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Motivated by experiments in atomic Bose–Einstein
condensates (BECs), we compare predictions of a
system of ordinary differential equations (ODEs) for
dynamics of one and two individual vortices in the
rotating BECs with those of the Gross–Pitaevskii
mean-field model written as a partial differential
equation (PDE). In particular, we characterize orbitally
stable vortex configurations in a symmetric harmonic
trap due to a cubic repulsive interaction and a steady
rotation. The ODE system is analysed in detail and
the PDE model is approximated numerically. Good
agreement between the two models is established
in the semi-classical (Thomas–Fermi) limit that
corresponds to the BECs at large values of the
chemical potential.

1. Introduction
Our principal interest in the present work focuses on
the dynamics of vortex excitations in atomic Bose–
Einstein condensates (BECs) [1] and their description
with the Gross–Pitaevskii (GP) equation [2]. Early works
on the subject, summarized in the review [3], as well
as more recent experimental work such as in [4],
highlight the ongoing interest towards a quantitative
characterization of vortex configurations of minimal
energy by means of low-dimensional models involving
ordinary differential equations (ODEs). This is an

2017 The Author(s) Published by the Royal Society. All rights reserved.
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endeavour that was initiated in the pioneering work of Castin & Dum [5] and has now matured
to the point that it can be used to understand the dynamics of such systems in experimental time
series such as those of Navarro et al. [4] (see also the relevant analysis of Zampetaki et al. [6]). Our
aim in the present work is to characterize orbitally stable vortex configurations among steadily
rotating solutions to the GP equation.

More specifically, we address the GP equation for a BEC in two dimensions with a cubic
repulsive interaction and a symmetric harmonic trap. This model can be written in the normalized
form

iεut = −ε2�u + (|x|2 + |u|2 − 1)u, (1.1)

where � = ∂2
x + ∂2

y and |x|2 = x2 + y2. By means of the transformation u = √
εũ and x = √

εx̃, the
model can be rewritten in the form

iũt = −�̃ũ + (|x̃|2 + |ũ|2 − μ)ũ, (1.2)

where μ = ε−1 is the chemical potential. Naturally, the regime where ε is a small parameter
corresponds to the regime of the large chemical potential μ. In this semi-classical (Thomas–Fermi)
limit ε → 0, vortices behave qualitatively as individual particles with no internal structure [2].

The associated energy of the GP equation (1.1) is given by

E(u) =
∫∫

R2

[
ε2|∇u|2 + (|x|2 − 1)|u|2 + 1

2
|u|4

]
dx dy. (1.3)

Time-independent solutions to the GP equation (1.1) are critical points of the energy (1.3).
Among the stationary solutions of the GP equation (1.1), there is a ground state (global

minimizer) of the energy E(u) subject to a fixed value of mass Q(u) = ‖u‖2. The ground state
is a radially symmetric, real, positive stationary solution with a fast decay to zero at infinity.
Properties of the ground state in the semi-classical limit ε → 0 were studied in [7,8]. On the other
hand, vortices are complex-valued stationary solutions with a non-zero winding number along
a circle of large radius centred at the origin. Vortices are less energetically favourable, as they
are saddle points of the energy E(u) subject to a fixed value of mass Q(u). However, when the
BEC is rotated with a constant angular frequency ω, it was realized long ago [3] that the vortex
configurations may become energetically favourable depending on the frequency ω due to the
contribution of the z-component of the angular momentum in the total energy.

From a mathematical perspective, Ignat & Millot [8,9] confirmed that the vortex of charge
one near the centre of symmetry is a global minimizer of total energy for a frequency ω above a
first critical value ω∗

1. Seiringer [10] proved that a vortex configuration with charge m becomes
energetically favourable to a vortex configuration with charge (m − 1) for a frequency ω above
the mth critical value ω∗

m > ω∗
m−1 and that radially symmetric vortices with charge m ≥ 2 cannot be

minimizers of total energy. It is natural to conjecture that the vortex configuration of charge m with
the minimal total energy consists of m individual vortices of charge one, which are placed near the
centre of symmetry. The location of individual vortices has not been rigorously discussed in the
previous works [8–10], although it has been the subject of many studies (see relevant examples
in [4–6]).

For the vortex of charge one, it was shown by using variational approximations [5] and
bifurcation methods [11] that the radially symmetric vortex becomes a local minimizer of total
energy past the threshold value ω1 of the rotation frequency ω, where ω1 ≤ ω∗

1. In addition to
the radially symmetric vortex, which exists for all values of ω, there exists another branch of the
asymmetric vortex solutions above the threshold value, for ω > ω1. The branch is represented
by a vortex of charge one displaced from the centre of the rotating symmetric trap. Although
the asymmetric vortex is not a local energy minimizer, it is nevertheless a constrained energy
minimizer subject to the constraint eliminating the rotational invariance of the asymmetric vortex.
Consequently, both radially symmetric and asymmetric vortices are orbitally stable in the time
evolution of the GP equation (1.1) for the rotation frequency ω slightly above the threshold value
ω1 [11].
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Stability of equilibrium configurations of several vortices of charge one in rotating harmonic
traps was investigated numerically in [12–17] (although a number of these studies have involved
also vortices of opposite charge). The numerical results were compared with the predictions given
by the finite-dimensional ODE system for dynamics of individual vortices [4,6,18,19]. The relevant
dynamics even for systems of two vortices remain a topic of active theoretical investigation [20],
including the study of a vortex pair evolving in an inhomogeneous background [21]
and the examination of instability of dark solitons and vortex pairs without the external
potential [22].

In the case of two vortices, the equilibrium configuration with the minimal total energy
emerges again above the threshold value ω2 for the rotation frequency ω, where ω2 > ω1. The
relevant configuration consists of two vortices of charge one being located symmetrically with
respect to the centre of the harmonic trap. However, the symmetric vortex pair is stable only
for small distances from the centre and it loses stability for larger distances [4]. Once it becomes
unstable, another asymmetric configuration involving two vortices bifurcates with one vortex
being at a smaller-than-critical distance from the centre and the other vortex being at a larger-
than-critical distance from the centre. The asymmetric pair is stable in numerical simulations and
coexists for rotating frequencies above the value ω2 with the stable symmetric vortex pair located
at the smaller-than-critical distances [4,6].

