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Abstract
This dissertation is concerned with analysis of spectral and orbital stability of solitary wave solutions

to discrete and continuous PT -symmetric nonlinear Schrödinger equations. The main tools of this

analysis are inspired by Hamiltonian systems, where conserved quantities can be used for proving

orbital stability and Krein signature can be computed for prediction of instabilities in the spectrum

of linearization. The main results are obtained for the chain of coupled pendula represented by

a discrete NLS model, and for the trapped atomic gas represented by a continuous NLS model.

Analytical results are illustrated with various numerical examples.
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Chapter 1

Introduction

This thesis focuses on studies of the stability of nonlinear waves in discrete and continuous models

based on the nonlinear Schrödinger equation. The key feature of the models is the presence of

PT -symmetry which relaxes the condition of Hermiticity, yet retains surprisingly many properties

of Hamiltonian systems. On the other hand, the interplay between nonlinearity, PT symmetry, and

dispersion gives birth to numerous new phenomena unseen in the realm of Hamiltonian systems.

These phenomena motivate the choice of the subject.

From nonlinear optics to condensed matter, the nonlinear Schrödinger equation (NLS) enjoys

many applications in physics. For example, it provides a canonical description for the envelope dy-

namics of a quasi-monochromatic plane wave (the carrying wave) propagating in a weakly nonlinear

dispersive medium when dissipative processes are negligible. On short times and small propaga-

tion distances, the dynamics are linear, but cumulative nonlinear interactions result in a significant

modulation of the wave amplitude on large spatial and temporal scales. In optics, NLS can also be

viewed as the extension of the paraxial approximation to nonlinear media. In the context of quantum

mechanics, a nonlinear potential arises in the ‘mean field’ description of interacting particles. In the

wave context of electromagnetic theory, the second-order linear operator describes the dispersion

and diffraction of the wave-packet, and the nonlinearity arises from the sensitivity of the refractive

index to the medium on the wave amplitude [134].

One of the first important questions related to the NLS is concerned with linear stability of a

constant-wave solution that is uniform in space and oscillatory in time. It corresponds to the effect

of slow temporal modulation on a monochromatic wave whose frequency is slightly shifted by the

nonlinearity. When the constant-wave solution is modulationally unstable, the spatial modulation

leads to the formation of solitonic structures resulting from an exact balance between the dispersive

and nonlinear effects.

The discrete nonlinear Schrödinger equation (dNLS) is one of the most fundamental lattice mod-

els. On one hand, it is a prototypical discretization of the nonlinear Schrödinger equation, on the

other hand, it has many physical applications in its own right. One of the relevant areas for dNLS

is the field of optically induced lattices in photorefractive media, where the dNLS model can yield

1
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accurate predictions about existence and stability of nonlinear localized modes. Since the numer-

ical prediction in [48] and experimental realization in [55], there has been an tremendous number

of studies in the area of nonlinear waves and solitons in such structures. A number of them has

been predicted and experimentally demonstrated in lattices with induced self-focusing nonlinearity:

dipoles, quadrupoles, necklaces, etc. Such structures have a potential to be used as carriers for data

transmission in all-optical communication schemes [72].

As we have seen, both continuous and discrete NLS models have a variety of physical applications.

The incorporation of PT symmetry into these models enriches this variety and introduces fascinat-

ing phenomena: existence of continuous families of nonlinear modes, PT symmetry breaking and

stabilization above phase transition. The study of these phenomena and prediction of instabilities

is an important step towards understanding intrinsic nonlinear processes. This thesis develops the

tools for such analysis and paves the way for the future work relevant to many branches of modern

physics.

This introduction is structured as follows. Section 1.1 gives a brief overview of Hamiltonian

systems and the stability problem. Section 1.2 introduces PT -symmetric systems and their important

features. In Section 1.3 we talk about stability analysis in discrete systems, and introduce the model

studied in Chapters 2 and 3. Section 1.4 gives the outline of stability analysis in continuous system,

and presents the material of Chapters 4 and 5. Section 1.5 introduces spaces and properties of

operators that will be used throughout the thesis.

1.1 Hamiltonian Systems

Hamiltonian systems arise in applications where the damping can be neglected. Hamiltonian view

of mechanics becomes important for approximate methods of perturbation theory, e.g. celestial

mechanics; for understanding the general character of motion in complicated mechanical systems,

e.g. ergodic theory, statistical mechanics; and in connection with other areas of physics, e.g. optics,

quantum mechanics, etc. [8]. The rich structure of Hamiltonian systems stems from the conservation

of the underlying energy, the Hamiltonian, as well as other quantities such as mass and momentum.

Linear and nonlinear stability of wave solutions to Hamiltonian systems is an old field. In 1872

Boussinesq [26], studying water waves, suggested that the constraint due to symmetry could be

used to understand the stability of the critical points of the energy, represented by the Hamiltonian.

General framework of this theory was developed by Grillakis, Shatah, and Strauss [59, 60] in the

infinite-dimensional Hamiltonian systems in the presence of symmetries. Their approach charac-

terizes the critical points of systems with symmetry and conserved quantities via the analysis of a

constraint operator. We will review the finite-dimensional theory [69], and show that minimizers of

the Hamiltonian are nonlinearly stable [57, 94].

