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Stable vortex and dipole vector solitons in a saturable nonlinear medium
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We study both analytically and numerically the existence, uniqueness, and stability of vortex and dipole
vector solitons in a saturable nonlinear medium in (211) dimensions. We construct perturbation series ex-
pansions for the vortex and dipole vector solitons near the bifurcation point, where the vortex and dipole
components aresmall. We show that both solutions uniquely bifurcate from the same bifurcation point. We also
prove that both vortex and dipole vector solitons are linearlystable in the neighborhood of the bifurcation
point. Far from the bifurcation point, the family of vortex solitons becomes linearly unstable via oscillatory
instabilities, while the family of dipole solitons remains stable in the entire domain of existence. In addition,
we show that an unstable vortex soliton breaks up either into a rotating dipole soliton or into two rotating
fundamental solitons.
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I. INTRODUCTION

Spatial solitons have been a subject of many studies s
their first theoretical prediction@1#. The previous research o
spatial solitons was driven by their promising applications
all-optical devices, in which the light guides and steers
light itself @2#. Early works studied optical materials with th
Kerr ~cubic! nonlinearity, which exhibit stable fundament
~single-hump! solitons in one spatial dimension@3–5# and
collapse in two and three spatial dimensions@6,7#. Later
works focused on optical materials with saturable nonlin
response such as photorefractive crystals~see Ref.@8#, and
references therein!. The nonlinearity saturation suppress
the collapse of fundamental solitons in two and three dim
sions @9–11#, which opens the door for their experiment
observation in multidimensional optical beams. The insta
ity of higher-order~multihump! solitons is, however, not sup
pressed by the nonlinearity saturation@12–16#. Internal
modes of fundamental solitons in saturable optical mater
have also been reported@16,17#. These modes are respo
sible for long-lived shape oscillations.

Recently, incoherent coupling of spatial solitons in pho
refractive crystals was proposed and experimentally dem
strated@11,18#. The mutual trapping of incoherent optic
beams leads to many novel spatial solitons such as vo
and dipole vector solitons@19–28#. The incoherently coupled
spatial solitons are described by a system of coupled non
ear Schro¨dinger ~NLS! equations. A similar system of equa
tions also describes temporal solitons in birefringent opt
fibers and wavelength-division-multiplexed systems@29–
34#. Additionally, vortex vector solitons are known in th
Bose-Einstein condensation guided by a magnetic trap@35#.

Vortex and dipole vector solitons in saturable optical m
terials are interesting for both physical and mathematical
sons. Physically, these spatial solitons are novel nonlin
objects. They bifurcate from a coupled state, where a fun
mental soliton in one component guides a small higher-or
mode in the other component. Far from the bifurcati
threshold, both components strongly trap each other
form a fully coupled vector soliton. Mathematically, exi
1063-651X/2003/67~1!/016608~12!/$20.00 67 0166
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tence and stability of the vortex and dipole vector solito
are challenging problems due to their complexity. The ex
tence of vortex and dipole solitons was established num
cally @20,23# and with a heuristic variational method@28#.
However, analytical expressions for radial-angular dep
dences of vortex and dipole solitons have not been found.
the stability of vortex solitons, the numerical results of R
@20# suggest that vortex solitons withsmall vortex compo-
nents are stable and observable for large propagation
tances, while vortex solitons with large vortex compone
are unstable. Numerical results of Ref.@23# show, however,
thatall vortex solitons are linearly unstable, and the instab
ity leads to the breakup of vortex solitons into rotating dipo
solitons. The discrepancy between Refs.@20# and@23# raises
an open question: are vortex vector solitons with small v
tex components really stable or not? On the other hand,
pole solitons were found numerically to be always stable
Ref. @23#.

In this paper, we clarify the issues of existence and s
bility of vortex and dipole vector solitons in a saturable no
linear medium such as photorefractive crystals. First, we
dress the existence and uniqueness of vortex and di
solitons with the perturbation technique@36,37#. We derive
perturbation series expansions for the vortex and dipole s
tons near the bifurcation point, where the vortex and dip
components aresmall. The analytical formulas for these sol
tons are in an excellent agreement with our numerical
sults. We also prove that those vector solitons are unique
to phase, translation, and rotation invariances. Next,
study the linear stability of vortex and dipole solitons wi
both the spectral analysis and numerical methods. We s
that dipole solitons are linearly stable in the entire existe
domain, while the vortex solitons withlarge vortex compo-
nents are linearly unstable, in agreement with Ref.@23#.
However, we prove that vortex solitons withsmall vortex
components are linearlystable, confirming the results of Ref
@20#, not Ref.@23#. Lastly, we study the nonlinear evolutio
of linearly unstable vortex solitons. We show that an unsta
vortex soliton breaks up into a rotating dipole soliton on
when the vortex component is below a certain thresho
©2003 The American Physical Society08-1
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Above this threshold, an unstable vortex soliton breaks
into two fundamental vector solitons instead.

II. EXISTENCE AND UNIQUENESS OF VORTEX
AND DIPOLE SOLITONS

The mathematical model for two incoherently coupled
ser beams in a photorefractive crystal is well known~see,
e.g., Refs.@20,23#!. After variable rescalings, the model ca
be written as a system of coupled equations,

i
]E1

]z
1DE11

E1~ uE1u21uE2u2!

11s~ uE1u21uE2u2!
50, ~1!

i
]E2

]z
1DE21

E2~ uE1u21uE2u2!

11s~ uE1u21uE2u2!
50, ~2!

whereD is the two-dimensional Laplacian, ands is the satu-
ration parameter.

Vector solitons in this model take the form

E15u~x,y!eiz, E25w~x,y!eilz, ~3!

where the frequency of theE1 wave has been normalized t
one, and the frequency of theE2 wave isl. The amplitude
functionsu(x,y) andw(x,y) satisfy the nonlinear boundary
value problem with zero boundary conditions on the (x,y)
plane:

Du2u1
u~ uuu21uwu2!

