliton persists the nonlinear

stants. Thus, the zero eigenvalue persists in the systenewvolution and exhibits little change of shape even after 300

(54)—(57) for A>N\y(s) with two eigenfunctions w,

diffraction lengths. This clearly confirms the linear and non-
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Z=0 Z=300 Z=0 Z=8 Z=16 Z=24 Z=32 Z=40

[E,l - - \ - - -

IE,l - - 1
IE,| IE,| “ — - - am
FIG. 6. Stable evolution of vortex vector solitons with<\ FIG. 7. Breakup of an unstable vortex soliton into a rotating
under the perturbatiof65) with s=0.5, A =0.38, anda=0.05. dipole soliton under the perturbatiori§6) and (67) with s=0.5,

N=0.45, anda=0.05.

linear stabilities of the vortex soliton witk=0.5 and\

=0.38. Other perturbations to this soliton give similar evo-Well as with other forms of initial perturbations such as ran-

lution results. dom noise, but the breakup scenarios do not change. To
We study next the nonlinear evolution of linearly unstablecheck the numerical accuracy of our simulations, we have

vortex solitons. We have shown in Sec. Il A that these soli-used more grid points and widex,f/) intervals and obtained

tons possess two unstable eigenmodeddentical results. Furthermore, our results conserve energies
(o,n,uy,u_,w,,w_) and (@,—n,u_,u.,w_,w,) with of the E; andE, components very well.
n=2. Theo versus\ graph is shown in Fig. 4 fos=0.5, Intuitively, it is not difficult to understand the above two

while unstable eigenfunctionsi( ,u_,w, ,w_) for s=0.5  breakup scenarios of unstable vortex solitons. When the vor-

and\=0.5 are displayed in Fig. 5. However, we recognizetex component of the vortex soliton is small, the instability
that these two unstable eigenmodes are equivalent in view d¢#vith n=2) breaks up the vortexs;) component into two
Eqgs.(33) and(34). Thus, any small initial perturbation to the weak humps, while it does not significantly affect the single-
vortex soliton is projected onto this unstable eigenmodehump shape of the fundamentdi,) component sincé&,’s
which grows exponentially, while the rest of the initial per- initial amplitude is much higher. During the subsequent evo-
turbation disperses away. For convenience, we choose tHetion, the two humps of th&, component are too weak to
initial perturbation to be exactly this unstable eigenmodebreak theE; component into two pieces, thus the solution
ie. relaxes into a dipole soliton instead of two fundamental soli-
tons. However, when the vortex component of the vortex
Eq(r,0,0)=® (r)+afu,(r)e 2%+u_(r)e??], (66)  soliton is sufficiently large, the fundamental component be-
comes smal(see Fig. 2 and Ref23]). In this case, instabil-
E,(r,0,0)=¢ (){(Dw(r)+a[W+(r)e72ig+W7(r)eZi s, ity breaks up both the vortex and fundamental components

into two pieces, and two fundamental solitons are formed
€7 then.

wherea is a small perturbation parameter. The advantage of

this special perturbation is that it shortens the distance for the V. SUMMARY AND DISCUSSION

breakup of the vortex soliton and reduces the radiation noise ) . .

in the nonlinear evolution of the perturbed solution. To summarize, we have studied both analytically and nu-
We have discovered two breakup scenarios of the unstabf@erically the existence, uniqueness, and stability of vortex

vortex soliton with the initial perturbation6) and(67). We and dipole vector solitons in saturable optical materials in

confirm that the unstable vortex solitons with relativetgall ~ (2+1) dimensions. We have shown that the analytical ex-

vortex components indeed break up into a rotating dipo|epressions for vortex and dipole vector solitons can be con-

soliton, in agreement with Reff23]. However, when the vor- structed with perturbation series expansions near the cutoff

tex component increases above a certain threshold, an uffequencyr =\q(s). We have also shown that only two vec-

stable vortex soliton breaks up into two rotatifupdamental  tor solitons bifurcate from the same cutoff frequency, which

vector solitons rather than one dipole soliton. For example,

whens=0.5 anda=0.05, the vortex soliton breaks up into a Z=0 Z=8 Z=16 Z=24
dipole soliton when 0.402\=<0.45, and into two funda- -

mental vector solitons whem>0.45. Indeed, whem\ IE,| - - -

=0.45 (where the vortex component is relatively smathe - -

time evolution of the perturbed vortex soliton is plotted in

Fig. 7. It is seen that this soliton breaks up into a rotating

dipole soliton. But whem =0.5 (where the vortex compo-

nent is bigger, the time evolution is shown in Fig. 8. Here, |E,| (=] - -
two rotating fundamental vector solitons are formed after the -

breakup of the unstable vortex soliton. We have also found

that these breakup scenarios are insensitive to the type of FIG. 8. Breakup of an unstable vortex soliton into two funda-
initial perturbation imposed because we have simulated theental solitons under the perturbatioi@) and (67) with s=0.5,
evolutions with different values af in Eqgs.(66) and(67) as  A=0.5, anda=0.05.
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are vortex and dipole solitons. Furthermore, we have provedpected to be always linearly unstable because each compo-
that both vortex and dipole solitons are lineastablewhen  nent has nonzero charge and is linearly unstable by itself
the vortex and dipole components amall As the vortex [15]. This expectation is consistent with our preliminary nu-
and dipole components increase, the family of vortex vectomerical simulations on vortex solitons with charges such as
solitons becomes linearly unstable, while that of dipole vecnn=1 andm=—1.

tor solitons remains linearly stable in the entire existence Recently, three-component vortex and dipole vector soli-
domain. We have also shown that unstable vortex solitongyns in a saturable medium have been investige3ell The
break up into a rotating dipole soliton only when the vortexathors found that those solitons are linearly unstable

component is relatively small. When the vortex Componen‘\%rovided that their total topological charge is nonzero. In

crosses a certain threshold, the vortex soliton breaks up int.q.. of our results in this paper, this conclusion needs modi-
cation. We plan to study this system carefully in the near

two rotating fundamental vector solitons instead. We expect:
that our results are significant not only for studies of spatiac
; . . . uture.

vector solitons in a saturable nonlinear medium but also for
studies of Bose-Einstein condensation.

In this paper, we have studied only the simplest vortex
and dipole vector solitons that bifurcate from the fundamen-
tal u and smallw components. One natural question to ask is
about the existence and stability of other vortex and multi- The authors appreciate helpful discussions with Yu.
pole vector solitons. The perturbation series expansioffivshar, Z. Musslimani, B. Sandstede, and D. Skryabin. The
method developed in this paper is powerful for a systematigvork of D.P. was supported in part by the NSERC, Grant No.
study of general vortex and multipole vector solitons near5-36694, and CFI, Grant No. 5-26773. The work of J.Y. was
their bifurcation points. But this problem lies outside the supported in part by the Air Force Office of Scientific Re-
scope of the present article. We note, however, that vortegearch under Contract No. F49620-99-1-0174 and by the Na-
solitons(7) with |[n|>0 and|m|>0 exist, and they are ex- tional Science Foundation under Grant No. DMS-9971712.
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