1.1.1 Finite-Dimensional Hamiltonian Systems

Consider a state vector ~u ∈ R2d for some dimension d ≥ 1, and a Hamiltonian H : R2d 7→ R, which

depends smoothly upon ~u and corresponds to the conserved energy of the system. The Hamiltonian

2
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system describing time evolution of the state vector ~u in time t takes the form

d~u

dt
= J∇uH(~u). (1.1)

Here J is a 2d × 2d nonsingular matrix skew-symmetric with respect to the usual Euclidean inner

product: JT = −J , where superscript T stands for matrix transpose. Such matrices map a vector

into its perpendicular subspace:

〈J~x, ~x〉 = 〈~x, JT~x〉 = −〈~x, J~x〉,

and thus 〈J~x, ~x〉 = 0. Using this property, we can prove the following:

Lemma 1. Let ~u be the solution of (1.1) with initial data ~u(0) = ~u0. Then H(~u(t)) = H(~u0) for

all nonzero t.

Proof. Let us take the time derivative of H(~u(t)):

dH(~u)

dt
= 〈∇uH(~u),

d~u

dt
〉 = 〈∇uH(~u), J∇uH(~u)〉 = 0.

Thus the functional H is constant.

The canonical Hamiltonian system is derived from the Newton’s second law. The skew-symmetric

matrix J then takes the form

J =

[
0d Id

−Id 0d

]
,

where Id ∈ Rd×d is the identity matrix, and 0d ∈ Rd×d is the zero matrix. The state vector is written

as ~u = [~p, ~q]T for ~p, ~q ∈ Rd, and the Hamiltonian system becomes

dpj
dt

=
∂H

∂qj
,

dqj
dt

= −∂H
∂pj

.

where j = 1, . . . , d. The vectors ~p = (p1, . . . , pd) and ~q = (q1, . . . , qd) are traditionally called the

momentum and position vectors, respectively. In the context of molecular physics, Hamiltonian

describes the total energy as a combination of kinetic and potential energy due to interactions

between the molecules.

Consider a critical point ~φ of the Hamiltonian energy functional: ∇u(H(~φ)) = 0. Obviously, ~φ is

also an equilibrium of the Hamiltonian system (1.1). Our interest lies in dynamics of solutions with

initial data ~u0 that lies close to ~φ. Asymptotic stability is generally ruled out in finite-dimensional

Hamiltonian systems, since if H(~u0) 6= H(~φ), then ~u(t) cannot converge to ~φ. If it did, we would

have H(~u0) = H(~u(t)) → H(~φ) as t → ∞, which gives us a contradiction. So at most we can have

~u(t) staying close to ~φ.

3
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Let us study the structure of the Hamiltonian about ~φ. Taking ~v = ~u − ~φ to be a perturbation

of ~φ, a Taylor expansion about φ yields

H(~u) = H(~φ) + 〈∇uH(~φ), ~v〉+
1

2
〈~v, L~v〉+O(|~v|3), (1.2)

where L ∈ R2d×2d is a Hessian matrix which has the following entries:

Lij =
∂H

∂ui∂uj
(~φ).

It is important to note that the Hessian operator is symmetric (or Hermitian). Since ~φ is a critical

point of H, ∇uH(~φ) = 0, and Hamiltonian can be written as

H(~u)−H(~φ) =
1

2
〈~v, L~v〉+O(|~v|3). (1.3)

Taking ∇v of both sides, we can rewrite Hamiltonian system (1.1) as

d~v

dt
= JL~v +N(~v),

where N(~v) = O(|~v|2) denotes nonlinear terms in v, and JL denotes the linearization about ~φ. Such

linearizations typically have the structure outlined in the following lemma.

Lemma 2. Let L ∈ M2d×2d be a linear symmetric operator: LT = L. The spectrum σ(JL) is

symmetric with respect to the real and imaginary axes of the complex plane, so that the eigenvalues

of JL come in quartets: {±λ,±λ̄}. In particular, either σ(JL) ⊂ iR, or the critical point ~φ is

linearly exponentially unstable.

Proof. Suppose that λ ∈ σ(JL) with the associated eigenvector ~w. Since JL has real-valued entries,

JL~w = λ~w ⇔ JL~w = λ̄ ~w.

In other words, λ̄ also belongs to the spectrum of JL, with an eigenvector ~w. Moreover, due to

(JL)T = −LJ

JL~w = λ~w ⇔ −LJ(J−1 ~w) = (−λ)J−1 ~w ⇔ (JL)T (J−1 ~w) = −λ(J−1 ~w)

we can see that −λ ∈ σ((JL)T ) with the eigenvector J−1 ~w. On the other hand, knowing σ(JL) =

σ((JL)T ), we can deduce that −λ̄ ∈ σ(JL), as well. By taking complex conjugation, we also

have −λ ∈ σ(JL). The spectral stability statement follows from the spectral symmetry, since the

existence of an eigenvalue with negative real part implies the existence of an eigenvalue with positive

real part.

If ~φ is a nondegenerate minima of H, then it is stable in finite-dimensional Hamiltonian systems

as per the following lemma.

4



Mathematics — McMaster University PhD Thesis — Alexander Chernyavsky

Lemma 3. Suppose that ~φ is a critical point for the Hamiltonian system (1.1). If ~φ is a strict local

minimum, i.e. L is a positive-definite matrix, then ~φ is stable. Specifically, there exist C, δ > 0 such

that for |~u0 − ~φ| ≤ δ, the solution ~u of (1.1) satisfies

|~u(t)− ~φ| ≤ C|~u0 − ~φ|, t ≥ 0.

