
Bifurcations and stability of gap solitons in periodic potentials

Dmitry E. Pelinovsky,1 Andrey A. Sukhorukov,2 and Yuri S. Kivshar2
1Department of Mathematics, McMaster University, Hamilton, Ontario, Canada L8S 4K1

2Nonlinear Physics Group and Centre for Ultra-high Bandwidth Devices for Optical Systems (CUDOS), Research School of Physical
Sciences and Engineering, Australian National University, Canberra, ACT 0200, Australiap

(Received 10 May 2004; published 30 September 2004)

We analyze the existence, stability, and internal modes ofgap solitonsin nonlinear periodic systems de-
scribed by the nonlinear Schrödinger equation with a sinusoidal potential, such as photonic crystals, waveguide
arrays, optically-induced photonic lattices, and Bose-Einstein condensates loaded onto an optical lattice. We
study bifurcations of gap solitons from the band edges of the Floquet-Bloch spectrum, and show that gap
solitons can appear nearall lower or upper band edges of the spectrum, for focusing or defocusing nonlinearity,
respectively. We show that, in general,two types of gap solitonscan bifurcate from each band edge, and one
of those two is alwaysunstable. A gap soliton corresponding to a given band edge is shown to possess a
number ofinternal modesthat bifurcate from all band edges of the same polarity. We demonstrate that stability
of gap solitons is determined by location of the internal modes with respect to the spectral bands of the inverted
spectrum and, when they overlap, complex eigenvalues give rise tooscillatory instabilitiesof gap solitons.
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I. INTRODUCTION

Periodic structures are very common in physical prob-
lems, with the crystalline lattice being the most familiar clas-
sical example. One of the important features of such systems
is the existence ofmultiple frequency gapsin the wave trans-
mission spectra. Such spectral gaps are responsible for a
strong modification of the wave dispersion and diffraction
that occurs when waves experience resonant Bragg scattering
from a periodic structure[1].

When nonlinear self-action becomes important, the sys-
tems with periodically modulated parameters demonstrate a
number of new effects; in particular they can support a novel
type of solitons, the so-calledgap solitons, which exist in the
gaps of the linear wave spectrum due to a strong Bragg scat-
tering and coupling between the forward and backward
propagating modes[2]. During the last years, it was shown
that gap solitons may exist in different types of nonlinear
periodic structures including low-dimensional photonic crys-
tals and photonic layered structures[3,4], waveguide arrays
[5], optically induced photonic lattices[6,7], and Bose-
Einstein condensates loaded onto an optical lattice[8,9].

There are knowntwo simplified approachesto study non-
linear localized modes and gap solitons in periodic structures
[10]. The first approach is based on the derivation of an
effective discrete nonlinear Schrödinger equationand the
analysis of its stationary localized solutions in the form of
discrete localized modesor discrete solitons[11]. In the
solid-state physics, the similar approach is known asthe
tight-binding approximation that, in application to periodic
photonic structures, corresponds to the case of weakly
coupled defect modes excited in each individual waveguide
of the structure. The analogous concepts appear in the study
of other systems such as the Bose-Einstein condensates in
optical lattices[12].

On the other hand, weak nonlinear effects in optical fibers
with a periodic modulation of the refractive index are well
studied in the framework of the other familiar and well-
accepted approach, thecoupled-mode theory[2]. The
coupled-mode theory for nonlinear periodic structures is
based on a decomposition of the wave field into the forward
and backward propagating modes, under the condition of the
Bragg resonance, and the derivation of a system of linearly
coupled nonlinear equations for those two modes. Such an
approach is usually applied to analyze nonlinear localized
waves in the systems with aweakly modulatedoptical refrac-
tive index known as gap(or Bragg) solitons.

A number of recent experiments in the nonlinear guided
wave optics[5–7] and Bose-Einstein condensates[9] were
conducted in the periodic structures under the conditions
when those approximations may be invalid. Indeed, one of
the main features of the wave propagation in periodic struc-
tures is the existence of a set of multiple forbidden gaps in
the transmission spectrum. As a result, the nonlinearly in-
duced localization of waves can become possible in each of
these gaps. However, the effective discrete equation derived
in the tight-binding approximation describes onlyone trans-
mission bandsurrounded bytwo semi-infinite band gapsand,
therefore, a fine structure of the band-gap spectrum associ-
ated with the wave transmission in periodic media is lost in
this approach. On the other hand, the coupled-mode theory
of gap solitons describes onlyan isolated narrow gapin
betweentwo semi-infinite transmission bands, and it does not
allow one to consider simultaneously the localized modes
due to the total internal reflection as well as to study the band
coupling and interband resonances. Recently, it was realized
that the study of the simultaneous existence of localized
modes of different types is a very important issue in the
analysis of stability of nonlinear localized modes and gap
solitons[13].

The main purpose of this paper is to analyze the exis-
tence, bifurcations, and stability of spatially localized nonlin-
ear modes(i.e., lattice and gap solitons) in the framework of*URL: www.rsphysse.anu.edu.au/nonlinear

PHYSICAL REVIEW E 70, 036618(2004)

1539-3755/2004/70(3)/036618(17)/$22.50 ©2004 The American Physical Society70 036618-1



an effective continuous model described by the nonlinear
Schrödinger equation with a periodic external potential. The
use of this well-accepted nonlinear model for our analysis
allows us to remove all restrictions of both approaches men-
tioned above, and to study consistently the effects of the
band-gap spectrum on the properties and linear stability of
gap solitons.

First, by applying the multiscale asymptotic analytical
methods, we show that such gap solitons may appear inall
band gapsof the periodic potential for any sign of nonlin-
earity, but they bifurcate from different band edges for dif-
ferent signs of nonlinearity. Second, we demonstrate that, in
general, onlytwo branches of gap solitonsbifurcate from
each band edge, and one of those two is always linearly
unstable. Third, we study stability of gap solitons in a se-
lected band gap and find the soliton internal modes bifurcat-
ing from all other band edges of the same polarity[14,15].
However, only one internal mode can bifurcate from the
band edge where the gap soliton originates itself. At last, we
analyze the conditions when the bifurcation of the internal
modes can give rise to complex eigenvalues, which are
shown to be responsible foroscillatory instabilitiesof gap
solitons[16].

The paper is organized as follows. Section II presents our
physical model which is described by an effective nonlinear
Schrödinger equation with an external periodic potential of
the simplest sinusoidal form. Section III summarizes the
studies of the spectral properties of the linear eigenvalue
problem with a periodic potential. In Sec. IV we study bifur-
cations of gap solitons by means of the weakly nonlinear
approximation. Section V presents the analysis of the expo-
nentially small corrections beyond the weakly nonlinear ap-
proximation. Section VI discusses the stability problem of
gap solitons. Symmetry-breaking instabilities are studied in
Sec. VII. Internal and oscillatory instability modes of gap
solitons associated with nonzero eigenvalues are studied in
Sec. VIII. Finally, Sec. IX summarizes our results and dis-
cusses further perspectives. Appendix A gives details of the
numerical method for calculations of eigenvalues. Appen-
dixes B and C present details of derivations, which are used
in Secs. VII and VIII, respectively.

II. MODEL

We consider the cubic nonlinear Schrödinger(NLS) equa-
tion with an external periodic potential in the form,

iCt = − Cxx + VsxdC + suCu2C, s1d

where Vsx+dd=Vsxd, d is the fundamental period, ands
= ±1 defines the type of the wave self-action effect, namely
self-focusingss=−1d or self-defocusingss= +1d. The ana-
lytical results presented below are rather general, and they
are valid for different types of smooth arbitrary-shaped peri-
odic potentials. However, in the numerical examples dis-
cussed below we consider the squared sine potential,

Vsxd = V0 sin2Spx

d
D . s2d

The harmonic potential(2) describes, in the mean-field ap-
proximation, the dynamics of the Bose-Einstein condensate
in an optical lattice, when the parabolic trap is neglected
[8,9]. The squared sine potentialVsxd has two extremum
points on the period ofx, such thatx=0 is the minimum and
x=d/2 is the maximum ofVsxd.

Stationary localized solutions of the cubic NLS equation
(1) for gap solitons are found in the formCsx,td=csxdexp
s−imtd, wherem is referred to as thesoliton parameter. The
soliton profilecsxd is found as a spatially localized solution
of the nonlinear problem:

− c9 + Vsxdc + sucu2c = mc, s3d

where the prime stands for a derivative inx. Existence and
multiplicity of multihumped localized statescsxd in the spec-
tral gaps of the periodic potentialVsxd were considered by
means of the variational methods by Alama and Li[17,18].
Bifurcations of bound states were analyzed by Kupper and
Stuart [19,20] and Heinz and Stuart[21] who proved that,
depending on the sign of the nonlinear term, lower or upper
endpoints of the continuous spectrum are bifurcation points.
Extension to the multidimensional case was developed with
Bloch waves of the linear Schrödinger operator[22]. The
number of branches of bound states was classified in terms of
the eigenvalues of the linear Schrödinger operator with peri-
odic and decaying potentials[23]. Eigenvalues of the latter
(linear) problem were previously considered by Gesztesyet
al. [24] and Alamaet al. [25]. In application to the problem
of the Bose-Einstein condensates in optical lattices, the sta-
tionary model(3) has been considered recently by Louiset
al. [8] who found numerically different types of spatially
localized solutions in different band gaps.

