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Introduction

Bose-Einstein condensation (BEC) is a physical phenomenon, initially predicted by S.N.Bose

and A.Einstein in 1924-25. This phenomenon occurs when a gas of bosonic atoms is cooled

below a critical transition temperature and consequently all atoms condense at the lowest ener-

getic state. At this state all atoms become absolutely identical such that no measurement can

distinguish between different atoms [6]. BEC has been widely studied mathematically in resent

years [5,8,10]. A nonlinear evolution equation, called the Gross-Pitaevskii equation, has been

used to model this phenomenon in the mean-field approximation.

The goal of this project is to provide detailed analytical and numerical calculations of vortices in

the two-dimensional harmonic potentials. The main equation to consider is the Gross-Pitaevskii

equation,

(0.1) iεut + ε2(uxx + uyy) + (1− x2 − y2 − |u|2)u = 0,

where ε is a small parameter that is inversely proportional to chemical potential and u is a wave

function.

In the first section of this project, we use the method of Lyapunov-Schmidt reduction for the

local bifurcation, to study the vortex solution near the bifurcation point ε = 1
4
. We prove the

birth and the persistence of the vortex solution of the stationary Gross-Pitaevskii equation for

small |ε− 1
4
|. Section 2 contains the numerical results. Numerical shooting methods are employed

to approximate the vortex solution to the stationary equation in the existence interval. We also

discuss numerically the convexity of the energy functional near the vortex solution. In section

3 we use calculus of variations to prove the existence of the vortex solution for all 0 < ε < 1
4
.

Finally, in section 4 we prove the uniqueness of the positive vortex solution using some ODE

techniques. Section 5 concludes the project with the list of open problems. Appendixes I and

II give numerical codes of the MATLAB programs.

1. Bifurcations of Vortex Solutions

Let us define the Schrödinger operator H0 for a two-dimensional harmonic oscillator in the

form:

(1.1) H0 = −ε2
(
∂2

∂x2
+

∂2

∂y2

)
+ x2 + y2 − 1, ε > 0.

The domain of H0 is:

(1.2) Dom(H0) =
{
f ∈ H2(R2) : |x|2f ∈ L2(R2)

}
.
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The stationary Gross-Pitaevskii equation can be written in the form:

(1.3) H0u = −|u|2u.

We are studying the bifurcations of vortex solutions when the right-hand side of the equation

(cubic term) is small.

Spectrum of a harmonic oscillator.

To find the spectrum of H0 we write the eigenvalue equation:

(1.4) H0f = λf, f ∈ Dom(H0),

where λ stands for the eigenvalues and f for the corresponding eigenfunctions. Substituting

equation (1.1) to (1.4), we write the eigenvalue equation explicitly:

(1.5) −ε2(fxx + fyy) + (x2 + y2)f − f = λf.

We can use the separation of variables to represent the wave function in the product form

f(x, y) = ϕ(x)ψ(y), where ϕ(x) and ψ(y) satisfy the equations:

(1.6) −ε2ϕ′′
+ x2ϕ = µϕ, −ε2ψ′′

+ y2ψ = νψ.

Comparing (1.5) and (1.6) we can see that the eigenvalues λ of the Schrödinger operator are

found from µ and ν as follows:

(1.7) µ+ ν − 1 = λ.

In order to derive a formula to compute the different values of λ, we need to look at the

eigenvalues of the one-dimensional harmonic oscillator. We know [9] that the eigenvalues of a

harmonic oscillator are equidistant, so that

(1.8) µk = µ0 + kh, k ∈ N0,

where µ0 is the smallest eigenvalue and h is the distance. The set N0 includes all possible

integers and the zero. We also know that the first two eigenfunctions are the Hermite functions

in the form:

(1.9) ϕ0 = e−αx2

, ϕ1 = xe−αx2

,

where α is a parameter. By substituting (1.9) to (1.6), we can see that α = 1
2ε

, µ0 = ε and

µ1 = 3ε therefore h = 2ε and µk = ε(1 + 2k), k ∈ N0 and by symmetry νm = ε(1 + 2m),m ∈ N0.

Therefore the eigenvalues of H0 are known exactly:

(1.10) σ(H0) =
{
λk,m(ε) = −1 + 2ε(k +m+ 1), (k,m) ∈ N2

0

}
.
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Figure 1

Eigenvalues λk,m are plotted as a function of ε in Figure 1. When eigenvalues cross zero,

this signals a bifurcation of a solution in the stationary equation (1.3). The lowest eigenvalue

λ0,0, crosses 0 at ε = 1
2

and induces a local bifurcation of the ground state. For ε near 1
2

the

ground state is a positive, radially symmetric solution that is close to the linear eigenstate

f0,0 = e−(x2+y2) [10]. Similarly, the double eigenvalue λ1,0 = λ0,1 crosses zero at ε = 1
4

and

induces a local bifurcation of the vortex of charge one. In this section we study this local

bifurcation. It can be seen in Figure 1 that there are bifurcation points of other stationary

solutions which can be studied as well by similar methods.

Local bifurcation Theory.

An abstract introduction of the local bifurcation theory is as follow. A local bifurcation problem

can be formulated as an equation:

(1.11) F (u, λ) = 0, F : U × R → Z

where u is unknown, λ is the bifurcation parameter, U and Z are Banach spaces. The point

(u0, λ0) is called a bifurcation point if changing the value of λ near λ0 changes the number

of solutions u to the equation (1.11). The method of Lyapunov-Schmidt Reduction is used to

study the local bifurcation problem. This method is described in many texts [3,7]. The main

outcome of the method is a reduction of the non-linear equation (1.11) to a finite-dimensional

root-finding problem.