Proof. Set ~v = ~u− ~φ, and recall the Taylor expansion of H about ~φ:

H(~u)−H(~φ) =
1

2
〈~v, L~v〉+O(|~v|3).

Since L is symmetric, all of its eigenvalues are real-valued: µj ∈ R, j = 1, 2, . . . , 2d. Positive-definite

property implies that all eigenvalues are positive: µ− := minj{µj}>0. Moreover, µ+ := maxj{µj} ≥
µ−, and

µ−|~v|2 ≤ 〈~v, L~v〉 ≤ µ+|~v|2,

where the inequality is attained at corresponding eigenvectors. The Taylor expansion implies that

there exists a δ > 0 such that for every ~v ∈ R2d satisfying |~v| ≤ δ there exist constants 0 < C− <

C+ <∞ such that

C−|~v|2 ≤ H(~u)−H(~φ) ≤ C+|~v|2.

The lower bound implies that the initial data ~u0 controls the norm of the perturbation:

|~v(t)|2 ≤ 1

C−
(H(~u)−H(~φ)) =

1

C−
(H(~u0)−H(~φ)),

where we have used the conservation of Hamiltonian. The upper bound allows us to rewrite the

latter estimate as

|~u(t)− ~φ|2 ≤ C+

C−
|~u0 − ~φ|2,

where the conclusion of the lemma is achieved with C =
√
C+/C−.

In practice, Hamiltonian systems often possess symmetries. In that case, the image of the critical

point under these symmetries will generate a manifold of critical points, and the set of derivatives of

this manifold with respect to parameter will lie in the kernel of the linearization JL about ~φ. Thus

L will have a null space and at best can be semi-definite. This obstacle can be overcome through

the notion of orbital stability, see, e.g., Definition 10 in Chapter 2.

Each symmetry generates a conserved quantity due to Noether’s Theorem [97]. Even when L

has eigenvalues of negative real part, the critical point may still be stable: the conserved quantities

can be used to perform a search for a constrained minimizer. This is realized in the approach of

Grillakis-Shatah-Strauss [59, 60], which we do not review here.

1.1.2 Infinite-Dimensional Hamiltonian Systems

Let X be an infinite-dimensional Hilbert space X with inner product 〈·, ·〉X , ‖ · ‖ be the induced

norm, and X∗ be the dual of X with respect to the inner product in X. A Hamiltonian on X is a

5
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nonlinear functional H : X 7→ R, which we assume to be C2 on all of X. The associated Hamiltonian

system then takes the form
du

dt
= J δH

δu
(u), u : R→ X, (1.4)

where J : X∗ 7→ X is a linear closed operator with dense domain D(J) ⊂ X∗, and skew-symmetric

respect to 〈·, ·〉X :

〈J u, v〉X = −〈u,J v〉X

for all u, v ∈ D(J) ⊂ X∗. Moreover, we assume that J is one-to-one and onto. The first variation

with respect to the X-inner product, denoted δH/δu : X → X∗, is defined as

lim
ε→0

H(u+ εv)−H(u)

ε
=

〈
δH
δu

(u), v

〉
X

for all u, v in X. Using the chain rule, we see that smooth solutions of (1.4) conserve the Hamiltonian:

dH(u(t))

dt
=

〈
δH
δu

(u),
du

dt

〉
X

=

〈
δH
δu

(u),J δH
δu

(u)

〉
X

= 0.

Let us generalize the finite-dimensional expansion (1.2). Fix φ ∈ X. For u = φ+ Iv with v ∈ X
the Hamiltonian admits a formal Taylor expansion

H(u+ εv)−H(φ) =

〈
δH
δu

(φ), v

〉
X

+
1

2
〈Lv, v〉X +O(‖v‖3),

where the quadratic form 〈Lv, v〉X is called the second variation of H, and the self-adjoint linear

operator L is called the Hessian operator:

L :=
δ2H
δu2

(φ) : D(L) ⊂ X 7→ X∗.

If φ is a critical point of H, in other words

δH
δu

(φ) = 0,

then the Taylor expansion reduces to an infinite-dimensional version of (1.3):

H(u)−H(φ) =
1

2
〈Lv, v〉+O(‖v‖3).

Compared to the symmetric matrix L in (1.3), the self-adjoint operator L is generally unbounded

and has a nontrivial kernel.

The approach outlined previously for studying stability of wave solutions in finite-dimensional

systems can be readily extended to infinite-dimensional ones.

6
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1.2 PT -Symmetric Systems

In classical quantum mechanics, one usually considers observables as Hermitian operators in the

Hilbert space L2. Bender and Boettcher [21] suggested that Hermitian operators can be replaced by

the so-called PT -symmetric operators for an alternative formulation of quantum mechanics. They

have shown that a non-Hermitian operator might still possess real spectrum if it is symmetric with

respect to combined parity P and time-reversal T symmetries. Their idea was later extended in the

works of Mostafazadeh [101, 102] who considered a more general class of pseudo-Hermitian operators

with purely real spectrum. A number of reviews emerged on the topic [18, 84, 133].

Starting in quantum mechanics, the concept of PT symmetry found applications in many areas of

physics [19, 123, 128]. In particular, there is a lot of interest in optics due to experimental realizations

of paraxial PT symmetric optics [93, 103]. Recent applications include single-mode PT lasers [52, 64]

and unidirectional reflectionless PT -symmetric metamaterials at optical frequencies [53]. PT sym-

metric systems demonstrate many nontrivial non-conservative wave interactions and phase transi-

tions, which can be employed for signal filtering and switching, opening new prospects for active

control of light [133].