All previous results were restricted to the study of the
existence of spatially localized solutions. Here, we use more
general methods(but, in some sense, less rigorous from the
mathematical point of view) and study bifurcations, stability,
and internal modes of gap solitons. To achieve these objec-
tives, we apply the multiscale perturbation series expansion
methods, developed earlier by Iizuka[26] and Iizuka and
Wadati [27]. With the perturbation series methods, we clas-
sify systematically the branches of gap solitons bifurcating
from the band edges to the band gaps, as well as their sta-
bility.

III. SPECTRAL BANDS AND GAPS

Periodic potentialVsxd induces a band-gap structure in the
linear Schrödinger spectral problem:

− c9 + Vsxdc = mc. s4d

The spectral bands are located formPSband, where we enu-
merate the band edges in the following order:

Sband= fm0,m1g ø fm3,m2g ø fm4,m5g ø fm7,m6g ¯ . s5d

The spectral bands are computed for the squared sine poten-
tial (2) and the results are shown in Fig. 1. A review of
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spectral theory for periodic potentials can be found in the
book by Eastham[28]. Here we recover some details which
are important for our analysis.

When the spectral parameterm is taken inside the spectral
bands, i.e.,mPSband, the problem(4) has two linearly inde-
pendent solutions in the form of Bloch waves,

c1 = f1sxdeiksmdx, c2 = f2sxde−iksmdx, s6d

wheref1,2sxd are periodic functions andksmd is the Floquet
exponent, which can be chosen inside the first Brillouin zone
such that 0øksmdøp /d. The graph ofksmd is shown in Fig.
1(b) for the first three spectral bands.

The spectral bands of the periodic potentialVsxd are de-
scribed by the functionDsmd, which is the trace of the fun-
damental matrix of solutions[28]

Dsmd = 2 cosksmdd. s7d

The spectral bands are defined for −2øDsmdø2, which cor-
responds to propagating waves with realk. On the other
hand, the waves become exponentially localized inside the
gaps, whereuDsmdu.2 and ImskdÞ0. A characteristic depen-
denceDsmd is displayed in Fig. 1(a).

There are infinitely many spectral bands for a one-
dimensional periodic potentialVsxd, where uDsmduø2 [28].
If D8smndÞ0 at the band edgem=mn, two adjacent spectral
bands do not overlap, such that the corresponding band gap
has a nonzero width. We consider the nondegenerate spectral
band, such thatD8smndÞ0 at the end pointm=mn.

The even-numbered band edgesm=m2m, mù0 corre-
spond to periodic Bloch functionsc2msx+dd=c2msxd, while
the odd-numbered band edgesm=m2m−1, mù1 correspond to
antiperiodic Bloch functionsc2m−1sx+dd=−c2m−1sxd. The
Bloch functions cnsxd for the first five band edgesm
=m0,m1,m3,m2,m4 are shown in Fig. 1(c).

We now demonstrate that the bifurcations of bound states
and stationary gap solitons may occur when the two funda-
mental solutionsc1,2sxd in Eq. (6) become linearly depen-
dent. Sincef1sxde2iksmdx solves the same equation asf2sxd
but it is not a periodic function ofx, unless ksmd

=0 fmods2p /ddg or ksmd=p /dfmods2p /ddg, the two solu-
tions c1,2sxd are always linearly independent in the interior
of the spectral bandsmPSband. On the other hand, the two
solutions c1,2sxd become linearly dependent at the band
edgesm=mn, since

c2msxd = f1sxd = f2sxd s8d

and ksm2md=0 fmods2p /ddg at the even-numbered band
edges, and

c2m−1sxd = f1sxdepix/d = f2sxde−pix/d s9d

and ksm2m−1d=p /dfmods2p /ddg at the odd-numbered band
edges. The band edgem=mn has geometric multiplicity one
with the only linearly independent Bloch functioncnsxd. The
second, linearly independent solution of Eq.(4) at m=mn
grows linearly inx. The band edgem=mn has, however, al-
gebraic multiplicity two, since there exists a generalized
Bloch functioncn

s1dsxd that solves the derivative problem:

− scn
s1dd9 + Vsxdcn

s1d − mncn
s1d = 2cn8sxd. s10d

It follows from Eq.(10) that the generalized Bloch functions
c2m

s1dsxd and c2m−1
s1d sxd are periodic and antiperiodic inx, re-

spectively. We conclude that the band edgesm=mn are the
only bifurcation points of the linear spectrummPSband, as-
sociated with the periodic potentialVsxd.

The band curvature near the band edgem=mn follows
from the expansion ofDsmd defined in Eq.(7):

Dsmnd + D8smndsm − mnd + Osm − mnd2

= s− 1dnf2 − d2sk − knd2 + Osk − knd4g, s11d

where k2m=0 andk2m−1= p/d. As a result,Dsmnd=2s−1dn

and

m = mn − mn
s2dsk − knd2 + Osk − knd4, s12d

such that

mn
s2d =

d2s− 1dn

D8smnd
.

FIG. 1. The structure of spec-
tral bands of the linear periodic
problem (4): (a) Trace of funda-
mental matrixD vs m; (b) Floquet
exponentk vs m; and (c) Solid:
Bloch waves at the band edges, as
indicated by arrows; Dashed: po-
tential Vsxd. Parameters areV0=1
andd=10.
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The band curvaturesmn
s2d can be expressed in terms of

Bloch functionscnsxd and cn
s1dsxd at m=mn. We use pertur-

bation series expansions for fundamental solutionsf1,2sxd
near the band edgesm=mn:

f1,2sxde±iknx = cnsxd ± isk − kndcn
s1dsxd − sk − knd2cn

s2dsxd

+ Osk − knd3. s13d

The eigenvaluem is expanded in the perturbation series(12).
The second-order correctioncn

s2dsxd satisfies the nonhomoge-
neous linear equation:

− scn
s2dd9 + Vsxdcn

s2d − mncn
s2d = 2scn

s1dd8 + s1 + mn
s2ddcn.

s14d

If f1,2sxd are periodic functions ofx, the second-order cor-
rection cn

s2dsxd in the perturbation series(13) is periodic for
n=2m and antiperiodic forn=2m−1. By Fredholm Alterna-
tive, this condition is satisfied if the right-hand-side of Eq.
(14) satisfies the constraint:

s1 + mn
s2ddE

0

d

cn
2dx+ 2E

0

d

cnscn
s1dd8dx= 0. s15d

Therefore the band curvaturemn
s2d is expressed in terms of

integrals ofcnsxd andcn
s1dsxd. The perturbation series expan-

sions(12) and (13) can be continued algorithmically to the
higher orders in powers ofsk−knd.

IV. BIFURCATIONS OF GAP SOLITONS

Nonlinear bound states(gap solitons) of the NLS equation
(1) are stationary solutions in the form:

Csx,td = Fssxde−imst, s16d

where the real functionFssxd decays to zero asuxu→` and
satisfies the nonlinear problem,

− Fs9 + VsxdFs + sFs
3 = msFs. s17d

WhenFssxd is small, the nonlinear potentialsFs
2sxd acts as a

perturbation term to the periodic potentialVsxd. The pertur-
bation term leads to bifurcation of gap solitonsFssxd from
the band edgesm=mn of the linear band-gap spectrum. We
study bifurcations of gap solitons with the multiscale pertur-
bation series expansions:

ms = mn + e2Dn + Ose4d s18d

and

Fssxd = eFesx;Xd, X = esx − x0d, e ! 1, s19d

where

Fesx;Xd = AnsXdcnsxd + eAn8sXdcn
s1dsxd + e2fs

s2dsx;Xd + Ose3d.

s20d

HereAnsXd is a space-decaying bound state andcnsxd is the
periodic or antiperiodic Bloch function. Parameterx0 deter-
mines a location ofAnsXd with respect tocnsxd. The Bloch

functionscnsxd andcn
s1dsxd are defined from the linear prob-

lems (4) and (10).
The second-order correction termfs

s2dsx;Xd satisfies the
linear non-homogeneous equation:

− sfs
s2dd9 + Vsxdfs

s2d − mnfs
s2d = An8fcn + 2scn

s1dd8g − sAn
3cn

3

+ DnAncn. s21d

The secular growth offs
s2dsx;Xd in x is removed if the right-

hand-side of(21) satisfies the Fredholm condition, which
reduces to the nonlinear equation forAn=AnsXd:

mn
s2dAn9 + xn

s2dAn
3 − DnAn = 0, s22d

where

xn
s2d = s

E
0

d

cn
4dx

E
0

d

cn
2dx

. s23d

Using the constraint(22), we represent the second-order cor-
rection termfs

s2dsx;Xd in the form:

fs
s2dsx;Xd = An9sXdcn

s2dsxd + An
3sXdcn

snl2dsxd, s24d

where cn
s2dsxd solves the nonhomogeneous problem(14),

while cn
snl2dsxd solves the problem,

− scn
snl2dd9 + Vsxdcn

snl2d − mncn
snl2d = xn

s2dcn − scn
3. s25d

The nonlinear equation(22) is just the stationary NLS
equation, which has sech-solitons if sgnsmn

s2dd=sgnsxn
s2dd

=sgnsDnd. For the focusing nonlinearity,s=−1, the sech-
solitons bifurcate from all band edges, wheremn

s2d,0, such
that Dn,0. It follows from Eq. (12) that branches of gap
solitons detach from all lower band edges downwards from
the corresponding band gaps. For the defocusing nonlinear-
ity, s= +1, the sech-solitons bifurcate from all band edges,
wheremn

s2d.0, such thatDn.0. Therefore branches of gap
solitons detach from all upper band edges upwards from the
corresponding band gaps. Branches of gap solitons are
shown in Fig. 2 fors=−1 near the band edgesm=m0, m
=m3, andm=m4 and in Fig. 3 fors= +1 near the band edges
m=m1 and m=m2. The families of gap solitons have been
found by solving the nonlinear eigenvalue problem(17) with
a standard relaxation technique[29].

The sech-solitons of the nonlinear equation(22) are writ-
ten explicitly in the form:

AnsXd = an sechsknXd, s26d

wherean andkn are found from equations,

Dn − kn
2mn

s2d = 0, xn
s2dan

2 − 2kn
2mn

s2d = 0, s27d

provided that sgnsmn
s2dd=sgnsxn

s2dd=sgnsDnd. The sech-type
soliton envelopes(26) always have a single-humped profile.
SinceAnsXd is the envelope ofcnsxd, the resulting nonlinear
bound stateFssxd has the oscillatory structure near the band
edgems=mn.
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V. BRANCHES OF GAP SOLITONS DUE TO SYMMETRY
BREAKING

The absence of translational invariance along thex direc-
tion, associated with the presence of the periodic potential,
has an important effect on the soliton properties. For ex-
ample, it was found that discrete solitons, bifurcating from
the first band, can be centered at(on-site) or in-between(off-
site) potential wells. In this section, we demonstrate that two
branches of gap solitons, bifurcating from all the bands, are
centered at different positions in the periodic potential.

The gap solitonFssxd near the band edgems=mn is rep-
resented by the perturbation series expansions(18)–(20),
provided that the formal series converges. Parameterx0 in

the “slow” coordinateX=esx−x0d determines the location of
the bound stateAnsXd with respect to the Bloch function
cnsxd. We will show that only two values ofx0 on the period
of x secure convergence of the formal series, in the general
case. Our analysis is equivalent to the construction of the
Melnikov function, which gives the distance between sepa-
ratrices in the nonlinear oscillator with a small, rapidly vary-
ing force [30,31]. Zeros of the Melnikov function indicate
values ofx0, where the separatrices intersect, so that a ho-
moclinic orbit for the gap soliton exists in the nonlinear
problem(17) with the periodic potentialVsxd.

We will derive the Melnikov function[30,31] with a
simple but equivalent method. Derivative of the nonlinear

FIG. 2. Bifurcations for the
on-site and off-site gap solitons in
a self-focusing medium(s=−1).
Top: the soliton power Psmd
=e−`

` Fs
2sx;mddx vs m. Solid:

solitons centered atx0=0, dashed:
centered atx0=d/2. (a–f): spatial
profiles of gap solitons corre-
sponding to marked points in the
upper plot; shading marks the
minima of the potentialVsxd.

FIG. 3. Bifurcations for the
on-site and off-site gap solitons in
a self-defocusing mediumss
= +1d. Notations are the same as
in Fig. 2.
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equation(17) in x results in the following third-order ordi-
nary differential equation:

− Fs- + VsxdFs8 − msFs8 + 3sFs
2Fs8 + V8sxdFs = 0. s28d

If the gap solitonFssxd exists, then it satisfies zero boundary
conditions asuxu →`. Multiplication of Eq. (28) by Fssxd
and integration overx result in the following constraint:

Mssx0d =E
−`

`

V8sxdFs
2sxddx= 0. s29d

The functionMssx0d is the Melnikov function for the exis-
tence of homoclinic orbits[30,31]. The constraint(29) is
always satisfied if the gap solitonFssxd and the potential
Vsxd are symmetric with respect to the location of the central
peak atx=x0, such thatFs

2sx−x0d=Fs
2sx0−xd andV8sx−x0d

=−V8sx0−xd. More precise information on the constraint(29)
can be obtained near the band edgems=mn, where the per-
turbation series expansions(18)–(20) are valid. The function
Fesx;Xd has the power series expansion ine, each term of
which satisfies the squared-periodic boundary conditions in
x,

Fe
2sx + d;Xd = Fe

2sx;Xd, s30d

and the decaying boundary conditions inX,

lim
uXu→`

Fesx;Xd = 0. s31d

We shall prove thatMssx0d is exponentially small in terms of
e. To do so, we rewrite Eq.(28) for Fesx;Xd, multiply it by
Fesx;Xd, and integrate the resulting equation overxP f0,dg.
Using the periodic boundary condition(30), we derive the
relation,

E
0

d

V8sxdFe
2sx;Xddx= − 2e

]

] X
E

0

d

sFe,xd2dx

− 2e2 ]

] X
E

0

d

Fe,xFe,Xdx. s32d

Using the decaying boundary condition(31), we prove that

E
−`

`

dXE
0

d

V8sxdFe
2sx;Xddx= 0. s33d

As a result, the functionV8sxdFe
2sx;Xd is expanded in Fou-

rier series inx as

V8sxdFe
2sx;Xd = o

m=−`

`

Wn,msX;edes2pimxd/d, s34d

such thatWn,−msX;ed=Wn,msX;ed and

E
−`

`

Wn,0sX;eddX= 0 s35d

at any order ofe. The Fourier transform ofFsXd is defined by
the standard integral:

F̂skd =E
−`

`

FsXdeikXdX. s36d

The Melnikov functionMssx0d is then expanded with the use
of the Fourier series(34) and the Fourier transform(36) in
the form:

Mssx0d = e o
m=−`

`

Ŵn,mS2pm

ed
;eDe2pimx0/d. s37d

At the leading order, we haveWn,msX;0d=An
2sXdwn,m

s0d , where
wn,m

s0d are coefficients in the Fourier series,

V8sxdcn
2sxd = o

m=−`

`

wn,m
s0d e2pimx/d. s38d

The zero-order term(m=0) in the series(37) is zero at any
order ofe, since the constraint(35) results in the condition:

Ŵn,0s0;ed=0. The higher-order terms with larger values of
umu are exponentially smaller compared to the terms with

smaller values ofumu in the limit e→0, sinceÂn
2skd is expo-

nentially decaying ink. Therefore, using exponential asymp-
totics, we truncate the series(37) by the first-order terms
(m= ±1) in the limit e→0:

Mssx0d = eL1cosS2px0

d
+ argswn,1

s0ddD + E1, s39d

where

L1 = 2uwn,1
s0d uÂn

2S2p

ed
D

and

E1 = OXe2Ân
2S2p

ed
DC + OXeÂn

2S4p

ed
DC .

Assuming thatL1Þ0, we conclude from Eq.(39) that there
are precisely two families of gap solitons bifurcating from
two roots of the function coss2px0/dd on the period ofx0.

We now prove that, for the squared sine potential(2), the
values of argswn,1

s0dd are the same for all band edges as
argswn,1

s0dd=−p /2. It is clear from Eq.(2) that Vs−xd=Vsxd
and V8sxdù0 for 0ø uxu ød/2, while all Bloch wave
squared amplitudes are symmetric, such thatcn

2s−xd=cn
2sxd.

As a result, it follows from Eq.(38) that argswn,1
s0dd=−p /2

and the two roots ofx0 occur at extremal points ofVsxd: x0

=0 andx0=d/2. The former(minimum) point corresponds to
the on-site gap soliton, while the latter(maximum) point
corresponds to the off-site gap soliton, in accordance with
Figs. 2 and 3.