In this work, we revisit the ODE models for configurations of two vortices of charge one in the
semi-classical limit ε → 0. We will connect the details of bifurcations observed in [4,6] with the
stability properties of vortices due to their energy minimization properties. Compared with our
previous work [16], we will incorporate an additional term in the expansion of the vortex kinetic
energy, which is responsible for the nonlinear dependence of the vortex precession frequency on
the vortex distance from the origin. This improvement corresponds exactly to the theory used in
the physics literature; see, e.g. the review [3]. The additional term in the total energy derived in
appendix A allows us to give all details on the characterization of energy minimizers and orbital
stability in the case of one and two vortices of charge one.

In particular, we recover the conclusions obtained from the bifurcation theory in [11] that the
symmetric vortex of charge one is an energy minimizer for ω > ω1 and that the asymmetric vortex
of charge one is a constrained energy minimizer for ω > ω1. Both vortex configurations are stable
in the time evolution of the GP equation (1.1).

We also show from the ODE model that the symmetric pair of two vortices of charge one is
an energy minimizer for ω > ω2, whereas the asymmetric pair is a local constrained minimizer of
energy for ω > ω2. In this case too, for ω > ω2, both vortex configurations are stable in the time
evolution of the GP equation (1.1). A fold bifurcation of the symmetric vortex pair occurs at a
frequency ω smaller than ω2 with both branches of symmetric vortex pairs being unstable near
the fold bifurcation. This instability is due to the symmetric vortex pairs for ω < ω2 being saddle
points of total energy even in the presence of the constraint eliminating rotational invariance of
the vortex configuration.

Although the ODE model is not rigorously justified in the context of the GP equation (1.1), we
confirm numerically that the predictions of the ODE model hold exactly as qualitatively predicted
within the partial differential equation (PDE) model in the semi-classical limit ε → 0.

Next, we mention a number of recent studies on vortex configurations of the GP equation (1.1)
in the case of steady rotation. In the small-amplitude limit, when the reduced models are derived
by using the decompositions over the Hermite–Gauss eigenfunctions of the quantum harmonic
oscillator, a classification of localized (soliton and vortex) solutions from the triple eigenvalue
was constructed in [23]. Bifurcations of radially symmetric vortices with charge m ∈ N and dipole
solutions were studied in [24] with the help of the equivariant degree theory. Bifurcations of
multi-vortex configurations in the parameter continuation with respect to the rotation frequency
ω were considered in [25]. Existence and stability of stationary states were analysed in [26] with
the resonant normal forms. Some exact solutions of the resonant normal forms were reported
recently in [27]. Vortex dipoles were studied with the normal form equations in the presence of
an anisotropic trap in [28].
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Compared with the recent works developed in the small-amplitude limit, our results here
are expected to be valid only in the semi-classical limit ε → 0, i.e. for large chemical potential
μ rather than for values of the chemical potential in the vicinity of the linear limit. As a result, our
conclusions are slightly different from those that hold in the small-amplitude limit.

In [25], it was shown that the asymmetric pair of two vortices of charge one bifurcates
from the symmetric vortex of charge two and that this vortex pair shares the instability of the
symmetric vortex of charge two in the small-amplitude limit. This instability is due to the fact
that the vortex pair is a saddle point of total energy above the bifurcation threshold in the small-
amplitude limit. It is presently an open question to explore how this bifurcation diagram deforms
when the chemical potential is changed from the small-amplitude limit to the semi-classical
(Thomas–Fermi) limit.

Recent computational explorations of the stationary configurations of vortices have been
performed with several alternative numerical methods [29–31]. A principal direction of attention
is drawn to the global minimizers of total energy in the case of fast rotation, when the
computational domain is filled with the triangular lattice of vortices [30,31]. Dissipation is also
included in order to regularize the computational algorithms [31] or to enable convergence in
the case of ground states [30]. Although the ODE models are very useful to characterize one and
two vortices, it becomes cumbersome to characterize three and more vortices, and naturally the
complexity increases significantly in the case of larger clusters and especially for triangular vortex
lattices. Hence, such cases will not be addressed, although the tools utilized here can, in principle,
be generalized therein.

Our work paves the way for numerous developments in the future. Constructing multi-vortex
configurations and lattices of such vortices in a systematic way at the ODE level is definitely a
challenging problem for better understanding of dynamics in the GP equation. Another important
direction of recent explorations in BECs has involved the phenomenology of vortex lines and
vortex rings in the space of three dimensions [2]. The consideration of similar notions of effective
dynamical systems describing, e.g. multiple vortex rings is a topic under active investigation and
one that bears some nontrivial challenges from the ODE theory [32].

Finally, we mention that vortex ODE theory has been found very useful to characterize
travelling waves in the defocusing nonlinear Schrödinger equation in the absence of rotation and
the harmonic potential [33,34] (see also the recent work [35]).

The remainder of this paper is organized as follows. Section 2 reports predictions of the
ODE model for a single vortex of charge one. Section 3 is devoted to analysis of the ODE
model for a pair of vortices of charge one. Section 4 gives numerical results for the vortex pairs.
Section 5 presents our conclusion. Appendix A contains the derivation of the additional term in
the expansion of the vortex kinetic energy.