Let us assume that the Jacobian DuF (u0, λ0) := L is a Fredholm operator. Let N(L) ⊂ U and

R(L) ⊂ Z denote the kernel and the range of L. Let us also assume that the N(L) 6= {0}. Note

that if N(L) = {0}, then the operator L is invertible and by implicit function theorem, the

solution exists uniquely in the neighborhood of u0 in U , hence the bifurcation does not occur
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at (u0, λ0). Since L is a Fredholm operator, there exists closed complements to the kernel and

range of L, so that U and Z can be decomposed to:

U = N(L)⊕ U0,(1.12)

Z = R(L)⊕ Z0.(1.13)

Let P and Q denote projection operators such that:

P : U → N(L),(1.14)

Q : Z → Z0,(1.15)

then the problem can be projected into the form:

QF (Pu+ (I − P )u, λ) = 0,(1.16)

(I −Q)F (Pu+ (I − P )u, λ) = 0,(1.17)

where I is an identity operator. Note that (I − Q)L(I − P ) is invertible. If we can find the

function ψ which maps N(L) × R → U0 and satisfies the equation (1.17), then we can rewrite

the equation (1.16) as the bifurcation problem:

(1.18) QF (Pu+ ψ(Pu, λ), λ) = 0.

If N(L) is finite-dimensional, the bifurcation problem (1.18) reduces to a standard root finding

problem, which can be studied in many cases by using normal form expansions [3,7].

Application of the Local bifurcation Theory.

To study the stationary equation (1.3) near the point ε = 1
4
, let F := H0u + |u|2u hence

DuF (0, ε) = H0. The following theorem presents the main results of this section.

Theorem 1. Let µ = 1
16
− ε2. There is µ0 > 0 such that for all µ ∈ (0, µ0), there exist vortex

solutions of the form,

(1.19) u =
√

128µ(x± iy)e−2(x2+y2) +OH2(R2)(
√
µ3),

in the stationary equation (1.3).

To prove Theorem 1, we apply the method of Lyaponuv-Schmidt reductions. We start by

defining U , Z, N ⊂ U and R ⊂ Z as:

U = Dom(H0|ε= 1
4
), Z = L2(R2),

(1.20) N ≡ Ker(H0|ε= 1
4
) = Span{f1,0, f0,1},
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(1.21) R ≡ Range(H0|ε= 1
4
)

where

(1.22) f1,0 = xe−2(x2+y2) f0,1 = ye−2(x2+y2).

Furthermore we will introduce the inner product in L2(R2) as < f, g >:=
∫

R2 f(x)g(x)dx.

Because H0|ε= 1
4

is self-adjoint, if f ∈ N and g ∈ R, then < f, g >= 0. Using the decomposition

we have:

(1.23) ∀ϕ ∈ N : ϕ = c1f1,0 + c2f0,1 = (c1x+ c2y)e
−2(x2+y2),

and

(1.24) ∀ψ ∈ R : < f1,0, ψ >=< f0,1, ψ >= 0.

Now let us rewrite the stationary equation (1.3) as the local bifurcation equation:

(1.25) (H0|ε= 1
4

+ µ∆)u = −|u|2u.

Substituting the decomposition,

(1.26) u =
√
µ(ϕ+ c1f1,0 + c2f0,1), ϕ ∈ R, (c1, c2) ∈ C2,

into the equation (1.25) we obtain:

(1.27) (H0|ε= 1
4

+ µ∆)(ϕ+ c1f1,0 + c2f0,1) = −µF(ϕ+ c1f1,0 + c2f0,1),

where F(u) = |u|2u. Projecting this equation to the orthogonal complement of R, we obtain:

c1 < f1,0, (−∆)f1,0 > + < ϕ, (−∆)f1,0 >=< f1,0,F(ϕ+ c1f1,0 + c2f0,1) >;(1.28)

c2 < f0,1, (−∆)f0,1 > + < ϕ, (−∆)f0,1 >=< f0,1,F(ϕ+ c1f1,0 + c2f0,1) > .(1.29)

Using MATLAB, the exact values of the following integrals have been computed:

< f1,0, (−∆)f1,0 >= 16 < f1,0, (1− |x|2)f1,0 >

= 16

∫ ∫
R2

(1− r2)r3e−4r2

dr =
π

4
= I;

< f0,1, (−∆)f1,0 >= 16 < f0,1, (1− |x|2)f1,0 >

= 16

∫ ∫
R2

xye−
x2+y2

ε (1− x2 − y2)dxdy = 0;

By symmetry, we have

< f0,1, (−∆)f0,1 >=
π

4
= I, < f1,0, (−∆)f0,1 >= 0.
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Projecting (1.27) to R, we get:

(1.30) P0(H0|ε= 1
4

+ µ∆)P0ϕ+ µ(∆)(c1f1,0 + c2f0,1) = −µP0F(ϕ+ c1f1,0 + c2f0,1).

where P0 is the orthogonal projection operator which can be defined:

(1.31) P0 : L2 → R ⊂ L2; P0(c1f1,0 + c2f0,1) = 0; P0(ϕ) = ϕ.