Discovered by John Scott Russell in 1834, solitons have attracted a lot of attention in many

nonlinear physical systems, ranging from optics to BECs [54, 81]. Conservative solitons requiring

balance of nonlinear response and medium dispersion usually form families with different amplitudes.

Nonlinear dissipative systems, however, require an additional balance between gain and loss to

support soliton solutions [4, 122]. This requirement is usually satisfied only for selected soliton

amplitudes and shapes, and no continuous families can generally be found. On the other hand,

PT -symmetric systems, being a subclass of dissipative systems, can commonly support continuous

families of solitons due to symmetry property [141]. Thus PT -symmetric systems, being dissipative

systems, possess features of conservative ones [133].

Let us review the main concepts in the theory of PT -symmetric (or, more generally, non-

Hermitian) linear systems.

1.2.1 PT -Symmetric Linear Operators

Let ψ(~x, t) be a complex valued wave function of a quantum particle, where ~x is a space variable,

and t represents time. Evolution of ψ(~x, t) is governed by the Schrödinger equation

i
∂ψ

∂t
= Hψ(~x, t),

where the linear operator H acts in a Hilbert space L2(Rd) equipped with an inner product

〈φ, ψ〉 =

∫
Rd
φ(~x, t)ψ(~x, t) ~dx,

d is the space dimension, and we consider units where ~ = m = 1 with m being the mass of the

particle.

7
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Recall that for Hermitian operator H∗ = H, and

〈Hφ,ψ〉 = 〈φ,Hψ〉,

for any φ, ψ ∈ D(H). The spectrum of any Hermitian operator is purely real, while the opposite is

not true: Hermiticity is a sufficient but not necessary condition for reality of the spectrum.

The two fundamental discrete symmetries in physics [139] are given by the parity operator P
defined as Pψ(~x, t) = ψ(−~x, t), and by the time reversal operator T defined as T ψ(~x, t) = ψ(~x,−t).
The operator T is antilinear:

T (αφ) = αT φ, T (φ+ ψ) = T φ+ T ψ (1.5)

for any two vectors ψ, φ and a complex number α. Moreover,

P2 = T 2 = I, [P, T ] = 0, (1.6)

where I is the identity operator.

Definition 1 (PT -symmetric operator). An operator H is said to be PT -symmetric if

[PT , H] = 0, (1.7)

or, using (1.6), H = PT HPT .

In the work of Bender and Boettcher [21], where a connection between PT symmetry and reality

of the spectrum was pointed out, they also introduced the notion of unbroken PT symmetry.

Definition 2 (Broken and unbroken PT symmetry). PT symmetry of a PT -symmetric operator

is said to be unbroken if any eigenfunction of H is at the same time an eigenfunction of the PT
operator. If the unbroken PT symmetry does not hold, then the PT symmetry is called broken.

The broken PT symmetry is typically associated with the presence of complex eigenvalues in

the spectrum of H. Since H and PT commute, Hψ = Eψ implies the existence of λ such that

PT ψ = λψ. From (1.5) and (1.6) it follows that there exists a real constant β such that λ = eiβ . In

other words, any eigenvalue of the PT operator is a pure phase [22].

Unlike Hermiticity, PT symmetry is not sufficient for the eigenvalues of H to be purely real.

It becomes sufficient when combined with the requirement for the PT symmetry to be unbroken.

Indeed, let E be an eigenvalue of H with the eigenfunction ψ, Hψ = Eψ. Applying PT operator

to both sides and using (1.6), we obtain H(PT ψ) = Ē(PT ψ). Then, if the PT symmetry of H

is unbroken, Hψ = Ēψ, and hence the eigenvalue E is real. This procedure is applied to every

eigenvalue of H, therefore the eigenvalues of H are entirely real.

Interestingly, in the case of unbroken PT symmetry it is possible to construct a similarity trans-

formation that maps a non-Hermitian PT -symmetric Hamiltonian to an equivalent Hermitian Hamil-

tonian. The equivalence is understood in the sense that both Hamiltonians have the same eigenval-

ues [47, 140]. Unfortunately, in practice this transformation is too complicated to be constructed

8
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except at the perturbative level [18]. Another problem is that the transformation is a similarity but

not a unitary transformation. That is, orthogonal pairs of vectors are mapped into pairs of vectors

that are not orthogonal.

Let us give an example illustrating basic concepts outlined above.

1.2.2 Example

Consider a Hamiltonian defined by a 2 x 2 matrix [20]:

H =

[
iγ κ

κ −iγ

]
= kσ1 + iγσ3, (1.8)

where γ ≥ 0 and κ ≥ 0 are real parameters and we use the conventional notations for Pauli matrices:

σ1 =

[
0 1

1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0

0 −1

]
.

The Hamiltonian (1.8) acts in a Hilbert space of two-component column vectors ψ = (ψ1, ψ2)T ,

with complex entries ψ1, ψ2, and the inner product is defined as

〈φ, ψ〉 = φ1ψ1 + φ2ψ2.

The Hamiltonian (1.8) is PT symmetric with P = σ1 and T being complex conjugation. The

eigenvalues and eigenvectors of H are given by

E1,2 = ±
√
κ2 − γ2, ψ(1,2) =

[
iγ/κ±

√
1− γ2/κ2

1

]
.