2. Reduced energy for a single vortex of charge one
A single vortex of charge one shifted from the centre of the harmonic potential behaves like a
particle with the corresponding kinetic and potential energy [2]. The asymptotic expansions of
kinetic and potential energy were derived in [16] by using a formal Rayleigh–Ritz method and
analysis of resulting integrals in the semiclassical limit of ε → 0. By Lemmas 1 and 2 in [16], a
single vortex of charge one placed at the point (x0, y0) ∈ R2 has kinetic K and potential P energies
given by

K(x0, y0) = 1
2 ε(x0ẏ0 − y0ẋ0) [1 + O(ε + x2

0 + y2
0)] (2.1)

and

P(x0, y0) = 1
2 εω0(ε)(x2

0 + y2
0) [1 + O(ε1/3 + x2

0 + y2
0)], (2.2)

where ω0(ε) = −2ε log(ε) + O(1) as ε → 0 and we have divided all expressions by 2π compared
with [16]. Let us truncate the expansions (2.1) and (2.2) by the leading-order terms and obtain the
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Euler–Lagrange equations for the Lagrangian L(x0, y0) = K(x0, y0) − P(x0, y0). The corresponding
linear system divided by ε is

ẏ0 − ω0(ε)x0 = 0,

−ẋ0 − ω0(ε)y0 = 0,

}
⇒ ẍ0 + ω0(ε)2x0 = 0 (2.3)

and it exhibits harmonic oscillators with the frequency ω0(ε). This frequency was compared in
[16] with the smallest eigenvalue in the spectral stability problem for the single vortex of charge
one, a good agreement was found as the asymptotic limit ε → 0 was approached.

It was suggested heuristically in [3] (see also [18,19]) that the frequency of vortex precession
depends on the displacement a of a single vortex of charge one from the centre of the harmonic
potential by the following law:

ω(a) = ω0(ε)
1 − a2 , a ∈ (0, 1), (2.4)

so that ω(a) > ω0(ε). This law is in agreement with the bifurcation theory for a single asymmetric
vortex in the stationary GP equation [11], where a new branch of stationary vortex solutions
displaced from the centre of the harmonic potential by the distance a ∼ (ω − ω0(ε))1/2 was shown
to exist for ω � ω0(ε).

The empirical law (2.4) and the bifurcation of asymmetric vortices for ω � ω0(ε) can be
explained by the extension of the kinetic energy given by (2.1) at the same order of ε but to the
higher order in x2

0 + y2
0. We show in appendix A that the kinetic energy K(x0, y0) can be further

expanded as follows:

K(x0, y0) = 1
2 ε(x0ẏ0 − y0ẋ0)[1 − 1

2 (x2
0 + y2

0) + O(ε + x4
0 + y4

0)]. (2.5)

In the reference frame rotating with the angular frequency ω, we can use the polar coordinates

x0 = ξ0 cos(ωt) − η0 sin(ωt) and y0 = ξ0 sin(ωt) + η0 cos(ωt) (2.6)

and rewrite the truncated kinetic and potential energies as follows:

K(ξ0, η0) = 1
2 ε(ξ0η̇0 − ξ̇0η0) + 1

2 εω(ξ2
0 + η2

0)[1 − 1
2 (ξ2

0 + η2
0)],

and

P(ξ0, η0) = 1
2 εω0(ε)(ξ2

0 + η2
0),

where the nonlinear correction for the quadratic term (ξ0η̇0 − ξ̇0η0) in K(ξ0, η0) is dropped to
simplify the time evolution of the ODE system. In the remainder of this section, we review the
existence and stability results for the single vortex of charge one within the ODE theory.

(a) Existence of steadily rotating vortices
Steadily rotating vortices are critical points of the action functional

E1(ξ0, η0) = 1
2 εω(ξ2

0 + η2
0)[1 − 1

2 (ξ2
0 + η2

0)] − 1
2 εω0(ε)(ξ2

0 + η2
0). (2.7)

Thanks to the rotational invariance, one can place the steadily rotating vortex to the point (ξ0, η0) =
(a, 0). The Euler–Lagrange equation for E1(a, 0) yields

d
da

E1(a, 0) = εωa(1 − a2) − εω0(ε)a = 0.

Two solutions exist: one with a = 0 for every ω and the other one with a ∈ (0, 1) for ω(a) given by
the dependence (2.4). The symmetric vortex with a = 0 exists for every ω, whereas the asymmetric
vortex with the displacement a > 0 exists for ω > ω0(ε).
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(b) Variational characterization of the individual vortices
Extremal properties of the two critical points of E1(ξ0, η0) are studied from the Hessian matrix
E′′

1(a, 0). This is a diagonal matrix with the diagonal entries:

∂2
ξ0

E1(a, 0) = εω(1 − 3a2) − εω0(ε) and ∂2
η0

E1(a, 0) = εω(1 − a2) − εω0(ε).

The critical point (0, 0) is a minimum of E1 for ω > ω0(ε) and a saddle point of E1 with two negative
eigenvalues if ω < ω0(ε). The critical point (a, 0) with a > 0 and ω > ω0(ε) related by equation (2.4)
is a saddle point of E1 with one negative and one zero eigenvalues. This conclusion agrees with
the full bifurcation analysis of the GP equation (1.1) given in [11,25].

The zero eigenvalue for the asymmetric vortex with a > 0 is related to the rotational invariance
of the vortex configuration, which can be placed at any (ξ0, η0) = a(cos α, sin α) with arbitrary α ∈
[0, 2π ]. The corresponding eigenvector in the kernel of E′′

1(a, 0) is R := [0, 1]T.

(c) Stability of steadily rotating vortices
Stability of the two critical points of E1(ξ0, η0) is determined by equations of motion obtained from
the leading-order Lagrangian

L1(ξ0, η0) = 1
2 ε(ξ0η̇0 − ξ̇0η0) + E1(ξ0, η0).

After dividing the Euler–Lagrange equations by ε, equations of motion take the form

η̇0 + ωξ0(1 − ξ2
0 − η2

0) − ω0(ε)ξ0 = 0

and
ξ̇0 − ωη0(1 − ξ2

0 − η2
0) + ω0(ε)η0 = 0,

which can be written as the Hamiltonian system

d
dt

[
ξ0
η0

]
= J

⎡
⎢⎢⎣

∂E1

∂ξ0

∂E1

∂η0

⎤
⎥⎥⎦ , J =

[
0 1

−1 0

]
, (2.8)

where E1 in (2.7) serves as the Hamiltonian function.
Spectral stability of the two vortex solutions can be analysed from the linearization of the

Hamiltonian system (2.8) at the critical point (ξ0, η0) = (a, 0). Substituting ξ0 = a + ξ̂0 eλt, η0 = η̂0 eλt

and neglecting the quadratic terms in (ξ̂0, η̂0) yield the spectral stability problem

[ω(1 − 3a2) − ω0(ε)]ξ̂0 = −λη̂0

and [ω(1 − a2) − ω0(ε)]η̂0 = λξ̂0.