11s~ uuu21uwu2!
50, ~4!

Dw2lw1
w~ uuu21uwu2!

11s~ uuu21uwu2!
50. ~5!

The systems~4! and~5! may have several types of vecto
solitons localized in two dimensions. Thefundamentalvector
solitons take the form

u5cuF~r !, w5cwF~r !, ~6!

where F(r ) is a real-valued, single-hump function,r
5Ax21y2, andcu andcw are arbitrary complex paramete
constrained by the relationucuu21ucwu251. These solitons
exist at l51, where the systems~4! and ~5! reduce to a
scalar equation forF(r ), see Eq.~10! below. Thevortex
vector solitons take a general form

u5Fu~r !einu, w5Fw~r !eimu, ~7!

wheren and m are topological charges of vortices in theu
andw components,Fu(r ) andFw(r ) are real-valued func-
tions, and (r ,u) are the polar coordinates on the (x,y) plane.
01660
p

-

The simplest vortex soliton hasn50 andm51 @20,23#. The
multipolevector solitons take yet another general form

u5U~r ,u!, w5W~r ,u!, ~8!

where U(r ,u) and W(r ,u) are real-valued functions an
may have multihump profiles on the (x,y) plane. The multi-
pole solitons with a single hump foru(x,y) and multiple
humps forw(x,y) were approximated in the variational ap
proach@28# by the ansatz,

u5U~r !, w5W~r !cosmu, ~9!

where the number of humps in thew component is 2m. The
simplest multipole soliton is a dipole soliton, which hasm
51.

In this paper, we study the simplest vortex and multipo
vector solitons. We will refer to them simply as the vorte
soliton and dipole soliton, hereafter. The existence a
uniqueness of the vortex and dipole solitons can be stud
by perturbation methods. The perturbation series expans
are derived in the neighborhood of the bifurcation valuel
5l0(s), where thew component is small. With the pertur
bation arguments, we show that the bifurcation valuel0(s)
is the same for both branches of vortex and dipole solito
and these solitons bifurcate uniquely froml5l0(s).

Settingw50 in Eq. ~4!, we find the nonlinear boundary
value problem for the scalar solitonu5u0(r ),

u091
1

r
u082u01

u0
3

11su0
2

50, ~10!

whereu0(r ) is a real-valued function. We takeu0(r ) to be
the fundamental soliton, i.e.,u0(r ).0 for finite r>0. When
w is small in Eq.~5!, we get a linear eigenvalue problem fo
the first-order correctionw5w1(x,y),

Dw12lw11
u0

2

11su0
2

w150, ~11!

wherew1(x,y) is a complex-valued function, in general, an
l is the eigenvalue. The linear equation~11! supports local-
ized solutions of the formf(r )e6 imu for some discrete val-
ues of l. Since, we study the simplest vortex and dipo
solitons, we setm51, and requiref(r ) to be a non-negative
function for r>0. The corresponding eigenvaluel0(s) and
eigenfunctionf(r ) satisfy the following reduced equation:

f91
1

r
f82S l01

1

r 2D f1
u0

2

11su0
2
f50. ~12!

The eigenvaluel0 is unique onces is fixed. We normalize
the eigenfunctionf(r ) such that it has a maximum valu
one. Numerically, we computel0(s) andf(r ) by the shoot-
ing method. Figure 1~a! shows the dependence ofl0 versus
8-2
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saturation parameters. Figure 1~b! shows the scalar soliton
u0(r ) and the normalized eigenfunctionf(r ) at s50.5,
wherel050.2622.

Whenf(r ) andl0(s) are known, a general solution fo
w1(r ,u) can be written in the form

w1~r ,u!5f~r !~cosu1 ip sinu!, ~13!

wherep is an arbitrary real parameter. In this general so
tion, we have removed arbitrary rotations and translations
the (x,y) plane as well as an arbitrary phase shift in thew
component. We note that the solution~13! is identical to the
variational ansatz in Ref.@28#.

Below, we use the perturbative method and show t
there are only two continuations of the solution~13!: for p
561 andp50. Whenp561, the perturbation series ex
pansion recovers the vortex soliton~7! with n50 and m
561. Whenp50, the perturbation expansion recovers t
dipole soliton ~8! with a single hump foru and a double
hump forw. For given values ofs andl, the two solutions
are unique up to phase, translation, and rotation invarian
At other values ofp, the solution withw’s leading-order term
as in Eq.~13! cannot exist.

The perturbation series expansions for vector solitons
systems~4! and ~5! take the form

u5u0~r !1e2u2~r ,u!1e4u4~r ,u!1O~e6!, ~14!

w5ew1~r ,u!1e3w3~r ,u!1e5w5~r ,u!1O~e7!, ~15!

and

l5l0~s!1e2l2~s!1e4l4~s!1O~e6!, ~16!

wheree is a small parameter,u0(r ) is the scalar fundamenta
soliton solving Eq.~10!, w1(r ,u) is the first-order correction
in the form ~13!, and the cutoff frequencyl0 is the eigen-
value of Eq.~12!. The objective of the perturbation analys
is to uniquely determine the coefficientsl2 ,l4 , . . . as well
as expressions for functionsu2 , u4 , w3 ,w5, and so on. Once
the coefficientsl0 ,l2 , . . . have been obtained, we ca

FIG. 1. ~a! The cutoff frequencyl0 ~dashed-dotted! and the
correction termsl2v ~dashed! andl2d ~solid! for vortex and dipole
solitons as a function ofs. ~b! The scalaru0(r ) soliton and the
normalized eigenfunctionf(r ) at s50.5.
01660
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computee from l in the expansion~16!. Oncee is found,
together with functionsu0 ,u2 ,w1 ,w3 , . . . , we canapproxi-
mate the vector soliton by the expansions~14! and~15!. Be-
low, we will carry out the perturbative calculations to th
order ofe3.

