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Abstract

We address the existence of traveling single-humped localized solutions in the spatially discrete nonlinear Schrödinger (NLS) equation. A
mathematical technique is developed for analysis of persistence of these solutions from a certain limit in which the dispersion relation of
linear waves contains a triple zero. The technique is based on using the Implicit Function Theorem for solution of an appropriate differential
advance–delay equation in exponentially weighted spaces. The resulting Melnikov calculation relies on a number of assumptions on the spectrum
of the linearization around the pulse, which are checked numerically. We apply the technique to the so-called Salerno model and the translationally
invariant discrete NLS equation with a cubic nonlinearity. We show that the traveling solutions terminate in the Salerno model whereas they
generally persist in the translationally invariant NLS lattice as a one-parameter family of solutions. These results are found to be in a close
correspondence with numerical approximations of traveling solutions with zero radiation tails. Analysis of persistence also predicts the spectral
stability of the one-parameter family of traveling solutions under time evolution of the discrete NLS equation.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years there has been considerable interest in finding so-called intrinsic localized modes of nonlinear lattice equations
in one spatial dimension; see e.g. the focus issue [7]. A particularly delicate question is whether such excitations can be made to
move without shedding any radiation. The general answer is that they cannot, due to the presence of the so-called Peierls–Nabarro
barrier, which comes about because of the loss of spatial translation symmetry, and the consequent existence of localized modes
only for certain fixed locations on the lattice. For example, in the context of discrete nonlinear Schrödinger equations with pure
cubic onsite nonlinearity, it is known that site centered localized modes are always stable and intersite localized modes are always
unstable [12]. These intersite modes are only stabilized in the continuum limit, therefore excluding the possibility of genuine
traveling localized solitary waves as traveling waves would quickly become pinned to a lattice site. However, if we are not restricted
to purely onsite cubic terms but are instead free to choose more general discretizations of the nonlinear term in the NLS equation
then both intersite and onsite localized modes can be neutrally stable leading to the possibility of finding truly localized traveling
waves [17]. Such translationally invariant lattices have also been found in the presence of saturable nonlinearity [14], where moving
localized modes were approximated numerically, for a discrete set of wave speeds that were sufficiently large. Such solutions have
also been prescribed in the saturable model in the small amplitude limit, by computing the Stokes constant associated with the
beyond all orders expansions for splitting of stable and unstable separatrices [15].
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The present paper addresses models that reduce in the continuum limit to the usual one-dimensional nonlinear Schrödinger
equation with pure cubic nonlinearity. Specifically we consider

iu̇n +
un+1 − 2un + un−1

h2 + f (un−1, un, un+1) = 0, n ∈ Z, t ∈ R, (1.1)

where h is the lattice spacing and f (un−1, un, un−1) is represented by the ten-parameter family

f = α1|un|
2un + α2|un|

2(un+1 + un−1) + α3u2
n(ūn+1 + ūn−1) + α4(|un+1|

2
+ |un−1|

2)un

+ α5(ūn+1un−1 + un+1ūn−1)un + α6(u2
n+1 + u2

n−1)ūn + α7un+1un−1ūn

+ α8(|un+1|
2un+1 + |un−1|

2un−1) + α9(u2
n+1ūn−1 + u2

n−1ūn+1) + α10(|un+1|
2un−1 + |un−1|

2un+1). (1.2)

Note in particular that f contains all possible cubic terms that reduce to u|u|
2 in the continuum limit, while retaining spatial

reversibility under n → −n and gauge invariance under un → eiθ un for any θ ∈ R.
When α1 = 2(1 − α2), α2 ∈ R, and α j = 0 for 3 ≤ j ≤ 10, the nonlinear function (1.2) reduces to the Salerno model [21]

f = 2(1 − α2)|un|
2un + α2|un|

2(un+1 + un−1), (1.3)

which is a linear interpolation between the cubic dNLS model (α2 = 0) and the Ablowitz–Ladik (AL) model (α2 = 1). Stationary
solutions of the Salerno model (1.3) were reviewed in [6,9].

Another interesting model is defined by the nonlinear function (1.2) with

α1 = α4 + α6, α5 = α6, α7 = α4 − α6, α10 = α8 − α9, (1.4)

where parameters (α2, α3, α4, α6, α8, α0) are arbitrary. This model was derived in [5,17] from the condition that the momentum
M = i

∑
n∈Z ūnun+1 is conserved in the time evolution of the discrete NLS equation (1.1). Stationary solutions of the model

(1.4) were reviewed in [17] where it was found that the single-humped localized solution un(t) = φneiωt with φn : Z 7→ R can be
interpolated into a continuous (translationally invariant) function φ(z) : R 7→ C(R) with φ(hn) = φn for any ω > 0 and sufficiently
small h. The continuous function φ(z) solves a relevant advance–delay equation and it represents a continuous deformation between
onsite and intersite localized modes.

The purpose of this paper is to consider existence of traveling solutions of the form

un(t) = φ(hn − 2ct)eiωt , φ : R 7→ C, (1.5)

where ω is temporal frequency and c the velocity of traveling solutions, in particular we are interested in traveling localized modes
for which φ(z) → 0 as z = hn − 2ct → ±∞. Direct substitution of (1.5) into the discrete NLS equation (1.1) shows that the
function φ(z) solves the differential advance–delay equation

2icφ′(z) =
φ(z + h) − 2φ(z) + φ(z − h)

h2 − ωφ(z) + f (φ(z − h), φ(z), φ(z + h)), z ∈ R. (1.6)

Hence we are looking for localized solutions φ ∈ H1(R) of the differential advance–delay equation (1.6) that are single-humped,
similar to the sech solitons of the continuous NLS equation. Besides parameters of the nonlinear function f and the lattice
spacing parameter h, the solution φ(z) of the differential advance–delay equation (1.6) has two “internal” parameters ω and c.
It is convenient to replace (ω, c) by new parameters (κ, β) according to the parametrization

ω =
2
h

βc +
2
h2 (cos β cosh(κ) − 1), c =

1
hκ

sin β sinh(κ) (1.7)

and to transform the variables (z, φ(z)) to new variables (Z ,Φ(Z)), where

φ(z) =
1
h
Φ(Z)eiβZ , Z =

z
h

. (1.8)

As a result, the new function Φ(Z) satisfies the differential advance–delay equation

2i sin β
sinh κ

κ

dΦ
dZ

+ 2 cos β cosh κΦ = Φ+eiβ
+ Φ−e−iβ

+ f (Φ−e−iβ ,Φ,Φ+eiβ), Z ∈ R, (1.9)

where the lattice spacing h has been scaled out and Φ± = Φ(Z ± 1). Bifurcations of traveling wave solutions in the differential
advance–delay equation (1.9) at the point κ = 0 and β =

π
2 were studied in [17,18], where a third-order ODE was obtained as a

normal form reduction (see also the related paper [10]). The third-order equation is derived in Appendix A for reader’s convenience
by using a formal expansion of the solution Φ(Z) in powers of κ along the line β =

π
2 . The relevant third-order ODE has a local
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cubic term |Φ|
2Φ, unless parameters of the nonlinear function (1.2) satisfy the constraint

α1 + 2α4 − 2α5 − 2α6 + α7 = 0. (1.10)

Such a third-order ODE with a local cubic term |Φ|
2Φ does not support existence of single-humped localized solutions, due to

the presence of oscillatory tails [8]. Hence we should expect that traveling single-humped localized solutions of the differential
advance–delay equation (1.9) exist near the point κ = 0 and β =

π
2 only if the constraint (1.10) is satisfied. Under this condition,

the third-order ODE has two cubic terms with first-order derivatives, namely |Φ|
2Φ′ and Φ2Φ̄′, which generally do support the

existence of non-trivial single-humped localized solutions [17].1 Furthermore, according to the review in [17], if α2+2α8−2α9 6= 0
and

either α3 − α8 − α9 + α10 = 0 or α2 + 3α3 − α8 − 5α9 + 3α10 = 0, (1.11)

the relevant third-order ODE reduces to the integrable Hirota or Sasa–Satsuma equations respectively which admit two-parameter
families of traveling solutions in (κ, β). If the constraints (1.11) are violated but α2 −α3 +3α8 −α9 −α10 > 0, the third-order ODE
has a one-parameter family of solutions along the line β =

π
2 for small κ > 0. Persistence of two-parameter and one-parameter

families of solutions beyond the third-order ODE was left open in [17].
A similar problem of persistence of two-parameter family of traveling solution of the AL lattice was considered recently in [2].

The authors applied the necessary condition for persistence of homoclinic orbits given by the Melnikov integral to the Salerno model
(1.3) and other reversible perturbations of the AL model and found that the Melnikov integrals were identically zero to leading-order
approximation. As a result, this method failed to settle the persistence question for the two-parameter family of traveling solutions
of the AL lattice extended into a general discrete NLS equations (1.1) and (1.2).

We shall study here persistence of solutions of the differential advance–delay equation (1.9) near β =
π
2 for finite (not necessary

small) values of κ > 0. Assuming that there exists a one-parameter family of traveling solutions on the line β =
π
2 for some

parameter configurations of the nonlinear function (1.2), we shall find the sufficient conditions for persistence or termination of
this solution family with respect to parameter continuations. The analysis that leads to the persistence result also predicts spectral
stability of the solution family with respect to time evolution of the discrete NLS equation (1.1). The point β =

π
2 is rather special

in analysis of the differential advance–delay equation (1.6) since the center manifold of a dynamical system has a multiple zero
eigenvalue and no other eigenvalues [18].

As a starting point for our analysis we shall take the one-parameter family of exact traveling solutions known analytically for the
case (α2, α3) ∈ R2 with α2 > α3 and α j = 0 for j = 1 and 4 ≤ j ≤ 10 [17]:

Φ(Z) =
sinh κ

√
α2 − α3

sech(κ Z). (1.12)

One can check by direct substitution that the function (1.12) solves the differential advance–delay equation (1.9) for κ > 0 and
β =

π
2 . It was shown in [13] that the exact sech-solution of the discrete NLS equation (1.1) with (1.2) exists if α1 = α8 = 0 subject

to three more relations on parameters α j and (β, κ). We checked that none of these exact solutions exist for the models (1.3) and
(1.4), except for the case α2 > α3 6= 0, when the exact solution is given by the expression (1.12). Therefore, this model is used as
the main example for explicit computations of the Melnikov integral.

In this paper, we shall prove that the one-parameter family (1.12) persists generally for α3 6= 0 with respect to parameter
continuations. In particular, the family remains on the straight line β =

π
2 if α1 = 0, α4 = α6, and α7 = 2α5 and shifts to a local

neighborhood of this line if these constraints are not met. We shall also prove that the one-parameter family (1.12) with α3 = 0
does not persist generally with respect to parameter continuations unless α1 = 0, α4 = α6, and α7 = 2α5. In particular, it does not
persist in the Salerno model (1.3) for α2 6= 1. These results show that the traveling solutions of the AL lattice2 are, in this sense,
less structurally stable than the traveling solutions of a non-integrable discrete NLS equation.