⎫⎬
⎭ (2.9)

For the symmetric vortex with a = 0, the spectral problem (2.9) admits a pair of purely
imaginary eigenvalues with

λ2 = −(ω − ω0(ε))2,

for both ω < ω0(ε) and ω > ω0(ε). For the asymmetric vortex with a > 0 and ω > ω0(ε) related by
equation (2.4), the spectral problem (2.9) admits a double zero eigenvalue. These conclusions of
the ODE theory agree with the numerical results obtained for the PDE model (1.1) in [11]. In
particular, both the symmetric and asymmetric vortices were found to be spectrally stable for ω

near ω0(ε). The symmetric vortex was found to have a pair of purely imaginary eigenvalues near
the origin coalescing at the origin for ω = ω0(ε). The asymmetric vortex was found to have an
additional degeneracy of the zero eigenvalue due to the rotational symmetry.

The symmetric vortex with a = 0 is orbitally stable for ω > ω0(ε) because the critical point (0, 0)
is a minimum of E1 for ω > ω0(ε). On the other hand, the asymmetric vortex is also orbitally stable
because, although the critical point (a, 0) is a saddle point of E1, it is a constrained minimum of E1
under the constraint eliminating the rotational symmetry and preserving the symplectic structure

 on December 7, 2017http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


7

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20170602

...................................................

of the Hamiltonian system (2.8). As R = [0, 1]T spans the kernel of the Hessian matrix E′′
1(a, 0), the

symplectic orthogonality constraint takes the form

ϕ :=
[

ξ0
η0

]
∈ R2 : 〈J−1ϕ, R〉 = 0, (2.10)

which simplifies to ξ0 = 0. The constraint ξ0 = 0 removes the negative eigenvalue of the Hessian
matrix E′′

1(a, 0). Hence, the critical point (a, 0) is a constrained minimum of E1 under the constraint
(2.10) related to the rotational invariance.

3. Reduced energy for a pair of vortices of charge one
We now turn to the examination of a pair of vortices of charge one. It was argued in [18,19] that
dynamics of two and more individual vortices can be modelled by using the reduced energy,
which is given by the sum of energies of individual vortices and the interaction potential. In
[16], a reduced energy for a pair of vortices of the opposite charge (vortex dipole) was obtained
by using the same formal Rayleigh–Ritz method and analysis of resulting integrals in the limit
ε → 0.

Here, we rewrite the result of computations in Lemmas 3 and 4 in [16] in the case of a pair of
vortices of the same charge one. We also add the nonlinear dependence of the frequency of vortex
precession on the displacement a from the centre of the harmonic potential, which is modelled by
the additional term in the kinetic energy (2.5).

Let the two vortices be located at the distinct points (x1, y1) and (x2, y2) on the plane such that
a1 := (x2

1 + y2
1)1/2 and a2 := (x2

2 + y2
2)1/2 are small, ε is small, and a := ((x2 − x1)2 + (y2 − y1)2)1/2/ε

is large. The two-vortex configuration has kinetic K and potential P energies given at the leading
order by

K(x1, x2, y1, y2) = 1
2
ε

2∑
j=1

(xjẏj − yjẋj)
[

1 − 1
2

(x2
j + y2

j )
]

(3.1)

and

P(x1, x2, y1, y2) = 1
2
εω0(ε)

2∑
j=1

(x2
j + y2

j ) + 1
2
ε2 log[(x1 − x2)2 + (y1 − y2)2]. (3.2)

In the reference frame rotating with the angular frequency ω, we can use the polar coordinates

xj = ξj cos(ωt) − ηj sin(ωt) and yj = ξj sin(ωt) + ηj cos(ωt), j = 1, 2 (3.3)

and rewrite the truncated kinetic and potential energies in the form

K(ξ1, ξ2, η1, η2) = 1
2
ε

2∑
j=1

(ξjη̇j − ξ̇jηj) + 1
2
ε

2∑
j=1

ω(ξ2
j + η2

j )
[

1 − 1
2

(ξ2
j + η2

j )
]

and

P(ξ1, ξ2, η1, η2) = 1
2
εω0(ε)

2∑
j=1

(ξ2
j + η2

j ) + 1
2
ε2 log[(ξ1 − ξ2)2 + (η1 − η2)2],

where the nonlinear correction for the quadratic term (ξjη̇j − ξ̇jηj) in K(ξ1, ξ2, η1, η2) is dropped to
simplify the time evolution of the ODE system. In the remainder of this section, we obtain the
existence and stability results for two vortices of charge one within the ODE theory.
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(a) Existence of steadily rotating vortex pairs
Steadily rotating pairs of vortices are critical points of the action functional

E2(ξ1, ξ2, η1, η2) = 1
2
εω

2∑
j=1

(ξ2
j + η2

j )
[

1 − 1
2

(ξ2
j + η2

j )
]

− 1
2
εω0(ε)

2∑
j=1

(ξ2
j + η2

j ) − 1
2
ε2 log[(ξ1 − ξ2)2 + (η1 − η2)2].

We assume that the two vortices are located along the straight line that passes through the
centre of the harmonic potential. By using the rotational symmetry of the vortex configuration
on the plane, we select the vortex location at two points (ξ1, η1) = (b1, 0) and (ξ2, η2) = (−b2, 0)
for b1, b2 > 0. After dividing Euler–Lagrange equations for E2(b1, −b2, 0, 0) by ε, we obtain the
following system of algebraic equations:

ωb1(1 − b2
1) − ω0(ε)b1 − ε(b1 + b2)−1 = 0

and ωb2(1 − b2
2) − ω0(ε)b2 − ε(b1 + b2)−1 = 0.