When L1=0 andŴn,1s2p /ed;edÞ0, higher powers ofe
are generally nonzero in the first-order termssm= ±1d, such
that only two branches of gap solitonsFssxd bifurcate in a
general case. If the potentialVsxd is special such that

Ŵn,1s2p /ed;ed=0 at any order ofe but Ŵn,2s4p /ed;edÞ0,
the leading-order terms in the series(37) become second-
order(m= ±2), such that four branches of gap solitonsFssxd
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may bifurcate from four roots of the function coss4px0/dd on
the period ofx0. We do not know whether any special poten-

tials Vsxd may exist to hold the constraintŴn,1s2p /ed;ed
=0 at any order ofe.

VI. LINEAR STABILITY OF GAP SOLITONS

Stability of solitons with respect to perturbations is an
important problem for applications. Stable states act as at-
tractors, and their excitation is weakly sensitive to noise or
perturbations. On the other hand, unstable states tend to un-
dergo dynamical transformations due to a rapid growth of
initial perturbations, and this behavior may be useful, for
example, for switching applications[32].

We study the stability of gap solitonsFssxd by consider-
ing the evolution of perturbed solution in the following form:

csx,td = e−imstfFssxd + fusxd + iwsxdgelt + fusxd + iwsxdgel̄tg.

s40d

We substitute Eq.(40) into the NLS equation(1) and per-
form its linearization with respect to the functionssu,wd de-
scribing small-amplitude perturbations. Then, we obtain
coupled linear eigenmode equations wheresu,wd is an eigen-
vector andl is an eigenvalue,

L1u = − lw, L0w = lu. s41d

HereL0 andL1 are Schrödinger operators with periodic and
decaying potentials,

L0 = −
d2

dx2 + Vsxd − ms + sFs
2sxd, s42d

L1 = −
d2

dx2 + Vsxd − ms + 3sFs
2sxd. s43d

We are interested in eigenvaluesl, which correspond to
the spatially localized eigenvectorssu,wd in L2sR ,C2d. If
there exists an eigenvaluel with Resld.0, the gap soliton
Fssxd is spectrally unstable. On the contrary, if all eigenval-
ues have Resld=0, the gap soliton is neutrally stable. Neutral
stability can result in spectral instability due to resonances,
embedded eigenvalues, and bifurcations of isolated eigenval-
ues with Resld=0. We have used an approach based on the
Evans function for numerical calculation of the eigenvalues,
the details are presented in Appendix A.

The stability problem(41) is written in terms of two
Schrödinger operatorsL0 andL1 with periodicVsxd and de-
caying sFs

2sxd potentials. At the band edgem=mn, where
Fssxd;0, the two Schrödinger operators coincide with the
operatorLs:

Ls = −
d2

dx2 + Vsxd − ms. s44d

For w= iu andl= iV, the spectral bands of the stability prob-
lem (41) occur at V+msPSband, i.e., at VP fm0−ms,m1

−msgø fm3−ms,m2−msgø . . .. For the gap soliton bifurcating
from the upper band edgems=mn, the parameterms satisfies

the inequality:mn,ms,mn+2, while for the gap soliton bi-
furcating from the lower band edgems=mn, the parameterms
satisfies the inequality:mn−2,ms,mn.

We demonstrate below that an important value which de-
fines many stability properties is the energy of the spectral
band, which is defined by

h = ku,L1uld + kw,L0wld, s45d

where the inner productk· , ·ld is defined for periodic Bloch
functions on the periodxP f0,dg:

kf,gld =E
0

d

fsxdgsxddx. s46d

It is clear thathm=2smm−mndkcm,cmld at e=0, wherehm

refers to themth band edge in the spectrum ofLs for ms
=mn. All spectral bands ofLs, which are lower with respect
to ms=mn, become bands of negative energy for the gap soli-
ton Fssxd, while all spectral bands ofLs, which are upper
with respect toms=mn, become bands of positive energy for
the gap solitonFssxd.

The spectruml of the stability problem(41) is double
because of the inversion symmetry:w=−iu andl=−iV. As a
result, the bands of positive and negative energies of the
operatorsLs ands−Lsd may overlap in the coupled spectrum
(41) for the same values ofl.

The spectruml of the problem(41) transforms whene
Þ0. A simple and stable transformation is a shift of spectral
bands ofLs and s−Lsd along the imaginary axis ofl to the
distanceums−mnu. As a result, the originl=0 becomes iso-
lated from the spectral bands ofLs and s−Lsd for any eÞ0.

Other transformations of the spectruml are possible and
may result in instabilities of gap solitons. These transforma-
tions are considered in Secs. VII and VIII.

VII. SYMMETRY-BREAKING INSTABILITY OF GAP
SOLITONS

In Sec. V, we have identified two families of on-site and
off-site gap solitons, which have different positions with re-
spect to the underlying potential. In this section, we demon-
strate that one of these soliton families is unstable with re-
spect to symmetry breaking. They tend to move across the
potential and eventually transform into their stable counter-
parts which have a different position. These results general-
ize the previously found instability of off-site discrete soli-
tons associated with the first band[32].

More specifically, we show that the symmetry-breaking
instability of gap solitons is defined by the sign ofMS8sx0d. If
Ms8sx0d.0, then a pair of purely imaginary eigenvaluesl in
the stability problem(41) bifurcates froml=0, and these
internal modes describe oscillations of the perturbed soliton
around the stable positionx=x0. On the other hand, if
Ms8sx0d,0, then a pair of real eigenvaluesl bifurcates in the
problem (41) and these exponentially growing instability
modes characterize soliton motion away from the unstable
location x=x0. We note that these results are valid in the
vicinity of gap edges, where the eigenvaluesl are exponen-
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tially small in terms of the perturbation parametere.
Due to the symmetry of the NLS equation(1), we have a

nonempty kernel of the operatorL0 for all e along the family
of the gap solitonFssxd:

L0Fesx;Xd = 0. s47d

On the other hand, the gap solitonFssxd in the asymptotic
representation(19) is parameterized byx0 in the formal
power series(20) in e. As a result, the kernel of the operator
L1 is nonempty at all power orders ofen:

L1Ue = 0send, Ue =
] Fesx;Xd

] X
. s48d

The zero eigenvalue ofL1 is destroyed beyond the powers of
e, since the gap solitonFssxd is not parameterized byx0,
values of which are fixed by roots of the Melnikov function
(29). We show in Appendix B that the zero eigenvalue ofL1,
associated with the eigenfunctionUesxd, shifts according to
the quadratic form:

sUe,L1Ued =
1

2e4MS8sx0d, s49d

where the quadratic form is defined for decaying functions
on the whole line ofx:

sf,gd =E
−`

+`

fsxdgsxddx. s50d

According to the standard perturbation theory[33], the
quadratic form in Eq.(49) determines the shift of the zero
eigenvalue ofL1, associated with the eigenfunctionUesxd.
When MS8sx0d.0, the zero eigenvalue ofL1 becomes posi-
tive, while whenMS8sx0d,0, the zero eigenvalue ofL1 be-
comes negative. We show that a small negative eigenvalue of
L1 results in a small real positive eigenvaluel of the stabil-
ity problem(41), while a small positive eigenvalueL1 results
in a pair of small imaginary eigenvaluesl.

A small eigenvaluel=le, corresponding to the eigenfunc-
tion uesxd, can be found from the problem:

L1ue = − le
2L0

−1ue, s51d

or equivalently, from the Rayleigh quotient:

le
2 = −

sue,L1ued

sue,L0
−1ued

. s52d

The quadratic formsue ,L0
−1ued exists if sFe ,ued=0, as fol-

lows from Eq. (47). Since sFe ,Ued=Osend and L1Ue

=Osend at all power orders ofen, we conclude that

uesxd = Uesxd + Ee, s53d

whereEe is exponentially small in terms ofe. We shall prove
that

sue,L0
−1ued =

1

4e2sFe,Fed + OS1

e
D , s54d

such thatsue ,L0
−1ued.0 at the leading order. It follows from

the nonlinear problem(17) that

L0XFesx;Xd = − 2e
] Fesx;Xd

] x
− 2e2] Fesx;Xd

] X
. s55d

As a result, we have

−
1

2e2S ] Fe

] X
,XFeD=S ] Fe

] X
,L0

−1] Fe

] X
D +

1

e
S ] Fe

] X
,L0

−1] Fe

] x
D .

s56d

The solution of the inhomogeneous problem,

L0Ve =
] Fe

] x
, s57d

exists at all power orders ofen, since the right-hand side of
Eq. (57) is orthogonal toFe at all power orders ofen. There-
fore the quadratic formsUe ,Ved has a regular power series in
e, starting with the zero-order term. Since

−
1

2e2S ] Fe

] X
,XFeD =

1

4e2sFe,Fed−
1

4e2E
−`

` ]

] X
sXFe

2ddx,

s58d

and the second term is exponentially small ine, Eq. (56)
reduces to Eq.(54) at the leading order, such that the Ray-
leigh quotient(52) is given in the leading order by

le
2 < −

2MS8sx0d
e2sFe,Fed

. s59d

It follows from Eq. (59) that a negative eigenvalue ofL1 for
MS8sx0d,0 results in a small positive eigenvaluele in the
stability problem(41).