Our analytical results are illustrated with the numerical studies of the Salerno model (1.3) and the translationally invariant lattice
(1.4). We will show that the Salerno model has no traveling solutions near β =

π
2 for α2 6= 1, while the translationally invariant

lattice has generally a one-parameter family of traveling solutions near β =
π
2 for α3 6= 0.

The paper is structured as follows. Section 2 formalizes the differential advance–delay equation (1.9) as a system of two real-
valued equations for real-valued functions. Section 3 describes analysis of linearized operators associated with the differential
advance–delay equations. Section 4 reports analytical results on persistence of the one-parameter family of traveling solutions.
Section 5 discusses spectral stability of the one-parameter family of traveling solutions. Section 6 presents relevant numerical
approximations of localized solutions of the differential advance–delay equation (1.9) which confirms the theory but also uncovers
several avenues for future work. Section 7 summarizes main results of our paper. Appendix A contains formal results on reductions

1 Moreover, when the left-hand side of the constraint (1.10) is small, the local cubic term |Φ|
2Φ can be brought into a balance with the other two cubic terms so

that the resulting ODE still admits non-trivial single-humped localized solutions [19].
2 The one-parameter family (1.12) is a part of a two-parameter family of exact solutions in the AL lattice.
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of the differential advance–delay equation (1.9) and associated linearized operators to the third-order ODE and the associated third-
order derivative operators. Appendix B contains perturbation results on bifurcations of resonant poles in the linearized differential
advance–delay operators.

2. Formulation of the problem

We shall start by rewriting the differential advance–delay equation (1.9) in a convenient form, which will be suitable for
separation of the real and imaginary parts in the solution Φ(Z). To this end, we obtain

cos β(Φ+ + Φ− − 2 cosh κΦ) + i sin β

(
Φ+ − Φ− − 2

sinh κ

κ

dΦ
dZ

)
+ fr + i fi = 0, (2.1)

where

fr = α1|Φ|
2Φ + α2 cos β|Φ|

2(Φ+ + Φ−) + α3 cos βΦ2(Φ̄+ + Φ̄−) + α4(|Φ+|
2
+ |Φ−|

2)Φ
+ α5 cos(2β)(Φ̄+Φ− + Φ+Φ̄−)Φ + α6 cos(2β)(Φ2

+ + Φ2
−)Φ̄ + α7Φ+Φ−Φ̄

+ α8 cos β(|Φ+|
2Φ+ + |Φ−|

2Φ−) + α9 cos(3β)(Φ2
+Φ̄− + Φ2

−Φ̄+) + α10 cos β(|Φ+|
2Φ− + |Φ−|

2Φ+)

and

fi = α2 sin β|Φ|
2(Φ+ − Φ−) − α3 sin βΦ2(Φ̄+ − Φ̄−) − α5 sin(2β)(Φ̄+Φ− − Φ+Φ̄−)Φ

+ α6 sin(2β)(Φ2
+ − Φ2

−)Φ̄ + α8 sin β(|Φ+|
2Φ+ − |Φ−|

2Φ−) + α9 sin(3β)(Φ2
+Φ̄− − Φ2

−Φ̄+)

− α10 sin β(|Φ+|
2Φ− − |Φ−|

2Φ+).

The complex-valued differential advance–delay equation (2.1) at β =
π
2 can be reduced to the scalar equation for real-valued

functions Φ ∈ R provided that

α1 = 0, α4 = α6, α7 = 2α5. (2.2)

In this case, the system (2.1) is replaced by the scalar equation

2
sinh κ

κ

dΦ
dZ

= [1 + (α2 − α3)Φ2
+ α8(Φ2

+ + Φ+Φ− + Φ2
−) − (α9 + α10)Φ+Φ−](Φ+ − Φ−). (2.3)

We shall add an assumption about existence of non-trivial solutions in the scalar equation (2.3), which allows us to pose two main
questions on persistence of these solutions.

Assumption 2.1. There exists a parameter configuration in (α2, α3, α8, α9, α10) such that the differential advance–delay equation
(2.3) has a single-humped solution Φ0(Z) for any κ > 0 with the property

Φ0 ∈ H1(R) : Φ0(−Z) = Φ0(Z), lim
|Z |→∞

eκ|Z |Φ0(Z) = c0 (2.4)

for some 0 < c0 < ∞.

Remark 2.2. Due to translational invariance of the differential advance–delay equation, the family of even solutions Φ0(Z) can be
extended into a one-parameter family Φ0(Z − s), ∀s ∈ R. It is however convenient for the persistence analysis to set s = 0 in the
rest of the article.

Example 2.3. When α8 = α9 = α10 = 0, the single-humped localized solution Φ0(Z) of the scalar equation (2.3) is known in the
analytic form (1.12) for any κ > 0 and α2 > α3.

Question 2.4. Is the solution Φ0(Z) structurally stable in the scalar equation (2.3) with respect to parameter continuations in
(α2, α3, α8, α9, α10)?

Question 2.5. Is the one-parameter family of solutions Φ0(Z) structurally stable in the system (2.1) near β =
π
2 with respect to

parameter continuations in (α1, . . . , α10)?

We shall answer these questions by using the Implicit Function Theorem for the differential advance–delay equations (2.1) and
(2.3) in a local neighborhood of the point Φ0 in function space H1(R). To do so, we define the Frechet derivative of the system
(2.1) at β =

π
2 and Φ = Φ0 for any κ > 0. When α j = 0 for j = 1 and 4 ≤ j ≤ 7, the Frechet derivative diagonalizes into two
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linearized operators for real and imaginary parts of the perturbation to the solution Φ0(Z):

L+ = −2
sinh κ

κ

d
dZ

+ [1 + (α2 − α3)Φ2
− 2(α9 + α10)Φ+Φ−](δ+ − δ−)

+ 2(α2 − α3)Φ(Φ+ − Φ−) + 3α8(Φ2
+δ+ − Φ2

−δ−) − (α9 + α10)(Φ2
+δ− − Φ2

−δ+) (2.5)

and

L− = −2
sinh κ

κ

d
dZ

+ [1 + (α2 + α3)Φ2
− 2α9Φ+Φ−](δ+ − δ−) − 2α3Φ(Φ+ − Φ−)

+ α8(Φ2
+δ+ − Φ2

−δ−) + (α9 − α10)(Φ2
+δ− − Φ2

−δ+), (2.6)

where operators δ± act on a continuous function U (Z) of Z ∈ R such that δ±U = U (Z ± 1) and the subscript of Φ0(Z) is
dropped for simplicity of notation. Assumptions on the spectrum of linearized operators L± and the relevant analysis are described
in Section 3. Formal reductions of L± to third-order derivative operators (A.2)–(A.5) are reported in Appendix A.

One can ask why the line β =
π
2 is so special in the existence of solutions of the differential advance–delay equation (2.1) and if

there exists any other curves on the parameter plane (κ, β) which can be analyzed by a similar method. For instance, when β = 0,
the system (2.1) for any set of parameters α’s admits a reduction to the scalar advance–delay equation for real-valued solutions
Φ(Z):

[1 + (α2 + α3)Φ2
+ α8(Φ2

+ − Φ+Φ− + Φ2
−) + (α9 + α10)Φ+Φ−](Φ+ + Φ−)

+ [−2 cosh κ + α1Φ2
+ (α4 + α6)(Φ2

+ + Φ2
−) + (α7 + 2α5)Φ+Φ−]Φ = 0. (2.7)

This reduction corresponds to the stationary solutions (1.5) with c = 0 and was studied in [17] in detail. To explain why the
reduction (2.7) is useless for analysis of traveling solutions with c 6= 0 (β 6= 0), consider the unperturbed homogeneous linear
equation

cos β(Φ+ + Φ− − 2 cosh κΦ) + i sin β

(
Φ+ − Φ− − 2

sinh κ

κ

dΦ
dZ

)
= 0. (2.8)

Applying the Laplace transform to the linear equation (2.8), we obtain the dispersion relation

D(p; κ, β) ≡ cos β(cosh p − cosh κ) + i sin β

(
sinh p −

sinh κ

κ
p
)

= 0, (2.9)

where p is the parameter of the Laplace transform. Roots with Re(p) > 0 and Re(p) < 0 correspond to the unstable and stable
manifolds, respectively, resulting in the spatial decay of the solution Φ(Z), while roots with Re(p) = 0 correspond to the center
manifold resulting in the oscillatory non-decaying behavior of the solution Φ(Z). For any β, the dispersion relation (2.9) always
possesses a pair of real roots p = ±κ , which provides a localization of the single-humped solution Φ(Z). However, for any β 6= 0,
the dispersion relation (2.9) also has roots with Re(p) = 0 which destroy localization of Φ(Z).

If β =
π
2 , the only root on the imaginary axis is at p = 0. When β0 < β < π

2 with β0 ≈
π
13 , there exists a single positive

imaginary root p = ik with k > 0. When 0 < β < β0, the number of imaginary roots increases dramatically as is illustrated in
Fig. 1 corresponding to decreasing wave speed c. The limit β → 0+ is singular: no roots exist for β = 0, but finitely many roots
with large values of p = ik exist for any fixed small value of β 6= 0. Therefore, persistence of solutions of the scalar advance–delay
equation (2.7) for β 6= 0 is a delicate, likely unsolvable problem of analysis.

On the other hand, persistence of solutions for β =
π
2 is a relatively simple problem because the root of D(p; κ, π

2 ) is located
at the origin p = 0, the system (2.1) can be reduced to the scalar equation (2.3) under the constraints (2.2), and there are cases
when solutions are known in the analytic form, e.g. the exact solution (1.12). Therefore, we restrict our analysis to the particular
case β =

π
2 . However, we anticipate that the analysis can be extended to the domain β0 < β < π

2 , where D(p; κ, β) has only one
purely imaginary root p = ik with k > 0 (the white region in the right-hand panel of Fig. 1). Traveling solutions in this domain
are likely to occur as a result of the bifurcation of codimension one, i.e. they exist generally as one-parameter families on the plane
(κ, β) for fixed values of parameters α’s.