⎫⎬
⎭ (3.4)

Subtracting one equation from another, we obtain the constraint

(b1 − b2)[ω − ω0(ε) − ω(b2
1 + b1b2 + b2

2)] = 0. (3.5)

The first root in (3.5) determines the symmetric vortex pair with b1 = b2 = b related to ω by

ω(b) = 1
1 − b2

[
ω0(ε) + ε

2b2

]
. (3.6)

The graph of (0, 1) � b �→ ω ∈ R has a global minimum at the point (b∗, ω∗), where

2ω∗b4
∗ = ε ⇒ ω∗ = ω0(ε) + ε

b2∗
> ω0(ε). (3.7)

The second root in (3.5) determines the asymmetric vortex pair with b1 �= b2 related to ω by
the system

ω(1 − b2
1 − b1b2 − b2

2) = ω0(ε)

and ωb1b2(b1 + b2)2 = ε,

⎫⎬
⎭ (3.8)

where the second equation was obtained from system (3.4) after dividing the first equation by b1,
the second equation by b2 and subtracting the result. The branch of the asymmetric vortex pair
bifurcates from the branch of the symmetric vortex pair at the point (b∗∗, ω∗∗), where

4ω∗∗b4
∗∗ = ε ⇒ ω∗∗ = ω0(ε) + 3ε

4b2∗∗
> ω0(ε). (3.9)

As (b∗, ω∗) is the only (global) minimum of the graph of (0, 1) � b �→ ω ∈ R and (b∗, ω∗) is clearly
different from (b∗∗, ω∗∗), then we have ω∗∗ > ω∗. Comparing (3.7) and (3.9), we obtain 3b2∗ > 4b2∗∗
which yields b∗ > b∗∗.

Figure 1 illustrates a typical example of the bifurcation diagram on the parameter plane
(b, ω) for ε = 0.05 with the notations used in (3.7) and (3.9). Both branches of the symmetric and
asymmetric vortex pairs lie above the branch of a single vortex given by (2.4) with a = b.

It should be noted that the symmetry-breaking bifurcation from the symmetric to the
asymmetric vortex pair was identified in the work of [4] (see also [6]). Here, we put this picture
in the context of the stability and variational characterization of the two-vortex states.

(b) Variational characterization of vortex pairs
Extremal properties of the two critical points of E2(ξ1, ξ2, η1, η2) are studied from the Hessian
matrix E′′

2(b1, −b2, 0, 0). This is a block-diagonal matrix in variables (ξ1, ξ2) and (η1, η2) with the
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Figure 1. A typical example of the bifurcation diagram for two vortices of charge one, for ε = 0.05. The symmetric (red, solid)
and asymmetric (blue, dashed) pairs of vortices are shown on the parameter plane (b,ω). The branch of the single vortex
displaced from the origin by the distance b is shown by a black dotted line. (Online version in colour.)

two blocks given by

L+ := ∂ξi∂ξj E2(b1, −b2, 0, 0)

= ε

⎡
⎢⎢⎣

ω(1 − 3b2
1) − ω0(ε) + ε

(b1 + b2)2 − ε

(b1 + b2)2

− ε

(b1 + b2)2 ω(1 − 3b2
2) − ω0(ε) + ε

(b1 + b2)2

⎤
⎥⎥⎦ (3.10)

and

L− := ∂ηi∂ηj E2(b1, −b2, 0, 0)

= ε

⎡
⎢⎢⎣

ω(1 − b2
1) − ω0(ε) − ε

(b1 + b2)2
ε

(b1 + b2)2

ε

(b1 + b2)2 ω(1 − b2
2) − ω0(ε) − ε

(b1 + b2)2

⎤
⎥⎥⎦ . (3.11)

Substituting the system (3.4) into L− yields a simpler expression

L− = ε2

b1b2(b1 + b2)2

⎡
⎣ b2

2 b1b2

b1b2 b2
1

⎤
⎦ ,

with a simple zero eigenvalue and a simple positive eigenvalue. The eigenvector for the zero
eigenvalue of E′′

2(b1, −b2, 0, 0) is R := [0, 0, b1, −b2]T. This eigenvector is related to the rotational
invariance of the vortex pair.

Eigenvalues of L+ can be computed with some additional effort. For the symmetric vortex pair
with b1 = b2 = b and ω = ω(b) given by (3.6), we simplify the entries of L+ as follows:

L+ = ε

⎡
⎢⎢⎣

−2ω(b)b2 + 3ε

4b2 − ε

4b2

− ε

4b2 −2ω(b)b2 + 3ε

4b2

⎤
⎥⎥⎦ . (3.12)

The two eigenvalues of L+ are, thus, given by

λ1 = −2εω(b)b2 + ε2

b2 and λ2 = −2εω(b)b2 + ε2

2b2 . (3.13)

Increasing b in the interval (0, 1), we can detect two bifurcations at b∗∗ and b∗, when the
eigenvalues pass through the origin. For b ∈ (0, b∗∗), both eigenvalues of L+ are positive. Hence,
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the critical point (b, −b, 0, 0) with the smallest displacement b ∈ (0, b∗∗) is a degenerate minimum
of E2 with a simple zero eigenvalue (due to L−) for ω > ω∗∗. For b ∈ (b∗∗, b∗), we have λ2 < 0
and λ1 > 0, hence the critical point (b, −b, 0, 0) with the smallest displacement b ∈ (b∗∗, b∗) is a
saddle point of E2 with one negative (λ2) and one zero (due to L−) eigenvalues for ω ∈ (ω∗, ω∗∗).
For b ∈ (b∗, 1), we have λ1 < 0 and λ2 < 0, hence the critical point (b, −b, 0, 0) with the largest
displacement b ∈ (b∗, 1) is a saddle point of E2 with two negative (λ1, λ2) and one zero (due to
L−) eigenvalues for ω > ω∗.