Since P0H0|ε= 1
4
P0 is invertible, the Implicit Function Theorem says that for any c1, c2 ∈ C

and small µ, there exists a unique solution of (1.30) such that ‖ϕ‖H2 = O(µ) as µ → 0 if

c1, c2 = O(1). Substituting this solution to the system (1.28)-(1.29) and truncating at the

leading orders in µ, we obtain the truncated normal form equations:

Ic1 = J1|c1|2c1 + J2(2|c2|2c1 + c2
2c̄1)(1.32)

Ic2 = J1|c2|2c2 + J2(2|c1|2c2 + c1
2c̄2)(1.33)

where

J1 =< f 2
1,0, f

2
0,1 >=

∫ ∫ 2

R
x4e−8(x2+y2)dxdy =

3π

2048
(1.34)

J2 =< f 2
1,0, f

2
0,1 >=

∫ ∫ 2

R
x2y2e−8(x2+y2)dxdy =

π

2048
(1.35)

For simplicity we denote J2 = J and J1 = 3J .

We are now looking for all acceptable solutions of the truncated system (1.32) and (1.33).

Vortex Solution. Let c2 = ±ic1 then Ic1 = (J1 + J2)|c1|2c1 = 4J |c1|2c1. If we assume that

c1 6= 0 then we have:

(1.36) c1 =

(
I

4J

) 1
2

=
√

128; c2 = ±i
√

128.

The approximation (1.26) can now be written as:

(1.37) u =
√

128µ(x± iy)e−2(x2+y2) +OH2(R2)(µ
3
2 )

Dipole Solution. Let c1, c2 6= 0 and c2 6= ±ic1, if we multiply both sides of the equation (1.32)

by c̄1 we will have:

(1.38) I|c1|2 = 3J |c1|4 + J(2|c2|2|c1|2 + c2
2c̄1

2)

which leads to the conclusion that Im(c̄1
2c2

2) = 0. The vortex solution (1.36) satisfies this

condition. The other solution with c1 ∈ R should have c2 ∈ R, in which case the equation (1.32)

leads to:

(1.39) c1
2 + c2

2 =
I

3J
.
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Note that a particular solution is:

(1.40) c1 =

(
I

3J

) 1
2

=

√
512

3
; c2 = 0.

The general solution for this family can be derived using the polar coordinates and the equation

(1.26) in the following form:

(1.41) u =

√
512µ

3
(x cos(α) + y sin(α))e−2(x2+y2) +OH2(R2)(µ

3
2 ),

where α is an arbitrary parameter. So far we have identified all possible solutions of the

truncated system (1.32) and (1.33). To be able to use Implicit Function Theorem and discuss

the existence of the solution near bifurcation point (ε = 1
4
), we need to check the invertibility

condition of the Jacobian of this truncated system at each solution.

Persistence of Vortex and Dipole Solutions.

It has been shown that the vortex solutions satisfy the reduction c2 = ±ic1, or more precisely,

(1.42) c1 = a1, c2 = ia2, a1 = a2 =

√
I

4J
=
√

128.

Rewriting the system (1.32)-(1.33) in terms a1 and a2 we obtain:

g1 = (I − 3Ja1
2 − Ja2

2)a1 = 0,(1.43)

g2 = (I − 3Ja2
2 − Ja1

2)a2 = 0.(1.44)

Then the Jacobian operator becomes:

D−→a (−→g ) =

[
I − 9Ja1

2 − Ja2
2 −2Ja1a2

−2Ja1a2 I − 9Ja2
2 − Ja1

2

]
(1.45)

substituting a1 and a2 using (1.42) the determinant of the Jacobian operator becomes:

det(D−→a (−→g ))|−→a =−→a1
= 32a2

1a
2
2J

2 6= 0.(1.46)

Therefore, the matrix (1.45) is invertible at the solution (1.42) and by Implicit Function Theo-

rem, there exists a unique vortex solution near the bifurcation point ε = 1
4

for ε < 1
4
.

It has been shown that the dipole solutions satisfy the reduction c1, c2 ∈ R or more precisely:

(1.47) c1 = a1, c2 = a2, a1
2 + a2

2 =
I

3J
=

512

3
.

Rewriting the system (1.32)-(1.33) in terms a1 and a2, we obtain:

g1 = (I − 3Ja1
2 − 3Ja2

2)a1 = 0,(1.48)

g2 = (I − 3Ja2
2 − 3Ja1

2)a2 = 0.(1.49)
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The Jacobian operator becomes:

D−→a (−→g ) =

[
−6Ja1

2 −6Ja1a2

−6Ja1a2 −6Ja2
2

]
= −6J

[
a1

a2

] [
a1 a2

]
(1.50)

The Jacobian Matrix has Rank = 1 and can not be invertible. Although we had found the

solution for this family -(1.41)- but Implicit Function Theorem could not be applied and the

existence and uniqueness of the solution near ε = 1
4

can not be concluded without computation

of the higher orders of the perturbation theory.

2. Numerical Results for Vortex Solution

2.1. Shooting Method.

So far we have derived the vortex solution analytically near the bifurcation point ε = 1
4
. By the

local bifurcation method, we showed that the vortex solutions exist for ε < 1
4
. The approximate

solution (1.37) can be written in polar coordinate (r, θ) as:

(2.1) u(x, y) '
√

128µre−2r2+iθ.