3. Analysis of linearized differential advance–delay equations

Both operators L+ and L− in (2.5) and (2.6) can be written in the general form

L = −2
sinh κ

κ

d
dZ

+ [1 + V+(Z)]δ+ − [1 + V−(Z)]δ− + V0(Z), (3.1)
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Fig. 1. Left: the graph of D(ik; κ, β) versus k for κ = 1 and different β. Right: parameter plane (ω, c) divided into domains. Arrows show correspondence between
the domains of (ω, c) with the same number of real-valued roots k of D(ik; κ, β). This number of roots is indicated by the depth of shading and also the number
indicated in the small circles. As c approaches zero (which is equivalent to β → 0) the number of real roots k increases.

where V0(Z) and V±(Z) are bounded exponentially decaying potentials. The operator L maps continuously H1(R) to L2(R)

equipped with the standard inner product

∀ f, g ∈ L2(R) : ( f, g) =

∫
R

f̄ (Z)g(Z)dZ . (3.2)

Related to the inner product (3.2), the adjoint operator L∗ satisfies (W, LU ) = (L∗W, U ) for any functions U (Z) and W (Z) in
H1(R). The adjoint operator is written in the general form

L∗
= 2

sinh κ

κ

d
dZ

+ [1 + V+(Z − 1)]δ− − [1 + V−(Z + 1)]δ+ + V0(Z), (3.3)

where V+(Z − 1) may involve Φ(Z − 2) and V−(Z + 1) may involve Φ(Z + 2).
According to Assumption 2.1, the function Φ(Z) is even, such that Φ+ − Φ− is odd and Φ+Φ− is even on Z ∈ R. It is clear

from explicit expressions of the operators L± in (2.5) and (2.6) that both operators L± change the symmetry of the eigenfunction
U (Z), such that

L± : H1
ev(R) 7→ L2

odd(R), L± : H1
odd(R) 7→ L2

ev(R), (3.4)

where the even and odd extensions of H1(R) are defined by

H1
ev(R) = {U ∈ H1(R) : U (−Z) = U (Z)},

H1
odd(R) = {U ∈ H1(R) : U (−Z) = −U (Z)}

and similar for L2(R). Eigenvalues of the operator L in H1(R) hold some symmetry properties, which are standard for linearized
Hamiltonian systems.

Lemma 3.1. Let λ0 be an eigenvalue of operator L with the eigenvector U ∈ H1(R). Then, −λ0, λ̄0 and −λ̄0 are also eigenvalues
of operator L with eigenvectors U (−Z), Ū (Z), and Ū (−Z).

Proof. Eigenvalue −λ0 exists due to the symmetry property (3.4). Eigenvalue λ̄0 exists due to the fact that L has real-valued
coefficients. Eigenvalue −λ̄0 exists as a consequence of the above two symmetries. �

Example 3.2. When α8 = α9 = α10 = 0 and Φ(Z) is given by the exact solution (1.12), the operators L± are written in explicit
form

L+ = −2
sinh κ

κ

d
dZ

+ [1 + sinh2 κ sech2(κ Z)](δ+ − δ−) − 4 sinh3 κ sinh(κ Z) sech(κ Z) sech(κ Z + κ) sech(κ Z − κ),

L− = −2
sinh κ

κ

d
dZ

+ [1 + sinh2 κ sech2(κ Z)](δ+ − δ−) + 2ν sinh2 κ sech2(κ Z)(δ+ − δ−)

+ 4ν sinh3 κ sinh(κ Z) sech(κ Z) sech(κ Z + κ) sech(κ Z − κ),
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where ν = α3/(α2 − α3). When α3 = 0, the linearized operators L± are associated with the integrable AL lattice and the spectrum
of these operators is constructed in the explicit form in Example 3.8.

3.1. Absolutely continuous part of the spectrum of L±

We characterize all parts of the spectrum of the unbounded differential advance–delay operator L in (3.1), where L stands for
either L+ or L−. Let us denote the potential-free operator by L0, such that

L0 = −2
sinh κ

κ

d
dZ

+ δ+ − δ−. (3.5)

The operator L − L0 contains potentials V0(Z) and V±(Z), which are bounded, exponentially decaying functions of Z ∈ R.
Therefore, L − L0 is a relatively compact perturbation to the unbounded operator L0. Results from perturbation theory [11] imply
that the continuous spectra of L and L0 coincide, the residual spectrum of L is empty, and the point spectrum of L contains a finite
number of isolated or embedded eigenvalues. The entire spectrum of L0 in H1(R) is absolutely continuous. Its location can be
found with the Fourier transform at λ = λ0(k) for k ∈ R, where

λ0(k) = 2i
(

sin k − k
sinh κ

κ

)
, (3.6)

is a one-to-one map from k ∈ R to λ ∈ iR. The properties of the spectrum of L are summarized as follows:

Proposition 3.3. The spectrum of L in H1(R) consists of the point spectrum σp(L) and a single-branched continuous spectrum
σc(L) = {iR}.

Some of the eigenvalues of σp(L) are embedded into σc(L), for instance, 0 ∈ σp(L) due to the exact relations (3.16) below. In
order to separate eigenvalues of σp(L) and the continuous spectrum σc(L), we use the technique of exponential weighted spaces
pioneered in [16]. Let

H1
µ(R) = {U ∈ H1

loc(R) : eµZ U (Z) ∈ H1(R)}, (3.7)

for 0 < µ < µ0 with some µ0 > 0. The adjoint space is H1
−µ(R).

Lemma 3.4. Let 0 < µ < µ0 with µ0 = min{κ, cosh−1(sinh κ/κ)}. Then, under Assumption 2.1, the continuous spectrum of L in
H1

µ(R) and L∗ in H1
−µ(R) is located along a curve contained within the strip Re(λ) ∈ [λ−, λ+] for some 0 < λ− < λ+.

Proof. If |µ| < κ , the potential terms in the operator Lµ = eµZ Le−µZ decay exponentially as |Z | → ∞. By the perturbation
theory for linear unbounded operators [11], the continuous spectrum σc(Lµ) in H1(R) coincides with that of eµZ L0e−µZ in H1(R),
i.e. it is located at σc(Lµ) = {λ ∈ C : λ = λµ(k), k ∈ R}, where

λµ(k) = λ0(k + iµ) = 2
[
µ

sinh κ

κ
− sinh µ cos k

]
+ 2i

[
cosh µ sin k − k

sinh κ

κ

]
. (3.8)

In particular, Re λµ(k) > 0 for 0 < µ < κ and d
dk Im λµ(k) < 0 if |µ| < cosh−1(sinh κ/κ). Therefore, if 0 < µ < µ0 and

µ0 = min{κ, cosh−1(sinh κ/κ)}, the branch of the continuous spectrum is a one-to-one map from k ∈ R to λ ∈ C, where λ

oscillates in the strip Re λ ∈ [λ−, λ+] with

λ± = 2µ

[
sinh κ

κ
±

sinh µ

µ

]
> 0.

The location of σc(Lµ) is illustrated on Fig. 2. The continuous spectrum σc(L∗
−µ) of the adjoint operator L∗

−µ = e−µZ L∗eµZ in
H1(R) coincides with that of e−µZ L∗

0eµZ in H1(R), i.e. it is located along the curve λ = −λ0(k − iµ) = λ̄µ(k) = λµ(−k) on
k ∈ R. This curve on the λ-plane is the same as λ = λµ(k) but it is traversed in the reverse direction as k increases. �

Definition 3.5. Let Uµ(Z; k) and Wµ(Z; k) denote eigenfunctions of the continuous spectrum of L in H1
µ(R) and L∗ in H1

−µ(R)

with 0 < µ < µ0, according to the equations

LUµ(Z; k) = λµ(k)Uµ(Z; k), L∗Wµ(Z; k) = λ̄µ(k)Wµ(Z; k), (3.9)

such that λµ(k) is given by (3.8) and Uµ(Z; k), Wµ(Z; k) are normalized by the asymptotic behavior

lim
Z→∞

e−ik Z+µZ Uµ(Z; k) = 1, lim
Z→∞

e−ik Z−µZ Wµ(Z; k) = 1. (3.10)
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Fig. 2. Schematic depiction of the location of σc(Lµ) for 0 < µ < µ0 in the complex λ-plane.

Let the scattering data {aµ(k), bµ(k)} be defined by the asymptotic behavior

lim
Z→−∞

e−ik Z+µZ Uµ(Z; k) = aµ(k), lim
Z→−∞

e−ik Z−µZ Wµ(Z; k) = bµ(k), (3.11)

assuming that the limits exist.

Assumption 3.6. There exist constants Λ− < 0 < Λ+, such that the point spectrum σp(L) in H1
µ(R) for any 0 ≤ µ < µ0 does not

include eigenvalues in the strip Λ− < λ < Λ+, except for the zero eigenvalue λ = 0.

Lemma 3.7. Under Assumptions 2.1 and 3.6, the scattering data {aµ(k), bµ(k)} in Definition 3.5 are bounded and non-zero for
any k ∈ R and 0 < µ < µ1, where µ1 is sufficiently small that 0 < λ+ < Λ+.

Proof. Existence of bounded eigenfunctions Uµ(Z; k) for operators L in H1
µ(R) with 0 < µ < µ0 follows from the wave function

formalism [11], because the bounded potential terms V0(Z) and V±(Z) decay exponentially quickly. Since the continuous spectrum
σc(L) in H1

µ(R) has a single branch along λ = λµ(k) which is uniquely parameterized by k ∈ R, the bounded eigenfunctions
eµZ Uµ(Z; k) have the limiting behavior eik Z as |Z | → ∞. If the normalization (3.10) is introduced and the scattering data aµ(k)

is defined by (3.11), the scattering data may vanish or be unbounded for a value k = k0, for which the eigenfunction eµZ Uµ(Z; k0)

decays at one of the infinities. However, such marginal eigenfunction would become the eigenfunction of the point spectrum of L
in H1

µ(R) for either smaller or larger value of µ. By Assumption 3.6, no such eigenfunctions may exist at least in 0 < µ < µ1,
and therefore, the scattering data aµ(k) is always bounded and non-zero on k ∈ R. The same proof applies to the operator L∗ in
H1

−µ(R) with 0 < µ < µ1 for eigenfunctions Wµ(Z; k) and scattering data bµ(k). �

Example 3.8. We continue Example 3.2 and consider operators L+ and L− associated with the integrable AL lattice, when α2 = 1
and α j = 0 for all other j’s (i.e. ν = 0). Due to the integrability of the AL lattice [4], one can expect that the complete set of
eigenfunctions of these operators is available in analytic form. Indeed, direct substitution with MATHEMATICA shows that the
eigenfunctions U0(Z; k) of the continuous spectrum of L+ for λ = λ0(k) are given by

U0(Z; k) = eik Z 1 − cos k cosh κ + i sin k sinh κ tanh(κ Z) + sinh2 κsech2(κ Z)

1 − cos k cosh κ + i sin k sinh κ
, (3.12)

while the eigenfunctions U0(Z; k) of the continuous spectrum of L− for λ = λ0(k) are given by

U0(Z; k) = eik Z 1 − cos k cosh κ + i sin k sinh κ tanh(κ Z)

1 − cos k cosh κ + i sin k sinh κ
. (3.13)

For both operators, the same spectral data a0(k) is given by

a0(k) =
1 − cos k cosh κ − i sin k sinh κ

1 − cos k cosh κ + i sin k sinh κ
=

1 − cosh(κ + ik)

1 − cosh(κ − ik)
. (3.14)

All eigenfunctions can be analytically extended in the strip −κ < Im(k) < κ , such that the eigenfunctions in the weighted space
H1

µ(R) are given by Uµ(Z; k) = U0(Z; k+iµ) with 0 < µ < µ0. In particular, the eigenfunctions and the spectral data are bounded
and non-zero for any k ∈ R and −κ < µ < κ . This property implies that no point spectrum exists in this strip, i.e. Assumption 3.6
is satisfied for the operators L± associated with the integrable AL lattice.
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Lemma 3.9. Under Assumptions 2.1 and 3.6, the set of eigenfunctions Uµ(Z; k) and Wµ(Z; k) in Definition 3.5 satisfies the
orthogonality relation∫

R
W̄µ(Z; k′)Uµ(Z; k)dZ =

4π sinh κ

sinh κ − κ cosh µ cos k
δ(k′

− k), (3.15)

where δ(k) is the Dirac delta function. In addition, b̄µ(k) = 1/aµ(k) on k ∈ R.