For the asymmetric vortex pair with b1 �= b2, we use system (3.4) and simplify the entries of
L+ as follows:

L+ = ε

⎡
⎢⎢⎢⎣

−2ωb2
1 + ε(2b1 + b2)

b1(b1 + b2)2 − ε

(b1 + b2)2

− ε

(b1 + b2)2 −2ωb2
2 + ε(b1 + 2b2)

b2(b1 + b2)2

⎤
⎥⎥⎥⎦ .

Substituting the second equation of system (3.8) yields a simpler expression:

L+ = ε2

b1b2(b1 + b2)2

⎡
⎣b2

2 + 2b1b2 − 2b2
1 −b1b2

−b1b2 b2
1 + 2b1b2 − 2b2

2

⎤
⎦ , (3.14)

with the determinant given by

det(L+) = − 2ε4

b2
1b2

2(b1 + b2)4
[(b2

1 − b2
2)2 + b1b2(b1 − b2)2].

As det(L+) < 0, the matrix L+ has one negative and one positive eigenvalue. Hence, the critical
point (b1, −b2, 0, 0) is a saddle point of E2 with one negative (due to L+) and one zero (due to L−)
eigenvalue for all ω > ω∗∗.

Let us now add the symplectic orthogonality constraint related to the symplectic matrix

J =

⎡
⎢⎢⎢⎣

0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎤
⎥⎥⎥⎦ , (3.15)

which arises in the Hamiltonian system (3.19) below. As R = [0, 0, b1, −b2]T is the eigenvector for
the zero eigenvalue of the Hessian matrix E′′

2(b1, −b2, 0, 0), the symplectic orthogonality constraint
takes the form

ϕ :=

⎡
⎢⎢⎢⎣

ξ1
ξ2
η1
η2

⎤
⎥⎥⎥⎦ ∈ R4 : 〈J−1ϕ, R〉 = 0. (3.16)

Owing to the structure of J and R, the constraint simplifies to the equation

b1η1 − b2η2 = 0. (3.17)

For the symmetric vortex pair with b1 = b2 = b, the constraint (3.17) is equivalent to η1 = η2.
Projecting L+ in (3.12) to the subspace satisfying this constraint yields

1
2

[1, 1] L+

[
1
1

]
= −2εω(b)b2 + ε2

2b2 = λ2,

where λ2 is defined by (3.13). As λ2 > 0 for b < b∗∗ and λ2 < 0 for b > b∗∗, the critical point
(b, −b, 0, 0) is a minimum of E2 for b ∈ (0, b∗∗) and a saddle point of E2 for b ∈ (b∗∗, 1) under the
constraint (3.16). No change in the number of negative eigenvalues of L+ constrained by (3.16)
occurs at b = b∗ > b∗∗.
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For the asymmetric vortex pair with b1 �= b2, projecting L+ in (3.14) to the subspace satisfying
the constraint (3.16) yields

1

b2
1 + b2

2
[b2, b1]L+

[
b2
b1

]
= ε2

b1b2(b1 + b2)2(b2
1 + b2

2)
[(b2

1 − b2
2)2 + 2b1b2(b1 − b2)2] > 0.

As the operator L+ constrained by (3.16) is positive, the critical point (b1, −b2, 0, 0) is a constrained
minimum of E2 under the constraint (3.16) for all ω > ω∗∗.

(c) Stability of vortex pairs
Stability of the two critical points of E2(ξ1, ξ2, η1, η2) is determined by equations of motion
obtained from the leading-order Lagrangian

L2(ξ1, η1, ξ2, η2) = 1
2
ε

2∑
j=1

(ξjη̇j − ηjξ̇j) + E2(ξ1, η1, ξ2, η2). (3.18)

After dividing Euler–Lagrange equations by ε, equations of motion take the form

η̇1 + ωξ1(1 − ξ2
1 − η2

1) − ω0(ε)ξ1 − ε(ξ1 − ξ2)
(ξ1 − ξ2)2 + (η1 − η2)2 = 0,

η̇2 + ωξ2(1 − ξ2
2 − η2

2) − ω0(ε)ξ2 + ε(ξ1 − ξ2)
(ξ1 − ξ2)2 + (η1 − η2)2 = 0,

ξ̇1 − ωη1(1 − ξ2
1 − η2

1) + ω0(ε)η1 + ε(η1 − η2)
(ξ1 − ξ2)2 + (η1 − η2)2 = 0

and ξ̇2 − ωη2(1 − ξ2
2 − η2

2) + ω0(ε)η2 − ε(η1 − η2)
(ξ1 − ξ2)2 + (η1 − η2)2 = 0,

which can be written as the Hamiltonian system

d
dt

⎡
⎢⎢⎢⎣

ξ1
ξ2
η1
η2

⎤
⎥⎥⎥⎦ = J

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂E2

∂ξ1

∂E2

∂ξ2

∂E2

∂η1

∂E2

∂η2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.19)

where E2 serves as the Hamiltonian function and J is defined by (3.15).
Linearizing equations of motion at the critical point (ξ1, ξ2, η1, η2) = (b1, −b2, 0, 0) with

ξ1 = b1 + ξ̂1 eλt, ξ2 = −b2 + ξ̂2 eλt, η1 = η̂1 eλt and η2 = η̂2 eλt,

yields the spectral stability problem

L+ξ̂ = −λη̂ and L−η̂ = λξ̂ , (3.20)

where ξ̂ = [ξ̂1, ξ̂2]T, η̂ = [η̂1, η̂2]T, whereas L+ and L− are given by (3.10) and (3.11).
For the symmetric vortex pair with b1 = b2 = b, the spectral stability problem (3.20) can be

block-diagonalized into two decoupled problems:[
−2ω(b)b2 + ε

2b2

]
(ξ̂1 + ξ̂2) = −λ(η̂1 + η̂2),

ε

2b2 (η̂1 + η̂2) = λ(ξ̂1 + ξ̂2)

⎫⎪⎪⎬
⎪⎪⎭ (3.21)
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and [
−2ω(b)b2 + ε

b2

]
(ξ̂1 − ξ̂2) = −λ(η̂1 − η̂2),

0 = λ(ξ̂1 − ξ̂2).