Substituting the perturbation series~14!, ~15!, and ~16!
into the original Eqs.~4! and ~5!, at ordere2, we get an
inhomogeneous equation foru2,

Du22u21
u0

2~21su0
2!

~11su0
2!2

u21
u0

2

~11su0
2!2

ū252
u0uw1u2

~11su0
2!2

,

~17!

whereū is the complex conjugate ofu. The linearized opera-
tor in the left-hand side of Eq.~17! has a nonempty nul
space spanned by three linearly independent localized ei
functions

u2h
(1)5 iu0~r !, u2h

(2)5u08~r !cosu, u2h
(3)5u08~r !sinu.

~18!

These eigenfunctions correspond to the phase and tra
tional invariances of solitons in the scalaru equation. The
right-hand side of Eq.~17! is orthogonal tou2h

(1) because it is
real valued. It is also orthogonal tou2h

(2) andu2h
(3) because it

has different angular dependence of 1 and cos 2u ~rather than
cosu and sinu). Therefore, up to phase, translation, and
tation shifts, a localized solution to Eq.~17! is constructed
uniquely in the form

u25
1

2
~11p2!u20~r !1

1

2
~12p2!u22~r !cos 2u, ~19!

where functionsu20(r ) andu22(r ) satisfy the equations

u209 1
1

r
u208 2u201

u0
2~31su0

2!

~11su0
2!2

u2052
u0f2

~11su0
2!2

,

~20!

u229 1
1

r
u228 2S 11

4

r 2D u221
u0

2~31su0
2!

~11su0
2!2

u2252
u0f2

~11su0
2!2

.

~21!

We do not know exact analytical expressions foru20(r ) and
u22(r ) but can compute them numerically.

At order e3, we get the equation forw3 as

Dw32l0w31
u0

2

11su0
2

w35H l22
uw1u212u0u2

~11su0
2!2 J w1 .

~22!

We denote
8-3
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FIG. 2. ~a! Amplitudes of the vortex vector
solitons obtained analytically~dashed line! and
numerically ~solid line! for s50.5 and various
frequenciesl. ~b! A numerical vortex-soliton so-
lution with s50.5 andl50.4.
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er
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h1~r !5
f 12u0u20

2~11su0
2!2

, h2~r !5
f 12u0u22

2~11su0
2!2

, ~23!

and rewrite Eq.~22! in the form

Dw32l0w31
u0

2

11su0
2

w3

5Fl22~11p2!h12
1

2
~12p2!h2Gf cosu

1 ipFl22~11p2!h11
1

2
~12p2!h2Gf sinu

2
1

2
~12p2!h2f cos 3u

2
1

2
ip~12p2!h2f sin 3u. ~24!

The homogeneous part in Eq.~24! supports two linearly in-
dependent localized solutionsf(r )cosu andf(r )sinu. As a
result, a localized solution of the nonhomogeneous Eq.~24!
exists if and only if the following solvability conditions ar
satisfied:

E
0

`

rf2H l22~11p2!h1~r !2
1

2
~12p2!h2~r !J dr50,

~25!

pE
0

`

rf2H l22~11p2!h1~r !1
1

2
~12p2!h2~r !J dr50.

~26!

We will show below that these solvability conditions defi
only two perturbation series solutions for vector soliton
These solutions correspond to the choicep561 or p50,
which produce vortex and dipole solitons, respectively.

A. Vortex solitons

If pÞ0, we eliminate parameterl2 from the systems~25!
and ~26! and find the solvability condition in the form:
01660
.

~12p2!E
0

rf2h2~r !dr50. ~27!

The integral in Eq.~27! only depends on the parameters, not
on p. We have checked numerically that this integral nev
vanishes for anys. Thus, the condition~27! is satisfied only
when p561. In this case, it follows from Eqs.~13!, ~19!,
and ~24! that w15f(r )e6 iu, u25u20(r ), and w3
5 f (r )e6 iu. We can continue the perturbation series exp
sions ~14!–~16! to higher orders and find that allu2n (n
>0) corrections are only functions ofr, and all w2n11 (n
>0) corrections have the formg(r )e6 iu. Thus, the pertur-
bation series solution gives a vortex vector soliton~7! with
n50 andm561.

Whenp561, we find from Eq.~25! that the coefficient
l2 is

l25l2v~s![

2E
0

`

rf2h1dr

E
0

`

rf2dr

. ~28!

The functional dependence ofl2v versuss is computed from
this formula and plotted in Fig. 1~a! ~dashed line! alongside
the cutoff frequencyl0(s). Since the~non-negative! func-
tion f(r ) is normalized to have a maximum one, the pert
bation parametere determines the amplitude~maximum! of
the vortex componentw with error at the order ofe3, see
Eqs.~13! and~15!. The dependence ofe versusl ands can
be obtained from the perturbation series~16! with an error of
the order ofe2:

e5Al2l0~s!

l2v~s!
. ~29!

We compare the analytical formula~29! with numerical re-
sults for s50.5, wherel050.2622 andl2v50.1010. A
dashed line in Fig. 2~a! shows the amplitude of the vorte
componentw computed from Eq.~29!. Numerically, vortex
solitons are computed from the original systems~4! and ~5!
by the shooting method. The amplitudes of theu andw com-
ponents are also shown in Fig. 2. In Fig. 2~b!, a profile of
8-4
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FIG. 3. ~a! Amplitudes of the dipole vector
solitons obtained analytically~dashed line! and
numerically ~solid line! for s50.5 and various
frequenciesl. ~b! A numerical dipole-soliton so-
lution with s50.5 andl50.5.
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u(x,y) and w(x,y) components fors50.5 andl50.4 is
shown. We can see from Fig. 2~a! that the agreement be
tween the analytical predictions and numerical values on
amplitudes of thew component is good over a wide range
l values. Also, the numerically obtained amplitude of theu
component depends linearly onl, which is in agreemen
with the perturbation series~14! up to an error of the order o
e4, sincee2}(l2l0).