Proof. Let us consider the homogeneous equations (3.9) for Uµ(Z; k) and W̄µ(Z; k′), where k, k′
∈ R. By integrating

W̄µ(Z; k′)LUµ(Z; k) − Uµ(Z; k)L∗W̄µ(Z; k′) on Z ∈ [−L , L] and extending the limit L → ∞, we obtain that∫
R

W̄µ(Z; k′)Uµ(Z; k)dZ = −2
sinh κ

κ

(
lim

L→∞

W̄k′(L)Uk(L)

λµ(k) − λµ(k′)
− lim

L→−∞

W̄k′(L)Uk(L)

λµ(k) − λµ(k′)

)
.

By using the asymptotic representations (3.10) and (3.11) of the eigenfunctions Uµ(Z; k) and W̄µ(Z; k′) as |Z | → ∞ and the
property of the generalized functions

lim
L→±∞

ei(k−k′)L

i(k − k′)
= ±πδ(k − k′),

we obtain the orthogonality relation∫
R

W̄µ(Z; k′)Uµ(Z; k)dZ =
2π sinh κ[1 + aµ(k)b̄µ(k)]

sinh κ − κ cosh µ cos k
.

Let us now consider the homogeneous equations (3.9) for Uµ(Z; k) and W̄µ(Z; k) for any k ∈ R. By using the same integration on
Z ∈ [−L , L] and extending the limit L → ∞, we obtain that

2 sinh κ

κ
[aµ(k)b̄µ(k) − 1] = 0.

Therefore, b̄µ(k) = 1/aµ(k) and the orthogonality relation takes the form (3.15). �

3.2. Kernels of L±

One can check directly from the scalar equation (2.3) and the linearized operators (2.5) and (2.6) that both L+ and L− have a
non-empty geometric kernel in H1(R) with eigenfunctions Φ′ and Φ respectively. That is

L+Φ′(Z) = 0, L−Φ(Z) = 0. (3.16)

In addition, L+ has a non-empty generalized kernel in H1(R) with the eigenfunction

L+

∂Φ
∂κ

=
2(κ cosh κ − sinh κ)

κ2 Φ′(Z). (3.17)

In the case of the integrable AL lattice, when α2 = 1 and α j = 0 for all other j’s (see Example 3.2), L− has a non-empty
generalized kernel in H1(R) with the eigenfunction

L−ZΦ(Z) = 2
(

cosh κ −
sinh κ

κ

)
Φ(Z). (3.18)

By Assumption 2.1, all eigenfunctions in (3.16)–(3.18) decay exponentially with decay rate κ as |Z | → ∞. Therefore, these
eigenfunctions remain in H1

µ(R) for 0 ≤ µ < µ0. Let us denote eigenfunctions of the geometric kernel of L in H1(R) by u0(Z)

and eigenfunctions of the generalized kernel of L in H1(R) by u1(Z), such that

Lu0 = 0, Lu1 = u0.

By explicit construction, we can see that u0(Z) is odd for L+ and even for L− on Z ∈ R, while u1(Z) is even for L+. When u1(Z)

exists for L−, it is odd.

Lemma 3.10. Assume that DimKer(L) = 1 with u0 ∈ H1(R). The operator L∗ has a geometric kernel in H1
−µ(R) with

0 < µ < µ0. If the kernel of L∗ persists in H1(R) for µ = 0, then the operators L and L∗ have a non-empty generalized
kernel in H1

µ(R) and H1
−µ(R), respectively, for 0 < µ < µ0.

Proof. Since the unbounded differential operator Lµ = eµZ Le−µZ is Fredholm of zero index for 0 < µ < µ0, the adjoint operator
L∗

−µ = e−µZ L∗eµZ has a one-dimensional geometric kernel for the same value of 0 < µ < µ0. If the kernel of L∗ persists in
H1(R), then the problem L∗w0 = 0 has an eigenfunction w0 ∈ H1(R). According to (A.6) and (A.7) of Appendix A, in the limit
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κ → 0, the eigenfunction w0(Z) is sech(κ Z) for L+ and sech(κ Z) tanh(κ Z) for L−, i.e. it has the opposite symmetry than the
eigenfunction u0 ∈ H1(R). Due to the symmetry property (3.4), the symmetry of eigenfunction w0(Z) persists for any value of
κ ∈ R.

Consider the linear inhomogeneous problems Lu1 = u0 in H1
µ(R) and L∗w1 = w0 in H1

−µ(R) with 0 < µ < µ0. Since the
continuous spectrum is bounded away from the origin for 0 < µ < µ0, the Fredholm Alternative Theorem guarantees existence of
the generalized kernel if and only if

(eµZw0, e−µZ u0) = (w0, u0) = 0. (3.19)

Since (w0, u0) = 0 due to different spatial symmetries of w0(Z) and u0(Z) on Z ∈ R, there is a non-empty generalized kernel of
operators L and L∗ in H1

µ(R) and H1
−µ(R), respectively. �

Assumption 3.11. Assume that operators L+ and L− satisfy one of the following two properties:

(i) The zero eigenvalue of L and L∗ in H1
µ(R) and H1

−µ(R) with 0 ≤ µ < µ0 is double with the generalized eigenfunctions
{u0(Z), u1(Z)} ∈ H1(R) and {w0(Z), w1(Z)} ∈ H1(R), respectively.

(ii) The zero eigenvalue of L and L∗ in H1
µ(R) and H1

−µ(R) with 0 < µ < µ0 is simple and w0 6∈ H1(R).

Remark 3.12. Due to the Fredholm Alternative Theorem, Assumption 3.11(i) implies that (w1, u0) = (w0, u1) 6= 0. This
assumption is generally satisfied since w0(Z) and u1(Z) have the same symmetry on Z ∈ R. It follows from the exact solutions
(3.16) and (3.17) that the generalized kernel of L+ has a subspace {u0, u1} ∈ H1(R). Although it does not necessarily imply that
{w0, w1} ∈ H1(R), we will assume in the rest of our paper that all parts of Assumption 3.11(i) are satisfied for operator L+.

Assumption 3.11(ii) is equivalent to the assumption that (w0, u0) 6= 0, which is only possible if w0(Z) has a component of
the same symmetry as u0(Z). The operator L− can satisfy the assertion that w0 6∈ H1(R) only if the solution of L−w0 = 0 has
two bounded non-decaying functions (even and odd), a linear combination of which would generate a function w0 ∈ H1

−µ(R) for
0 < µ < µ0.

Example 3.13. According to Example 3.8, Assumptions 3.6 and 3.11(i) are satisfied for both linearized operators L± associated
with the integrable AL lattice. According to Appendix B, the linearized operator L− in Example 3.2 satisfy Assumptions 3.6 and
3.11(ii) for small ν 6= 0, where ν = α3/(α2 − α3). Numerical approximations of the spectrum of L− for ν = 0 (top) and ν = 0.2
(bottom) are shown on Fig. 3 for κ = 1. The numerical method is based on the sixth-order finite-difference approximation of the
derivative operator and truncation of the computational domain on Z ∈ [−L , L] with L = 10 and step size h = 0.1. The number of
grid points is odd so that the number of eigenvalues in the truncated matrix problem is also odd. For ν = 0 (top figures), the smallest
eigenvalue with |λ| = 2.9201 × e−15 corresponds to the bounded eigenfunction (blue dots), while the next two eigenvalues with
|λ| = 8.5718 × e−5 corresponds to the decaying eigenfunctions (magenta dots). This picture corresponds to Assumption 3.11(i).
For ν = 0.2 (bottom figures), the smallest eigenvalue with |λ| = 1.6511 × e−13 corresponds to the decaying eigenfunction (blue
dots), while the next two eigenvalues with |λ| = 0.0390 corresponds to the bounded oscillatory complex-valued eigenfunctions
(magenta dots). This picture corresponds to Assumption 3.11(ii).

Lemma 3.14. Under Assumptions 2.1, 3.6 and 3.11(i), eigenfunctions {Uµ(Z; k), Wµ(Z; k)} and spectral data {aµ(k), bµ(k)} in
Definition 3.5 are uniformly bounded on k ∈ R in the limit µ → 0+. Moreover, the eigenfunctions U0(Z; 0) and W0(Z; 0) are even
on Z ∈ R, such that a0(0) = b0(0) = 1.

Proof. By Assumption 3.11(i), the kernel of L persists in the space H1
−µ(R) with 0 ≤ µ < µ0. No other eigenvalues exist on the

imaginary axis by Assumption 3.6. Therefore, the eigenfunction Uµ(Z; k) and the scattering data aµ(k) are bounded and aµ(k) 6= 0
for any k ∈ R for any 0 ≤ µ < µ0. By uniqueness of the eigenfunctions in Definition 3.5, the limit µ → 0+ is thus uniform in
k ∈ R. The same proof applies to the eigenfunction Wµ(Z; k). According to (A.6) and (A.7) of Appendix A, the eigenfunctions
U0(Z; 0) and W0(Z; 0) as κ → 0 converge to the even eigenfunctions 1 − 2sech2(κ Z) and 1. By the symmetry property (3.4) and
uniqueness of eigenfunctions in Definition 3.5, the eigenfunctions remain even for any κ ∈ R. �

Lemma 3.15. Under Assumptions 2.1, 3.6 and 3.11(ii), the eigenfunction Wµ(Z; k) and spectral data bµ(k) in Definition 3.5 are
uniformly bounded on k ∈ R in the limit µ → 0+, such that W0(Z; 0) ∈ H1

µ(R) for 0 < µ < µ0 and b0(0) = 0. The only
singularity of the eigenfunction Uµ(Z; k) and spectral data aµ(k) in the limit µ → 0+ is a simple pole at k = 0 on k ∈ R, such
that

lim
k→0

kU0(Z; k) = C1u0(Z) ∈ H1(R), lim
k→0

ka0(k) = C2

for some constants C1 and C2.