Thus PT symmetry is unbroken (all eigenvalues are real) if γ < κ and is broken (both eigenvalues

are imaginary) if γ > κ. At γ = κ, PT symmetry breaking occurs. At this point, two eigenvalues

collide, and eigenvectors become linearly dependent, thus Hamiltonian has a nondiagonal Jordan

block. Algebraic multiplicity of the eigenvalue is two and is larger than its geometric multiplicity

one. Such points in the parameter space (γ, κ) are called exceptional points [71] or branch points [100].

1.2.3 Pseudo-Hermiticity

A necessary and sufficient condition for the spectrum of a non-Hermitian Hamiltonian to be purely

real can be formulated in terms of a more general property called pseudo-Hermiticity [88, 101].

Definition 3 (Pseudo-Hermitian operator). A Hamiltonian H is said to be η-pseudo-Hermitian if

there exists a Hermitian invertible linear operator η such that

H∗ = ηHη−1.

9
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Obviously, if η is the identity operator, this definition is equivalent to Hermiticity. In many

cases, pseudo-Hermiticity can be considered as a generalization of PT symmetry. For example,

if H is a symmetric matrix Hamiltonian, then PT symmetry implies HP − PH̄ = 0, and then

H∗ = H̄ = PHP, i.e. a pseudo-Hermiticity of H.

The notion of pseudo-Hermiticity allows one to formulate necessary and sufficient condition for

a Hamiltonian to possess a purely real spectrum. Let us consider the case of the discrete spectrum,

and let a Hamiltonian have a complete set of biorthonormal eigenvectors {(ψn, φn)} defined by

Hψn = Enψn, H∗φn = Ēnφn, 〈φn, ψn〉 = δn,m.

Then the following theorem holds.

Theorem 1 (Mostafazadeh [102]). Let H be a Hamiltonian that acts in a Hilbert space, has a discrete

spectrum, and admits a complete set of biorthonormal eigenvectors {(ψn, φn)}. Then the spectrum of

H is real if and only if there is an invertible linear operator O such that H is OO∗-pseudo-Hermitian:

H = (OO∗)H∗(OO∗)−1.

As an example of application of Theorem 1, consider the PT -symmetric Hamiltonian (1.8). It

possesses a complete set of biorthonormal eigenvectors unless ε = γ/κ = 1. Since the spectrum is

real if ε ∈ (0, 1), Theorem 1 guarantees that for ε ∈ (0, 1) there exists the operator O such that H is

η-pseudo-Hermitian with η = OO∗. Although H is also P -pseudo-Hermitian, this cannot be used in

Theorem 1, since the parity operator P = σ1 does not admit the representation P = OO∗. Therefore

there must exist another operator η 6= P such that η = OO∗. By straightforward calculation one

finds that

η =
1

ε2

[
1 iε

−iε 1

]
, O =

1

ε

[
0 i√

1− ε2 ε

]
, ε ∈ (0, 1).

Theorem 1 also indicates that no such operators exist in the broken PT symmetry case ε > 1.

Although PT symmetry is not sufficient to guarantee the reality of the spectrum of a Hamiltonian

H, it ensures that complex eigenvalues (if any) always exist in complex-conjugate pairs: if E is a

complex eigenvalue with nonzero imaginary part and ψ is corresponding eigenvector, then Ē is

also an eigenvalue with eigenvector PT ψ. Thus one can expect that if PT symmetry is unbroken

and the real eigenvalues are simple and isolated from each other, then the reality of the spectrum

is “robust” against relatively small perturbations. For example, it happens when perturbed PT -

symmetric operator is “close” to a self-adjoint operator with simple eigenvalues [30, 29]. Consider a

Hermitian operator H0 perturbed as H(ε) = H0 + εH1, where ε is a small parameter, and H0, H1

are PT -symmetric. Then the spectrum of H(ε) is real provided ε is small enough. More precisely,

the following theorem holds.

Theorem 2 (Caliceti, Graffi, and Sjöstandt [30]). Let H0 be a self-adjoint positive operator in a

Hilbert space. Let H0 have only discrete spectrum {0 ≤ λ0 < λ1 < . . . < λn < . . .}, where each

eigenvalue λj is simple, and δ = infj≥0{λj+1− λj}/2 > 0. Let also H0 and H1 be PT -symmetric in

the sense of (1.7), and assume that H1 is relatively compact perturbation of H0. Then the spectrum

of H(ε) is real if ε ∈ R and |ε| < δ/‖H1‖.

10
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Theorem 2 guarantees the existence of a large class of pseudo-Hermitian operators with real

spectra constructed as perturbations of a Hermitian operator, provided the spectrum of the latter

is bounded below and its eigenvalues are well separated. As a simple example, we can consider a

Schrödinger operator with a harmonic potential H0 = −∂2
x + x2 and PT -symmetric perturbation

H1 = iW (x) with W (x) = −W (−x) and W (x) ∈ L∞(R). Then the spectrum of H0 can be given

explicitly:

σ(H0) = {2n+ 1, where n = 0, 1, 2, . . .}.

From here we deduce that δ = 2, and the spectrum of H0 + εH1 is real at least for |ε| < 1/‖W‖∞.

1.3 Stability in Discrete Systems

PT -symmetric multi-site systems (oligomers) have recently attracted a lot of attention, motivated

by possibilities of their experimental realization [120, 125]. Many studies address the question of

existence and stability of nonlinear states in PT -symmetric oligomers, which may drastically differ

from the corresponding linear systems. The nonlinear effects in PT -symmetric systems can be

utilized for an efficient control of light including all-optical low-threshold switching and unidirectional

invisibility [86, 91, 120]. The possibility to build nonlinear PT -symmetric oligomers gave an uprise to

numerous studies of both few-site systems and PT -symmetric lattices. The former ones include one-

dimensional PT -symmetric dimer [6, 98], trimer [44, 89], quadrimer [89, 144]; the latter ones include

two-dimensional plaquettes [90, 144], finite and infinite chains [23, 96, 115, 146], necklaces [14],

ladders [5] and multicore fibers [95].