⎫⎪⎬
⎪⎭ (3.22)

The second block (3.22) yields a double zero eigenvalue with a non-diagonal Jordan block.
The double zero eigenvalue is related to the rotational invariance of the symmetric vortex pair.
The first block (3.21) yields a symmetric pair of eigenvalues from the characteristic equation

λ2 = ε

2b2

[
2ω(b)b2 − ε

2b2

]
= − 1

2b2 λ2,

where λ2 is defined by (3.13). As λ2 > 0 for b < b∗∗ and λ2 < 0 for b > b∗∗, we have λ2 < 0 for b < b∗∗
and λ2 > 0 for b > b∗∗. Hence, the symmetric vortex pair is stable for b ∈ (0, b∗∗) and unstable for b ∈
(b∗∗, 1) with exactly one pair of real eigenvalues. This agrees with the variational characterization
of the critical point (b, −b, 0, 0), which is a minimum of E2 for b ∈ (0, b∗∗) and a constrained saddle
point of E2 for b ∈ (b∗∗, 1) under the constraint (3.16).

For the asymmetric vortex pair with b1 �= b2, the spectral stability problem (3.20) has again a
double zero eigenvalue with a non-diagonal Jordan block, thanks to the rotational invariance of
the vortex pair. It remains to find the other pair of eigenvalues λ. To eliminate the translational
invariance, let us assume that b2η̂1 + b1η̂2 �= 0, then [ξ̂ , η̂]T ∦ R = [0, 0, b1, −b2]T. If this is the case,
we find from the spectral problem (3.20) that

λb1ξ̂1 = λb2ξ̂2 = ε

(b1 + b2)2 (b2η̂1 + b1η̂2).

after which the symmetric pair of eigenvalues is determined by the characteristic equation

λ2 = − ε2

b2
1b2

2(b1 + b2)4
[(b2

1 − b2
2)2 + 2b1b2(b1 − b2)2].

As λ2 < 0, the asymmetric vortex pair is stable for all ω > ω∗∗. This agrees with the variational
characterization of the critical point (b1, −b2, 0, 0), which is a constrained minimum of E2 under
the constraint (3.16).

4. Numerical results for the Gross–Pitaevskii equation
To complement the ODE theory, we present direct numerical simulations of the PDE model (1.1)
for a small value of ε. We use a Newton–Krylov solver to identify the vortex equilibria (both
symmetric and asymmetric ones) in the frame rotating with frequency ω. Once these waveforms
are identified, the vortex centre position b is extracted and a point is displaced on the parameter
plane (b, ω). Subsequently, a linearization of the PDE model is performed in this co-rotating
frame and the dominant eigenvalues (including those potentially responsible for instability) are
extracted. In what follows, we set ε = 0.05.

Figure 2 shows numerically obtained branches of the two-vortex solutions on the parameter
plane (b, ω) (figure 2a) and (b, L) (figure 2b), where L = b2

1 + b2
2 is used to emphasize the

supercritical character of the relevant pitchfork bifurcation, in agreement with the diagrams used
in [6].

The branch of a symmetric pair of two vortices can be obtained only for ω > ω∗, where ω∗ ≈
0.587, in line with the theoretical prediction on figure 1. The resulting solutions can be found
both with b > b∗ and with b < b∗. The numerical value b∗ ≈ 0.522 from the PDE model is close
to the predicted value b(th)

∗ ≈ 0.490 from the ODE theory. Along the branch of symmetric two-
vortex solutions with b < b∗, a second bifurcation point is identified at ω∗∗ ≈ 0.693 and the pair of
branches of asymmetric two-vortex solutions is obtained for ω > ω∗∗. The numerical value b∗∗ ≈
0.352 is again comparable with the predicted value b(th)

∗∗ ≈ 0.408.
Although the ODE theory captures fully the qualitative traits of the bifurcation diagram of the

PDE model, there are some quantitative differences in the bifurcation points. These differences
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Figure 2. Bifurcation diagram of the symmetric and asymmetric vortex pairs for ε = 0.05. (a) Branches of solutions on the
parameter plane (b,ω). The solid line corresponds to the spectrally stable symmetric vortex pair, the dashed one corresponds
to the unstable symmetric vortex pair, while the thick dash-dotted branch corresponds to the stable asymmetric vortex pair. (b)
The bifurcation diagram in the variables (b, L) with L= b21 + b22. (Online version in colour.)
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Figure 3. Squared eigenvalues of the spectral stability problem for the symmetric vortex pair. The unstable eigenvalue with
λ2 > 0 exists for b> b∗∗ in agreement with the ODE theory. (Online version in colour.)

exist, in part, because the ODE theory is valid in the semi-classical limit ε → 0, whereas the PDE
model is studied at a fixed finite value of ε. An additional key feature, however, is that the ODE
theory assumes the inter-vortex interaction to be taking place over a uniform background. In
the context of BECs, this is no longer the case, as the presence of the trap leads to a density
modulation that screens the relevant interaction. Hence, quantitative deviations are expected from
the theoretical prediction as a result of this screening effect. See [36] for a relevant discussion and
the very recent work of [31] for a suggested modification of the equations of motion that accounts
for this effect.

Figure 3 shows the squared eigenvalue of the spectral stability problem for the symmetric two-
vortex solution. The dependence illustrates the destabilizing nature of the bifurcation at ω = ω∗∗
but not at ω = ω∗. Indeed, λ2 < 0 for b < b∗∗ but λ2 > 0 for both b ∈ (b∗∗, b∗) and b ∈ (b∗, 1), hence
the symmetric two-vortex solution with b > b∗∗ is linearly unstable.