In this section we want to compute the solution numerically using shooting method. To do

so, let us consider the equation (1.3), for vortex solutions u(x, y) = φ(r)eiθ. The function φ(r)

satisfies an ordinary differential equation:

(2.2) −ε2
(
d2φ

dr2
+

1

r

dφ

dr
− 1

r2
φ

)
+ (r2 − 1)φ = −φ3.

Because r = 0 is a regular singular point of the differential equation (2.2), the first step is to

derive the approximate solution for the equation using Frobenius series.

For the second order ODE of the form:

(2.3) u
′′

+
p(r)

r
u′ +

q(r)

r2
u = 0,

the Frobenius series takes the form u(r) =
∑∞

k=0 ak+lr
k+l where (al 6= 0). To find l, we need to

solve the indicial equation, which for the equation (2.3) has the general form of

l(l − 1) + p(0)l + q(0) = 0.

In our case, p(0) = 1 and q(0) = −1, so that l = 1 is one of the solutions of the indicial equation.

Substituting φ = a1r+a2r
2 +a3r

3 +a4r
4 +O(r5) to the equation (2.2) we obtain a1 = s, a2 = 0,

a3 = −s
8ε2

and a4 = 0 so that the Frobenius series is written as:

(2.4) φ(r) = sr − s

8ε2
r3 +O(r5).

We would like to use the shooting method starting with the boundary conditions at r = 0:

φ(0) = 0 and φ′(0) = s, where s is the shooting parameter.
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Figure 2. Vortex solution for ε = 1
6
. The shooting method starts from s = 2.5

and after some iterations converges to s = 2.9016.

The second step is to break the second-order ODE to two first-order equations. If we let

U = φ(r) and V = φ′(r), the equation (2.2) becomes:{
U ′ = V ;

V ′ = 1
ε2

[− ε2

r
V + ε2

r2U + (r2 − 1)U + U3].
(2.5)

Using Heun’s method as the ODE solver from U(h) = sh− s
8ε2
h3 and V (h) = s− 3sh2

8ε2
, where the

step-size h is small, we compute the solution for all r ∈ [0, 1.7]. The Matlab function Shooting.m

[Appendix 1] which is a modification of the code shooting-nonlinear-ODE.m from the text [4]

finds the appropriate s for different values of ε. Note that the shooting method doesn’t converge

for the values of ε close to 0 and 1
4
.

The results for ε = 1
6

are shown in Figure 2. The starting value for s is 2.5. It can be seen

that after several iterations (black dashed lines) the solutions converge to the blue line where

s=2.9016. Note that the larger we can make the length of the interval, the more accurate results

we will obtain. However due to the term (r2 − 1)φ in the equation (2.2) the shooting method

fails to converge for r > 1.7 and sufficiently small ε. Therefore we just approximate the vortex

solution on the interval [0,1.7] subjected to the Dirichlet boundary condition φ(1.7) = 0.

2.2. Convexity of the energy functional.

In this section we would like to see numerically that the energy functional is not convex near

the vortex solution. Straightforward calculations show that the stationary equation (1.3) is the
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Euler-Lagrange equation of the energy functional:

(2.6) E(u) =
1

2

∫
R2

[
ε2|∇u|2 + (|x|2 − 1)|u|2

]
dx+

1

4

∫
R2

|u|4dx,

If we let ψ ∈ C∞0 (R2) to be a perturbation, the above statement can be expressed as:

(2.7)
d

dt
E(u+ tψ)|t=0 = 0, ∀t ∈ R.

Furthermore expanding the energy functional (2.6) up to the quadratic order leads to:

E(u+ tψ)− E(u) =
1

4
t2 <

[
ψ

ψ

]
,H

[
ψ

ψ

]
>L2 +O(t3),(2.8)

where H can be derived as:

H =

[
−ε2∆ + |x|2 − 1 + 2|u|2 u2

u2 −ε2∆ + |x|2 − 1 + 2|u|2

]
.(2.9)

To study the convexity near the vortex solution we can substitute u(x, y) = φ(r)eiθ to the matrix

Schrödinger operator (2.9). Let us expand ψ and the complex conjugate ψ by using the Fourier

series in θ:

ψ =
∑
n∈N

Vne
inθ,(2.10)

ψ =
∑
n∈N

Wne
inθ.(2.11)

We also define the Laplace operator for the n-th azimuthal mode by:

(2.12) ∆n =
d2

dr2
+

1

r

d

dr
− n2

r2
.

We know [8] that, each pair of (Vn,Wn−2)n∈N is decoupled from other pairs of Fourier coefficients.

We also know [10] that the matrix Schrödinger operator acting on (V1,W−1) and (Vn,Wn−2) for

n ≥ 3 and n ≤ −1 is positive. Therefore, to study the convexity of the quadratic form of E(u),

it suffices to look at the matrix Schrödinger operator acting on (V2,W0) and (V0,W−2). In what

follows, we consider the eigenvalue problem in the form:

H2

[
V2

W0

]
= γ

[
V2

W0

]
,(2.13)

where

H2 =

[
−ε2∆2 + r2 − 1 + 2φ2 φ2

φ2 −ε2∆0 + r2 − 1 + 2φ2

]
.(2.14)



11

Lemma 2 in [10] states that for all values of ε < 1
4

near ε = 1
4
, the spectral problem (2.13)

has exactly one negative eigenvalue. To show the result numerically, let us write V2 = V and

W0 = W , then the eigenvalue problem (2.13) can be written as:

(2.15) [−ε2∆2 + r2 − 1 + 2φ2]V + φ2W = γV,

(2.16) φ2V + [−ε2∆0 + r2 − 1 + 2φ2]W = γW.