B. Dipole solitons

If p50, the condition~26! is satisfied, while the condi
tion ~25! gives the correction terml2 in the form

l25l2d~s![

E
0

`

rf2~2h11h2!dr

2E
0

`

rf2dr

. ~30!

The functional dependence ofl2d versuss is numerically
computed and plotted in Fig. 1~a! ~solid line!. When l2 is
given by Eq.~30!, a localized solutionw3(r ,u) of Eq. ~24!
exists, and this solution is real valued. We can further sh
that the perturbation series expansions~14!–~16! can be suc-
cessfully continued to higher orders ofe, and a dipole-
soliton solution~8! can be obtained. This solution is re
valued and has the symmetries

u~2x,y!5u~x,y!, u~x,2y!5u~x,y!,

w~2x,y!52w~x,y!, w~x,2y!5w~x,y!. ~31!

Similar to the vortex soliton case, the perturbation para
eter e here gives the amplitude~maximum! of the dipole
componentw with accuracy ofO(e3). The formula fore is
still Eq. ~29!, but the l2 value is now given by Eq.~30!
instead of Eq.~28!. The comparison between the analytic
results~29! and~30! and numerical results for dipole soliton
is shown in Fig. 3~a! for s50.5. In this case,l050.2622 and
l2d50.1174. We see again that the agreement between
merical and analytical results is very good over a wide ra
of l values. In Fig. 3~b!, the profiles ofu(x,y) andw(x,y)
components of a dipole soliton, computed with numeri
iteration methods, are displayed.
01660
e
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We note that in view of Eqs.~28! and~30!, the integral in
Eq. ~27! is actually

E
0

`

rf2h2~r !dr5~2l2d2l2v!E
0

`

rf2dr. ~32!

Inspection of thel2d(s) andl2v(s) curves in Fig. 1~a! im-
mediately confirms that the integral~32! is always positive.
Thus, Eq.~27! holds only whenp561.

To summarize, we have shown that there are only t
vector solitons of the systems~4! and ~5!, which bifurcate
from the cutoff frequencyl5l0(s). They are either a vortex
soliton ~7! or a real-valued dipole soliton~8!. The solutions
are determined in terms of perturbation series expansion
to the order ofe3. Both solitons are unique up to phas
position, and rotation invariances. The analytical results
confirmed by numerical calculations. Computations of t
perturbation series expansions prove the existence
uniqueness of vortex and dipole vector solitons observed
merically in Refs.@20,23,28#.

III. LINEAR STABILITY OF VORTEX
AND DIPOLE SOLITONS

In this section, we study the linear stability of vortex an
dipole vector solitons by spectral analysis, supplemented
numerical computations. Since the linearization operat
differ for vortex and dipole solitons, we shall treat the tw
cases separately.

A. Vortex solitons

To study the linear stability of the vortex solitons~7! with
n50 andm51, we linearize the system~1! and~2! with the
perturbation in the form

E15eiz@Fu~r !1u1~r !e2 inu1sz1ū2~r !einu1s̄z#,
~33!

E25eilz1 iu@Fw~r !1w1~r !e2 inu1sz1w̄2~r !einu1s̄z#.

~34!

The linearization problem can be written in the form
8-5
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isu152u19 2
1

r
u18 1S 11

n2

r 2 D u12V u12Vuu~u1

1u2!2Vuw~w11w2!, ~35!

2 isu252u29 2
1

r
u28 1S 11

n2

r 2 D u22V u2

2Vuu~u11u2!2Vuw~w11w2!, ~36!

isw152w19 2
1

r
w18 1S l1

~n21!2

r 2 D w12V w1

2Vuw~u11u2!2Vww~w11w2!, ~37!

2 isw252w29 2
1

r
w28 1S l1

~n11!2

r 2 D w22V w2

2Vuw~u11u2!2Vww~w11w2!, ~38!

where

V5
Fu

21Fw
2

11s~Fu
21Fw

2 !
, Vuu5

Fu
2

@11s~Fu
21Fw

2 !#2
,

Vuw5
FuFw

@11s~Fu
21Fw

2 !#2
, Vww5

Fw
2

@11s~Fu
21Fw

2 !#2
.

The linearized problem can be formulated in the Hamilton
form @35#:

6 isu65
dh

dū6

, 6 isw65
dh

dw̄6

, ~39!

whereh is the energy quadratic form associated with an
genvector u5(u1 ,u2 ,w1 ,w2)T and a linearized self-
adjoint operatorL of the right-hand sides of the syste
~35!–~38!:

h5^u,Lu&5 isE
0

`

rdr ~ uu1u22uu2u21uw1u22uw2u2!.

~40!

The eigenvalues is defined by the spectrum of the linearize
problem~35!–~38! whenu(r ) is localized asr→` such that
the integral~40! makes sense. The eigenvalues could be
lated or embedded into a continuous spectrum of
system ~35!–~38!. The vortex soliton is linearly unstabl
if there exists an eigenvalues for some n such
that Re(s).0. We note that if (s,n,u1 ,u2 ,w1 ,w2)
is a solution of the linear system~35!–~38!, so are
(s̄,2n,ū2 ,ū1 ,w̄2 ,w̄1), (2s,2n,u2 ,u1 ,w2 ,w1), and
(2s̄,n,ū1 ,ū2 ,w̄1 ,w̄2). Thus, complex unstable eigenva
ues s always come in quartets, while real and imagina
eigenvalues s always come in pairs. We als
note that eigenmodes (s,n,u1 ,u2 ,w1 ,w2) and
(s̄,2n,ū2 ,ū1 ,w̄2 ,w̄1) give the identical perturbation in
01660
n

i-

-
e

Eqs. ~33! and ~34!, so do the eigenmodes (2s,
2n,u2 ,u1 ,w2 ,w1) and (2s̄,n,ū1 ,ū2 ,w̄1 ,w̄2).