To manifest some typical profiles of the relevant configurations, in figure 4, we show two
examples of the symmetric configuration for the same value of ω = 0.7. This serves as a partial
illustration of the ‘folded’ nature of the relevant branch of solutions, such that for each value of
ω > ω∗, there exists a pair of symmetric two-vortex solutions (each of which is invariant under
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Figure 4. (a,b) Two examples of the symmetric vortex pair for the same value ofω = 0.7. (c) An example of the asymmetric
vortex pair forω = 0.715.

angular rotations). One of these (figure 4a) corresponds to the stable pair of vortices at a smaller-
than-critical distance, while the other one (figure 4b) corresponds to the unstable pair of vortices
at a larger-than-critical distance. In the latter case, the vortices are nearly at the edges of the
cloud. Figure 4c illustrates an example of the stable asymmetric two-vortex solution for a value
of ω = 0.715.

5. Conclusion
We have revisited the existence and stability of two-vortex configurations in the context of
rotating BECs. As a preamble to the ODE theory, we have discussed the existence and stability
properties of a single vortex of charge one: the symmetric vortex is located at the centre of the
trap and the asymmetric vortex is located at the periphery of the trap. We showed that the latter
bifurcates at ω1 = ω0(ε), where ω0(ε) is the linear eigenfrequency of precession of a single vortex
near the centre of the trap in the absence of rotation. The symmetric vortex is a local energy
minimizer for ω > ω1, whereas the asymmetric vortex is a constrained energy minimizer under
the constraint eliminating rotational invariance.

We have also considered the relevant two-vortex configurations, when both vortices have the
same charge one. In this context, the symmetric vortex pair bifurcates at ω∗ > ω1 via the saddle-
node bifurcation of two different vortex pairs, whereas the asymmetric vortex pair bifurcates
at ω2 = ω∗∗ > ω∗ via the supercritical pitchfork bifurcation. The symmetric vortex pairs exist
for ω > ω∗ and the two distinct solutions have either smaller-than-critical or larger-than-critical
distance from the centre of the trap. The asymmetric vortex pairs exist for ω > ω∗∗ and bifurcate
from the symmetric vortex pair with the smaller-than-critical distance from the centre of the trap.
The two vortices in the asymmetric vortex pair are located at unequal distances from the trap
centre. We showed that the symmetric vortex pair with the smaller-than-critical distance is a local
energy minimizer for ω > ω2 = ω∗∗, whereas the asymmetric vortex pair is a constrained energy
minimizer for ω > ω2 under the constraint eliminating rotational invariance. We also showed that
all other symmetric vortex pairs are unstable as they are saddle points of the energy under the
same constraint. The ODE theory is compared with the full numerical approximations of the PDE
model and a very good qualitative and reasonable quantitative correspondence is established
between the two.
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Appendix A. Derivation of the asymptotic expansion (2.5)
The kinetic energy K(x0, y0) of a single vortex given by the asymptotic expansion (2.1) is
determined in [16] from the expression

K = iε
4π

∫
R2

η2
ε (vv̄t − v̄vt) dx,

where ηε is the positive real radially symmetric ground state and v is represented by the free
vortex solution of the defocusing nonlinear Schrödinger equation placed at the point (x0, y0). After
substitution and separation of variables, the following expansion was obtained in the proof of
Lemma 1 in [16]:

K = −ẋ0Kx − ẏ0Ky,

where

Kx = − ε2

2π

∫
R2

η2
ε (|x|) Y

R2 dX dY + O(ε2|y0|)

and

Ky = ε2

2π

∫
R2

η2
ε (|x|) X

R2 dX dY + O(ε2|x0|),

with x = x0 + εX, y = y0 + εY and R = (X2 + Y2)1/2.
Here, we will extend the asymptotic expansion (2.1) in order to include the higher-order

behaviour of K(x0, y0) in (x0, y0) at the leading order in ε. By the symmetry of integrals, it is
sufficient to analyse the leading order in the expression for Kx as a function of y0 for x0 = 0.
Therefore, we define the leading-order part of Kx at x0 = 0:

J(y0) := − ε2

2π

∫
R2

η2
ε (r)

∣∣∣∣∣
r=

√
ε2X2+(y0+εY)2

Y
R2 dX dY.

As J is smooth and J(−y0) = −J(y0), we have J(0) = J′′(0) = J(4)(0) = 0. The first odd derivatives of J
can be computed with the chain rule:

J′(0) = − ε2

2π

∫
R2

∂rη
2
ε (r)|r=εR

Y2

R3 dX dY

= − ε2

2π

[∫∞

0
∂rη

2
ε (r)|r=εR dR

][∫ 2π

0
sin2 θ dθ

]

= − ε

2

∫∞

0
∂rη

2
ε (r) dr

= ε

2
ηε(0)2

and

J′′′(0) = − ε2

2π

∫
R2

[
∂3

r η2
ε (r)|r=εR

Y4

R5 + 3∂2
r η2

ε (r)|r=εR
X2Y2

εR6 − 3∂rη
2
ε (r)|r=εR

X2Y2

ε2R7

]
dX dY

= −3ε

8

∫∞

0

[
∂3

r η2
ε (r) + 1

r
∂2

r η2
ε (r) − 1

r2 ∂rη
2
ε (r)

]
dr

= 3ε

8
lim
r→0

[
∂2

r ηε(r)2 + 1
r
∂rη

2
ε (r)

]
.
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Let us recall the approximation of the ground state ηε in the Thomas–Fermi limit

η0(x) := lim
ε→0

ηε(x) =
{

(1 − |x|2)1/2, |x| ≤ 1,

0, |x| > 1,

which has been justified in [7,8]. By Proposition 2.1 in [8], for any compact subset K inside the
unit disc, there is CK > 0 such that

‖ηε − η0‖C2(K) ≤ CKε2.

By using this bound, we compute J′(0) and J′′′(0) as ε → 0:

J′(0) = ε

2
[1 + O(ε2)] and J′′′(0) = −3ε

2
[1 + O(ε2)],

from which we conclude that

J(y0) = 1
2 εy0

[
1 − 1

2 y2
0 + O(ε2 + y4

0)
]

.

By the symmetry of Kx and similar computations for Ky, we obtain the expansion (2.5).
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