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We analyze the existence, stability, and internal modegapf solitonsin nonlinear periodic systems de-
scribed by the nonlinear Schrédinger equation with a sinusoidal potential, such as photonic crystals, waveguide
arrays, optically-induced photonic lattices, and Bose-Einstein condensates loaded onto an optical lattice. We
study bifurcations of gap solitons from the band edges of the Floquet-Bloch spectrum, and show that gap
solitons can appear nealt lower or upper band edges of the spectrum, for focusing or defocusing nonlinearity,
respectively. We show that, in generajo types of gap solitonsan bifurcate from each band edge, and one
of those two is alwaysinstable A gap soliton corresponding to a given band edge is shown to possess a
number ofinternal modeghat bifurcate from all band edges of the same polarity. We demonstrate that stability
of gap solitons is determined by location of the internal modes with respect to the spectral bands of the inverted
spectrum and, when they overlap, complex eigenvalues give rigscitiatory instabilitiesof gap solitons.
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[. INTRODUCTION On the other hand, weak nonlinear effects in optical fibers
pwith a periodic modulation of the refractive index are well

lems, with the crystalline lattice being the most familiar clas-Studied in the framework of the other familiar and well-
sical example. One of the important features of such systenfRcCePted approach, theoupled-mode theory{2]. The
is the existence afultiple frequency gapis the wave trans-  coupléd-mode theory for nonlinear periodic structures is
mission spectra. Such spectral gaps are responsible for aS€d on a decomposition of the wave field into the forward
strong modification of the wave dispersion and diffraction@d backward propagating modes, under the condition of the

that occurs when waves experience resonant Bragg scatteri#gagg resonance, and the derivation of a system of linearly
from a periodic structuréd]. coupled nonlinear equations for those two modes. Such an

When nonlinear self-action becomes important, the sys@PProach is usually applied to analyze nonlinear localized
tems with periodically modulated parameters demonstrate ¥2V€S IN the systems withvaeakly modulatedptlcal refrac-
number of new effects; in particular they can support a novel'V€ index known as gagor Bragg solitons. . .
type of solitons, the so-calleghp solitonswhich exist in the A number of recent experiments in the nonlinear guided
gaps of the linear wave spectrum due to a strong Bragg scaffave optics[5—7] and Bose-Einstein condensatéy were

tering and coupling between the forward and baCkwamconducted in the periodic structures under the conditions

ropagating mode During the last vears. it was shown when those approximations may be invalid. Indeed, one of
propagating | E2. ing the y ’ ) the main features of the wave propagation in periodic struc-
that gap solitons may exist in different types of nonlinear.

. 90 . . . . . tures is the existence of a set of multiple forbidden gaps in
periodic structures including low-dimensional photonic crys-iha transmission spectrum. As a result, the nonlinearly in-

tals and photonic layered structurg®4], waveguide arrays  qyced localization of waves can become possible in each of
[5], optically induced photonic lattice$6,7], and Bose- these gaps. However, the effective discrete equation derived
Einstein condensates loaded onto an optical laf#c8]. in the tight-binding approximation describes owlye trans-
There are knowwo simplified approache® study non-  mijssion bandsurrounded bywo semi-infinite band gapnd,
linear localized modes and gap solitons in pel’iOdiC Structuremerefore’ a fine structure of the band_gap Spectrum associ-
[10]. The first approach is based on the derivation of angted with the wave transmission in periodic media is lost in
effective discrete nonlinear Schrodinger equati@nd the  this approach. On the other hand, the coupled-mode theory
anaIySiS of its Stationary localized solutions in the form Ofof gap solitons describes Onm isolated narrow garjn
discrete localized modesr discrete solitons[11]. In the  petweertwo semi-infinite transmission bandsd it does not
solid-state physics, the similar approach is knowntl@s  ajlow one to consider simultaneously the localized modes
tight-binding approximation that, in application to periodic dye to the total internal reflection as well as to study the band
photonic structures, corresponds to the case of weaklyoupling and interband resonances. Recently, it was realized
coupled defect modes excited in each individual waveguidgnat the study of the simultaneous existence of localized
of the structure. The analogous concepts appear in the stugijodes of different types is a very important issue in the
of other systems such as the Bose-Einstein condensates dhalysis of stability of nonlinear localized modes and gap
optical latticeg[12]. solitons[13].
The main purpose of this paper is to analyze the exis-
tence, bifurcations, and stability of spatially localized nonlin-
*URL: www.rsphysse.anu.edu.au/nonlinear ear modegi.e., lattice and gap solitop# the framework of

Periodic structures are very common in physical pro
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an effective continuous model described by the nonlinear [ X

Schrodinger equation with a periodic external potential. The V(x) = Vo 5'”2(F>- (2)

use of this well-accepted nonlinear model for our analysis

allows us to remove all restrictions of both approaches menThe harmonic potential2) describes, in the mean-field ap-

tioned above, and to study consistently the effects of thgroximation, the dynamics of the Bose-Einstein condensate

band-gap spectrum on the properties and linear stability oin an optical lattice, when the parabolic trap is neglected

gap solitons. [8,9]. The squared sine potenti®(x) has two extremum
First, by applying the multiscale asymptotic analytical points on the period af, such that=0 is the minimum and

methods, we show that such gap solitons may appeallin x=d/2 is the maximum oWV(x).

band gapsof the periodic potential for any sign of nonlin- Stationary localized solutions of the cubic NLS equation

earity, but they bifurcate from different band edges for dif- (1) for gap solitons are found in the formr(x,t)=(x)exp

ferent signs of nonlinearity. Second, we demonstrate that, if-iut), whereu is referred to as theoliton parameterThe

general, onlytwo branches of gap solitonsifurcate from  soliton profile y(x) is found as a spatially localized solution

each band edge, and one of those two is always linearlgf the nonlinear problem:

unstable. Third, we study stability of gap solitons in a se-

lected band gap and find the soliton internal modes bifurcat- =Y V)Y + ol P = pp, )

ilﬂg from all olther bapd edgles ozthe san;_ef pola[ityz,la. h where the prime stands for a derivativexnExistence and
owever, only one internal mode can bifurcate from t emultiplicity of multihumped localized state#x) in the spec-

band edge where the gap soliton originates itself. At last, w - : :
analyze the conditions when the bifurcation of the interna:?ral gaps of the p.er.'Od'C potential(x) were considered by
means of the variational methods by Alama and17,18.

modes can give rise to complex elgenval_u_e;s, which Bifurcations of bound states were analyzed by Kupper and
shown to be responsible farscillatory instabilitiesof gap Stuart[19,20 and Heinz and Stuaf21] who proved that

solitons[16]. . . .
. . . depending on the sign of the nonlinear term, lower or upper
The paper is organized as follows. Section Il presents our . . . . :
. A ) . . endpoints of the continuous spectrum are bifurcation points.
physical model which is described by an effective nonlinear,

Schrddinger equation with an external periodic potential OfExtensmn to the multidimensional case was developed with

: . . : : Bloch waves of the linear Schrodinger operaf@g]. The
the simplest sinusoidal form. Section Il summarizes thenumber of branches of bound states was classified in terms of
studies of the spectral properties of the linear eigenvalu

problem with a periodic potential. In Sec. IV we study bifur- the eigenvalues of the linear Schrdodinger operator with peri-

i . . odic and decaying potentia|23]. Eigenvalues of the latter
cations of gap solitons by means of the weakly nonlmearl. bl ious| idered by G
approximation. Section V presents the analysis of the expo(-'near) problem were previously considered by Gesziesy

al. [24] and Alamaet al. [25]. In application to the problem

nentially small corrections beyond the weakly nonlinear aP%f the Bose-Einstein condensates in optical lattices, the sta-

proximation. Section VI discusses the stability problem Oftionary model(3) has been considered recently by Loats

gap solitons. Symmetry-breaking instabilities are studied in . . :
Sec. VII. Internal and oscillatory instability modes of gap al. [8] who found numerically different types of spatially

) ) . X 27 localized solutions in different band gaps.
solitons associated with nonzero eigenvalues are studied in ) .
All previous results were restricted to the study of the