The most basic multi-site system having PT symmetry is a dimer, which represents a system of

two coupled oscillators, one of which has losses due to damping and the other one gains some energy

from external sources. This configuration was studied in numerous laboratory experiments involving

electric circuits [127], superconductivity [123], optics [14, 125] and microwave cavities [24].

On the analytical side, dimer equations were found to be completely integrable [13, 117]. Inte-

grability of dimers is obtained by using Stokes variables and it is lost when more coupled nonlinear

oscillators are added into a PT -symmetric system. Nevertheless, it was understood recently [15, 16]

that there is a remarkable class of PT -symmetric dimers with cross-gradient Hamiltonian structure,

where the real-valued Hamiltonians exist both in finite and infinite chains of coupled nonlinear oscil-

lators. Analysis of synchronization in the infinite chains of coupled oscillators in such class of models

is a subject of Chapters 2 and 3. The results of this analysis were published in papers [34, 36].

In Chapter 2, we reduce Newton’s equation of motion for coupled pendula shown on Figure 1.1

under a resonant periodic force to the following system of PT -symmetric dNLS equations:{
2iu̇n = ε (vn+1 − 2vn + vn−1) + Ωvn + iγun + 2

[(
2|un|2 + |vn|2

)
vn + u2

nv̄n
]
,

2iv̇n = ε (un+1 − 2un + un−1) + Ωun − iγvn + 2
[(
|un|2 + 2|vn|2

)
un + ūnv

2
n

]
,

11
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yn

xnxn−1 xn+1

yn+1yn−1 vn+1

un un+1

vn−1 vn

un−1

Figure 1.1: Left: A schematic picture for the chain of coupled pendula connected by torsional springs,
where each pair is hung on a common string. Right: The chain of PT -symmetric dimers representing
coupled pendula. Filled (empty) circles correspond to sites with gain (loss).

where Ω, γ, ε are real-valued parameters, n ∈ Z, and overdot denotes the derivative in time t. We

show that this system is Hamiltonian with conserved energy

Hu,v =
∑
n∈Z

(|un|2 + |vn|2)2 + (unv̄n + ūnvn)2 + Ω(|un|2 + |vn|2)

− ε|un+1 − un|2 − ε|vn+1 − vn|2 + iγ(unv̄n − ūnvn),

and an additional constant of motion

Qu,v =
∑
n∈Z

(unv̄n + ūnvn).

We study breather solutions of this model, which generalize symmetric synchronized oscillations

of coupled pendula. We show existence of three branches of breathers. We also investigate their

spectral stability analytically and numerically. For one of these branches, we are also able to prove

orbital stability and instability from the energy method.

Chapter 3 is dedicated to the proof of nonlinear stability. It turns out that one of the branches of

breathers is an infinite-dimensional saddle point of the extended energy functional, and the standard

energy methods [69] cannot be applied to the proof of nonlinear stability of this branch. However,

by modifying the energy functional we achieve long-time nonlinear stability of the breathers on a

long but finite time interval. Such long-time stability is usually referred to as metastability.

1.4 Stability in Continuous Systems

Consider the following nonlinear Schrödinger’s equation (NLSE) with a complex potential U(x):

i∂tψ + ∂2
xψ − U(x)ψ + g|ψ|2ψ = 0, (1.9)

where U(x) = V (x) + iγW (x) with V (x) = V (−x) and W (x) = −W (−x), γ ∈ R is a gain-loss

parameter, g = +1 (g = −1) defines focusing (defocusing) nonlinearity, and U(x) is PT -symmetric:

U(x) = PT U(x) = U(−x). (1.10)
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We will focus on potentials that are either localized (U(x)→ 0 as x→ ±∞) or unbounded (U(x)→
∞ as x → ±∞). Stationary nonlinear modes in (1.9) have the form ψ(x, t) = Φ(x)e−iµt, where

µ ∈ R is a real propagation parameter, and Φ(x) solves

Φxx − U(x)Φ + g|Φ|2Φ = µΦ (1.11)

subject to the zero boundary condition: Φ(x)→ 0 as x±∞. Analysis of stability of these nonlinear

modes is the subject of Chapters 4 and 5. The results of this analysis were published in [33, 35].

The NLSE (1.9) with a PT -symmetric potential is used in the paraxial nonlinear optics. In that

context, time and space have a meaning of longitudinal and transverse coordinates, and complex

potential models the complex refractive index [124]. Another possible application of the NLSE (1.9)

with complex potential V + iγW is Bose-Einstein condensate, where it models the dynamics of the

self-gravitating boson gas trapped in a confining potential V . Intervals, where W is positive and

negative, allow one to compensate atom injection and particle leakage, correspondingly [32]. The

NLSE (1.9) is PT -symmetric under the condition (1.10) in the sense that if ψ(x, t) is a solution to

(1.9), then

ψ̃(x, t) = PT ψ(x, t) = ψ(−x,−t)

is also a solution to (1.9).