We will use finite difference method to solve the system of linear equations (2.15)-(2.16), by

using central differences:

(2.17)
dx

dr

∣∣∣∣
r=rk

=
xk+1 − xk−1

2h

(2.18)
d2x

dr2

∣∣∣∣
r=rk

=
xk+1 − 2xk + xk−1

h2

where h is the step size. Using (2.17) and (2.18), equations (2.15) and (2.16) become:

(2.19) − ε
2

h2
[(1 +

h

2rk

)Vk+1 − (2 +
4h2

r2
k

)Vk + (1− h

2rk

)Vk−1] + (r2
k − 1 + 2φ2

k)Vk + φ2
kWk = γVk,

(2.20) − ε
2

h2
[(1 +

h

2rk

)Wk+1 − 2Wk + (1− h

2rk

)Wk−1] + (r2
k − 1 + 2φ2

k)Wk + φ2
kVk = γWk,

where 1 < k < N − 1 and N = kh is the length of interval. Note that we still need some

information about the boundary conditions.

Let us set the Dirichlet boundary conditions at r = 1.7: V (1.7) = W (1.7) = 0. To setup

boundary conditions at r = 0, we use the Frobenius series:

(2.21) V (r) = a2r
2 +O(r3),

(2.22) W (r) = b0 + b2r
2 +O(r3),

where b0 and a2 are non-zero. Therefore, V (0) = 0. To start the iterations, we need to find a

condition for W (0). The condition can be obtained by substituting the equation (2.22) to (2.15)

at the point r = 0 as,

(2.23) −ε24b2 − b0 = γb0,

where b0 = W0 and b2 = 1
2
W

′′
(0). Using (2.18) we approximate W ′′(0) = W1−2W0+W−1

h2 . Since

equation (2.22) suggests that W ′(0) = 0 therefore by (2.17), we have W1 = W−1. Then b2 =
W1−W0

h2 and we can write:

(2.24) −4ε2

h2
(W1 −W0)−W0 = γW0.
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Figure 3. The negative eigenvalue of the spectral problem (2.13) vs ε.

Figure 4. Two positive eigenvalues of the spectral problem (2.13) vs ε.

We now have enough information to solve the system of equations (2.19)-(2.20), complemented

with the boundary conditions V0 = VN = 0, WN = 0, and W0 to be uniquely specified by the

equation (2.24). The MATLAB function eigenvalues.m [Appendix II] computes the eigenvalues

of the coefficient matrix representing the operator H2 that we just derived.

Figure 3 shows how the negative eigenvalue of the spectral problem (2.13) depends on ε.

Figure 4 displays the two smallest positive eigenvalues of the spectral problem (2.13) versus ε.
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The eigenvalues have been computed for different step size. Just like any other numerical

computation we need to check the accuracy of the solution. In our case the degree of accuracy

is quadratic (i.e: E(h) = ch2) and as we would expect, decreasing the step size by half makes

the results more accurate quadratically.

To study the eigenvalues in Figures 3 and 4, let ε = 1
4
, when (2.1) suggests that φ = 0. Now

the matrix operator (2.14) can be written as:

H2 =

[
H0|n=2 0

0 H0|n=0

]
,(2.25)

whereH0|n represent restriction of the Schrödinger operatorH0 in (1.1) to the space of functions

f = φ(r)einθ. Recall from (1.10) that the eigenvalues of the operator H0 are λk,m(ε) = −1 +

2ε(k+m+1). Therefore for H0|n=0 we can write λ(ε) = −1+2ε(2l+1) and for H0|n=2 we have

λ(ε) = −1 + 2ε(2l + 2 + 1), where l is any natural number including zero. Hence the matrix

operator has two series of eigenvalues namely:

(2.26) λ|n=0 =

{
− 1

2
,
1

2
,
3

2
, ...

}
,

(2.27) λ|n=2 =

{
1

2
,
3

2
,
5

2
, ...

}
.

We conclude that at ε = 1
4
, two smallest positive eigenvalues are double eigenvalues and have

the value 1
2
, where as the negative eigenvalue is −1

2
. It can be seen in Figure 4 that, the double

eigenvalues split by decreasing the value of ε toward zero. The main issue in both Figures 3 and

4 is that we can not compute the eigenvalues for the the whole interval [0, 1
4
]. The main source

of this problem, is the poor approximation of vortex solution computed in section 2.1.

3. Existence of the Vortex Solution

To prove the existence of the vortex solution, we first set the following notations. We denote

by H1(R2) the Hilbert space of the square integrable functions on R2 with square integrable

first derivative. If u(x, y) = v(r)eiθ and v(r) is radially symmetric, where (r, θ) are the polar

coordinates, we say that v ∈ H1
r (R+).

Now we recall the equation (2.2):

(3.1) ε2
(
d2φ

dr2
+

1

r

dφ

dr
− 1

r2
φ

)
+ (1− r2 − φ2)φ = 0,

The energy functional for the vortex solution is:

(3.2) E1(v) =

∫ ∞

0

[
ε2

(
dv

dr

)2

+
ε2

r2
v2 + (r2 − 1)v2 +

1

2
v4

]
rdr = I(v) + J(v),
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where:

(3.3) I(v) =

∫ ∞

0

[
ε2

(
dv

dr

)2

+
ε2

r2
v2 + (r2 − 1)v2

]
rdr,

(3.4) J(v) =
1

2

∫ ∞

0

v4rdr.