Sec. VIll. Finally, Sec. IX summarizes our results and OIiS'existence of spatially localized solutions. Here, we use more
cusses further perspectives. Appendix A gives details of theeneral methopdsautyin some sense Ies.s M or,ous from the
numerical method for calculations of eigenvalues. Appen—g ' ' 9

dixes B and C present details of derivations, which are used! athematlcal point of vieyand .study blfurca.tlons, stab|||ty,.
) ; and internal modes of gap solitons. To achieve these objec-
in Secs. VII and VIII, respectively.

tives, we apply the multiscale perturbation series expansion
methods, developed earlier by lizuka6] and lizuka and

Wadati[27]. With the perturbation series methods, we clas-
sify systematically the branches of gap solitons bifurcating

) ) ] o from the band edges to the band gaps, as well as their sta-
We consider the cubic nonlinear Schrodin@€L.S) equa- bility.

tion with an external periodic potential in the form,

Il. MODEL

Ill. SPECTRAL BANDS AND GAPS

iV, =— W, + V)V + o] W20, (1) _ Periodic_pqtentiaV(x) induces a band-gap structure in the
linear Schrodinger spectral problem:
— Y V)= . (4)

where V(x+d)=V(x), d is the fundamental period, and
=+1 defines the type of the wave self-action effect, namelyThe spectral bands are located foE %,,4 Where we enu-
self-focusing(oc=-1) or self-defocusingo=+1). The ana- merate the band edges in the following order:

lytical results presented below are rather general, and the _
gre valid for di?ferent types of smooth arbitr%ry—shaped peri-y Zbang= Lo, 2] U La 2] U Lt ps] U Ly, pae] - (5)

odic potentials. However, in the numerical examples dis-The spectral bands are computed for the squared sine poten-
cussed below we consider the squared sine potential, tial (2) and the results are shown in Fig. 1. A review of
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FIG. 1. The structure of spec-
tral bands of the linear periodic
problem (4): (a) Trace of funda-
mental matrixA vs u; (b) Floquet
exponentk vs u; and (c) Solid:
Bloch waves at the band edges, as
indicated by arrows; Dashed: po-
tential V(x). Parameters aré,=1
andd=10.
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spectral theory for periodic potentials can be found in the=0 [mod2#/d)] or k(u)=7/d mod2=/d)], the two solu-
book by Easthani28]. Here we recover some details which tions ¢, ,(x) are always linearly independent in the interior
are important for our analysis. of the spectral bandg € 35,4 On the other hand, the two
When the spectral parameteris taken inside the spectral solutions ¢4 ,(x) become linearly dependent at the band
bands, i.e.u € a4 the problem(4) has two linearly inde-  edgesu=p,, since
pendent solutions in the form of Bloch waves,
thom(X) = 1(X) = ha(X) (8

= ik(u)x = ik ()X
V1= SO, 1= ale ’ © and k(uy,)=0[mod27/d)] at the even-numbered band
where ¢, ,(x) are periodic functions ankiu) is the Floquet edges, and
exponent, which can be chosen inside the first Brillouin zone _ il id
such that G=k(u) < 7/d. The graph ok(u) is shown in Fig. Pom-1(X) = 1 (X) €™ = ¢hy(x)€ 9)
1(b) for the first three spectral bands. _ and k(usm-1) = /d[mod27/d)] at the odd-numbered band
The spectral bands of the periodic potentiék) are de- edges. The band edge=pu,, has geometric multiplicity one
scribed by the functiom\(u), which is the trace of the fun- wjth the only linearly independent Bloch functigh(x). The
damental matrix of solutiong28] second, linearly independent solution of H¢) at u=pu,
rows linearly inx. The band edge.=u, has, however, al-
Alp) =2 cosk(u)d. @) gebraic mult?/plicity two, since %r?;r:nexists a generalized
The spectral bands are defined for<A(u) <2, which cor-  Bloch function W(x) that solves the derivative problem:
responds to propagating waves with réalOn the other

— (D (1) _ D) — o1
hand, the waves become exponentially localized inside the ()" + VOO = iy = 2(%). (10)
gaps, wheréA(u)| >2 and Intk) # 0. A characteristic depen- |t follows from Eq.(10) that the generalized Bloch functions
denceA(u) is displayed in Fig. (). yi(x) and ¥ (x) are periodic and antiperiodic i, re-

~There are infinitely many spectral bands for a one-gpectively. We conclude that the band edgesy,, are the
dimensional periodic potentiaf(x), where|A(w)|<2 [28].  only bifurcation points of the linear spectrume 3,y as-
If A"(un) # 0 at the band edga=pu,, two adjacent spectral sociated with the periodic potentisi(x).
bands do not overlap, such that the corresponding band gap The band curvature near the band edgeu, follows
has a nonzero width. We consider the nondegenerate spectfgdm the expansion oA(w) defined in Eq(7):
band, such thah’(u,) # 0 at the end poini= .

The even-numbered band edggs u,ym, M=0 corre- A(pn) + A’ () (= ) + Ot = )

spond to periodic Bloch functiongy,(x+d) = in(x), while = (- D2 - d?(k — k)% + O(k - k,)*], (12)
the odd-numbered band edges u,,,-1, M= 1 correspond to
antiperiodic Bloch functionsyom 1(X+d)=—pm1(x). The  Whereky,=0 andkyy,-1=7/d. As a result,A(u,)=2(-1)"
Bloch functions ¢,(x) for the first five band edgeg.  and
= o, M1, M3, oy Mg @FE Shown in Fig. ().

M\?Vg?lc’)uvi gém%nstrate that the bgi:]fug;)ations of bound states 1= o = (K= ky)? + Ok = ko), (12)
and stationary gap solitons may occur when the two fundasych that
mental solutionsy; »(x) in Eq. (6) become linearly depen-
dent. Sinceg,(x)e?k®X solves the same equation as(x) @ _ d3(-1)"
but it is not a periodic function ofx, unless k(w) A ()
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The band curvaturese can be expressed in terms of
Bloch functions,(x) and w(l)(x) at u=pu,. We use pertur-
bation series expansions for fundamental solutigns(x)
near the band edges=

b1, A€ = (%) 2 (K= ky) () = (K= k) 292 (x)
+0(k-k,)2. 19
The eigenvalug: is expanded in the perturbation serigg).

The second-order correctioﬁf)(x) satisfies the nonhomoge-
neous linear equation:

= ()" VP2 = it = 24P) + (1 + 1) .

(14)
If ¢, ,(x) are periodic functions o, the second-order cor-

rection </,<n2>(x) in the perturbation seried 3) is periodic for
n=2m and antiperiodic fon=2m-1. By Fredholm Alterna-

tive, this condition is satisfied if the right-hand-side of Eq.

(14) satisfies the constraint:
(1+ )f wﬁdx+2f Un(y)'dx=0.  (15)

Therefore the band curvatune is expressed in terms of
integrals ofi,(x) and ¢(1)(x) The perturbation series expan-
sions(12) and(13) can be continued algorithmically to the
higher orders in powers dk-k;).

IV. BIFURCATIONS OF GAP SOLITONS

Nonlinear bound statggap solitong of the NLS equation
(1) are stationary solutions in the form:

P(x,t) = Dy(x)e M, (16)

where the real functiody(x) decays to zero a| — o and
satisfies the nonlinear problem,

= P!+ V(X)Pg+ 0DE = D, (17)

Whend(x) is small, the nonlinear potentiakbg(x) acts as a
perturbation term to the periodic potentM(x). The pertur-
bation term leads to bifurcation of gap solitofig(x) from

PHYSICAL REVIEW E70, 036618(2004)

functions i,(x) andzp Y(x) are defined from the linear prob-
lems(4) and(10).