In Hamiltonian systems, instabilities arising due to coalescence of purely imaginary eigenvalues

can be predicted by computing the Krein signature for each eigenvalue, which is defined as the sign of

the quadratic part of Hamiltonian restricted to the associated eigenspace of the linearized problem.

When two purely imaginary eigenvalues coalesce, they bifurcate off to the complex plane only if they

have opposite Krein signatures prior to collision [69]. The concept of Krein signature was introduced

by MacKay [92] in the case of finite-dimensional Hamiltonian systems, although the idea dates back

to the works of Weierstrass [138]. An overview of Krein signature in Hamiltonian systems is given

in Chapter 4.

There have been several attempts to extend the concept of Krein signature to the non-Hamiltonian

PT -symmetric systems. Nixon and Yang [105] considered the linear Schrödinger equation with a

complex-valued PT -symmetric potential and introduced the indefinite PT -inner product with the

induced PT -Krein signature, in the exact correspondence with the Hamiltonian-Krein signature. In

the recent works [5, 7, 131], a coupled non-Hamiltonian PT -symmetric system was considered and

the linearized system was shown to be block-diagonalizable to the form where Krein signature of

eigenvalues can be introduced. All these cases were too special, the corresponding Krein signatures

cannot be extended to a general PT -symmetric system.

In Chapter 5 we deal with the stationary states in the PT -symmetric NLSE (1.9) and introduce

Krein signature of isolated eigenvalues in the spectrum of their linearization. We prove that the

necessary condition for the onset of instability of the stationary states from a defective eigenvalue of

algebraic multiplicity two is the opposite Krein signature of the two simple isolated eigenvalues prior

to their coalescence. Compared to the Hamiltonian systems, or the linear Schrödinger equation in

[105], the Krein signature of eigenvalues cannot be computed from the eigenvectors in the linearized

problem. This is also shown in Appendix A, where perturbation theory failed to yield a simple
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relationship between eigenvectors and their adjoint counterparts. As a result, the adjoint eigenvectors

need to be computed separately and the sign of the adjoint eigenvector needs to be chosen by a

continuity argument.

We show how to compute Krein signature numerically for several examples of the PT -symmetric

potentials. In the focusing case g = 1, we consider the Scarf II potential studied in [3, 17, 75, 105]

with

U(x) = −V0 sech2(x) + iV1 sech(x) tanh(x), (1.12)

where V0 > 0 is a parameter. This potential is a complexification of the real Scarf potential [11],

which bears the name from the pioneer work in [126]. The spectrum of this potential was found

analytically by Ahmed [3] through a transformation of the corresponding linear Schrödinger equation

to the Gauss hypergeometric equation, and by Bagchi and Quesne [9, 10] via complex Lie algebras.

In Appendix B, we explain the former method and correct an error in [3], where the author omitted

some admissible eigenvalues. When |V1| < Vcr = −V0 + 1
4 , the discrete spectrum consists of the

sequence of real eigenvalues. At |V1| = Vcr, a pair of real eigenvalues coalesce, and for |V1| > Vcr the

double eigenvalue splits into the complex conjugate pairs in the complex plane. In other words, PT
symmetry becomes broken.

The nonlinear model (1.11) for the Scarf II potential has an exact particular solution [103, 129]

for µ = 1:

Φ =

√
−V0 − (V1/3)2 − 2

g

exp(iV1/3) arctan(sinh(x))

cosh(x)
,

where V0, V1 and g are chosen so that the argument of the radical is positive. In Appendix C, we

derive another exact solution for the nonlinear model using the method developed in [17].

In the defocusing case g = −1, we consider the confining potential studied in [1] with

U(x) = Ω2x2 + iγxe−
x2

2 , (1.13)

where Ω is a parameter. When γ = 0 and U(x) is real, the eigenvalues are given by En = −(2n+ 1),

n = 0, 1, 2, . . . whereas the eigenfunctions can be expressed in terms of Hermite polynomials. A

numerical study of the linear spectrum for the PT -symmetric Gaussian potential with Ω = 0 was

performed by Ahmed [3], and nonlinear modes were recently computed numerically [65, 67]. We will

focus on the more general case with Ω > 0.

In agreement with the theory, we show for both examples (1.12) and (1.13) that the coalescence

of two isolated imaginary eigenvalues in the linearized problem associated with the stationary states

in the NLSE (1.9) leads to instability only if the Krein signatures of the two eigenvalues are opposite

to each other.

1.5 Preliminaries

Before proceeding to technical details presented in the thesis, let us give a few basic definitions. For

further details see classical texts [2, 50, 61, 63, 68, 71, 87, 142].
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1.5.1 Sobolev Spaces

Given a function u : R 7→ C, we define the Lp norm for any 1 ≤ p <∞ as

‖u‖p :=

(∫
R
|u(x)|pdx

)1/p

,

and the L∞ norm as

‖u‖∞ := sup
x∈R
|u(x)|.

For any p ≥ 1 the associated Lebesgue space Lp(R) is given by

Lp(R) := {u : ‖u‖p <∞},

and it is known to be a complete metric space (called Banach space). For differentiable functions we

define the W k,p norm with 1 ≤ p <∞ and k ∈ N:

‖u‖Wk,p :=

(
k∑
i=0

∥∥∥∥∂iu∂xi
∥∥∥∥p
p

)1/p

,

and the associated Sobolev space

W k,p := {u : ‖u‖Wk,p <∞}.

The L2-based Sobolev spaces Hk := W k,2 is used frequently. Note that H0(R) = L2(R).