Let us denote the Schrödinger operator H0 in (1.1), restricted to the space of vortex function

u(x, y) = v(r)eiθ by H0|n=1. Then I(v) can be written in quadratic form associated with H0|n=1

as, I(v) =< v,H0|n=1v >. Now Figure 1 suggests that I(v) is positive for any ε > 1
4

- note that

the eigenvalues of the operator are positive in this interval- hence zero solution is the global

minimizer of E1(v) with E1(0) = 0 for ε > 1
4
. However, for ε < 1

4
, I(v) is non-positive and

hence, a global minimizer of E1(v) denoted by φ yields E1(φ) < 0. Note that if φ is a global

minimizer of E1(v), then φ is a solution of the Euler-Lagrange equation (3.1).

Theorem 2. For all 0 < ε < 1
4
, the energy functional (3.2) has a nonzero global minimizer φ,

which is a solution to the stationary equation (3.1).

To prove existence of a global minimizer of E1(v), Theorem 2 of chapter 8 in [1] suggests that

we have to check if E1(v) satisfies the coercivity condition, also if the Lagrangian is convex in the

variable v′ [1]. If we write the Lagrangian as L(v′, v, r) = ε2(v′)2 + ε2

r2v
2 + (r2− 1)v2 + 1

2
v4, then

convexity condition in variable v′ is satisfied trivially. The coercivity condition for the energy

functional makes sure that the energy functional attains it’s infimum. The coercivity condition

is also trivially satisfied because L grows like ε2(v′)2 as |v′| → ∞ and like 1
2
v4 as |v| → ∞.

Now for ε < 1
4
, the first eigenvalue of H0|n=1 is negative. Therefore, there exists a positive

constant a such that:

(3.5) I(v) =< v,H0|n=1v >≥ −a‖v‖2
L2

On the other hand, J(v) = 1
2
‖v‖4

L4 , so that we can bound E1(v) from below:

(3.6) E1(v) ≥ −a‖v‖2
L2 +

1

2
‖v‖4

L4 , ∀v ∈ H1
r (R+).

To find the a minimum of the righthand side of the equation (3.6), let us write vλ = λv0 with

‖v0‖H1
r

= 1 so that λ = ‖vλ‖H1
r
> 0. Then, the equation (3.6) can be written based on v0 as:

(3.7) E1(v) ≥ −aλ2‖v0‖2
L2 +

1

2
λ4‖v0‖4

L4 .
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Minimizing f(λ) = −aλ2‖u0‖2
L2 + 1

2
λ4‖u‖4

L4 , with respect to λ, we find the minimum of f at

λ2
0 = a

‖u‖2
L2

‖u‖4
L4

. Therefore, we have,

(3.8) E1(u) ≥ −
1

2
a2‖u0‖4

L2

‖u0‖4
L4

.

In space H1
r (R+), the lower bound is not bounded from below. Therefore, we truncate R+

on a bounded interval [0, R], subjected to the Dirichlet boundary condition v|r=R = 0. Using

Cauchy-Schwarz Inequality we can write:

(3.9) ‖v0‖2
L2 =

∫ R

0

v2
0rdr ≤

(∫ R

0

v4
0rdr

) 1
2
(∫ R

0

rdr

) 1
2

=

(
1

2
R2

) 1
2

‖v0‖2
L4 =

R√
2
‖v0‖2

L4 .

Substituting ‖u0‖2
L2 from (3.9), the equation (3.8) becomes:

(3.10) E1(u) ≥ −
a2R2

4
.

Therefore E1(v) is bounded from below for a finite R > 0 and it attains it’s infimum for any v

in the energy space denoted by:

(3.11) XR =
{
v ∈ H1

r (0, R) : rv ∈ L2
r(0, R)

}
.

Note that XR is embedded to L4
r(0, R) compactly. Then by Theorem 2 of chapter 8 in [1], there

exist a global minimizer for the energy functional (3.2). This global minimizer is a truncation

of the vortex solution v = φ on the bounded interval [0, R].

Note that the compactness of the embedding of XR into L4
r(0, R) holds only for 0 < R <∞. To

obtain the vortex solution on R+, we need to use arguments similar to those used in the proof

of the ground (vortex-free) state (Theorem 2.1) in [5].

4. Uniqueness of the Vortex Solution

In this part we want to prove the uniqueness of the vortex solution for 0 < ε < 1
4
. The idea of

this proof relies on the same arguments as in the proof of Proposition 1.1 for ground (vortex-free)

states in [2].

Theorem 3. Assume that for any fixed 0 < ε < 1
4
, there exists a positive vortex solution φ to

the stationary equation (3.1). Then the vortex solution φ is unique.
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Before starting the proof of the theorem, let us remind that, by solving the indicial equation

in section 2.1, we saw that the solution to the equation (3.1) can be written in the form:

(4.1) φ(r) = rW (r),

where W (r) is a power series solution of the differential equation:

(4.2) ε2(rW
′′

+ 3W ′) + (1− r2 − r2W 2)rW = 0.

Hence by using Frobenius Theorem, we have power series solutions in the form W (r) =∑∞
k=0 akr

k. Substituting the power series into (4.2), we see that for any fixed ε ∈ (0, 1
4
), a1 = 0,

therefore φ(r) = a0r + O(r3) as r → 0. Let us now assume that two positive vortex solutions

v(r) and u(r) exist. By the above arguments the vortex solutions admit power series as r → 0:

v(r) = ar +O(r3),(4.3)

u(r) = br +O(r3).(4.4)

Let us define ρ(r) = u(r)
v(r)

, then:

(4.5) ρ(r) =
b

a
+O(r2).