The second-order correction temkf)(x;x) satisfies the
linear non-homogeneous equation:

— (@) + V)PP — = Al + 2(4P) ] -
+ AnAn‘ﬂn-

oA
(21)

The secular growth 0&522)(X;X) in x is removed if the right-
hand-side of(21) satisfies the Fredholm condition, which
reduces to the nonlinear equation fiyf=A,(X):

2 2) A3 _
wEA+ DA - AA =0,

f Yndx
Xn =
j zpﬁdx

Using the constraini22), we represent the second-order cor-
rection termqb(sz)(x;X) in the form:

(22)

where

(23

PP X) = A2 (x) + A M (x),  (24)

where 41/( (x) solves the nonhomogeneous probl€d),
while ¢/"?(x) solves the problem,

= W) VOO = et = X2 o = o4R. (25)

The nonlinear equatioli22) is just the stationary NLS
equation, which has sech-solitons if sgﬁ)) sgr(X(z))
=sgn(A,). For the focusing nonlinearityy=-1, the sech-
solitons bifurcate from all band edges, th§)<0, such
that A,<0. It follows from Eg.(12) that branches of gap
solitons detach from all lower band edges downwards from
the corresponding band gaps. For the defocusing nonlinear-
ity, o=+1, the sech-solitons bifurcate from all band edges,
where,u(z)>0, such thatA,,> 0. Therefore branches of gap
solitons detach from all upper band edges upwards from the
corresponding band gaps. Branches of gap solitons are
shown in Fig. 2 foro=-1 near the band edggs=puq, u
=pug, andu=u, and in Fig. 3 foro=+1 near the band edges

the band edgep.= u, of the linear band-gap spectrum. We =, and u=u,. The families of gap solitons have been
study bifurcations of gap solitons with the multiscale pertur-found by solving the nonlinear eigenvalue probleti) with

bation series expansions:

s= pn+ €A, + O() (18)
and
D (x) = ed (x;X), X=e(Xx—Xy), €e<1, (19
where
D X) = Ay(X)¢y(%) + ALY () + €GP (6 X) + O(€).
(20)

Here A, (X) is a space-decaying bound state an) is the
periodic or antiperiodic Bloch function. Parameigrdeter-
mines a location ofA,(X) with respect tog,(x). The Bloch

a standard relaxation techniq{9].
The sech-solitons of the nonlinear equat{@a) are writ-
ten explicitly in the form:

An(X) = a, sectixyX), (26)
wherea,, and «,, are found from equations,
An- k2P =0, yPa2-2:2u? =0, (27)

provided that sgﬁynz)):sgr(Xf]z)):sgr(An). The sech-type
soliton envelope$26) always have a single-humped profile.
SinceA,(X) is the envelope of,(x), the resulting nonlinear
bound stateb (x) has the oscillatory structure near the band

edgeus= un.
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FIG. 2. Bifurcations for the
on-site and off-site gap solitons in
a self-focusing mediun{o=-1).
Top: the soliton power P(u)
=[%, ®2(x;w)dx vs w. Solid:
solitons centered a$,=0, dashed:
centered aky=d/2. (a—f): spatial
profiles of gap solitons corre-
sponding to marked points in the
upper plot; shading marks the
minima of the potentiaV/(x).

V. BRANCHES OF GAP SOLITONS DUE TO SYMMETRY the “slow” coordinateX=e(x—X,) determines the location of
BREAKING the bound stated (X) with respect to the Bloch function

The absence of translational invariance alongxfuirec-  ¥n(X). We will show that only two values of, on the period
tion, associated with the presence of the periodic potentiaRf x secure convergence of the formal series, in the general
has an important effect on the soliton properties. For excase. Our analysis is equivalent to the construction of the
ample, it was found that discrete solitons, bifurcating fromMelnikov function, which gives the distance between sepa-
the first band, can be centeredan-site or in-between(off- ratrices in the nonlinear oscillator with a small, rapidly vary-
site) potential wells. In this section, we demonstrate that twoing force [30,3]. Zeros of the Melnikov function indicate
branches of gap solitons, bifurcating from all the bands, arealues ofx,, where the separatrices intersect, so that a ho-

centered at different positions in the periodic potential. moclinic orbit for the gap soliton exists in the nonlinear
The gap solitordb(x) near the band edges=u, is rep-  problem(17) with the periodic potentiaV/(x).
resented by the perturbation series expansid&—20), We will derive the Melnikov function[30,31] with a

provided that the formal series converges. Paraneén simple but equivalent method. Derivative of the nonlinear

! I I
6l Bragg - 2 Bragg - 1 Internal reflection _

0 0.3 FIG. 3. Bifurcations for the
on-site and off-site gap solitons in
a self-defocusing medium(o
=+1). Notations are the same as
in Fig. 2.
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equation(17) in x results in the following third-order ordi- - * o
nary differential equation: F(k)=f F(X)e"dX. (36)

N r_ ’ 25 ’ —
DS+ VD = psPg + 30 PP + V! (X) s =0. (28) The Melnikov functionM4(X,) is then expanded with the use
If the gap solitond(x) exists, then it satisfies zero boundary of the Fourier serie$34) and the Fourier transforr(86) in
conditions as|x| —c. Multiplication of Eq. (28) by ®(x)  the form:
and integration ovex result in the following constraint:

M (x) = € 2 W, m( 2;”] >e2mmw (37)

Ms(xo)=f V' (x)®Z(x)dx=0. (29)
- At the leading order, we hawy, (X;0)= AZ(X)Wn ), where
The functionM(X,) is the Melnikov function for the exis- W( ) n are coefficients in the Fourier series,
tence of homoclinic orbit§30,31. The constraint(29) is o
always satisfied if the gap solitor(x) and the potential VXRx) = > Wgor)n g2mimud (39)
V(x) are symmetric with respect to the location of the central me—oe

_ 2(y_ — P2 _ I (v —
Eeak, atx=xp, such tha@s(?( Xo) d?s(xo X) and V' (X=xo) The zero-order ternim=0) in the serieg37) is zero at any
=-V'(Xo—X). More precise information on the constrai2) . . ; e
. order of e, since the constrain®B5) results in the condition:
can be obtained near the band edge w,, where the per- - N i _
turbation series expansiof8)(20) are valid. The function Wh,0(0;€)=0. The higher-order terms with larger values of
Wh|ch satisfies the squared-periodic boundary conditions ismaller values ofm| in the limit e— 0, 5|nceA2(k) is expo-
X, nentially decaying irk. Therefore, using exponential asymp-
5 5 totics, we truncate the serig87) by the first-order terms
PUx +d; X) = D(x; X), (300 (m==1)in the limit e—0:

and the decaying boundary conditionsXn 2
| Me(xo) = eAlcos(%X(’ ' arg(w&?i)) vE,  (39)
lim & (x;X)=0. (31
Xi== where
We shall prove thal(x,) is exponentially small in terms of
e. To do so, we rewrite Eq28) for ®(x; X), multiply it by A= 2|w |A2( )
d (x;X), and integrate the resulting equation oxer [0,d]. ed
Using the periodic boundary conditiq@30), we derive the gnd
relation,

~o 2 ~ 477
d g (d E,=0O| €A: — | ) + O| eA: :
J V(0D X)dx= - 26 f (d,)2dx ed «
0

0 Assuming thatA; # 0, we conclude from Eq.39) that there

are precisely two families of gap solitons bifurcating from
-2¢ X f O, P xdX. (32)  two roots of the function c@@mx,/d) on the period of,.
0 We now prove that, for the squared sine poten@al the
Using the decaying boundary conditi¢81), we prove that values of anN ) are the same for all band edges as
. g arg(w )— —7/2. 1t is clear from Eq.(2) that V(=x)=V(x)
f dXJ V' (x)®2(x: X)dx = 0. 33 and V'(x)>0 for O<|x|=<d/2, while all Bloch wave
¢ squared amplitudes are symmetric, such t,bfat—x YR(X).
As a result, it follows from Eq(38) that ar@w )——77/2
and the two roots ok, occur at extremal pomts df'(x) Xo
=0 andxy=d/2. The formerminimum) point corresponds to

As a result, the functior\/’(x)(l)i(x;x) is expanded in Fou-
rier series inx as

o the on-site gap soliton, while the lattémaximum point
V' (X)D3(x; X) = > W, (X e)el@mmeid (34)  corresponds to the off-site gap soliton, in accordance with
me—oo Figs. 2 and 3.