Proof. By Assumption 3.6, eigenfunctions {Uµ(Z; k), Wµ(Z; k)} and spectral data {aµ(k), bµ(k)} must be bounded for any k 6= 0
in the limit µ → 0+. By Assumption 3.11(ii), the eigenfunction of L∗w0 = 0 is in H1

µ(R) for 0 < µ < µ0 but not in H1(R). Since
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Fig. 3. Top: eigenvalues of the operator L− for ν = 0 and κ = 1 (left) and the two normalized eigenvectors for the two smallest eigenvalues (right). Bottom: the
same for operator L− for ν = 0.2 and κ = 1. See text for details. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

W0(Z; 0) solves the same equation, then the eigenfunction w0 belongs to the branch of the continuous spectrum, which implies
that b0(k) has a simple zero at k = 0. By Lemma 3.9, a0(k) has a simple pole at k = 0, where the only bounded eigenfunction of
Lu0 = 0 is the decaying eigenfunction u0 ∈ H1(R). �

Remark 3.16. It is important that other eigenvalues of L in H1
µ(R) are bounded away from the imaginary axis. The limit µ → 0+

pushes the continuous spectrum back to the imaginary axis, and the imaginary eigenvalues of L in H1
µ(R), if they would exist,

could become resonant poles of L in H1(R) leading to additional zeros or poles of aµ(k) on k ∈ R in the limit µ → 0. If the simple
kernel of Assumption 3.11(ii) arises as a result of the splitting of the double kernel of Assumption 3.11(i), the value of µ1 < µ0
in Assumption 3.6 must be chosen in such way that the continuous spectrum of L passes in between the zero eigenvalue and the
non-zero resonant pole which bifurcates from the zero point. The splitting of the double kernel is described in Appendix B for
operator L− for small ν 6= 0, where ν = α3/(α2 − α3).

3.3. Solutions of the linear inhomogeneous equations related to L±

We use the previous results to find the conditions under which the linear inhomogeneous equation associated to the differential
advance–delay operator L can be solved in the space H1(R). This is the main result of this section and it is used in Section 4 for an
application of the Implicit Function Theorem.

Lemma 3.17. Under Assumptions 2.1, 3.6 and 3.11, there exists a solution U ∈ H1
µ(R) with 0 < µ < µ1 of the linear

inhomogeneous equation LU = F(Z) for F ∈ L2
µ(R) with −µ1 < µ < µ1 if and only if∫

R
w0(Z)F(Z)dZ = 0. (3.20)

Moreover, U ∈ H1(R) if and only if∫
R

W0(Z; 0)F(Z)dZ = 0, (3.21)

in addition to (3.20).
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Proof. The first assertion follows by the Fredholm Alternative, since the zero eigenvalue is isolated in H1
µ(R) for 0 < µ < µ0 (even

if w0 6∈ H1(R), the integral (3.20) makes sense since F ∈ L2
µ(R) for −µ1 < µ < µ1). By Proposition 3.3 and Assumption 3.6, the

spectrum of L in H1
µ(R) with 0 < µ < µ1 is given by the absolutely continuous part, the zero eigenvalue, and the point spectrum

outside the strip Λ− < λ < Λ+. Assume that the condition (3.20) is satisfied. By Assumption 2.1, Lemma 3.9 and the wave function
formalism [11], we represent the solution U (Z) in H1

µ(R) for 0 < µ < µ1 with the generalized Fourier transform

U (Z) =

∫
R

F̂µ(k)Uµ(Z; k)dk
λµ(k)

+ F̂1u1(Z) +

∑
λ j ∈σd (Lµ)\{0}

F̂ j

λ j
u j (Z), (3.22)

where

F̂µ(k) =
sinh κ − κ cosh µ cos k

4π sinh κ
(W0(·; k), F), F̂1 =

(w1, F)

(w1, u0)
,

and F̂ j for λ j ∈ σd(Lµ)\{0} are projections to the eigenfunctions of the non-zero point spectrum of Lµ outside the strip
Λ− < λ < Λ+. We note that the location of these eigenvalues λ j are not affected by the weight parameter µ due to strong
exponential decay of eigenfunctions. We also note that the second term F̂1u1(Z) in (3.22) is absent if the kernel is simple by
Assumption 3.11(ii).

Under Assumption 3.11(i) and Lemma 3.14, the functions F̂µ(k) and Uµ(Z; k) in the representation (3.22) are uniformly
bounded in k ∈ R as µ → 0+. The integrand of (3.22) has only one singularity at k = 0 of the simple pole type in the limit
µ → 0+ since λ0(0) = 0. The integral can be split into two parts:

lim
µ→0+

∫
R

F̂µ(k)Uµ(Z; k)dk
λµ(k)

= π iRes

[
F̂0(k)U0(Z; k)

λ0(k)
, k = 0

]
+ lim

ε→0+

(∫
−ε

−∞

+

∫
∞

ε

)
F̂0(k)U0(Z; k)dk

λ0(k)

=
πκ F̂0(0)

κ − sinh κ
U0(Z; 0) + p.v.

∫
R

F̂0(k)U0(Z; k)dk
λ0(k)

.

By Lemma 3.14 and thanks to the linear growth of λ0(k) in k as |k| → ∞, the second term is in H1(R) if F ∈ L2(R). Since the
first term is bounded but non-decaying and all other eigenfunctions u1(Z) and u j (Z) are in H1(R), we obtain that U ∈ H1(R) if
and only if F̂0(0) = 0, i.e. under the condition (3.21).

Under Assumption 3.11(ii) and Lemma 3.15, the integral in the representation (3.22) has a double pole at k = 0 as µ → 0+ if
F̂0(0) 6= 0. By Lemma 3.15, W0(Z; 0) is proportional to w0(Z), such that the condition (3.21) follows from the condition (3.20).
If F̂0(0) = 0, the integral can be split into two parts as above and the residue term produces now the function limk→0 kU0(Z; k),
which is proportional to u0(Z) ∈ H1(R) by Lemma 3.15. Therefore, we verify again that U ∈ H1(R). �

Corollary 3.18. Under assumptions of Lemma 3.17,

(i) There exists a unique solution U ∈ H1
ev(R) of the linear inhomogeneous equation L+U = F(Z) if F ∈ L2

odd(R).
(ii) There exists a unique solution U ∈ H1

odd(R) of the linear inhomogeneous equation L−U = F(Z) if F ∈ L2
ev(R) and

(W0, F) = 0, where W0 = W0(Z; 0).

Proof. (i) The operator L+ satisfies Assumption 3.11(i) (see Remark 3.12). The eigenfunctions w0(Z) and W0(Z; 0) are even and
u0(Z) is odd. As a result, (w0, F) = (W0, F) = 0, i.e. the conditions of Lemma 3.17 are satisfied. Uniqueness follows from the
fact that the homogeneous solution u0(Z) is not in H1

ev(R).
(ii) Under Assumption 3.11(i), the eigenfunctions w0(Z) is odd and u0(Z) is even for L−, so that (w0, F) = 0 and the

homogeneous solution is not in H1
odd(R). The only condition (3.21) results in (W0, F) = 0. Under Assumption 3.11(ii), both

conditions (3.20) and (3.21) are equivalent as W (Z; 0) is proportional to w0(z), which includes both odd and even components on
Z ∈ R. �

4. Melnikov integrals for persistence of one-parameter family of solutions

According to Assumption 2.1, the scalar differential advance–delay equation (2.3) admits a solution in H1
ev(R) for some

parameter configurations. This solution satisfies the vector system (2.1) under the constraints (2.2). We shall now answer
Questions 2.4 and 2.5 on persistence of this solution. Our technique relies on the Melnikov integral, which originates from the
conditions (3.20) and (3.21) of Lemma 3.17.

In order to answer Question 2.4 about the scalar equation (2.3), we represent parameters of the equation by α j = α
(0)
j + εa j for

j = 2, 3, 8, 9, 10, where ε is small, α
(0)
j is an unperturbed value of α j for which Assumption 2.1 holds, and εa j is a perturbation

to α
(0)
j , for which persistence of solutions is needed to be established. We also represent a solution to the scalar differential
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advance–delay (2.3) by Φ(Z) = Φ0(Z) + U (Z), where U (Z) solves the scalar equation in the operator form

L+U = N (U ) + εF(Φ0 + U ). (4.1)

Here L+ is the unperturbed differential advance–delay operator given by (2.5) for α j = α
(0)
j and Φ = Φ0(Z), N (U ) is the

unperturbed nonlinear vector field with the quadratic3 and cubic terms in U , and εF(Φ) contains cubic terms in Φ = Φ0 + U due
to the perturbations εa j of the parameters α j of the scalar equation (2.3), e.g. explicitly

F = (a2 − a3)Φ2(Φ+ − Φ−) + a8(Φ3
+ − Φ3

−) − (a9 + a10)Φ+Φ−(Φ+ − Φ−).

It follows from the algebra property in H1(R) under the assumption that Φ0 ∈ H1(R) that there exist constants C1, C2, C3 > 0,
such that

‖N (U )‖H1 ≤ C1‖U‖
2
H1 + C2‖U‖

3
H1 , ‖F(Φ0 + U )‖H1 ≤ C3‖Φ0 + U‖

3
H1 . (4.2)

Therefore, the nonlinear vector field of the system (4.1) is closed in H1(R). By using the algebra property (4.2), the assumption
that Φ0 ∈ H1

ev(R), and the symmetry of the scalar equation (2.3), we can see that

N , F : H1
ev(R) 7→ H1

odd(R). (4.3)

By Corollary 3.18(i), the operator L+ : H1
ev(R) 7→ L2

odd(R) is invertible. By Lemma 3.7, the construction of eigenfunctions of
the continuous spectrum is structurally stable with respect to small perturbations of the potentials V0(Z) and V±(Z). Therefore,
properties of Lemma 3.14 remain valid in a local neighborhood of Φ = Φ0 ∈ H1

ev(R) and ε = 0 and the kernel of L+ is empty in
H1

ev(R). As a result, the Frechet derivative operator of the problem (4.1) is continuously invertible in a local neighborhood of the
point U = 0 ∈ H1

ev(R) and ε = 0 ∈ R. By the Implicit Function Theorem, we assert the following theorem.

Theorem 4.1. Under Assumptions 2.1, 3.6 and 3.11(i), there exists a unique solution U (Z) = Uε(Z) ∈ H1
ev(R) of the scalar

problem (4.1) for sufficiently small ε, such that ‖Uε‖H1 ≤ Cε for some C > 0.

Corollary 4.2. Under the assumptions of Theorem 4.1, there exists a unique continuation of the solution Φ0(Z) of the scalar
equation (2.3) with respect to the perturbed parameters (α2, α3, α8, α9, α10).

Remark 4.3. A similar application of the Implicit Function Theorem is reported in [10] (Theorem 3) for persistence of heteroclinic
orbits with small oscillatory tails. However, there are several important differences between our results and the work [10]. The
ODE approach is used in [10] to guarantee that bounded continuous solutions of the truncated normal form persists in the
original differential advance–delay equation. Therefore, the space C0

b(R) was used in [10], which does not distinguish between
true heteroclinic solutions and solutions with oscillatory tails. On the other hand, we use here the spectral approach to guarantee
that localized solutions of a differential advance–delay equation persist with respect to parameter continuations. The space H1(R)

is more suitable for localized solutions of differential advance–delay equations, and, by the Sobolev Embedding Theorem, the space
H1(R) is continuously embedded in the space C0

b(R).