The exponentially small correction of the functionMssx0d
is given by the expansion(39), where argswn,1

s0dd=−p /2 for
the square-sine potential(2). Therefore,MS8sx0d.0 for x0

=0 andMS8sx0d,0 for x0= d/2. In the former case, the gap
soliton Fssxd is located at the minimum point ofVsxd and it
has a pair of small imaginary eigenvaluesl. In the latter
case, the gap solitonFssxd is located at the maximum point
of Vsxd and it is unstable with a small real positive eigen-
valuel. Figure 4 shows unstable eigenvalues, splitting from
zero eigenvalues, for the branches of gap solitons withx0
=d/2. We note that stability of on-site and off-site solitons
can be interchanged in more complex potentials, such as bi-
nary superlattices[34]. Additionally, stability can change
deep inside the gap, where the asymptotic analysis is not
applicable[35].

Asymptotic results for NLS solitons in the lowest semi-
infinite band gap in the focusing casess=−1d were obtained
recently by Kapitula[36] in the limit Vsxd→0. Branches of
NLS solitons Fssxd=FNLSsxd=Î2ms sechfÎ2mssx−x0dg in
the small periodic potential functionVsxd are defined by ze-
ros of the functionMssx0d, given by Eq. (29) with Fs

=FNLSsxd. Stability of branches of NLS solitons is defined
by the derivativeMS8sx0d, such that the NLS solitons bifur-
cating from the minimum points ofVsxd are stable, while the
NLS solitons bifurcating from the maximum points ofVsxd
are unstable. We note that the opposite conclusion is drawn
in Ref. [36], due to an elementary sign error.
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VIII. INTERNAL MODES AND OSCILLATORY
INSTABILITIES OF GAP SOLITONS

Apart from symmetry-breaking instabilities analyzed in
the previous section, we demonstrate that gap solitons can
exhibit a different type, so-called oscillatory instabilities.
Such instabilities can occur due to a resonance between the
internal modes corresponding to the edges of the gap in
which soliton is localized, as was demonstrated within the
coupled-mode equations[16]. However, the coupled-mode
theory described only an isolated band gap, whereas it was
found that oscillatory instability can occur due to resonance
between different gaps[13,34]. Such resonances can result in
a resonant energy redistribution between the gaps and a for-
mation of breathing structures, as was recently demonstrated
experimentally[6]. In this section, we present a systematic
analysis of such instabilities and show that they appear when
a sideband associated with the intergap resonances falls out-
side a band gap.

Oscillatory modes and instabilities are characterized by
eigenvaluesl with a nonzero imaginary part of the stability
problem (41) for eÞ0. First, we show that new imaginary
eigenvaluesl with decaying eigenvectorssu,wd bifurcate
from the band edgesl= ismm−mnd of the same polarity as the
band edgems=mn. Bifurcations of internal modes occur gen-
erally at the order ofOse2d, if mmÞmn. These eigenvalues

are referred to as the internal modes of gap solitons[14,15],
and in our case such modes appear due to a resonance be-
tween the gap edgesm andn. Such resonances are possible
because a soliton induces an effective waveguide, which can
support localized modes in other gaps[37]. In Fig. 5, we
show three modes of operatorL0 supported in the semi-
infinite gap near the edgem=m0 by a gap soliton existing in
the gap near the edgem=m2 in the case of a self-focusing
nonlinearityss=−1d.

Second, we show that resonance between internal modes
of the operatorLs and the bands of the inverted spectrum of
s−Lsd occurs if the bifurcating internal mode ofLs becomes
embedded into the spectral band ofs−Lsd. When it happens,
embedded internal modes bifurcate generally to complex ei-
genvaluesl, leading to oscillatory instabilities of the gap
soliton Fssxd. Resonant bifurcations of complex eigenvalues
l occur generally at order ofOse4d.

Third, we show that the internal mode ofLs may occur
near the band edge of the inverted spectrum ofs−Lsd. In this
case, bifurcations of isolated, embedded, and complex eigen-
values are all possible at the order ofOse4d, depending on the
configuration of the spectral bands ofLs and s−Lsd.

Finally, we show that at most one internal mode can bi-
furcate from the band edge, which is closest to the zero ei-
genvalue. This bifurcation occurs generally at the order of
Ose4d.

FIG. 4. Eigenvalues corre-
sponding to symmetry-breaking
instabilities of gap solitons cen-
tered atx0=d/2 for s=−1 (shown
with dashed lines in Fig. 2).

FIG. 5. Linear guided modes of operatorL0

in the semi-infinite band gap for a gap soliton
shown in Fig. 2(d). Left: eigenvalues marked
with dots (second and third ones are indistin-
guishable within the picture scale). Right: corre-
sponding mode profiles.
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We emphasize that bifurcations of other eigenvalues may
not generally occur in higher orders ofe, since the band
edges of the spectrum ofL1 and L0 with FssxdÞ0 do not
support resonances in a generic case. Bifurcations of other
eigenvalues may occur far from the limite=0, when the
spectral bands of the linearized operator get additional reso-
nances at the band edges or in the interior points. Bifurca-
tions of the existing eigenvalues may also occur far from the
limit e=0 if the existing eigenvalues coalesce with each
other or with the spectral bands.

A. Nonresonant bifurcations of internal modes

Let n be the index of the band edgems=mn where the gap
soliton Fssxd bifurcates from. We consider a different band
edge of the stability problem(41) with l= ismm−mnd, such
that mÞn. We assume that themth band edge of the spec-
trum of Ls is located in a band gap of the inverted spectrum
of s−Lsd, such that 2mn−mm¹Sband. Using the same pertur-
bation series expansions(18)–(20), we expand solutions of
the stability problem(41) in the perturbation series:

u = BmsXdcmsxd + eBm8 sXdcm
s1dsxd+ e2um

s2dsx,Xd + Ose3d,

s60d

w = ifBmsXdcmsxd + eBm8 sXdcm
s1dsxd+ e2wm

s2dsx,Xd + Ose3dg,

s61d

and

l = ifmm − ms + e2Vm + Ose4dg, s62d

where the second-order correction termssum
s2d ,wm

s2dd solve the
nonhomogeneous system:

Lsum
s2d + sms − mmdwm

s2d = Bm9 fcm + 2scm
s1dd8g+ VmBmcm

− 3sAn
2Bmcn

2cm, s63d

Lswm
s2d + sms − mmdum

s2d = Bm9 fcm + 2scm
s1dd8g+ VmBmcm

− sAn
2Bmcn

2cm. s64d

Under the constraint thats2ms−mmd¹Sband, the second-
order correctionssum

s2d ,wm
s2dd are periodic or antiperiodic func-

tions ofx, when a single Fredholm condition is satisfied. The
Fredholm condition takes the form of the eigenvalue prob-
lem for Vm:

mm
s2dBm9 + 2xnm

s2dAn
2sXdBm − VmBm = 0, s65d

where

xnm
s2d = s

E
0

d

cn
2cm

2 dx

E
0

d

cm
2 dx

. s66d

We note that Eq.(65) describes the linear modes supported
by a soliton-induced waveguide in other gaps. The linear
problem (65) is a Schrödinger equation with the solvable

potential (26). There is at least one isolated eigenvalue if
sgnsmm

s2dd=sgnsxnm
s2dd=sgnsVmd. In this case, the lowest eigen-

value and eigenfunction of the problem(65) can be found
explicitly as

Vm = kn
2mm

s2dsm
2 , Bm = sechsmsknXd, s67d

wheresm solves the quadratic equation

smssm + 1d =
4mn

s2dxnm
s2d

mm
s2dxn

s2d . s68d

Isolated eigenvaluesVm of the problem(65), when they ex-
ist, correspond to internal modesl in the perturbation series
(62), bifurcating in the band gaps of the operatorsLs and
s−Lsd from the band edgel= ismm−mnd. When sgnsmm

s2dd
=−sgnsxnm

s2dd, the linear problem(65) does not have any iso-
lated eigenvalues. Since sgnsxnm

s2dd=sgnsxn
s2dd=sgnssd, we no-

tice that all band edgesm=mn that support bifurcations of
gap solitons in the nonlinear problem(17) support also bi-
furcations of internal modesl in the spectrum of a selected
nth gap soliton. In the focusing case,s=−1, all lower band
edges generate internal modesl downwards from the corre-
sponding band gaps, i.e.,mm

s2d,0 andVm,0. In the defo-
cusing case,s= +1, all upper band edges generate internal
modesl upwards from the corresponding band edges, i.e.,
mm

s2d.0 andVm.0.
It is surprising that more than one internal model could

be generated near the band edgel= ismm−mnd. In the case of
no periodic potentialVsxd=0, perturbations of NLS solitons
generate at most one internal mode[14,38]. On the other
hand, perturbations of gap solitons in the coupled-mode
equations may generate several internal modes and complex
eigenvalues[16,39]. In the case of finite potentialVsxd, the
number of internal modes depends on the depth of the
squared sech potential in the eigenvalue problem(65), which
is determined by parameters of the band curvaturesmn

s2d and
mm

s2d and by the nonlinearity coefficientsxn
s2d andxnm

s2d.