When A;=0 andW, ,(27/ ed; €) # 0, higher powers ok
are generally nonzero in the first-order terfns=+1), such
that only two branches of gap solitods(x) bifurcate in a
J Wh,o(X;€)dX=0 (35 general case. If the potentia(x) is special such that

W, 1(27/ ed; €)=0 at any order of but W,, ,(47/ed; ) %0,
at any order ok. The Fourier transform df(X) is defined by  the leading-order terms in the serig&7) become second-
the standard integral: order(m==2), such that four branches of gap solitahgx)

such thatW, _(X; €) =W, n(X; €) and

036618-6



BIFURCATIONS AND STABILITY OF GAP SOLITONS.. PHYSICAL REVIEW E 70, 036618(2004)

may bifurcate from four roots of the function ddsrx,/d) on  the inequality: u, < us<< un+2, While for the gap soliton bi-
the period ofx,. We do not know whether any special poten- furcating from the lower band edge,= u,,, the parameteig

tials V(x) may exist to hold the constraiW, ,(2m/ed;e)  Satisfies the inequalityi, o< ps< . .
=0 at any order of. ‘ We demonstrate below that an important value which de-

fines many stability properties is the energy of the spectral
band, which is defined by

Stability of solitons with respect to perturbations is an h= (U, LaWg + (W, LW, (49
important problem for applications. Stable states act as atyhere the inner produdt, 4 is defined for periodic Bloch
tractors, and their excitation is weakly sensitive to noise Ofynctions on the periodt  [0,d]:
perturbations. On the other hand, unstable states tend to un-
dergo dynamical transformations due to a rapid growth of d
initial perturbations, and this behavior may be useful, for <f'g>d:J
example, for switching applicatiorj82].

We study the stability of gap solitonBg(x) by consider- It is clear thath,=2(um— tn){¥m, ¥mq at €e=0, whereh,
ing the evolution of perturbed solution in the following form: refers to themth band edge in the spectrum &£ for us

_ - - =u,. All spectral bands oL, which are lower with respect
Px,t) = €[ Dg(x) + [u(x) +iw(x)]eM + [u(x) +iw()]eM].  to ue=pu, become bands of negative energy for the gap soli-
(40) ton d((x), while all spectral bands of,, which are upper
. . i with respect tous=u,,, become bands of positive energy for
We substitute Eq(40) into the NLS equationl) and per-  the gap solitonby(x).
form its linearization with respect to the functiofis,w) de- The spectrumh of the stability problem(41) is double
scribing small-amplitude perturbations. Then, we obtainyecayse of the inversion symmetwy=—iu andA=-iQ. As a
coupled linear eigenmode equations whieraw) is an eigen-  regylt, the bands of positive and negative energies of the
vector and\ is an eigenvalue, operatorsC¢ and(-L£L¢) may overlap in the coupled spectrum
LUu=—\W, Low=\u. (41) (41) for the same values of.
The spectrum\ of the problem(41) transforms whenre
Here Ly and £, are Schrodinger operators with periodic and # 0. A simple and stable transformation is a shift of spectral

VI. LINEAR STABILITY OF GAP SOLITONS

f(0g(x)dx. (46)
0

decaying potentials, bands ofLg and (-£¢) along the imaginary axis of to the
) distance|us—u,|. As a result, the origil =0 becomes iso-

Lo=——+V(X) = pg+ oD(X), (42) lated from the spectral bands 6f and(-L) for any e# 0.
dx Other transformations of the spectrirare possible and

may result in instabilities of gap solitons. These transforma-

d? tions are considered in Secs. VIl and VIII.
L1==— +V(X) = us+ 30P3(x). (43)
dx®
We are interested in eigenvalugswhich correspond to VII. SYMMETRY-BREAKING INSTABILITY OF GAP
the spatially localized eigenvectofs,w) in L%(R,C?). If SOLITONS

there exists an eigenvaluewith Re(\) >0, the gap soliton . . N .
®((x) is spectrally unstable. On the contrary, if all eigenval- !N S€c. V, we have identified two families of on-site and

ues have R@)=0, the gap soliton is neutrally stable. Neutral off-site gap solitons,_ which haye diﬁergnt po_sitions with re-
stability can result in spectral instability due to resonances>PeCt 1O the underlying potepual. In .th|s section, we d‘?mon'
trate that one of these soliton families is unstable with re-

embedded eigenvalues, and bifurcations of isolated eigenvai i
ues with Ré\)=0. We have used an approach based on thépect to symmetry breaking. They tend to move across the

Evans function for numerical calculation of the eigenvaluespo'iemi"’ll."’mOI eventua_llly transfor_m into their stable counter-
the details are presented in Appendix A parts which have a different position. These results general-

The stability problem(41) is written in terms of two ize the previously found instability of off-site discrete soli-

e . I tons associated with the first bafgR].
Schrédinger operator§, and £ with periodicV(x) and de- o 5 .
caying Ig(x) potentials. At the band edge= ., where More specifically, we show that the symmetry-breaking

> - T ) instability of gap solitons is defined by the signM(xo). If
d(x)=0, the two Schrodinger operators coincide with theMg(xo)>0, then a pair of purely imaginary eigenvaluedn

operatorLs the stability problem(41) bifurcates fromrx=0, and these
d? internal modes describe oscillations of the perturbed soliton
Ef‘@*'V(X)‘Ms- (44 around the stable positiorn=x,. On the other hand, if

M¢(Xg) <0, then a pair of real eigenvalugifurcates in the
Forw=iu and\=i(}, the spectral bands of the stability prob- problem (41) and these exponentially growing instability
lem (41) occur at Q+uge Zpang i-€., at Qe ug— s, m1 modes characterize soliton motion away from the unstable
- sl U pa— s, o= ] U.... For the gap soliton bifurcating location x=x,. We note that these results are valid in the
from the upper band edge,= u,, the parametep, satisfies  vicinity of gap edges, where the eigenvalueare exponen-
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tially small in terms of the perturbation parameter a® (x;X) dD (x; X)
Due to the symmetry of the NLS equati¢h), we have a LoXD (X;X) =~ 2¢ o P (55
nonempty kernel of the operatbg for all € along the family
of the gap solitordb(x): As a result, we have
LoD (x:X)=0. (47) 1 (acbe )_(acbe _1ac1>5> 1<5¢€ _10<I>5)
R , el— 'LO + - ’LO .
262\ 9X aX axX ) e\ X ax

On the other hand, the gap solitdr(x) in the asymptotic
representation(19) is parameterized by, in the formal (56)
power serieg20) in €. As a result, the kernel of the operator 4 solution of the inhomogeneous problem
L, is nonempty at all power orders ef: '
adD
dD (x; X LoVe=—F, )

) ) exists at all power orders @&, since the right-hand side of
The zero eigenvalue di, is destroyed beyond the powers of Eq.(57) is orthogonal tab, at all power orders o". There-

€, since the gap solitoy(x) is not parameterized byo,  fore the quadratic formiU,,V.) has a regular power series in
values of which are fixed by roots of the Melnikov function . starting with the zero-order term. Since

(29). We show in Appendix B that the zero eigenvaluelgf

‘Cerzo(En)a UE

i i i i i i 1(0d 1 1 (" 9

associated ywth the eigenfunctidh.(x), shifts according to _ _( E’X@) = = (DD~ _J —(X(I)ﬁ)dx,
the quadratic form: 262\ 9X 46 4é) ., aX

1, (58

(Uea‘clue) = FMS(XO)a (49)

€ and the second term is exponentially smallénEq. (56)
where the quadratic form is defined for decaying functiong€duces to Eq(54) at the leading order, such that the Ray-
on the whole line ofk: leigh quotient(52) is given in the leading order by

*o___ 2Mg(Xo)
2 __ =27V

It follows from Eg.(59) that a negative eigenvalue gf, for
Mg(Xg) <O results in a small positive eigenvalie in the
stability problem(41).