Therefore, ρ(0) = b
a

and ρ′(0) = 0. We can now rewrite the equation (3.1) for the solutions

u and v. Multiplying both sides of the equations by the terms vr and ur respectively and

subtracting the results from each other, we will obtain:

(4.6) ε2[r(vu
′′ − uv

′′
) + (vu′ + uv′)] = ruv(u2 − v2).

Using ρ, we can rewrite this equation as

(4.7) ε2
d

dr
(rv2ρ′) = rv4ρ(ρ2 − 1).

If ρ(0) = 1 and ρ′(0) = 0 then we conclude that ρ(r) = 1 for all r ∈ R+ that is, u(r) = v(r)

and the uniqueness is proved. Let us assume that 0 < ρ(0) < 1, then the righthand side of the

equation (4.7) is negative at r = 0, therefore rv2 dρ
dr

is a decreasing function for r > 0 locally

near r = 0. Let us define r0 to be:

(4.8) r0 = inf{r > 0, ρ′(r) = 0},

since ρ′ < 0 on the interval (0, r0), then ρ is decreasing on that interval and for every r,

0 < ρ(r) < ρ(0) < 1. We can then conclude that v4ρ(ρ2 − 1) < 0 hence rv2 dρ
dr

is decreasing on

the whole interval (0, r0). Note that r0 can not be finite due to the fact that, r0v(r0)
2 dρ(r0)

dr
< 0
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contradicts the definition of r0 in (4.8) and hence r0 = ∞. Since 0 ≤ ρ(∞) < ρ(1) ≤ 1, then we

can write:

−1 ≤ ρ(∞)− ρ(1) =

∫ ∞

1

ρ′(r)dr =

∫ ∞

1

rv2dρ

dr

1

rv2
dr ≤ v2(1)ρ′(1)

∫ ∞

1

dr

rv2(r)
< 0.

Then in particular using the facts that ρ′(0) < 0, |ρ′(1)| < ∞ and v ∈ L2
r(R+) ∩ L∞r (R+) we

have: ∫ ∞

1

dr

rv2(r)
<∞,

∫ ∞

1

rv2dr <∞.

Using Cauchy-Schwarz Inequality we can write:

∞ =

∫ ∞

1

1dr =

∫ ∞

1

√
rv2(r)

1√
rv2(r)

dr ≤
(∫ ∞

1

rv(r)2dr

) 1
2
(∫ ∞

1

dr

rv(r)2

) 1
2

<∞.

which is a contradiction. Therefore, ρ(0) can not be different from 1, and the uniqueness of the

solutions with φ(r) = a0r +O(r3) is proved.

5. Open Problems.

There are several problems which can be considered for further work. The first problem is in

section 1, where we derived equations for vortex and dipole solutions at the bifurcation point,

using the method of Lyapunov-Schmidt reduction. Although we proved the persistence of the

vortex solution, we were not able to conclude on the persistence of the dipole solution. One can

study the persistence of dipole solution using higher orders of perturbation theory.

The second problem that we can address is in section 2, where we used a numerical method

to approximate eigenvalues of the matrix Schrödinger operator. As we mentioned before, the

results are not very accurate near ε = 1
4
, where the eigenvalues and vortex are known from

analytical calculations. The challenge is to make the numerical results more accurate. It might

be helpful to try different methods such as Runge-Kutta method, as the ODE solver, in order

to get more accurate results.

The third problem is in section 3, where we used calculus of variations to prove the existence

of the vortex solution. In the proof of existence, we were forced to truncate R+ to a bounded

interval [0, R] to get compactness arguments. In general, the existence should hold on the

unbounded domain R+. Additionally we need to prove that the global minimizer of the energy

functional is strictly positive on R+.
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Appendix I: Shooting.m

format(’longG’);

h = 0.01;

s = 1.810223;

for j=4.81:h:10

for g=0:.1:.7

x = 0 : h : 1+g;

ep=1/j;

ep2=ep^2;

m = 0; ss = 0;

while (abs(s-ss) > 10^(-10)) && (abs(s-ss) < 100) && (m < 1000)

ss = s; y(1) = 0; u(1) = s; % (y,u) - components of U(x)

y(2) = s*x(2) - s*x(2)^3/(8*ep2); % Taylor series approximation

u(2) = s - 3*s*x(2)^2/(8*ep2); % for the first step

z(1) = 0; v(1) = 1; % (z,v) - components of V(x)

z(2) = x(2) - x(2)^3/(8*ep2);

v(2) = 1-3*x(2)^2/(8*ep2);

for k = 2 : length(x)-1 % iterations of the ODE solver

yp = y(k) + h*u(k);

up = u(k)-(h/ep2)*((ep2*u(k)/x(k))-(y(k)*(ep2)/x(k)^2)-(((x(k)^2)-1)*y(k))-y(k)^3);

y(k+1) = y(k)+0.5*h*(u(k)+up);

u(k+1) = u(k)-(0.5*h/ep2)*((ep2*u(k)/x(k)-(y(k)*ep2/x(k)^2)-(((x(k)^2)-1)*y(k))-...

y(k)^3)+((ep2*up/x(k+1))-(yp*ep2/x(k+1)^2)-(((x(k+1)^2)-1)*yp)-yp^3));

zp = z(k) + h*v(k);

vp = v(k)-h/ep2*(ep2*v(k)/x(k)-(ep2/x(k)^2+(x(k)^2-1))*z(k)-3*y(k)^2*z(k));

z(k+1) = z(k) + 0.5*h*(v(k)+vp);

v(k+1) = v(k)-0.5*h/ep2*((ep2*v(k)/x(k)-((ep2/x(k)^2)+(x(k)^2-1))*z(k)-3*y(k)^...