According to the stability theory of solitary waves in th
system of coupled NLS equations@38#, only eigenvaluess
with negative or zero values of the energy quadratic fo
~40! may bifurcate to the domain Re(l).0, leading to in-
stabilities. We shall apply this theory and study the spectr
of the linearization problem~35!–~38! at the cutoff fre-
quencyl5l0(s), whereFu(r )5u0(r ) andFw(r )50. We
will show that the vortex soliton is linearly stable in th
neighborhood of the cutoff frequencyl0(s)<l,lc(s),
where lc(s)<1 is the instability threshold. In the limitl
→l0(s), the linearization problem decomposes into two li
ear problems

6 isu652u69 2
1

r
u68 1S 11

n2

r 2 D u62
u0

2

11su0
2

u6

2
u0

2~u11u2!

~11su0
2!2

, ~41!

and

6 isw652w69 2
1

r
w68 1S l01

~n71!2

r 2 D w6

2
u0

2

11su0
2

w6 . ~42!

The first linear problem~41! is the stability problem of a
scalar fundamental solitonu5u0(r ) in a saturable medium
The linear stability of such solitons has been well establis
~see Ref.@16# for instance!, thus unstable eigenvaluess do
not exist in Eq.~41!. The continuous spectrum of the syste
~41! is located at Re(s)50 anduIm(s)u>1. The continuous
spectrum is irrelevant for stability of solitary waves in th
system of coupled NLS equations when no embedded eig
values with negative energy quadratic form~40! exist @38#.
The discrete spectrum of Eq.~41! consists of isolated eigen
valuess such that Re(s)50 anduIm(s)u,1, including the
zero eigenvalue atn50 andn561 with three eigenfunc-
tions ~18! and three generalized eigenfunctions. Addition
eigenvalues for internal modes exist in Eq.~41! for Re(s)
50 and 0ÞuIm(s)u,1. These modes have been determin
numerically in Ref.@16#. Using those numerical results, w
have found that the energy quadratic form~40! is positive for
all internal modes of the system~41!. For instance, only one
internal mode withn50 exists and has positive value ofh
for s50.5 ~which corresponds tov520.5 in Ref.@16#, see
Fig. 3!. We have also checked that no embedded eigenva
with uIm(s)u>1 exist in the problem~41! for s50.5.

The second linear problem~42! is uncoupled forw1 and
w2 . Since the operator on the right-hand side of Eq.~42! is
self-adjoint, the spectrum ofs is purely imaginary, i.e.,
Re(s)50. The continuous spectrum of Eq.~42! is located at
uIm(s)u.l0. Its discrete spectrum consists of isolated
8-6
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genvalues with Im(s).2l0 for w1 and Im(s),l0 for w2

and can be embedded into a continuous spectrum. The
crete spectrum of Eq.~42! includes two zero eigenvalues
n50 with eigenfunctionsw65f(r ), two zero eigenvalues
at n562 with eigenfunctionsw65f(r ), and two nonzero
eigenvaluess56 i (12l0) at n561 with eigenfunctions
w65u0(r ). The zero eigenvalues atn50 are induced by the
phase invariance of theE2 equation, while the zero eigenva
ues atn562 are induced by the symmetry of the uncoupl
problem~42!. The eigenvaluess56 i (12l0) with n561
are induced by the arbitrary polarizations in the fundame
vector soliton~6! at l5l0(s). The latter eigenvalues resu
in negative values of the energy quadratic form~40!,

h52~12l0!E
0

`

u0
2~r !rdr ,0. ~43!

We have checked numerically that Eq.~42! has no other
discrete eigenvalues fors50.5.

Applying the stability theory of solitary waves@38#, we
count eigenvalues of the problems~41! and~42!, which pro-
duce negative and zero values of the energy quadratic f
h. At l5l0(s), only two eigenvaluess56 i (12l0) give
the negative energy~43!. Several zero eigenvalues give ze
energy atn50,61,62. However, zero eigenvalues atn50
and n561 are preserved atl.l0(s) due to translation,
rotation, and complex-phase symmetries of the systems~1!
and ~2!. Only two zero eigenvalues of the problem~42! at
n562 are not preserved by the symmetry and they
move out of zero forl.l0(s). We shall now consider the
shift of these negative-energy and zero-energy eigenva
for l near the cutoff frequencyl0(s).

We show first that the negative-energy eigenvaluess
56 i (12l0) never bifurcate off the imaginary axis forl
.l0(s) regardless whether they are embedded or not.
deed, at any value ofl, the linearization problems~35!–~38!
have the exact discrete eigenmode

u150, u252Fw~r !, w15Fu~r !, w250 ~44!

for n51 ands5 i (12l), and

u152Fw~r !, u250, w150, w25Fu~r ! ~45!

for n521 ands52 i (12l). This result is in contrast with
what happens in the system of coupled NLS equations w
Kerr nonlinearities, where the negative-energy discrete
genvalues, which are embedded in the continuous spect
bifurcate to the complex plane and lead to the instabi
@36,38#.

We note that the exact eigenmodes~44! and~45! generate
an approximate solution of the systems~1! and ~2!:

E15Fu~r !eiz2gFw~r !eiu1 ilz1O~g2!,

E25Fw~r !eiu1 ilz1gFu~r !eiz1O~g2!, ~46!

where g is an arbitrary small parameter. Solution~46! is
nothing but the original vortex vector soliton under a sm
rotation in the (E1 ,E2) plane. This rotation leaves the orig
01660
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nal systems~1! and ~2! invariant, and is one of the symme
tries of the present problem. Thus, although the solution~46!
appears like internal oscillations of vortex solitons, this o
cillation does not create any energy radiation and is fun
mentally different from internal oscillations discussed
Refs.@16,17,36#.