The exponentially small correction of the functity(xg)
is given by the expansio(B9), where argNEIO)l):—w/Z for
{pe square-sine potenti@p). Therefore,M’S(S(O)>0 for Xo

According to the standard perturbation thedB88], the
quadratic form in Eq(49) determines the shift of the zero
eigenvalue of£,, associated with the eigenfunctidh.(x).
WhenMg(xo) >0, the zero eigenvalue af; becomes posi-
tive, while whenMg(xo) <0, the zero eigenvalue af, be-
comes negative. We show that a small negative eigenvalue

£, results in a small real positive eigenvalvef the stabil- =0 andMs(Xo) <0 for x,=d/2. In the former case, the gap
ity problem(41), while a small positive eigenvalug, results ~ SOliton @4(x) is located at the minimum point af(x) and it
in a pair of small imaginary eigenvaluas has a pair of small imaginary eigenvalugs In the latter
A small eigenvalue. =\, corresponding to the eigenfunc- case, the gap solitofp(x) is located at the maximum point
tion ux), can be found from the problem: of V(x) and it is unstable with a small real positive eigen-
P value\. Figure 4 shows unstable eigenvalues, splitting from
LiUe==NeLo Ue, (51 zero eigenvalues, for the branches of gap solitons wgjth

=d/2. We note that stability of on-site and off-site solitons
can be interchanged in more complex potentials, such as bi-
nary superlattice§34]. Additionally, stability can change

or equivalently, from the Rayleigh quotient:
(ue!‘clue)

2_
Ne= (Uo Lgtuy) (52) deep inside the gap, where the asymptotic analysis is not
applicable[35].
The quadratic forn{u,, £5'u,) exists if (®,,u.)=0, as fol- Asymptotic results for NLS solitons in the lowest semi-
lows from Egq. (47). Since (®.,U)=0(e") and £;U. infinite band gap in the focusing caée=-1) were obtained
=0O(€") at all power orders o&", we conclude that recently by Kapitulg3€] in the limit V(x) — 0. Branches of
u(x) = U,(x) +E,, (53) NLS solitons ®¢(x)=®p, s(X)=V2us sechy2udX—%g)] in

the small periodic potential functiovi(x) are defined by ze-
wherek, is exponentially small in terms e&f We shall prove  ros of the functionMy(xo), given by Eq.(29) with &
that =dy, 5(x). Stability of branches of NLS solitons is defined
1 1 by the derivativeM {(xo), such that the NLS solitons bifur-
(Ue Lo'ug) = E(q)evq)e) + O(‘>, (54)  cating from the minimum points of(x) are stable, while the
€ NLS solitons bifurcating from the maximum points gtx)
such that(ue,ﬁglus)>0 at the leading order. It follows from are unstable. We note that the opposite conclusion is drawn
the nonlinear problenil?7) that in Ref. [36], due to an elementary sign error.
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Bragg - 2 Bragg - Internal reflection
- FIG. 4. Eigenvalues corre-
< 8 _ sponding to symmetry-breaking
1 instabilities of gap solitons cen-
tered atxy=d/2 for o=-1 (shown
with dashed lines in Fig.)2
ol s 1 . I L1 . L.
1.2 0.9 -0.6 0.3 0 0.3
g
VIIl. INTERNAL MODES AND OSCILLATORY are referred to as the internal modes of gap solifdds15,
INSTABILITIES OF GAP SOLITONS and in our case such modes appear due to a resonance be-

tween the gap edges andn. Such resonances are possible

Apart from symmetry-breaking instabilities analyzed in because a soliton induces an effective waveguide, which can
the previous section, we demonstrate that gap solitons casupport localized modes in other gaf87]. In Fig. 5, we
exhibit a different type, so-called oscillatory instabilities. show three modes of operatdl, supported in the semi-
Such instabilities can occur due to a resonance between tlifinite gap near the edge=u, by a gap soliton existing in
internal modes corresponding to the edges of the gap ithe gap near the edge=u, in the case of a self-focusing
which soliton is localized, as was demonstrated within thehonlinearity(o=-1).
coupled-mode equationd6]. However, the coupled-mode Second, we show that resonance between internal modes
theory described only an isolated band gap, whereas it wa@f the operator’s and the bands of the inverted spectrum of
found that oscillatory instability can occur due to resonance —£s) occurs if the bifurcating internal mode &f; becomes
between different gag4.3,34. Such resonances can result in embedded into the spectral band(eis). When it happens,
a resonant energy redistribution between the gaps and a foembedded internal modes bifurcate generally to complex ei-
mation of breathing structures, as was recently demonstrategenvalues\, leading to oscillatory instabilities of the gap
experimentally[6]. In this section, we present a systematic soliton ®4(x). Resonant bifurcations of complex eigenvalues
analysis of such instabilities and show that they appear whek occur generally at order d(e*).
a sideband associated with the intergap resonances falls out- Third, we show that the internal mode gf may occur
side a band gap. near the band edge of the inverted spectrurg-ay). In this

Oscillatory modes and instabilities are characterized byase, bifurcations of isolated, embedded, and complex eigen-
eigenvalues\ with a nonzero imaginary part of the stability values are all possible at the order@(fe*), depending on the
problem(41) for e#0. First, we show that new imaginary configuration of the spectral bands 6f and (-£,).
eigenvalues\ with decaying eigenvectoréu,w) bifurcate Finally, we show that at most one internal mode can bi-
from the band edges=i(uy,— u,) of the same polarity as the furcate from the band edge, which is closest to the zero ei-
band edgeus= u,,. Bifurcations of internal modes occur gen- genvalue. This bifurcation occurs generally at the order of
erally at the order o(€?), if um# u, These eigenvalues O(e?).

l T 1

-0.23 — —

i ————r->
-0.24 — - | |
-0.25—

B FIG. 5. Linear guided modes of operatG
= 026 in the s_emi-_infinite band gap for a gap soliton
T shown in Fig. 2d). Left: eigenvalues marked

i with dots (second and third ones are indistin-
027+ guishable within the picture scaleRight: corre-

L sponding mode profiles.
-0.28 —
-0.29 —
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We emphasize that bifurcations of other eigenvalues mapotential (26). There is at least one isolated eigenvalue if
not generally occur in higher orders @f since the band sgr(M;f)):sgr(ngr:):sgr(Qno_ In this case, the lowest eigen-

edges of the spectrum df; and £, with ®¢(x) #0 do not

value and eigenfunction of the problef&5) can be found

support resonances in a generic case. Bifurcations of otheixplicitly as

eigenvalues may occur far from the limi=0, when the
spectral bands of the linearized operator get additional reso-

nances at the band edges or in the interior points. Bif“rcawheresm solves the quadratic equation
tions of the existing eigenvalues may also occur far from the

limit e=0 if the existing eigenvalues coalesce with each

other or with the spectral bands.

A. Nonresonant bifurcations of internal modes

Let n be the index of the band edge=u, where the gap
soliton ®(x) bifurcates from. We consider a different band (-Lg) from the band edge=i(um—un). When Sg(w@)

edge of the stability problend1) with N =i(wm—u,), such

that m#n. We assume that theith band edge of the spec-
trum of Ly is located in a band gap of the inverted spectru
of (=L, such that Z,— um & 2pang Using the same pertur-
bation series expansiori48)—20), we expand solutions of

the stability problem(41) in the perturbation series:

U= Br(X) (%) + B (XD (x)+ €U (x,X) + O(e3),
(60)

W =i[Br(X) ¢hn(X) + eBL(X) U (0)+ WP (x, X) + O()],
(61)
and
A= il — st €Qm+ O(eh], (62)

where the second-order correction teniug) ,Wfﬁ)) solve the
nonhomogeneous system:

LSU%) + (us— :U*m)WEr%) = Bﬁq[lﬂm + 2(1,0%)),]"' QrBmihm

= 30AIBrifthm, (63)

LSWE? + (us— :U*m)uf'r%) = Bﬁq[lﬂm + 2(1,0%)),]"' QrBmihm
~ oA Bt (64)

U= ulg, By=sech(kX), (60
A X,
N

Isolated eigenvalueQ,, of the problem(65), when they ex-
ist, correspond to internal modasin the perturbation series
(62), bifurcating in the band gaps of the operatdls and
m
:—sgr(Xﬁ]), the linear problen{65) does not have any iso-
lated eigenvalues. Since s{g«ffg}):sgr(x(z)):sgr(cr), we no-

n

Mice that all band edgea=pu, that support bifurcations of

gap solitons in the nonlinear proble¢t?) support also bi-
furcations of internal modeks in the spectrum of a selected
nth gap soliton. In the focusing case=-1, all lower band
edges generate internal modeslownwards from the corre-
sponding band gaps, i.Qu,E?<O and(,,<0. In the defo-
cusing caseg=+1, all upper band edges generate internal
modes\ upwards from the corresponding band edges, i.e.,
p?>0 andQ,,>0.