Remark 4.4. Persistence of stationary solutions to the advance–delay equation (2.7) with respect to parameter continuation can
be proven with a similar application of the Implicit Function Theorem. However, there is a very important difference in the
case of stationary solutions with β = 0 compared to the case of traveling solutions with β 6= 0. The linearization operator
of the advance–delay equation (2.7) at any solution Φ(Z) ∈ L2(R) defines a map from L2(R) to L2(R). If the solution Φ(Z)

is a bounded continuous function for some parameter configuration (e.g. for the translationally invariant discrete NLS equation
with the nonlinearity (1.4)), the solution in L2(R) may not be continuous, but only piecewise-continuous for perturbed parameter
configurations. Therefore, the delicate property of translational invariance is not structurally stable. As shown in [17], this property
arises if the second-order difference equation admits an integrable invariant, which is expressed by the first-order difference
equation.

In order to answer Question 2.5 about the system (2.1), we represent parameters of the system by α j = α
(0)
j + εa j for all j’s and

cot β = ε, where ε and ε are small parameters. The role of the perturbations εa j is the same as above with the only addition that the
unperturbed parameters (α1, α4, α5, α6, α7) must satisfy the constraints (2.2). The new parameter ε measures the distance between
β and π

2 . We also represent a solution to the system (2.1) by Φ(Z) = Φ0(Z) + U (Z) + iV (Z), where (U, V ) are real-valued
solutions of the system in the operator form:

L+U + L̃+V = N+(U, V ) + εM+(Φ0 + U, V ) + F+(Φ0 + U, V ; ε, ε), (4.4)
L−V = N−(U, V ) + εM−(Φ0 + U, V ) + F−(Φ0 + U, V ; ε, ε). (4.5)

3 Quadratic terms in N (U ) depend on Φ0(Z).
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Here L+ and L− are given by (2.5) and (2.6) for α j = α
(0)
j and Φ = Φ0(Z), while

L̃+ = 2α4(Φ2
+ + Φ2

−) − 2α7Φ+Φ− + α7Φ(Φ+δ− + Φ−δ+),

where the constraints (2.2) have been used. Furthermore, N±(U, V ) are the unperturbed nonlinear vector fields with the quadratic
and cubic terms in (U, V ), while εM±(Φ, V ) and F±(Φ, V ; ε, ε) contain, respectively, linear and cubic terms in Φ = Φ0 + U and
V related to the perturbations εa j and ε of the system (2.1). For instance, the linear terms are written explicitly as

M+ = 2 cosh κV − V+ − V−, M− = Φ+ + Φ− − 2 cosh κΦ.

The same Banach algebra property (4.2) holds in H1(R, C2) for N±(U, V ) and F±(Φ0 + U, V ; ε, ε). Therefore, the nonlinear
vector field of the system (4.4) and (4.5) is closed on (U, V ) ∈ H1(R, C2). By using the algebra property (4.2), the assumption that
Φ0 ∈ H1

ev(R), and the symmetry of the original vector field in (2.1), we can see that

L̃+, N+, M+, F+ : H1
ev(R) × H1

odd(R) 7→ H1
odd(R),

N−, M−, F− : H1
ev(R) × H1

odd(R) 7→ H1
ev(R).

(4.6)

Moreover, F±(Φ, V ; ε, ε) is a linear function of ε and analytic function of ε, such that F±(Φ, V ; 0, 0) = 0. We give explicitly the
first terms in ε and ε for F−(Φ, 0; ε, ε), which are used in Examples 4.7 and 4.8:

F−(Φ, 0; ε, ε) = ε[(α2 + α3)Φ2(Φ+ + Φ−) − α8(Φ3
+ + Φ3

−) + (α9 + α10)Φ+Φ−(Φ+ + Φ−)]

ε[a1Φ3
+ (a4 − a6)Φ(Φ2

+ + Φ2
−) + (a7 − 2a5)ΦΦ+Φ−] + O(ε2, εε).

By using the same proof as in Theorem 4.1, we find that the Frechet derivative operator of Eq. (4.4) is continuously invertible
in a local neighborhood of the point U = 0 ∈ H1

ev(R), ε = 0 ∈ R, and ε = 0 ∈ R. Therefore, there exists a map
Uε,ε(V ) : H1

odd(R) × R × R 7→ H1
ev(R) for sufficiently small ε and ε, such that ‖Uε,ε(V )‖H1(R) ≤ C(|ε| + |ε| + ‖V ‖H1(R)). By

Corollary 3.18(ii), the operator L− : H1
odd(R) 7→ L2

ev(R) is invertible if the scalar Fredholm condition is satisfied, which leads to
the Melnikov integral

∆ε,ε(U, V ) =

∫
R

W0(Z; 0)[N−(U, V ) + εM−(Φ0 + U, V ) + F−(Φ0 + U, V ; ε, ε)]dZ , (4.7)

where U = Uε,ε(V ) is constructed above. By repeating the same argument on the structural stability of the spectrum of L− in
V ∈ H1

odd(R), we conclude that the Frechet derivative operator of the system (4.4) and (4.5) is continuously invertible in a local
neighborhood of the point (U, V ) = (0, 0) ∈ H1

ev(R) × H1
odd(R), ε = 0 ∈ R, and ε = 0 ∈ R provided that ∆ε,ε(U, V ) = 0. By the

Implicit Function Theorem, we assert the following theorem.

Theorem 4.5. Under Assumptions 2.1, 3.6 and 3.11, there exists a unique solution U (Z) = Uε,ε(Z) ∈ H1
ev(R) and V (Z) =

Vε,ε(Z) ∈ H1
odd(R) of the system (4.4) and (4.5) for sufficiently small ε and ε, such that ‖Uε,ε‖H1 ≤ CU (|ε| + |ε|) and

‖Vε,ε‖H1 ≤ CV (|ε| + |ε|) for some CU , CV > 0, provided that ∆(ε, ε) = 0, where ∆(ε, ε) = ∆ε,ε(Uε,ε, Vε,ε) is given by
(4.7), such that ∆(0, 0) = 0.

Corollary 4.6. Under the assumptions of Theorem 4.5,
(i) There exists a unique continuation of the solution Φ0(Z) of the system (2.1) for β =

π
2 under the constraints (2.2) with respect

to perturbed parameters α j and β if ∂ε∆(0, 0) 6= 0 for any κ ∈ R.
(ii) There does not exist any continuation of the solution Φ0(Z) of the system (2.1) for β =

π
2 under the constraint (2.2) with respect

to perturbed parameters α j and β if ∆(0, ε) = 0 and ∆(ε, 0) 6= 0 for any κ ∈ R in a local neighborhood of ε = ε = 0.

Example 4.7. According to Examples 3.8 and 3.13, the linearized operators L± of the AL lattice satisfy the assumptions of our
analysis. The system (2.1) can be rewritten for the Salerno model (1.3) in the compact form

(1 + |Φ|
2)(Φ+ − Φ−) − 2

sinh κ

κ
Φ′

= iε[(1 + |Φ|
2)(Φ+ + Φ−) − 2 cosh κΦ] + iε|Φ|

2Φ, (4.8)

where ε =
2(1−α2)
α2 sin β

, ε = cot β, and the amplitude of Φ(Z) is rescaled by the factor
√

α2 for α2 6= 0. Since Φ(Z) = sinh κ sech(κ Z)

is a solution of

(1 + |Φ|
2)(Φ+ + Φ−) − 2 cosh κΦ = 0,

it is clear that ∆(0, ε) = 0 in Theorem 4.5. According to (A.6) and (A.7) of Appendix A, W0(Z; 0) → 1 − 2 sech2(κ Z) and
Φ(Z) → κ sech(κ Z) as κ → 0, such that we have

∂ε∆(0, 0) =

∫
R

W0(Z; 0)Φ3(Z)dZ → κ2
∫
R
(1 − 2sech2ζ ) sech3 ζdζ = −

κ2

2

∫
R

dζ

cosh3 ζ
< 0,
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in the limit of small κ . By Corollary 4.6(ii), the solution Φ(Z) can not be continued for any ε 6= 0 at least for small κ > 0. Therefore
the two-parameter family of solutions4 terminates near β =

π
2 in the Salerno model (1.3) with α2 6= 1.

Example 4.8. According to Example 3.13 and Appendix B, linearized operators L± of the discrete NLS equations (1.1) and (1.2)
with α2 > α3, and α j = 0 for all other j’s satisfy assumptions of our analysis at least for small ν 6= 0, where ν = α3/(α2 − α3).
By using the exact solution (1.12) and the explicit computation,

∂ε∆(0, 0) =

∫
R

W0(Z; 0)[(1 + (α2 + α3)Φ2)(Φ+ + Φ−) − 2 cosh κΦ]dZ ,

we obtain for α3 6= 0 that

∂ε∆(0, 0) = 2α3

∫
R

W0(Z; 0)Φ2(Φ+ + Φ−)dZ →
4κ2α3

(α2 − α3)3/2

∫
R
(1 − 2 sech2 ζ ) sech3 ζdζ 6= 0,

where the last approximation is valid for small κ and small α3. By Corollary 4.6(i), there exists a unique continuation of the
solution (1.12) with α3 6= 0 and α2 > α3 with respect to perturbed parameters α j and β. Details of the continuation depends on the
perturbations a j to the parameters α j , due to the explicit computation

∂ε∆(0, 0) =

∫
R

W0(Z; 0)[a1Φ3
+ (a4 − a6)Φ(Φ2

+ + Φ2
−) + (a7 − 2a5)ΦΦ+Φ−]dZ

→ (a1 + 2a4 − 2a6 + a7 − 2a5)

∫
R
(1 − 2 sech2 ζ ) sech3 ζdζ

for small κ . For the translationally invariant lattice with parameters (1.4), the exact solution (1.12) exists for α4 = α6 = α8 = α9 = 0
and α2 > α3. When α4 = α6 = 0 is preserved for ε 6= 0, the family persists on the line κ > 0 and β =

π
2 by Corollary 4.2. When

either α4 6= 0 or α6 6= 0 for ε 6= 0, the curve on the plane (κ, β) is located near the line κ > 0 and β =
π
2 . If in addition, α4 = α6,

the curve on the plane (κ, β) intersects the point (κ, β) = (0, π
2 ) at least to first order of the perturbation theory.

Remark 4.9. The Melnikov integral (4.7) can be useful for the cases when ∂ε∆(0, 0) vanishes at a particular point κ = κ0. In this
case, the one-parameter family of solutions on the plane (κ, β) may display interesting behavior such as a branch point near the
point κ = κ0 and β =

π
2 . Similarly, interesting behavior is expected if ∆(0, ε) = 0 for all κ ∈ R and ∆(ε, 0) = 0 for a point

κ = κ0. At the present time, we do not have any numerical examples, which would motivate studies of these bifurcations.