B. Resonant bifurcations of complex eigenvalues

According to the general expression(40), eigenvaluesl
with a nonzero imaginary part describe soliton oscillations,
which are associated with the appearance of two sideband
spatial frequenciesm+Imsld andm−Imsld. Gap solitons are
spectrally stable for small values ofeÞ0 with respect to a
particular resonant oscillation if both of the sidebands fall
inside the gaps of the linear spectrum, whereas an oscillatory
instability may arise when one sideband appears inside a
linear transmission band[13,34]. This general behavior is
illustrated in Fig. 6, where the real part of the eigenvalue is
nonzero indicating the presence of the oscillatory instability
when the lower sideband is inside the transmission band of
the inverted spectrum. However, the instability is suppressed
when the sideband moves inside the band gap. The instability
shown in Fig. 6 appears due to a resonant coupling between
a gap soliton marked “d” in Fig. 2, and its own fundamental
guided mode in the first gap shown in Fig. 5. The character-
istic profiles of instability modes are presented in Fig. 7. The
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top row shows the perturbationu+ iw, which corresponds to
higher spatial frequencym+Imsld according to Eq.(40), and
we indeed see that this mode closely matches the guided
mode profile(cf. Fig. 5) in agreement with the asymptotic
expressions(60) and(61). On the other hand, the bottom row
of Fig. 7 shows the low-frequency component, which de-
scribes the radiation waves emitted by the soliton whenm
−Imsld is inside the transmission band. The long-lived os-
cillating, or breathing, states are shown in Fig. 8. Similar
effects may occur due to a resonance with higher-order

guided modes, as shown in Figs. 9–11. One important differ-
ence is that the associated breathing states can have different
symmetries for various excited modes, cf. Figs. 8 and 11.

In mathematical terms, stability requires that all internal
modes detaching from the band edgesl= ismm−mnd reside
inside the band gaps of the inverted operators−Lsd, and the
zero eigenvalue ofL1 shifts to small imaginary eigenvalues
l. When an internal mode is embedded into a spectral band
of the inverted operators−Lsd, oscillatory instability of the
gap solitonFssxd may arise for small values ofeÞ0. Em-
bedded imaginary eigenvaluesl are known to be structurally
unstable with respect to small perturbations and, provided
that their energy is opposite with respect to the energy den-
sity of the spectral band, they bifurcate into complex eigen-
valuesl [40]. By construction, resonance of internal modes
of Ls with spectral bands ofs−Lsd is only possible if the
internal mode, detaching from the band edgel= ismm−msd,
has the opposite energy signature with respect to the energy
signature of the inverted spectral bandmr =2mn−mmPSband,
such thatl= ismm−mnd= ismn−mrd. Therefore all embedded
imaginary eigenvalues in the linearized stability problem
(41) are expected to bifurcate to complex eigenvaluesl in a
generic case.

We prove in Appendix C that, provided thatmr =2mn
−mmPSband, we have

FIG. 6. Eigenvalues corresponding to a resonance of a gap soli-
ton (marked “d” in Fig. 2) with its fundamental guided mode in the
semi-infinite band gap. Small oscillations in Resld are due to nu-
merical error.

FIG. 7. Profiles of linear
modes corresponding to a reso-
nance in Fig. 6.

FIG. 8. Evolution of a soliton perturbed by a linear mode cor-
responding to Fig. 7.
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Resld = e4Gm + Ose5d, Gm ù 0, s69d

wherel is the eigenvalue of the bifurcating internal mode,
given by Eq.(62). In a generic case, whenGmÞ0, the em-
bedded imaginary eigenvaluel bifurcates to the unstable
domain Resld.0 and leads to oscillatory instabilities of the
gap solitonFssxd.

C. Marginal bifurcations of internal modes and complex
eigenvalues

A marginal case between nonresonant and resonant bifur-
cations occurs when internal modes detaching from the band

edgel= ismm−mnd are located in the neighborhood of the
band edgel= ismn−mkd of the inverted spectrum. We assume
here thatmm, mk, and ms satisfy the resonance condition
within the mismatch of orderOse2d:

mm + mk − 2ms = e2nmk. s70d

In this marginal case, we expand the eigenvaluel and the
eigenfunctionsu,wd of the linearized stability problem(41)
in the modified perturbation series,

u = umk
s0dsx;Xd + eumk

s1dsx;Xd+ e2umk
s2dsx;Xd + Ose3d, s71d

w = ifwmk
s0dsx;Xd + ewmk

s1dsx;Xd+ e2wmk
s2dsx;Xd + Ose3dg,

s72d

and

l = ifmm − ms + e2Vmk+ Ose4dg, s73d

where

umk
s0d = BmsXdcmsxd + CksXdcksxd,

umk
s1d = Bm8 sXdcm

s1dsxd + Ck8sXdck
s1dsxd,

FIG. 9. Eigenvalues corresponding to a resonance of a gap soli-
ton (marked “d” in Fig. 2) with its higher-order guided mode in the
semi-infinite band gap.

FIG. 10. Profiles of linear
modes corresponding to a reso-
nance in Fig. 9.

FIG. 11. Evolution of a soliton perturbed by a linear mode cor-
responding to Fig. 10.
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wmk
s0d = BmsXdcmsxd − CksXdcksxd,

wmk
s1d = Bm8 sXdcm

s1dsxd − Ck8sXdck
s1dsxd

The second-order correction termssumk
s2d ,wmk

s2dd solve the sys-
tem:

Lsumk
s2d + sms − mmdwmk

s2d = Fs2d,

Lswmk
s2d + sms − mmdumk

s2d = Gs2d, s74d

where

Fs2d = Bm9 fcm + 2scm
s1dd8g + Ck9fck + 2sck

s1dd8g + VmksBmcm

− Ckckd − nmkCkck − 3sAn
2cn

2sBmcm + Ckckd,

Gs2d = Bm9 fcm + 2scm
s1dd8g − Ck9fck + 2sck

s1dd8g + VmksBmcm

+ Ckckd + nmkCkck − sAn
2cn

2sBmcm − Ckckd.

Because of the resonance condition(70), the second-order
correctionssumk

s2d ,wmk
s2dd are periodic or antiperiodic functions

of x if two Fredholm conditions are satisfied. The two Fred-
holm conditions take the form of a coupled eigenvalue prob-
lem for Vmk:

mm
s2dBm9 + An

2sXds2xnm
s2dBm + xnmk

s2d Ckd = VmkBm,

mk
s2dCk9 + An

2sXdsxnkm
s2d Bm + 2xnk

s2dCkd = − snmk+ VmkdCk,

s75d

wherexnm
s2d is defined in Eq.(66), while xnmk

s2d is defined as

xnmk
s2d = s

E
0

d

cn
2cmckdx

E
0

d

cm
2 dx

. s76d

The coupled eigenvalue problem(75) is not self-adjoint and
therefore the eigenvaluesVmk could be complex-valued.

We assume that sgnsmm
s2dd=sgnsxnm

s2dd such that the first
equation(75) with Ck;0 has at least one internal mode for
sgnsVmkd=sgnsmm

s2dd. For convenience, we consider here the
defocusing cases=1, when xnm

s2d .0 and mm
s2d.0. In this

case, the internal mode of the first equation(75) with Ck
;0 exists forVmk.0, while the spectral band is located for
negative values ofVmk. There are two particular cases, de-
pending on whethermk

s2d.0 or mk
s2d,0.

In the casemk
s2d,0, the second equation(75) with Bm

;0 does not have any internal modes, while the spectral
band is located below the valueVmkø−nmk. Whennmk@1,
internal modes in the componentBm for Vmk.0 are not
affected by the spectral band in the componentCk, since the
following estimate holds for finiteVmk and largenmk:

Ck = −
xnkm

s2d

nmk
An

2sXdBm + OS 1

nmk
2 D . s77d

When the value ofnmk decreases and becomes negative, all
internal modes in the componentBm become embedded into

the spectral band in the componentCk. The embedded eigen-
valuesVmk bifurcate as complex eigenvaluesVmk due to the
Fermi golden rule as in[40].