It is surprising that more than one internal modeould
be generated near the band edgé (u,— u,). In the case of
no periodic potentiaV(x)=0, perturbations of NLS solitons
generate at most one internal mofet,38. On the other
hand, perturbations of gap solitons in the coupled-mode
equations may generate several internal modes and complex
eigenvalueg16,39. In the case of finite potential(x), the
number of internal modes depends on the depth of the
squared sech potential in the eigenvalue prohlésy, which
is determined by parameters of the band curvaturésand
,uﬁ? and by the nonlinearity coefficienl\éf) andxﬁf

B. Resonant bifurcations of complex eigenvalues

Under the constraint that2us—uy) ¢ 2pang the second- According to the general expressiof0), eigenvalues

order correctiongu'? ,w'?) are periodic or antiperiodic func- With a nonzero imaginary part describe soliton oscillations,
m’' "'m - . . .

tions ofx, when a single Fredholm condition is satisfied. TheWhich are associated with the appearance of two sideband

Fredholm condition takes the form of the eigenvalue prob-SPatial frequencieg+Im(\) andu—~Im()). Gap solitons are

lem for Q)
1B+ 2 AA(X)Bn ~ By =0, (65)

where

d

f SRR dx

0
XE\Zr:l:Ud—'

fgbfndx

0

(66)

spectrally stable for small values ef~ 0 with respect to a
particular resonant oscillation if both of the sidebands fall
inside the gaps of the linear spectrum, whereas an oscillatory
instability may arise when one sideband appears inside a
linear transmission ban{ll3,34. This general behavior is
illustrated in Fig. 6, where the real part of the eigenvalue is
nonzero indicating the presence of the oscillatory instability
when the lower sideband is inside the transmission band of
the inverted spectrum. However, the instability is suppressed
when the sideband moves inside the band gap. The instability
shown in Fig. 6 appears due to a resonant coupling between

We note that Eq(65) describes the linear modes supporteda gap soliton marked “d” in Fig. 2, and its own fundamental
by a soliton-induced waveguide in other gaps. The lineaguided mode in the first gap shown in Fig. 5. The character-
problem (65) is a Schrodinger equation with the solvable istic profiles of instability modes are presented in Fig. 7. The
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FIG. 8. Evolution of a soliton perturbed by a linear mode cor-
responding to Fig. 7.

guided modes, as shown in Figs. 9-11. One important differ-
ence is that the associated breathing states can have different
symmetries for various excited modes, cf. Figs. 8 and 11.

In mathematical terms, stability requires that all internal
modes detaching from the band edgesi(u,,—u,) reside
inside the band gaps of the inverted operdtef,), and the
zero eigenvalue of; shifts to small imaginary eigenvalues
N. When an internal mode is embedded into a spectral band
of the inverted operatof-L), oscillatory instability of the
gap soliton®d,(x) may arise for small values af# 0. Em-

FIG. 6. Eigenvalues corresponding to a resonance of a gap soleqded imaginary eigenvaluksare known to be structurally

ton (marked “d” in Fig. 2 with its fundamental guided mode in the
semi-infinite band gap. Small oscillations in (Rg are due to nu-

merical error.

top row shows the perturbatian+iw, which corresponds to

higher spatial frequency +Im(\) according to Eq(40), and

we indeed see that this mode closely matches the guideghs the opposite energy signature with respect to the energy
mode profile(cf. Fig. 5 in agreement with the asymptotic signature of the inverted spectral bapeE 2~ tm € Sband
expressiong60) and(61). On the other hand, the bottom row such that\ =i(umy— up) =i(un— ). Therefore all embedded

of Fig. 7 shows the low-frequency component, which de-imaginary eigenvalues in the linearized stability problem
scribes the radiation waves emitted by the soliton wjen (41) are expected to bifurcate to complex eigenvalués a
—Im(\) is inside the transmission band. The long-lived os-generic case.

cillating, or breathing, states are shown in Fig. 8. Similar

unstable with respect to small perturbations and, provided
that their energy is opposite with respect to the energy den-
sity of the spectral band, they bifurcate into complex eigen-
valuesh [40]. By construction, resonance of internal modes
of Lg with spectral bands of-L) is only possible if the
internal mode, detaching from the band edgei (um—us),

We prove in Appendix C that, provided that,=2u,

effects may occur due to a resonance with higher-ordefr uy, e 2p.ng We have

FIG. 7. Profiles of linear
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FIG. 11. Evolution of a soliton perturbed by a linear mode cor-
responding to Fig. 10.
<L edge\=i(uy,—u, are located in the neighborhood of the
& i ’ band edge\ =i(u,— w,) of the inverted spectrum. We assume
here thatu,, w. and us satisfy the resonance condition
within the mismatch of orde®(e):
0 L I L Mmt i~ 2ps = €2mG- (70)
-0.75 0.7 -0.65 i ) )
" In this marginal case, we expand the eigenvaluand the

eigenfunction(u,w) of the linearized stability problert4l)
FIG. 9. Eigenvalues corresponding to a resonance of a gap solin the modified perturbation series,

ton (marked “d” in Fig. 3 with its higher-order guided mode in the © @ @ 3
semi-infinite band gap. U = U X) + el X)+ €U, X) + O(€%),  (71)

Re(\) = €T, +O(®), TI,,=0, (69) w=i[wx; X) + ewlh(x; X)+ EwW2(x; X) + O(})],

where\ is the eigenvalue of the bifurcating internal mode, (72)

given by Eq.(62). In a generic case, wheln,# 0, the em- ;4
bedded imaginary eigenvalue bifurcates to the unstable
domain Ré\)>0 and leads to oscillatory instabilities of the N =il — pst €Qmct+ O(eh], (73

gap soliton®y(x). where

C. Marginal bifurcations of internal modes and complex 0 _
eigenvalues Uk =

A marginal case between nonresonant and resonant bifur-
cations occurs when internal modes detaching from the band

Bm(x) (/fm(x) + Ck(x) (/fk(x) ’

u =B Y (x) + CLX) e (9,
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'0'15_0 l 0 l 40 40 ' 0 ' 40 FIG. 10. Profiles of linear
0.002 ' I ' ' I ' modes corresponding to a reso-
nance in Fig. 9.
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W= BrX) (%) = COO (%),

Wik = BR(X) i (%) = CLX) Y (x)
The second-order correction ter Zl)(,wf“)() solve the sys-
tem:

LU (pts= W= F?,

LWNE A+ (ps— p)UZp=G?, (74)

where
F@ =Bl g+ 23 1+ Clthe + 204) ' 1+ Qo Brnidim
- Cuthd) = Vil = 30AYE(Brthin + Cithid)

G@ =Bl thm+ 2" 1= Cllth+ 2(4P)' 1+ Qi Bt
+ Cth) + vmiCuthc — FARUA(Brmifm — Cuthh) -

Because of the resonance conditigf0), the second-order
are periodic or antiperiodic functions
of x if two Fredholm conditions are satisfied. The two Fred-
holm conditions take the form of a coupled eigenvalue pro

(2

mk?’

w?

corrections(u -, W,

lem for Q.
i B+ AL (2Xim1Bim * XeiC = QB

2T+ AAX) (X GBm + 2X50C) = = (Wit Qi C,
(75)

where)(fr:1 is defined in Eq(66), while )(ffn)w is defined as

d
f TN
@0
Xnmk= O d .
fzﬂrzndx
0

The coupled eigenvalue problefm5) is not self-adjoint and
therefore the eigenvalug3,,, could be complex-valued.

(76)

PHYSICAL REVIEW E 70, 036618(2004)

the spectral band in the compon&jt The embedded eigen-
values(, bifurcate as complex eigenvalugs,, due to the
Fermi golden rule as if40Q].