We show next that the zero eigenvalues atn562 move
to the imaginary axis~as conjugate pairs! as l.l0(s) and
do not create any instability. We will use the perturbati
series expansions and will present calculations only for
casen52 ~the casen522 is similar!. Whenl is close to
l0(s), we construct an approximate solution to the lineariz
tion problem~35!–~38! at n52 in the form

u65eu6
(1)~r !1O~e3!, w15f~r !1e2w1

(2)~r !1O~e4!,

w25e2w2
(2)~r !1O~e4!, s5e2s21O~e4!, ~47!

wheree is the same small parameter as in expansions~14!–
~16!. Substituting Eq.~47! into the system~35!–~38!, we find
an exact solution at ordere: u1

(1)5u2
(1)5u22(r ), where

u22(r ) solves the Eq.~21!. At ordere2, we need to solve the
nonhomogeneous equation forw1

(2)(r ),

w1
(2)91

1

r
w1

(2)92S l01
1

r 2D w1
(2)1

u0
2

11su0
2

w1
(2)

5~l22 is2!f2
2f~u0u201u0u221f2!

~11su0
2!2

. ~48!

The solvability condition for this equation can be simplifie
by the virtue of Eq.~28!, and we find that the eigenvalu
coefficients2 is given as

s252i

E
0

`

rf2h2dr

E
0

`

rf2dr

. ~49!

Utilizing Eq. ~32!, we see that

s252i @2l2d~s!2l2v~s!#, ~50!

whose imaginary part is positive from Fig. 1~a!. Thus, the
energy quadratic form of the bifurcated eigenmodes~47! and
~50! ~up to the ordere2) is negative:

h52e2Im~s2!E
0

`

rf2dr,0. ~51!

The analytical eigenvalue formulas~47! and ~50! at n52 is
plotted in Fig. 4 versusl for s50.5 ~dash-dotted line!. Nu-
merically, we have determined these eigenvalues fors50.5
and various values ofl, and the results are plotted in Fig.
~solid line! as well. Whenl is close tol0, the analytical
formula agrees well with the numerical values.
8-7
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We have shown above that the two zero eigenvalues
the system~42! at n562 move to the imaginary axis whe
l.l0(s), while the two nonzero negative-energy eigenv
ues atn561 remain on the imaginary axis. Thus, we co
clude that vortex solitons are linearly stable near the cu
frequencyl5l0(s), i.e., vortex solitons with small vortex
components are linearly stable. This result confirms the c
clusions of Ref.@20# and does not support conclusions
Ref. @23#, whereall vortex vector solitons were claimed t
be linearly unstable.

Unstable eigenvalues of vortex solitons may appear
away from the cutoff frequencyl0(s). Indeed, the two
imaginary eigenvaluess for n562 that bifurcate from zero
eigenvalues atl.l0(s) have negative energy~51!. When
these eigenvalues collide with eigenvalues of positive ene
or with continuous spectrum, the oscillatory instability m
arise@35,38#. We confirm this scenario and compute unsta
eigenvaluess of the linear systems~35!–~38! with the nu-
merical shooting method. The unstable eigenvalues are fo
exactly atn562 and are shown in Fig. 4 fors50.5. The
unstable eigenvalues appear whenl.lc'0.402, wherelc
denotes the frequency for onset of instability. These res
agree with Fig. 3 of Ref.@23#, where the unstable eigenva
ues were found from time integration of the linearized eq

FIG. 4. Eigenvaluess of vortex solitons versusl at s50.5 and
n52. The cutoff frequencyl0 is marked by(*). Solid line:
Im(s); dashed line: Re(s); dash-dotted line: analytical formula
~47! and ~50!.

FIG. 5. The vortex soliton~left! and its unstable eigenmod
~right! at s50.5, l50.5, andn52. In the right figure, solid lines
are the real parts of the eigenfunctions, and dashed lines are
imaginary parts.
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tions under random-noise initial perturbations. Figure 5 d
plays our numerical solutions for the vortex soliton and t
corresponding unstable eigenfunction ats50.5, l50.5, and
n52. Thus, for the cases50.5, unstable eigenvalues exi
at l.lc'0.402, while vortex vector solitons exist atl
.l0'0.2622, see Fig. 4. In the intervall0,l,lc , i.e.,
0.2622,l,0.402 for s50.5, unstable eigenvalues do n
exist and the vortex solitons are linearlystable.

We conclude this analysis with two remarks. First, it fo
lows from Fig. 4 for s50.5 that the eigenvaluess at n
562 merge into the continuous spectrum atl'0.396,
while unstable eigenvalues appear atl5lc'0.402. Our nu-
merical results are inconclusive as to what happens in
narrow interval 0.396,l,0.402. This problem is left open
for future studies. And second, whenl is further away from
the cutoff frequencyl0(s), the vector vortex solution bifur-
cates into scalar vortex solutions withu50 and w
5Fw(r )eiu, see Ref.@28#. The scalar vortex soliton has ad
ditional unstable eigenmodes atunuÞ2 that have smaller
growth rates~see Ref.@15#!. We do not study this bifurcation
where the family of vector vortex solitons terminates, nor t
number of unstable eigenvalues of vector vortex solito
near this bifurcation.

B. Dipole soliton

To study the linear stability of the dipole solitons~8!, we
linearize the system~1! and ~2! with the perturbation,

E15eiz$U~x,y!1@ur~x,y!1ui~x,y!#esz

1@ ūr~x,y!2ūi~x,y!#es̄z%, ~52!

E25eilz$W~x,y!1@wr~x,y!1wi~x,y!#esz

1@w̄r~x,y!2w̄i~x,y!#es̄z%. ~53!

Here,ur , ui , wr , andwi are complex functions and are ver
small. The linearization problem is then written in the for

isui52Dur1ur2~V12Vuu!ur22Vuwwr , ~54!

isur52Dui1ui2Vui , ~55!

iswi52Dwr1lwr2~V12Vww!wr22Vuwur , ~56!

iswr52Dwi1lwi2Vwi , ~57!

where

V5
U21W2

11s~U21W2!
, Vuu5

U2

@11s~U21W2!#2
,

Vuw5
UW

@11s~U21W2!#2
, Vww5

W2

@11s~U21W2!#2
.