2*z(k))+(ep2*vp/x(k+1)-((ep2/x(k+1)^2)+(x(k+1)^2-1))*zp-3*yp^2*zp));

end

s = ss - y(length(x))/z(length(x));

m = m+1;

end

end

if (abs(s-ss) < 100) && (m < 1000)
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fprintf(’epsilon is %d\n’,j);

fprintf(’the value of s is %d\n’,s);

fprintf(’The shooting method converges in %d iterations\n’,m);

disp(’..........’)

else

s

disp(’The shooting method fails.’);pause

end

end

Appendix II: eigenvalues.m

st=200; %number of steps

L=10; %length of interval

h=L/st; %step size for interval (0,1)

neig=[];%first eigenvalue

eig1=[];%Second eigenvalue

eig2=[];%Third eigenvalue

nep=[];%epsilon

a=0;

s =1.810223;

for j=4.8:h:10;

for g=0:.1:.7

x = 0:h:1+g;

y=zeros(1,st);

ep=1/j;

ep2=ep^2;

m = 0; ss = 0;

while (abs(s-ss) > 10^(-10)) && (abs(s-ss) < 100) && (m < 1000)

ss = s; y(1) = 0; u(1) = s; % (y,u) - components of u(x)

y(2) = s*x(2) - s*x(2)^3/(8*ep2); % Taylor series approximation

u(2) = s - 3*s*x(2)^2/(8*ep2); % for the first step

z(1) = 0; v(1) = 1; % (z,v) - components of v(x)

z(2) = x(2) - x(2)^3/(8*ep2);

v(2) = 1-3*x(2)^2/(8*ep2);
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for k = 2 : length(x)-1 % iterations of the ODE solver

yp = y(k) + h*u(k);

up = u(k) - h/ep2*(ep2*u(k)/x(k)-(y(k)*ep2/x(k)^2)-(x(k)^2-1)*y(k)-y(k)^3);

y(k+1) = y(k)+0.5*h*(u(k)+up);

u(k+1) = u(k)-0.5*h/ep2*((ep2*u(k)/x(k)-(y(k)*ep2/x(k)^2)-(x(k)^2-1)*y(k)...

-y(k)^3)+(ep2*up/x(k+1)-yp*ep2/x(k+1)^2-((x(k+1)^2-1)*yp)-yp^3));

zp=z(k) + h*v(k);

vp=v(k)-h/ep2*(ep2*v(k)/x(k)-((ep2/x(k)^2)+(x(k)^2-1))*z(k)-3*y(k)^2*z(k));

z(k+1)= z(k)+0.5*h*(v(k)+vp);

v(k+1)=v(k)-0.5*h/ep2*((ep2*v(k)/x(k)-(ep2/x(k)^2+(x(k)^2-1))*z(k)-3*y(k)^2*...

z(k))+(ep2*vp/x(k+1)-((ep2/x(k+1)^2)+(x(k+1)^2-1))*zp-3*yp^2*zp));

end

s = ss - y(length(x))/z(length(x));

m = m+1;

end

end

a=a+1;

yy(a,:)=y;

end

a=0;

for j=5:h:10

a=a+1;

ep=1/j;

nep=[nep,ep];

ep2=ep^2;

ri=@(n) n*h;

b11=[];

for i=1:st-1

v11(i)=2*ep2/h^2+4*ep2/ri(i)^2+ri(i)^2-1+2*yy(a,i+1)^2;

v12(i)=-ep2/h^2-ep2/(2*h*ri(i));

v21(i)=-ep2/h^2+ep2/(2*h*ri(i));

w11(i)=2*ep2/h^2+ri(i)^2-1+2*yy(a,i+1)^2;

w12(i)=-ep2/h^2-ep2/(2*h*ri(i));

w21(i)=-ep2/h^2+ep2/(2*h*ri(i));

b11(i)=yy(a,i+1)^2;
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end

v=diag(v11)+diag(v12(1:end-1),1)+diag(v21(2:end),-1);

w=diag(w11)+diag(w12(1:end-1),1)+diag(w21(2:end),-1);

b11=diag(b11);

w0H=[-1+4*ep2/h^2,-4*ep2/h^2,zeros(1,st-2)];

w0V=[-ep2/h^2*(1-h/(2*ri(1))),zeros(1,st-2)];

A=[v,zeros(1,st-1)’,b11;zeros(1,st-1),w0H;b11,w0V’,w];

d=sort(eig(A));

neig=[neig,d(1,1)];eig1=[eig1,d(2,1)];eig2=[eig2,d(3,1)];

end

figure; plot(nep,neig,’.’);

xlabel(’Epsilon’); ylabel(’First Eigenvalue’); grid

figure; plot(nep,eig1,’.’,nep,eig2,’+’);hold on;

xlabel(’Epsilon’); ylabel(’Second Eigenvalue & Third Eigenvalue’); grid
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