In the case of,u(k2)>0, the second equatio(v5) with
B,,=0 has at least one internal mode g+, <0, while
the spectral band is located above the valdig.=—v.
When v, <-1, all internal modes in the componeBy, for
Q>0 and those in the compone@f for v+ Q<0 are
located in the gap between the two spectral bands. The inter-
nal modes in the componeBt, are not affected by the spec-
tral band in the compone®@,, sinceC, is small according to
the expansiori77). On the other hand, the internal modes in
the componen€, are not affected by the spectral band in the
componentB,,, since the following estimate holds for finite
(Qpit v and largeQ

(2)
1
B,, = X0mka2(x)C, + o(—z ) .
mk Q

Q mk (78)

When the valuey,, increases and becomes positive, the gap
between spectral bands disappear and all internal modes in
the component®8,, and C, coalesce or become embedded

b_into overlapping spectral bands. In the first case, internal

modes(),,,, bifurcate as complex eigenvaluék, due to the
Hamiltonian Hopf bifurcation. In the second case, internal
modes(),, bifurcate as complex eigenvalu€s, due to the
Fermi golden rule. Again, we have oscillatory instabilities of
the gap solitorb4(x), emerging from all bifurcating internal
modes ofL in resonance with the spectral band<-ef) or
vice verse.

D. Internal modes nearA=0

The coupled eigenvalue problaimb) is derived under the
resonance conditio(70) between two band edges of opera-
tors L and (—Lg). The resonance conditiofY0) is always
satisfied forum,= w= un andvy=—2A,, when the band edge
N=i(wm—mn) =0 of the stability probleng41) coincides with
the band edges= u,, of the gap solitonP(x) andA,, is used
in Eq.(18). In this case, the coupled eigenvalue probl&i%)

We assume that sgn,})=sgr(x;n) such that the first gescribes the transformation of the spectrum of the problem
equation(75) with C,=0 has at least one internal mode for (41) at e+ 0, when a narrow spectral gap appears in the
sgr Q) =sgr(u'?). For convenience, we consider here thespectrum of the probler@41) near the origir =0.
defocusing caser=1, when Xffr:]>0 and ,uf?>0. In this We showed in Sec. VIl that a pair of real or purely imagi-
case, the internal mode of the first equatigth) with C,  nary eigenvalues bifurcate fron=0 due to the broken trans-
=0 exists for(Q),,,>0, while the spectral band is located for lational invariance. We will show here that another pair of
negative values of),,. There are two particular cases, de- internal modes may bifurcate inside the same gap from the
pending on whethepf(z)>0 or,uf(z)<0. band edges. Contrary to the former bifurcation, which is ex-

In the case,u(k2><0, the second equatiofv5) with B,,  Pponentially small ine, the latter bifurcation occurs generally
=0 does not have any internal modes, while the spectrdn the order ofO(e*).
band is located below the valu&,=< -vm. Whenvy,>1, For the casqiy,=u=un and v =—24,, the systen(75)
internal modes in the componef, for Q,,>0 are not can be simplified due to the obvious reductiqzﬁEM(kz)

affected by the spectral band in the compor@ptsince the = Mf) and Xﬁ]: ka): ngr;k: Xﬁm: XE]Z)- Using the variables
following estimate holds for finité€),, and largev,, }
u,=Bn+C,, WwW,=i(B,-Cy, (79
2 1
C = - “™MAZ(X)B,, + o(7> : (77)  and
Vmk Vmk
AV =i Q- Ay, (80)

When the value ol decreases and becomes negative, all
internal modes in the componeBt, become embedded into we transform the probler5) to the form:
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L= -\, £Pw, =Ny, (81)  smooth arbitrary-shaped periodic potentials. Although our
numerical examples have been presented for the specific case
where 5(1”) and [,f)”) are linear Schrodinger operators with of the sinusoidal potential, we expect that our main results
decaying potentials: can be applied to other types of periodic potentials.

2
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associated to the sech-solito(®6). The problem has two

branches of the continuous SpeCtrUm fﬁfn)ei(—%, APPENDIX A: NUMERICAL METHOD FOR

~|An[) Ui(JAn], ), the four-dimensional null space™=0, CALCULATION OF EIGENVALUES

and the resonance at the band edy®&= +i|A,|. A small . _ .
perturbation of the decaying potentials in the problest) Eigenvalues of the spectral proble@il) provide key in-

may result in the edge bifurcation of a single pair of internalformation about the soliton stability. However, an accurate
modes\(W=+iQ™ such thatd)™ <|A,|, provided a certain Numerical calculation of complex eigenvalues describing os-

integral criterion is satisfiefL5,39. cillatory instabilities of gap solitons is a nontrivial problem

It was shown[14,34 that the discrete NLS equation with €ven in the case of a simpler system of coupled-mode equa-
a small lattice step size supports bifurcations of a single paifions [41-43. The reason for numerical difficulties is that
of internal modes from the band edges beyond the linearize@lifferent components of eigenvectors have very different lo-
NLS problem(81). In order to study these bifurcations, we calization Wld_ths. For example, the modes shown in the k_)ot-
would have to extend perturbation series expansionfom part of Figs. 7 and 10 are much broader than the soliton
(71)~(73) to the next orders and derive tkée?) corrections ~ Width, while the modes shown in the top part of Figs. 7 and
to the linearized NLS probler(81). This work goes beyond 10 have comparable width. Numerical approaches used in a
the scope of the present paper. We only note that there is A/mber of earlier studieigtl-43 were based on the discreti-

most one pair of internal modes bifurcating in the narrowZation of Eq.(41), however, an accurate description of
gap nean =0. weakly localized modes requires the use of impractically

wide computational windows. It was suggested that the ei-
genvalues can be calculated approximately, and then im-
IX. CONCLUSIONS proved using a special iterative proceduy#2,43. In our
We have presented a systematic analysis of the existenc%nalyS'S’ we avoid such problems by using a dlff_erent ap-
bifurcations, linear stability, and internal modesgap soli- proach based on the Ev_ans funct|o_n form_ahsm. Th|.s.rlnethod
tonsin the framework of the nonlinear Schrodinger equationproyed. to be very effective for tracing soliton instabilities in
with a periodic potential. This model or its generalizationsper'c.)dIC system$44]. .
appear in a variety of physical applications including low- . First, we reformu.late tbe s_pectral pioblg(ml) using a
dimensional photonic crystals, arrays of coupled nonlineafj'fferent set of function®)=u+iw andW=u-iw,
optical waveguides, optically induced photonic lattices, and g2y

Bose-Einstein condensates loaded onto an optical lattice. In = —— + V(XU + g®Z(x)(2U + W) = (us+iM)U,

the framework of this model, we have classified branches of

gap solitons bifurcating from the band edges of the Floquet- 5

Bloch spectrum by means of the multiscale perturbation se- _ =, yjx)w+ cD2(X)(2W+U) = (us—iINW. (A1)

ries expansion method. We have demonstrated that gap soli- d

tons can appear near all lower or upper band edges of thJFhe advantage of this formulation for the numerical analysis
spectrum for focusing or defocusing nonlinearity, respec- that Eqgs.(A1) become uncoupled away from the soliton

. : 2 i
tlvel)'/.. We have Stl',ldled.the gap-soliton internal modes an%sore asx| —o. In these regions, solutions of Eqé1) are
stability of gap solitons in the framework of the continuous ound in terms of Bloch functions, and they form a natural

model with a periodic potential. We have demonstrated th ; - : :
the gap-soliton stability is determined by the broken transla- asis for representation of solutions along the whole fine,

tional invariance, as well as the location of internal modes U(x) = Uy(X) 41 + Uo(X) 5,

with respect to the spectral bands of the linearized spectrum.