The linearized problem can be formulated in the sa
Hamiltonian form~39! with the energy quadratic form@38#

the
8-8
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h5 isE
2`

` E
2`

`

~ ūrui1ūiur1w̄rwi1w̄iwr !dxdy. ~58!

At the cutoff frequencyl5l0(s), the same analysis, as fo
the vortex solitons, shows existence of a pair of eigenval
s56 i (12l0) with negative values ofh and a number of
zero eigenvalues with zero values ofh. We show again tha
the eigenvaluess56 i (12l0) with negative energy neve
bifurcate into a complex domain forl.l0(s). Indeed, for
any value ofl, the linearization problems~54!–~57! have
the exact solution

ur52W~x,y!, ui5W~x,y!, wr5U~x,y!, wi5U~x,y!

~59!

at s5 i (12l), and

ur5W~x,y!, ui5W~x,y!, wr52U~x,y!, wi5U~x,y!

~60!

at s52 i (12l).
We study the zero eigenvalues of the systems~54!–~57!

with perturbation series expansions forl.l0(s):

s5e2s21O~e4!, ur5eur
(1)~r ,u!1O~e3!, ui5O~e3!,

wr5wr
(0)~r ,u!1e2wr

(2)~r ,u!1O~e4!,

wi5wi
(0)~r ,u!1e2wi

(2)~r ,u!1O~e4!. ~61!

Here e is the same small parameter as in expansions~14!–
~16!, while the functionswr ,i

(0)(r ,u) are linear combinations
of the eigenfunctions of the null space of the problem~54!–
~57! at l5l0(s):

wr
(0)5c1f~r !cosu1c2f~r !sinu,

wi
(0)5d1f~r !cosu1d2f~r !sinu, ~62!

wherec1 , c2 , d1, andd2 are constants. Substituting Eq.~61!
into the system~54!–~57!, we find an exact solution at orde
e,

ur
(1)5c1u20~r !1~c1cos 2u1c2sin 2u!u22~r !, ~63!

whereu20(r ) andu22(r ) solve the problems~20! and~21!. At
order e2, four solvability conditions are needed for solvin
the nonhomogeneous equations forwr

(2)(r ,u) andwi
(2)(r ,u).

Using Eq.~30!, we transform the four solvability condition
to the form

s2c150, s2d250, is2c2E
0

`

rf2dr5d2E
0

`

rf2h2dr,

is2d1E
0

`

rf2dr52c1E
0

`

rf2~2h11h2!dr. ~64!

If s250 then c15d250, while c2 , d1 are arbitrary con-
stants. Thus, the zero eigenvalue persists in the sys
~54!–~57! for l.l0(s) with two eigenfunctions wr
01660
s

ms

5f(r)sinu and wi5f(r )cosu. The two eigenfunctions are
related to the symmetries of the systems~1! and ~2! with
respect to rotation inu and shift of the complex phase. I
s2Þ0, however, the system~64! has only the trivial solu-
tion: c15c25d15d250. Therefore, the other two zero e
genvalues do not bifurcate to the imaginary axis but sim
disappear forl.l0(s).

We have analytically proved above that the dipole solito
are linearly stable in the neighborhood of the cutoff fr
quencyl0(s). Moreover, contrary to vortex solitons, ther
are only two eigenvalues of negative energy forl.l0(s),
and they remain on the imaginary axis for all values ofl
@see Eqs.~59! and~60!#. Thus, we conjecture that the dipo
solitons are linearly stable in the whole domain of their e
istence. This conjecture is in agreement with the numer
work in Ref.@23#. We again confirm this result by numerica
simulations of the systems~1! and ~2! linearized around the
dipole soliton~8!. For s50.5, we have simulated the linea
ized system for several values ofl betweenl50.3 andl
50.85. We did not find any instability in the linearized sy
tem. Since l50.3 is close to the cutoff frequencyl0
50.2622 andl50.85 is close to the end frequencyl51,
we conclude that dipole solitons are indeed linearlystablein
the whole existence interval.

IV. NONLINEAR EVOLUTION OF PERTURBED
VORTEX SOLITONS

Here, we study the nonlinear evolution of perturbed v
tex solitons. The unstable vortex soliton under small rando
noise perturbations was found in Ref.@23# to break up into a
rotating dipole vector soliton. We will show below that suc
a breakup scenario holds only when the vortex componen
the vortex soliton is below a certain threshold. Above th
threshold, unstable vortex solitons break up into two rotat
fundamental vector solitons instead. We will also show t
the vortex solitons with small vortex components are n
only linearly stable but also nonlinearly stable.

We consider first the nonlinear evolution of linearly stab
vortex solitons. For this purpose, we have simulated the s
tem ~1! and ~2! starting with a linearly stable vortex solito
under various types of small initial perturbations such
random-noise and amplitude scaling. We have found that
vortex solitons are also nonlinearly stable for all small p
turbations. To demonstrate, we selects50.5 andl50.38,
where the vortex soliton has been shown to be linearly sta
~see Fig. 4!. As initial perturbations, we chose

E1~r ,u,0!5~11a!Fu~r ,l!,

E2~r ,u,0!5~11a!Fw~r ,l!eiu, ~65!

wherea is a small perturbation parameter that measures
plification of the vortex soliton by a factor 11a. The simu-
lation result witha50.05 is shown in Fig. 6. This figure
shows that the perturbed vortex soliton persists the nonlin
evolution and exhibits little change of shape even after 3
diffraction lengths. This clearly confirms the linear and no
8-9
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JIANKE YANG AND DMITRY E. PELINOVSKY PHYSICAL REVIEW E 67, 016608 ~2003!
linear stabilities of the vortex soliton withs50.5 and l
50.38. Other perturbations to this soliton give similar ev
lution results.