In the case ofmk
s2d.0, the second equation(75) with

Bm;0 has at least one internal mode fornmk+Vmk,0, while
the spectral band is located above the valueVmkù−nmk.
Whennmk!−1, all internal modes in the componentBm for
Vmk.0 and those in the componentCk for nmk+Vmk,0 are
located in the gap between the two spectral bands. The inter-
nal modes in the componentBm are not affected by the spec-
tral band in the componentCk, sinceCk is small according to
the expansion(77). On the other hand, the internal modes in
the componentCk are not affected by the spectral band in the
componentBm, since the following estimate holds for finite
sVmk+nmkd and largeVmk:

Bm =
xnmk

s2d

Vmk
An

2sXdCk + OS 1

Vmk
2 D . s78d

When the valuenmk increases and becomes positive, the gap
between spectral bands disappear and all internal modes in
the componentsBm and Ck coalesce or become embedded
into overlapping spectral bands. In the first case, internal
modesVmk bifurcate as complex eigenvaluesVm due to the
Hamiltonian Hopf bifurcation. In the second case, internal
modesVmk bifurcate as complex eigenvaluesVmk due to the
Fermi golden rule. Again, we have oscillatory instabilities of
the gap solitonFssxd, emerging from all bifurcating internal
modes ofLs in resonance with the spectral bands ofs−Lsd or
vice verse.

D. Internal modes nearl=0

The coupled eigenvalue problem(75) is derived under the
resonance condition(70) between two band edges of opera-
tors Ls and s−Lsd. The resonance condition(70) is always
satisfied formm=mk=mn andnmk=−2Dn, when the band edge
l= ismm−mnd=0 of the stability problem(41) coincides with
the band edgems=mn of the gap solitonFssxd andDn is used
in Eq. (18). In this case, the coupled eigenvalue problem(75)
describes the transformation of the spectrum of the problem
(41) at eÞ0, when a narrow spectral gap appears in the
spectrum of the problem(41) near the originl=0.

We showed in Sec. VII that a pair of real or purely imagi-
nary eigenvalues bifurcate froml=0 due to the broken trans-
lational invariance. We will show here that another pair of
internal modes may bifurcate inside the same gap from the
band edges. Contrary to the former bifurcation, which is ex-
ponentially small ine, the latter bifurcation occurs generally
in the order ofOse4d.

For the casemm=mk=mn andnmk=−2Dn, the system(75)
can be simplified due to the obvious reduction:mm

s2d=mk
s2d

=mn
s2d andxnm

s2d =xnk
s2d=xnmk

s2d =xnkm
s2d =xn

s2d. Using the variables

un = Bm + Ck, wn = isBm − Ckd, s79d

and

lsnd = isVmk− Dnd, s80d

we transform the problem(75) to the form:
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L1
sndun = − lsndwn, L0

sndwn = lsndun, s81d

where L1
snd and L0

snd are linear Schrodinger operators with
decaying potentials:

L0
snd = mn

s2d d2

dX2 − Dn + xn
s2dAn

2sXd, s82d

L1
snd = mn

s2d d2

dX2 − Dn + 3xn
s2dAn

2sXd, s83d

where sgnsDnd=sgnsmn
s2dd=sgnsxn

s2dd. The linear eigenvalue
problem(81) is the linearized NLS problem on the real line,
associated to the sech-solitons(26). The problem has two
branches of the continuous spectrum forlsndP is−` ,
−uDnu dø isuDnu ,`d, the four-dimensional null spacelsnd=0,
and the resonance at the band edgeslsnd= ± i uDnu. A small
perturbation of the decaying potentials in the problem(81)
may result in the edge bifurcation of a single pair of internal
modeslsnd= ± iVsnd, such thatVsnd, uDnu, provided a certain
integral criterion is satisfied[15,39].

It was shown[14,38] that the discrete NLS equation with
a small lattice step size supports bifurcations of a single pair
of internal modes from the band edges beyond the linearized
NLS problem(81). In order to study these bifurcations, we
would have to extend perturbation series expansions
(71)–(73) to the next orders and derive theOse2d corrections
to the linearized NLS problem(81). This work goes beyond
the scope of the present paper. We only note that there is at
most one pair of internal modes bifurcating in the narrow
gap nearl=0.

IX. CONCLUSIONS

We have presented a systematic analysis of the existence,
bifurcations, linear stability, and internal modes ofgap soli-
tons in the framework of the nonlinear Schrödinger equation
with a periodic potential. This model or its generalizations
appear in a variety of physical applications including low-
dimensional photonic crystals, arrays of coupled nonlinear
optical waveguides, optically induced photonic lattices, and
Bose-Einstein condensates loaded onto an optical lattice. In
the framework of this model, we have classified branches of
gap solitons bifurcating from the band edges of the Floquet-
Bloch spectrum by means of the multiscale perturbation se-
ries expansion method. We have demonstrated that gap soli-
tons can appear near all lower or upper band edges of the
spectrum for focusing or defocusing nonlinearity, respec-
tively. We have studied the gap-soliton internal modes and
stability of gap solitons in the framework of the continuous
model with a periodic potential. We have demonstrated that
the gap-soliton stability is determined by the broken transla-
tional invariance, as well as the location of internal modes
with respect to the spectral bands of the linearized spectrum.
We have shown analytically and numerically that complex
eigenvalues of the stability problem correspond to oscillatory
instabilities of gap solitons.

The analytical results presented above are rather general,
and they are expected to be valid for different types of

smooth arbitrary-shaped periodic potentials. Although our
numerical examples have been presented for the specific case
of the sinusoidal potential, we expect that our main results
can be applied to other types of periodic potentials.
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APPENDIX A: NUMERICAL METHOD FOR
CALCULATION OF EIGENVALUES

Eigenvalues of the spectral problem(41) provide key in-
formation about the soliton stability. However, an accurate
numerical calculation of complex eigenvalues describing os-
cillatory instabilities of gap solitons is a nontrivial problem
even in the case of a simpler system of coupled-mode equa-
tions [41–43]. The reason for numerical difficulties is that
different components of eigenvectors have very different lo-
calization widths. For example, the modes shown in the bot-
tom part of Figs. 7 and 10 are much broader than the soliton
width, while the modes shown in the top part of Figs. 7 and
10 have comparable width. Numerical approaches used in a
number of earlier studies[41–43] were based on the discreti-
zation of Eq. (41), however, an accurate description of
weakly localized modes requires the use of impractically
wide computational windows. It was suggested that the ei-
genvalues can be calculated approximately, and then im-
proved using a special iterative procedure[42,43]. In our
analysis, we avoid such problems by using a different ap-
proach based on the Evans function formalism. This method
proved to be very effective for tracing soliton instabilities in
periodic systems[44].

First, we reformulate the spectral problem(41) using a
different set of functionsU=u+ iw andW=u− iw,

−
d2U

dx2 + VsxdU + sFs
2sxds2U + Wd = sms + ildU,

−
d2W

dx2 + VsxdW+ sFs
2sxds2W+ Ud = sms − ildW. sA1d

The advantage of this formulation for the numerical analysis
is that Eqs.(A1) become uncoupled away from the soliton
core asuxu →`. In these regions, solutions of Eqs.(A1) are
found in terms of Bloch functions, and they form a natural
basis for representation of solutions along the whole line,

Usxd = U1sxdc1
+ + U2sxdc2

+,

Wsxd = W1sxdc1
− + W2sxdc2

−, sA2d

wherec1,2
± sxd are two linearly independent Bloch functions,

found as solutions of Eq.(4) with m=ms± il and U1,2 and
W1,2 are unknown parameters. By using the method of varia-

PELINOVSKY, SUKHORUKOV, AND KIVSHAR PHYSICAL REVIEW E70, 036618(2004)

036618-14



tion of parameters, we set the constraints onU1,2 andW1,2:

dU

dx
= U1sxd

dc1
+

dx
+ U2sxd

dc2
+

dx
,

dW

dx
= W1sxd

dc1
−

dx
+ W2sxd

dc2
−

dx
. sA3d

After substituting Eqs.(A2) and (A3) into Eq. (A1), we ob-
tain a set of first-order linear differential equations for the
amplitude functionsUjsxd andWjsxd, j =1,2, asfollows:

dUj

dx
= s− 1d jsFs

2sxds2U + Wdc3−j
+ /D+,

dWj

dx
= s− 1d jsFs

2sxds2W+ Udc3−j
− /D−, sA4d

where the Wronskian determinantsD±=c1
±sdc2

± /dxd
−c2

±sdc1
± /dxd are independent ofx [45], Sec. 1.6. Whereas

Eqs. (A4) are fully equivalent to the original eigenvalue
problem, they are much better suited for numerical analysis
sinceU1,2 andW1,2 only change in the region of the soliton
core, whereFs

2sxd is nonsmall. The key advantage is that the
required size of the computational window is defined by the
soliton width, and does not depend on the localization of
linear modes.