We have shown analytically and numerically that complex WX = W- () & + Wo(X) A2
eigenvalues of the stability problem correspond to oscillatory ) 1093 202 (A2)
instabilities of gap solitons. where l/fiz(x) are two linearly independent Bloch functions,

The analytical results presented above are rather generdgund as solutions of Eq4) with w=us+iN and U, , and
and they are expected to be valid for different types ofWw, , are unknown parameters. By using the method of varia-
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tion of parameters, we set the constraintstbr, andW,

dU_ dz,lfl d(//z

=0

dw diy,

g T W0 2 wm%. (A3)

After substituting Eqs(A2) and (A3) into Eq.(Al), we ob-
tain a set of first-order linear differential equations for the
amplitude functiondJ;(x) andWj(x), j=1,2, asfollows:

i - - Diew2n

x (2U + W)y /D7,

aw, _

ol 1IeDZ(x)(2W+ U) /D",

(A4)

where the Wronskian determinantsD*=y;(dys;/dx)
- 5(dy;/dx) are independent of [45], Sec. 1.6. Whereas
Eqgs. (A4) are fully equivalent to the original eigenvalue

problem, they are much better suited for numerical analysis

sinceU, , and W, , only change in the region of the soliton

core, Wherel)z(x) is nonsmall. The key advantage is that the
required size of the computational window is defined by the
soliton width, and does not depend on the localization o
linear modes.

We seek spatially localized eigenmodes, which can exist

when the Bloch functiong/ ,(x) have complex Bloch wave
numbersk(u), and according to Eq6), one of the Bloch

functions is exponentially growing whereas the other one is

decaying. We assume, with no loss of generality, {4t
—0 atx— +. Then, a localized mode can form when si-
multaneously

lim (Uy,W,) =0,

X—+

lim (Ul!Wl) =0.

X——00

(A5)

In order to satisfy the limit§A5), the following determinant
must vanish:

UT () U0 U,(x) U0
Us,00 Uz, Uz (0 Ugy(x)
W, (%) W, (%) Wy (%) Wi ,(%)
W5 (0 Wo () W5, () Wa,(X)

EN)=D 0,

(A6)

where four particular solutions of Eq6A4) are introduced
according to the limiting behavior:

Uy 1 Ulw 0
+ +
0 u 0
lim | “2Y f= _f, dim| 2 =],
X400 1u 0 X450 VVI’W 1
WS, 0 W5, 0
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Ulu 0 UI,W 0
o e jim | 2o 2| ©
X——00 WI,IJ 0 ' X——00 l,W 0
Wou 0 Wo 1

Then, solution of Eqs(A4) satisfying the boundary condi-
tlons (A5) are found adJ;= puUJ o+ PuUjy, and Wi=piW,,
+pu Wi, Where (py, py,py, 00" IS @n elgenvector corre-
sponding to a zero eigenvalue of the matrix in E46).
The coordinatex in Eq. (A6) is arbitrary, but for numeri-
cal calculations a better accuracy is achieved when it is cho-
sen at the soliton centex=x,. The function&(\) is called
the Evans function, and its zeros define the location of eigen-
values. We approximate zeros 6f\) by finding minima
|E(\)| along the real axis and along the imaginary axis with a
small real part, and then using a two-dimensional minimiza-
tion procedure in the full complex plane.

APPENDIX B: DERIVATION OF Eq. (49)

We rewrite the derivative equatiq28) in the equivalent
form:

D [(x; X)
axX

I D (x;X) N
X

Ly €L, -V (x)®(x;X). (B1)

Using the inner product50), we reduce Eq(B1l) to the

er

Lax
- f ’ V' (X)P (x; X)

Tquadratlc forms:

od
Yox

Jd,
c

Jd,
1 E
aX

ax’

|

D (x;X)
——dx
X

(B2)

Using the Fourier serig@4), Fourier transforn{36), and the
expansion37), we reduce the right-hand-side of E§2) to
the form,

—eBJ V' (0D (x X)‘”’(X ) ix
€ ” 27im - 2mm 2mimyy 1
e an(? ) a7 oM.

(B3)

On the other hand, the first term in the left-hand side of Eq.
(B2) is identically zero:
o

(12 12,

L X
which is proved from the nonlinear probleih7) as follows:

ab, 9D,
IX T ax

X (B4)

I, Ib, 9 |ID, 3
IX 1 aX - (9X|: 9 5+V(X)q)e qu)e+gézq)e]:|
PD, ,
T Pt VNP~ b+ D]
=0. (B5)
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The quadratic form i{B2) is therefore rewritten in the final
form (49).

APPENDIX C: DERIVATION OF Eq. (69)

We extend the perturbation series expansi@®—62) to
the higher orders in powers ef Solving the systeni63) and
(64) for the second-order correction tern@sﬁ),wﬁ)), we
write the solution in the implicit form,

U@ = BL(X) 2 (x) + 2A2)Br(X) 42 (x)

+ A2(X)Br(X) M2 (x), (C1)
W2 = BI(X) 2 (x) + 2A2(X)Br(X) 42 (x)
= AX(X)B(X) o2 (x), (C2

where ¢/2(x) is defined in Eq.(14), while ¢"?(x) and
(nl2)
¢ (x) solve the nonhomogeneous problems,
= ()" + VU = s’ = Xeotthn = T,
(C3

— (BI2) "+ V(X) G2 + (s = 20 2 = = Y.
(C4)

The first equatiorfC3) defines periodic or antiperiodic func-

tions zpﬁ]':f)(x), since the Fredholm condition is satisfied by

the relation(66). The second equatiait4) defines a nonpe-

riodic function ¢${:]'12)(x), since u, € Spang Where w, =2uq

- um We use the Sommerfeld radiation boundary conditiong!

for function ¢f1’::12)(x) in the ends of the period e [0,d]:
(Sim?)' () =ik, B (d) =0,

(B (0) +ik B (0) =0, (C5)
wherek, =k(u,) and the dispersion relatiddu) is defined in

the Bloch functiong(6). The Sommerfeld boundary condi-

tions (C5) imply that the time-dependent solutioh(x,t) of
the NLS equatioril) linearized at the gap solitofr(x)e™#st
takes the form of outgoing radiative wavé® directed out-
wards from the perioc € [0,d]:

a,(X) gy (x)ghrie,
a_(X) o(x)e e,

X—d”
X — 0",
(Co)

W(x,t) — Dy(x)e st — {

where a,(X) are amplitudes of the radiative waves. The
Sommerfeld boundary conditions were used recently for em-

PHYSICAL REVIEW E70, 036618(2004)

complex-valued. The complex-valued functio@ﬁ'ﬂz)(x) re-
sult in complex-valued corrections to imaginary eigenvalues
\ in higher orders of the perturbation series expang&).
In order to avoid a lengthy analysis of the perturbation series
equations at the third and fourth ordersefnd to capture
the nonzero real part of complex eigenvalugsve rewrite
the linearized stability problert4l) in the form of the bal-
ance equation:

du du_ dw dw_)

()\+f)(uW—UW)—i(u———u+w———w
~dx\ dx dx dx dx /

(C7)
Using perturbation series expansioi)—62), we rewrite

Eq. (C7) in variablesx and X. The first nonzero term occurs
at the fourth order ot and takes the form:

9 Qy(x; X)
d

- 4i Re(\)B2(X)y2(x) = €* +0(e%), (C8

where the fourth-order correction termQu(x;X)
:Qgper)(x;X)+QE‘”p)(x;X) is decomposed in a periodic func-
tion of x and a nonperiodic function of, the latter is given
by
M (x; X) = u@(W?) -u2(u2)" + w2Ww?2) - w2 (w2)’ .
(C9)
The prime in Eq(C9) denotes the derivative i Integrating
Eq. (C8) over the periodk € [0,d] and over the real line of
X, and using the explicit representatiofl) and (C2) for
E?(X;X) and wﬁﬁ)(x;X), we rewrite the balance equations
(C8) and(C9) in the form:

— 4 ReO\)( f; Bédx>< f: wﬁqu>

-2¢( [ oo ey

(C10

Using the Sommerfeld boundary conditiof@35), we finally
derive the expansio(69), where

f AlBZdX
f BZdX

_ 7]%2)(¢(nl2))r]|§zg + 0(65).

nm

k(|2 (0)|2 + | 452 (d)[?)

d
f YAdx
0

=

T,=

(C1))

bedded soliton$46]. Since the Sommerfeld boundary condi- The formula(C11) is referred to as the Fermi golden rule of

tions (C5) are not symmetric, the function¢ﬁ”rL2)(x) are

radiative decay of embedded eigenval{#¥8,46.
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