5. Spectral stability of the traveling solutions

By using the transformation

un(t) =
1
h
Φ(Z , T )eiβZ+iωh2T , Z =

hn − 2ct
h

, T =
t

h2 ,

and the parametrization (1.7), the discrete NLS equation (1.1) converts to the time-dependent version of the differential
advance–delay equation (1.9):

iΦT + cos β[Φ+ + Φ− − 2 cosh κΦ] + i sin β

[
Φ+ − Φ− − 2

sinh κ

κ
ΦZ

]
+ f (Φ−e−iβ ,Φ,Φ+eiβ) = 0,

where the subscript denotes partial derivatives and Φ± = Φ(Z ± 1, T ). Suppose Assumption 2.1 is satisfied, β =
π
2 , and

α j = 0 for j = 1 and 4 ≤ j ≤ 7. The standard linearization of the solution Φ(Z , T ) by the substitution Φ(Z , T ) =

Φ0(Z) + [U (Z , T ) + iV (Z , T )] + O(‖U‖
2, ‖V ‖

2) results in the uncoupled linearized problem

UT + L+U = 0, VT + L−V = 0, (5.1)

where operators L± are given by (2.5) and (2.6). Therefore, the spectrum of operators L± investigated in Section 3 for analysis
of persistence of solution Φ0(Z) is also important for predictions of spectral stability of the solution Φ0(Z) with respect to time
evolution. If Assumption 3.6 is replaced with a stronger spectral assumption, one can immediately formulate results on neutral
stability of the solution family Φ0(Z) in the linearized time evolution problem (5.1).

Assumption 5.1. The point spectrum σp(L) in H1(R) does not include any eigenvalues on λ ∈ C, except for the zero eigenvalue
λ = 0.

4 The function Φ(Z) = sinh κ sech(κ Z) is obviously a solution of the Eq. (4.8) for any ε ∈ R and ε = 0, i.e. it is actually the two-parameter family of solutions
of the AL lattice.



D.E. Pelinovsky et al. / Physica D 236 (2007) 22–43 37

Proposition 5.2. Let Assumptions 2.1, 3.11 and 5.1 be satisfied. Then, the solution Φ0(Z) is neutrally stable with respect to the
time evolution of the linearized problem (5.1), such that

sup
t≥0

(‖U (·, T )‖H1(R) + ‖V (·, T )‖H1(R)) ≤ C < ∞,

for some C > 0.

Remark 5.3. In a similar context, time evolution of embedded solitons in nonlinear partial differential equations was studied in
[19]. It is suggested that the solution Φ0(Z) is spectrally and nonlinearly stable in the time evolution if Assumption 3.11(ii) is
satisfied and the resonance pole of L− shifts to the right half-plane of λ, in accordance with Appendix B. This analogy suggests
nonlinear stability of the time evolution of the one-parameter family of traveling solutions (1.12) in the discrete NLS equations
(1.1) and (1.2) with α2 > α3 6= 0 and α j = 0 for j = 1 and 4 ≤ j ≤ 10. We note that the nonlinear stability of the two-parameter
family of traveling solutions of the AL lattice (with α3 = 0) follows from the integrability of the AL lattice [4].

6. Numerical approximations of solution families

Numerical approximations of solutions of the differential advance–delay equation (1.9) are based on the pseudo-spectral method,
similarly to the work [1]. In this method, the solution Φ(Z) is extended into a periodic function over a large but finite period L and
the periodic function is approximated with Fourier series

Φ(Z) =

N∑
j=1

a j cos
(

2π j
L

Z
)

+ ib j sin
(

2π j
L

Z
)

. (6.1)

If the solution satisfies the reversibility constraint Φ(−Z) = Φ̄(Z), the Fourier coefficients {a j , b j }
N
j=1 are real-valued. When the

Fourier series (6.1) is substituted into the differential advance–delay equation (1.9), the equation transforms into a large system
of coupled algebraic equations at the collocation points Zi =

Li
2(N+1)

, i = −(N + 1), −N , . . . , N , (N + 1) for the unknown
coefficients {a j , b j }

N
j=1. The system of algebraic equations is solved for some initial values of {a j , b j }

N
j=1 by using the Powell

hybrid method [20]. The numerical solution has generally a non-zero amplitude radiation tail near the end points Z = ±
1
2 L . We

measure the radiation tail by the signed amplitude ∆ = Im Φ
( L

2

)
. If a zero of the radiation tail is detected for some parameter

configurations, the zero of ∆ is continued with respect to perturbed parameters by using AUTO [3]. The solution Φ(Z) with zero
radiation tail corresponds to a localized traveling wave.

6.1. Translationally invariant discrete NLS lattice

We consider the discrete NLS equation (1.1) with the nonlinearity (1.2) and (1.4). To simplify our work, we set α4 = α6, α9 = 0,
and add the normalization constraint

α2 + α3 + 4α6 + 2α8 = 1. (6.2)

Then, the solution Φ(Z , T ) has three independent parameters (α3, α6, α8) in addition to two internal parameters κ and β. Fig. 4
show zeros of the tail amplitude for κ = 1, three values of β = {0.51π, 0.55π, 0.6π} and three parameter configurations
(α6, α8) = (−1, 1) (left), (α3, α8) = (−1, 1) (center), and (α3, α6) = (−1, −1) (right). The solution profiles along the curve
β = 0.6π for (α3, α6) = (−1, −1) are shown in Fig. 5. We can clearly see that the condition ∆ = 0 for Im Φ

( L
2

)
corresponds to

the zero tail amplitude for Re Φ
( L

2

)
as well. We can also see that a simple zero of the tail amplitude persists for general parameter

configurations but may be non-unique as it happens on the left panel of Fig. 4.5

If β =
π
2 and α6 = 0, the differential advance–delay equation (1.9) reduces to the scalar equation (2.3). Corollary 4.2 states that

the family of localized traveling solutions persists on the line β =
π
2 . This fact is confirmed numerically in Fig. 6, where different

single-humped solutions are found on the line β =
π
2 for parameter continuations in α3 (left) and α8 (right). We can see that the

wave amplitude of the single-humped solutions grows as α3 increases and α8 decreases.
When α6 6= 0, the differential advance–delay equation (1.9) is equivalent to the full complex system (2.1). Corollary 4.6(i) and

Example 4.8 state that the family of solutions persists along a curve in the (κ , β)-plane near the line κ > 0 and β =
π
2 for small

5 It would be interesting to investigate the tail amplitude as a function of β, in this case we would expect to see regular curves (as a function of β) of ‘U’, ‘n’
and ‘S’ shapes, see [14], where ‘U’ and ‘n’ branches are bounded away from ∆ = 0 containing only solutions with non-zero radiation tails and ‘S’ branches which
contain a single solution with zero radiation tail (∆ = 0). However since, by definition, β is proportional to the wave number of the radiation tail and the wave
number is zero for β =

π
2 , then a small change in β can give rise to a large variation in the radiation tail behavior. Therefore, the behavior of ∆ as a function of β

near to the point β =
π
2 is a very computationally expensive task.
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Fig. 4. The tail amplitude ∆ versus α3 for (α6, α8) = (−1, 1) (left); α6 for (α3, α8) = (−1, 1) (center), and α8 for (α3, α6) = (−1, −1) (right). The other values
are κ = 1 and β = 0.6π (solid), β = 0.55π (dashed), and β = 0.51π (dash–dotted).

Fig. 5. Profiles of solution (a) Re Φ(Z) and (b) Im Φ(Z) versus tail amplitude ∆ when the solution is continued for κ = 1 and β = 0.6π versus α8 for
(α3, α6) = (−1, −1). The value ∆ = 0 corresponds to the localized solution.

Fig. 6. Persistence of the localized solution for κ = 1 and β =
π
2 versus α3 for (α6, α8) = (0, 1) (left) and α8 for (α3, α6) = (−1, 0) (right). The insets show the

single-humped profiles of the localized solution.

α6 6= 0. Moreover, the curve only intersects the line β =
π
2 at the point κ = 0. Fig. 7(a) illustrates this fact for fixed values

(α3, α8) = (−1, 1) and different values of α6 = (0.5, 0.25, 0, −0.5, −1, −1.5, −2). In Fig. 7(b) we project the solution curves
onto the (c, ω)-plane, where the values of c and ω are given by the parametrization (1.7). All the solution curves can be seen to
intersect the point (c, ω) = (1, π − 2) which corresponds for h = 1 to the point (κ, β) = (0, π

2 ). As α6 decreases the solution
curves in the (c, ω)-plane move toward the lower half-plane.

Fig. 8 shows that the localized traveling waves undergo a fold bifurcation for positive values of α6 as κ is increased. At the
fold bifurcation, two solution branches merge, one corresponding to a single-humped solution and the other one becoming double-
humped as we move away from the fold point. The insets to the figure show the solution profiles along the solution curves for
α6 = 0.5. The amplitudes of both single-humped and doubled-humped solutions grow with increasing values of κ up to the
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Fig. 7. Persistence of solutions for (α3, α8) = (−1, 1) as κ is varied on the (β, κ)-plane (left) and on the (c, ω)-plane (right). Different curves correspond to
different values of α6 = 0.5, 0.25, 0, −0.5, −1, −1.5, −2 from left to right on the left panel and from top to bottom on the right panel. The shaded area in the right
panel indicates the boundary of the existence domain at κ = 0 and β ∈ [0, π].

Fig. 8. (a) Fold bifurcation at which single-humped and doubled-humped solutions coalesce for α6 = 0.5 and (α3, α8) = (−1, 1). Solution profiles are shown in
panels (b)–(d). Panel (e) shows the fold bifurcation for fixed κ = 1 as α6 varies. The fold bifurcation only occurs when α6 is positive.

maximum amplitude at κ ≈ 4. The branch containing the double-humped solutions in Fig. 8 is expected to continue to the value
κ = 0 but computations in this limit are extremely difficult as the distance between the two humps becomes unbounded as κ → 0.

Numerical simulations of the temporal dynamics of the initial-value problem were performed for the discrete NLS equation (1.1)
using a variable-order, variable-timestep Runge–Kutta method, subject to periodic boundary conditions in n. The results illustrate
spectral stability of the localized traveling waves of the translationally invariant NLS lattice, in accordance with Proposition 5.2.
We have computed numerical approximations for α6 = α8 = 0 using as initial data the exact solution (1.12) with the amplitude
modulation:

un(0) = µΦ(n)eiβn, (6.3)

where Φ(Z) is given by (1.12) and µ is an amplitude parameter near µ = 1. Fig. 9 presents the time evolution of the perturbed
localized traveling wave for α2 = 1 and α3 = 0.5, when µ = 0.9 (top) and µ = 1.1 (bottom). The qualitative behavior for both
values of the amplitude perturbation parameter are the same, that is the initial perturbation is shed as radiation for a short time
frame, after which the radiation is separated from the solution core and moves across the lattice at a smaller wave speed than the
solitary core of the solution.6 After the radiation has been shed, the remaining solitary wave now travels across the lattice as a wave
of permanent form, with no further shedding of radiation, in exactly the same manner as an unperturbed solution.

6 Note that waves for later times appear at the right end of the computational domain, this is just an artifact of the periodic boundary conditions we have used.
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Fig. 9. Evolution of the initial data (6.3) for α2 = 1, α3 = 0.5, κ = 1, where µ = 0.9 (top) with t = 29 (left) and t = 600 (right) and µ = 1.1 (bottom) with t = 23
(left) and t = 600 (right).