We seek spatially localized eigenmodes, which can exist
when the Bloch functionsc1,2

± sxd have complex Bloch wave
numbersksmd, and according to Eq.(6), one of the Bloch
functions is exponentially growing whereas the other one is
decaying. We assume, with no loss of generality, thatuc1

± u
→0 at x→ +`. Then, a localized mode can form when si-
multaneously

lim
x→+`

sU2,W2d = 0, lim
x→−`

sU1,W1d = 0. sA5d

In order to satisfy the limits(A5), the following determinant
must vanish:

Esld = Det1
U1,u

+ sxd U1,w
+ sxd U1,u

− sxd U1,w
− sxd

U2,u
+ sxd U2,w

+ sxd U2,u
− sxd U2,w

− sxd
W1,u

+ sxd W1,w
+ sxd W1,u

− sxd W1,w
− sxd

W2,u
+ sxd W2,w

+ sxd W2,u
− sxd W2,w

− sxd
2 = 0,

sA6d

where four particular solutions of Eqs.(A4) are introduced
according to the limiting behavior:

lim
x→+`1

U1,u
+

U2,u
+

W1,u
+

W2,u
+
2 =1

1

0

0

0
2, lim

x→+`1
U1,w

+

U2,w
+

W1,w
+

W2,w
+
2 =1

0

0

1

0
2 ,

lim
x→−`1

U1,u
−

U2,u
−

W1,u
−

W2,u
−
2 =1

0

1

0

0
2, lim

x→−`1
U1,w

−

U2,w
−

W1,w
−

W2,w
−
2 =1

0

0

0

1
2 .

Then, solution of Eqs.(A4) satisfying the boundary condi-
tions (A5) are found asUj =ru

+Uj ,u
+ +rw

+Uj ,w
+ and Wj =ru

+Wj ,u
+

+rw
+Wj ,w

+ , where sru
+,rw

+ ,ru
−,rw

−dT is an eigenvector corre-
sponding to a zero eigenvalue of the matrix in Eq.(A6).

The coordinatex in Eq. (A6) is arbitrary, but for numeri-
cal calculations a better accuracy is achieved when it is cho-
sen at the soliton center,x=x0. The functionEsld is called
the Evans function, and its zeros define the location of eigen-
values. We approximate zeros ofEsld by finding minima
uEsldu along the real axis and along the imaginary axis with a
small real part, and then using a two-dimensional minimiza-
tion procedure in the full complex plane.

APPENDIX B: DERIVATION OF Eq. (49)

We rewrite the derivative equation(28) in the equivalent
form:

L1
] Fesx;Xd

] x
+ eL1

] Fesx;Xd
] X

= − V8sxdFesx;Xd. sB1d

Using the inner product(50), we reduce Eq.(B1) to the
quadratic forms:

S ] Fe

] X
,L1

] Fe

] x
D + eS ] Fe

] X
,L1

] Fe

] X
D

= −E
−`

`

V8sxdFesx;Xd
] Fesx;Xd

] X
dx. sB2d

Using the Fourier series(34), Fourier transform(36), and the
expansion(37), we reduce the right-hand-side of Eq.(B2) to
the form,

− e3E
−`

`

V8sxdFesx;Xd
] Fesx;Xd

] X
dx

=
e

2 o
m=−`

`
2pim

d
Ŵn,mS2pm

ed
;eDe

2pimx0
d =

1

2
Ms8sx0d.

sB3d

On the other hand, the first term in the left-hand side of Eq.
(B2) is identically zero:

S ] Fe

] X
,L1

] Fe

] x
D = SL1

] Fe

] X
,
] Fe

] x
D = 0, sB4d

which is proved from the nonlinear problem(17) as follows:

] Fe

] x
L1

] Fe

] X
=

]

] X
F ] Fe

] x
f− Fe9 + VsxdFe − msFe + se2Fe

3gG
−

]2Fe

] X ] x
f− Fe9 + VsxdFe − msFe + se2Fe

3g

= 0. sB5d
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The quadratic form in(B2) is therefore rewritten in the final
form (49).

APPENDIX C: DERIVATION OF Eq. (69)

We extend the perturbation series expansions(60)–(62) to
the higher orders in powers ofe. Solving the system(63) and
(64) for the second-order correction termssum

s2d ,wm
s2dd, we

write the solution in the implicit form,

um
s2d = Bm9 sXdcm

s2dsxd + 2An
2sXdBmsXdcnm

snl2dsxd

+ An
2sXdBmsXdfnm

snl2dsxd, sC1d

wm
s2d = Bm9 sXdcm

s2dsxd + 2An
2sXdBmsXdcnm

snl2dsxd

− An
2sXdBmsXdfnm

snl2dsxd, sC2d

where cm
s2dsxd is defined in Eq.(14), while cnm

snl2dsxd and
fnm

snl2dsxd solve the nonhomogeneous problems,

− scnm
snl2dd88 + Vsxdcnm

snl2d − mmcnm
snl2d = xnm

s2dcm − scn
2cm,

sC3d

− sfnm
snl2dd88 + Vsxdfnm

snl2d + smm − 2msdfnm
snl2d = − scn

2cm.

sC4d

The first equation(C3) defines periodic or antiperiodic func-
tions cnm

snl2dsxd, since the Fredholm condition is satisfied by
the relation(66). The second equation(C4) defines a nonpe-
riodic function fnm

snl2dsxd, since mr PSband, where mr =2ms

−mm. We use the Sommerfeld radiation boundary conditions
for function fnm

snl2dsxd in the ends of the periodxP f0,dg:

sfnm
snl2dd8sdd − ikrfnm

snl2dsdd = 0,

sfnm
snl2dd8s0d + ikrfnm

snl2ds0d = 0, sC5d

wherekr =ksmrd and the dispersion relationksmd is defined in
the Bloch functions(6). The Sommerfeld boundary condi-
tions (C5) imply that the time-dependent solutionCsx,td of
the NLS equation(1) linearized at the gap solitonFssxde−imst

takes the form of outgoing radiative waves(6) directed out-
wards from the periodxP f0,dg:

Csx,td − Fssxde−imst → H a+sXdf1sxdeikrx−imrt, x → d−

a−sXdf2sxde−ikrx−imrt, x → 0+,

sC6d

where a±sXd are amplitudes of the radiative waves. The
Sommerfeld boundary conditions were used recently for em-
bedded solitons[46]. Since the Sommerfeld boundary condi-
tions (C5) are not symmetric, the functionsfnm

snl2dsxd are

complex-valued. The complex-valued functionsfnm
snl2dsxd re-

sult in complex-valued corrections to imaginary eigenvalues
l in higher orders of the perturbation series expansion(62).
In order to avoid a lengthy analysis of the perturbation series
equations at the third and fourth orders ofe and to capture
the nonzero real part of complex eigenvaluesl, we rewrite
the linearized stability problem(41) in the form of the bal-
ance equation:

sl + l̄dsuw̄− ūwd =
d

dx
Su

dū

dx
−

du

dx
ū + w

dw̄

dx
−

dw

dx
w̄D .

sC7d

Using perturbation series expansions(60)–(62), we rewrite
Eq. (C7) in variablesx andX. The first nonzero term occurs
at the fourth order ofe and takes the form:

− 4i ResldBm
2 sXdcm

2 sxd = e4] Q4sx;Xd
] x

+ Ose5d, sC8d

where the fourth-order correction termQ4sx;Xd
=Q4

sperdsx;Xd+Q4
snpdsx;Xd is decomposed in a periodic func-

tion of x and a nonperiodic function ofx, the latter is given
by

Q4
snldsx;Xd = um

s2dsūm
s2dd8 − ūm

s2dsum
s2dd8 + wm

s2dsw̄m
s2dd8 − w̄m

s2dswm
s2dd8.

sC9d

The prime in Eq.(C9) denotes the derivative inx. Integrating
Eq. (C8) over the periodxP f0,dg and over the real line of
X, and using the explicit representations(C1) and (C2) for
um

s2dsx;Xd and wm
s2dsx;Xd, we rewrite the balance equations

(C8) and (C9) in the form:

− 4i ResldSE
−`

`

Bm
2 dXDSE

0

d

cm
2 dxD

= 2e4SE
−`

`

An
4Bm

2 dXDffnm
snl2dsf̄nm

snl2dd8

− f̄nm
snl2dsfnm

snl2dd8gux=0
x=d + Ose5d. sC10d

Using the Sommerfeld boundary conditions(C5), we finally
derive the expansion(69), where

Gm =1E−`

`

An
4Bm

2 dX

E
−`

`

Bm
2 dX 21krsufnm

snl2ds0du2 + ufnm
snl2dsddu2d

E
0

d

cm
2 dx 2 ù 0.

sC11d

The formula(C11) is referred to as the Fermi golden rule of
radiative decay of embedded eigenvalues[40,46].
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