We study next the nonlinear evolution of linearly unstab
vortex solitons. We have shown in Sec. III A that these s
tons possess two unstable eigenmod
(s,n,u1 ,u2 ,w1 ,w2) and (s̄,2n,ū2 ,ū1 ,w̄2 ,w̄1) with
n52. Thes versusl graph is shown in Fig. 4 fors50.5,
while unstable eigenfunctions (u1 ,u2 ,w1 ,w2) for s50.5
andl50.5 are displayed in Fig. 5. However, we recogn
that these two unstable eigenmodes are equivalent in vie
Eqs.~33! and~34!. Thus, any small initial perturbation to th
vortex soliton is projected onto this unstable eigenmo
which grows exponentially, while the rest of the initial pe
turbation disperses away. For convenience, we choose
initial perturbation to be exactly this unstable eigenmo
i.e.,

E1~r ,u,0!5Fu~r !1a@u1~r !e22iu1ū2~r !e2iu#, ~66!

E2~r ,u,0!5eiu$Fw~r !1a@w1~r !e22iu1w̄2~r !e2iu#%,

~67!

wherea is a small perturbation parameter. The advantage
this special perturbation is that it shortens the distance for
breakup of the vortex soliton and reduces the radiation n
in the nonlinear evolution of the perturbed solution.

We have discovered two breakup scenarios of the unst
vortex soliton with the initial perturbations~66! and~67!. We
confirm that the unstable vortex solitons with relativelysmall
vortex components indeed break up into a rotating dip
soliton, in agreement with Ref.@23#. However, when the vor-
tex component increases above a certain threshold, an
stable vortex soliton breaks up into two rotatingfundamental
vector solitons rather than one dipole soliton. For exam
whens50.5 anda50.05, the vortex soliton breaks up into
dipole soliton when 0.402,l&0.45, and into two funda-
mental vector solitons whenl.0.45. Indeed, whenl
50.45 ~where the vortex component is relatively small!, the
time evolution of the perturbed vortex soliton is plotted
Fig. 7. It is seen that this soliton breaks up into a rotat
dipole soliton. But whenl50.5 ~where the vortex compo
nent is bigger!, the time evolution is shown in Fig. 8. Here
two rotating fundamental vector solitons are formed after
breakup of the unstable vortex soliton. We have also fou
that these breakup scenarios are insensitive to the typ
initial perturbation imposed because we have simulated
evolutions with different values ofa in Eqs.~66! and~67! as

FIG. 6. Stable evolution of vortex vector solitons withl,lc

under the perturbation~65! with s50.5, l50.38, anda50.05.
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well as with other forms of initial perturbations such as ra
dom noise, but the breakup scenarios do not change
check the numerical accuracy of our simulations, we ha
used more grid points and wider (x,y) intervals and obtained
identical results. Furthermore, our results conserve ener
of the E1 andE2 components very well.

Intuitively, it is not difficult to understand the above tw
breakup scenarios of unstable vortex solitons. When the
tex component of the vortex soliton is small, the instabil
~with n52) breaks up the vortex (E2) component into two
weak humps, while it does not significantly affect the sing
hump shape of the fundamental (E1) component sinceE1’s
initial amplitude is much higher. During the subsequent e
lution, the two humps of theE2 component are too weak t
break theE1 component into two pieces, thus the solutio
relaxes into a dipole soliton instead of two fundamental s
tons. However, when the vortex component of the vor
soliton is sufficiently large, the fundamental component b
comes small~see Fig. 2 and Ref.@23#!. In this case, instabil-
ity breaks up both the vortex and fundamental compone
into two pieces, and two fundamental solitons are form
then.

V. SUMMARY AND DISCUSSION

To summarize, we have studied both analytically and
merically the existence, uniqueness, and stability of vor
and dipole vector solitons in saturable optical materials
(211) dimensions. We have shown that the analytical
pressions for vortex and dipole vector solitons can be c
structed with perturbation series expansions near the cu
frequencyl5l0(s). We have also shown that only two vec
tor solitons bifurcate from the same cutoff frequency, whi

FIG. 7. Breakup of an unstable vortex soliton into a rotati
dipole soliton under the perturbations~66! and ~67! with s50.5,
l50.45, anda50.05.

FIG. 8. Breakup of an unstable vortex soliton into two fund
mental solitons under the perturbations~66! and ~67! with s50.5,
l50.5, anda50.05.
8-10
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are vortex and dipole solitons. Furthermore, we have prov
that both vortex and dipole solitons are linearlystablewhen
the vortex and dipole components aresmall. As the vortex
and dipole components increase, the family of vortex vec
solitons becomes linearly unstable, while that of dipole v
tor solitons remains linearly stable in the entire existen
domain. We have also shown that unstable vortex solit
break up into a rotating dipole soliton only when the vort
component is relatively small. When the vortex compon
crosses a certain threshold, the vortex soliton breaks up
two rotating fundamental vector solitons instead. We exp
that our results are significant not only for studies of spa
vector solitons in a saturable nonlinear medium but also
studies of Bose-Einstein condensation.

In this paper, we have studied only the simplest vor
and dipole vector solitons that bifurcate from the fundam
tal u and smallw components. One natural question to ask
about the existence and stability of other vortex and mu
pole vector solitons. The perturbation series expans
method developed in this paper is powerful for a system
study of general vortex and multipole vector solitons n
their bifurcation points. But this problem lies outside t
scope of the present article. We note, however, that vo
solitons~7! with unu.0 and umu.0 exist, and they are ex
I.
tt

s

v

J

-
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pected to be always linearly unstable because each com
nent has nonzero charge and is linearly unstable by it
@15#. This expectation is consistent with our preliminary n
merical simulations on vortex solitons with charges such
n51 andm521.

Recently, three-component vortex and dipole vector s
tons in a saturable medium have been investigated@39#. The
authors found that those solitons are linearly unsta
provided that their total topological charge is nonzero.
view of our results in this paper, this conclusion needs mo
fication. We plan to study this system carefully in the ne
future.
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