We have checked that the same scenario holds for the values of α6 6= 0 and α8 6= 0, when the exact solution (1.12) is replaced
by a numerical approximation of the localized traveling solution. The only difference is that in some numerical simulations (not
shown), we have observed that the radiation moves across the lattice with a greater wavespeed than that of the solitary wave core.

6.2. Salerno model

We consider the Salerno model (1.1) and (1.3) parameterized by the only parameter α2. Corollary 4.6(ii) and Example 4.7 state
that the localized traveling solutions of the Ablowitz–Ladik model with α2 = 1 and β =

π
2 do not persist for α2 6= 1. Fig. 10(a)

shows the tail amplitude ∆ versus κ for different values of α2 and β. The tail amplitude remains non-zero in a neighborhood of the
point α2 = 1 and β =

π
2 . However, Fig. 10(b) shows that non-trivial zeros of the tail amplitude can appear far from the point of our

studies: two zero tail solutions are found for values of κ near κ = 1. This shows that in addition to the known solutions of the AL
lattice at α2 = 1, other non-trivial localized solutions can exist away from the limit β =

π
2 and α2 = 1. The persistence of these

solutions and how far they can be continued toward the pure cubic discrete NLS equation at α2 = 0 is still an open question.

7. Conclusion

We have proved two main results in this article. Firstly, we have found that traveling localized solutions are structurally stable
in the discrete NLS equation at the particular point β =

π
2 , provided that the system of differential advance–delay equations can be

reduced to a scalar equation. Secondly, we have proved that the existence of traveling solutions in the general case is a bifurcation of
codimension one, such that a one-parameter family of solutions on the parameter plane (β, κ) (or equivalently, (ω, c)) is structurally
stable with respect to parameter continuations near to the line β =

π
2 and κ > 0, provided that a Melnikov function admits non-

trivial zeros. We have illustrated these two main results with numerical approximations of traveling solutions in the two models,
namely the translationally invariant discrete NLS equation and the Salerno model. The first model has a structurally stable family
of traveling solutions near β =

π
2 , while the Salerno model has no traveling solutions near this point except for in the limit α2 = 1,

which corresponds to the integrable AL lattice. A full treatment of the stability of the traveling wave solutions remains an avenue of
future research, particularly the stability of single-humped and double-humped solutions around the fold bifurcation. The existence
of traveling wave solutions away from the point β =

π
2 is still an open question. Since the amplitude of the tail radiation becomes

exponentially small as a function of κ for β 6=
π
2 , the existence of traveling wave solutions becomes a beyond all orders problem
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Fig. 10. (a) Tail amplitude of the Salerno model as a function of κ for β = 0.65π (solid) and β = 0.35π (dashed). The curves with ∆ > 0 correspond to α2 = 1.1
and the curves with ∆ < 0 correspond to α2 = 0.9. (b) Existence of non-trivial zero tail amplitude solutions for α2 = 0.7 and β = 0.875π .

which can be solved by computing zeros of the so-called Stokes constants. The computation of the Stokes constants is on-going
work and will be reported elsewhere.
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Appendix A. Formal reductions to the third-order ODE and associated operators

Let β =
π
2 and Φ(Z) = κϕ(ζ ) with ζ = κ Z be a smooth solution of the differential advance–delay equation (1.9). The linear

terms are expanded in powers of κ by

i
(
Φ+ − Φ− − 2

sinh κ

κ
Φ′

)
= iκ(ϕ(ζ + κ) − ϕ(ζ − κ) − 2 sinh κϕ′(ζ )) =

i
3
κ4(ϕ′′′

− ϕ′) + O(κ6),

while the expansion of the nonlinear terms is given by

f (−iΦ−,Φ, iΦ+) = (α1 + 2α4 − 2α5 − 2α6 + α7)κ
3
|ϕ|

2ϕ

+ 2iκ4
[(α2 + 2α8 − 2α9)|ϕ|

2ϕ′
+ (−α3 + α8 + α9 − α10)ϕ

2ϕ̄′
] + O(κ5).

When the constraint (1.10) is satisfied, the leading-order balance occurs at the third-order ODE, which admits a reduction to the
real-valued function ϕ(ζ )

ϕ′′′
− ϕ′

+ 6γ ϕ2ϕ′
= 0, ϕ : R 7→ R, (A.1)

where γ = α2 − α3 + 3α8 − α9 − α10. When γ > 0, there exists an exact single-humped localized solution of the third-order ODE
(A.1) in the form ϕ =

1
√

γ
sech ζ .

A similar reduction can be performed for the differential advance–delay operators L± given by (2.5) and (2.6). When
U (Z) = u(ζ ) and W (Z) = w(ζ ) are smooth functions of ζ = κ Z , the operators L± are reduced at the leading order O(κ3)

to the form of the third-order derivative operators:

L+ =
1
3

(
d3

dζ 3 −
d

dζ

)
+ 2 sech2 ζ

d
dζ

− 4 sech3 ζ sinh ζ (A.2)

L− =
1
3

(
d3

dζ 3 −
d

dζ

)
+ 2 sech2 ζ

d
dζ

+ 4ν

(
sech2 ζ

d
dζ

+ sech3 ζ sinh ζ

)
, (A.3)

where

ν =
α3 − α8 − α9 + α10

α2 − α3 + 3α8 − α9 − α10
.
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The adjoint operators are

L∗
+ = −

1
3

(
d3

dζ 3 −
d

dζ

)
− 2 sech2 ζ

d
dζ

(A.4)

L∗
− = −

1
3

(
d3

dζ 3 −
d

dζ

)
− 2 sech2 ζ

d
dζ

+ 4 sech3 ζ sinh ζ − 4ν

(
sech2 ζ

d
dζ

− 3 sech3 ζ sinh ζ

)
. (A.5)

It follows from explicit computations that

L+

sinh ζ

cosh2 ζ
= 0, L+

(
sech ζ −

ζ sinh ζ

cosh2 ζ

)
= −

2 sinh ζ

3 cosh2 ζ
, L+(1 − 2 sech2 ζ ) = 0, (A.6)

and

L∗
+ sech ζ = 0, L∗

+ζ sech ζ = −
2
3

sech ζ, L∗
+1 = 0. (A.7)

When ν = 0, all eigenfunctions of L− and L∗
− follow from the expressions above since L− = −L∗

+ and L∗
− = −L+. When ν 6= 0,

the eigenfunctions of the operators L− and L∗
− were computed numerically in [19]. In the general case (which excludes two special

integrable cases with ν = 0 and ν = −
1
4 ), the operator L− has one decaying eigenfunction sech ζ and no bounded non-decaying

eigenfunctions, while the operator L∗
− has no decaying eigenfunctions and two bounded non-decaying eigenfunctions (even and odd

in ζ ) (see Fig. 2(c), (d) in [19]). It was also shown that the generalized eigenfunction of L−u1 = sech ζ is a bounded non-decaying
function (odd in ζ ) and therefore, it does not exist in the exponentially weighted space H1

µ(R) for µ 6= 0. It was shown in [19] by
the perturbation theory and numerically that the double zero eigenvalue in H1

µ(R) for ν = 0 and 0 < µ < µ0 splits into a simple
zero eigenvalue and a small positive eigenvalue for small ν 6= 0. The positive eigenvalue in H1

µ(R) with 0 < µ < µ0 corresponds
to the resonance pole of the linearized operator L− in H1(R).

Appendix B. Perturbation theory for eigenfunctions of the zero eigenvalue

Let us rewrite the differential advance–delay operator L− of Example 3.2 in the form L− = L0 + 2νL1, where

L0 = −2
sinh κ

κ

d
dZ

+ [1 + sinh2 κ sech2(κ Z)](δ+ − δ−)

L1 = sinh2 κ sech2(κ Z)(δ+ − δ−) + 2 sinh3 κ sinh(κ Z) sech(κ Z) sech(κ Z + κ) sech(κ Z − κ).

According to the exact solutions (3.16) and (3.18), we have

L0Φ = 0, L1Φ = 0, L0 ZΦ = C0Φ,

where Φ(Z) = sech(κ Z) and C0 = 2(cosh κ −
sinh κ

κ
) 6= 0. Following the perturbation theory in [19], we develop perturbation

expansions for the eigenvalue λ and the eigenfunction U (Z) associated to the double zero eigenvalue in H1
µ(R) with 0 < µ < µ0

for ν = 0:

U = C0Φ + (2ν)2λ2 ZΦ + (2ν)3(λ3 ZΦ + λ2U3) + (2ν)4(λ4 ZΦ + U4) + O(ν5),

λ = (2ν)2λ2 + (2ν)3λ3 + (2ν)4λ4 + O(ν5),

where the first-order corrections are zero due to the fact that L1Φ = 0. The first non-trivial equations for U3 and U4 are read as
follows:

L0U3 + L1 ZΦ = 0, L0U4 + λ2L1U3 = λ2
2 ZΦ.

By Fredholm Alternative in the weighted space H1
µ(R) with 0 < µ < µ0, the solutions U3 and U4 exist in H1

µ(R) if and only if

(w0, L1 ZΦ) = 0, λ2[(w0, L1U3) − λ2(w0, ZΦ)] = 0,

where w0 is the eigenfunction of L∗

0w0 = 0. Because L0 satisfies Assumption 3.11(i) (see Example 3.8), w0 is in fact in H1(R)

and, by Lemma 3.10, w0(Z) is odd on Z ∈ R. Therefore, (w0, L1 ZΦ) = 0 is satisfied. Since 0 is a double zero eigenvalue of L0
by the same Assumption 3.11(i), we have (w0, ZΦ) 6= 0, such that the splitting in H1

µ(R) occurs if (w0, L1U3) 6= 0 with a new
simple eigenvalue

λ = (2ν)2 (w0, L1U3)

(w0, ZΦ)
+ O(ν3).



D.E. Pelinovsky et al. / Physica D 236 (2007) 22–43 43

In the limit of small κ , w0 → tanh(κ Z)sech(κ Z) and Φ → sech(κ Z), such that (w0, ZΦ) < 0. It was shown analytically and
numerically in [19] that (w0, L1U3) < 0 in the same limit. Therefore, λ > 0 for small κ .

By a similar method, one can show that the bounded eigenfunction U0(Z; 0) of the operator L− does not exist for small
ν 6= 0. According to the exact solution (3.13), we have L01 = 0. The perturbation expansion for U0(Z; 0) at λ = 0 is given
by U0(Z; 0) = 1 + 2νU1(Z) + O(ν2), where U1(Z) is a bounded function of the inhomogeneous problem L0U1 + L11 = 0. No
bounded solutions exist unless (w0, L11) = 0, which is generally violated as w0 and L11 are both odd on Z ∈ R.

Finally, one can show by the same technique for small ν 6= 0 that the eigenfunction w0 of L∗
−w0 = 0 exists in H1

µ(R) for
0 < µ < µ0 but does not exist in H1(R).
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