Let us introduce the inner product

〈f, g〉 =

∫
R
f(x)g(x)dx,

with complex conjugation in the second component. The Sobolev spaces Hk(R) with k ∈ N are

Hilbert spaces, since their norm is induced by the inner product

‖u‖2Hk =

k∑
i=0

〈
∂iu

∂xi
,
∂iu

∂xi

〉
.

Moreover, Hk(R) is a Banach algebra with respect to pointwise multiplication for any k ≥ 1: there

exists a constant C ≥ 1 such that for all u ∈ Hk(R)

‖um‖Hk ≤ C‖u‖mHk , m ∈ N.

This property makes the map u 7→ um continuous in the Hk(R) norm. The spaces Hm(R) ⊂ Hk(R)

are dense for m > k, i.e., for each u ∈ Hk(R) there is a sequence {un}n∈N ⊂ Hm(R) such that

‖un − u‖Hk → 0 as n→∞.
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1.5.2 Sequence Spaces

Consider a linear space of all bi-infinite sequences with complex-valued entries:

x = {xn}n∈Z, xn ∈ C ∀n ∈ Z.

For an element of this space, we define lp(Z) norm for any 1 ≤ p <∞ as

‖x‖lp =

(∑
n∈Z
|xn|p

)1/p

.

The space lp(Z) equipped with this norm can be defined as

lp(Z) := {x : ‖x‖lp <∞}.

lp(Z) is a Banach space for any p ≥ 1. The space of all bounded bi-infinite sequences, l∞(Z), is also

a Banach space:

l∞(Z) := {x : ‖x‖l∞ <∞},

where the corresponding norm ‖ · ‖l∞ is given by

‖x‖l∞ = sup
n∈Z
|xn|.

We are going to use embedding of lp spaces: lp(Z) ⊂ lq(Z) with p < q, such that

‖x‖lq ≤ ‖x‖lp .

An element from the space lq(Z) can be approximated by a sequence of elements from the space

lp(Z). In other words, lp(Z) is dense in lq(Z) for p < q.

The sequence space l2(Z) is Hilbert space with the inner product:

〈x, y〉 =
∑
n∈Z

xnȳn,

where x = {xn}n∈Z and y = {yn}n∈Z.

The space lp(Z) is a Banach algebra with respect to multiplication:

‖w‖lp ≤ ‖x‖lp‖y‖lp ,

where x, y ∈ lp(Z), and w = {xnyn}n∈Z.

1.5.3 Bounded and Closed Operators

Let X and Y be two Banach spaces, with norms ‖ · ‖X and ‖ · ‖Y , respectively. Assume that

Y ⊂ X is dense, for example X = L2(R) and Y = Hk(R) for any k ≥ 1. Consider linear operator
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L : Y ⊂ X → X, where Y is the maximal domain of operator L denoted by D(L). The kernel of L
is given by

ker(L) := {u ∈ Y : Lu = 0},

and the range of L is

range(L) := {Lu ∈ X : u ∈ Y } ⊂ X.

A linear operator L is said to be closed if for any sequence {un} ⊂ Y with

lim
n→∞

‖un − u‖X = 0 and lim
n→∞

‖Lun − v‖X = 0,

we have u ∈ Y and Lu = v. The operator is bounded from Y to X if

sup{‖Lu‖X : u ∈ Y, ‖u‖Y = 1} <∞.

From here we can define a norm associated with the space of bounded linear operators B(Y,X):

‖L‖B(Y,X) := sup
‖u‖Y =1

‖Lu‖X .

If X = Y , then the induced norm of L is denoted by ‖L‖. If L is a closed operator with X = Y ,

then L is a bounded operator. If for each bounded sequence {un} ⊂ Y the sequence {Lun} ⊂ X has

a convergent subsequence, then the operator L is said to be compact.

1.5.4 Resolvent and Spectrum

Definition 4 (Resolvent set). The resolvent set of L, ρ(L), is the set of complex numbers λ ∈ C
such that

• λI − L is invertible

• (λI − L)−1 is defined on a dense set

• (λI − L)−1 is a bounded linear operator.

Here I : X 7→ X is the identity operator: Iu = u. For λ ∈ ρ(L) the operator (λI −L)−1 is called

the resolvent of L. The spectrum of L is the complement of the resolvent set, i.e.

σ(L) = C\ρ(L).

A complex number λ ∈ σ(L) is called an eigenvalue if ker(λI −L) 6= {0}. The kernel ker(λI −L) is

called the eigenspace associated with the eigenvalue λ, and any element u ∈ ker(λI−L)\{0} is called

an eigenvector associated with the eigenvalue λ. If L is a closed operator, then σ(L) is a closed set.

If L is a bounded operator, then σ(L) is a closed, bounded, and nonempty set.

Suppose that λ ∈ σ(L) is an eigenvalue. The dimension of ker(λI − L) is called the geometric

multiplicity of the eigenvalue. An eigenvalue with geometric multiplicity one is called geometrically

simple. If the eigenvalue is isolated, then the algebraic multiplicity of the eigenvalue is the dimension

of the largest subspace Yλ ⊂ Y , which
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• is invariant under the action of L: if uλ ∈ Yλ, then Luλ ∈ Yλ,

• satisfies the property σ(L|Yλ) = {λ}.

Note that algebraic multiplicity is always greater or equal to geometric multiplicity. An eigenvalue is

called semi-simple if algebraic and geometric multiplicities coincide and defective if algebraic multi-

plicity exceeds geometric multiplicity. An eigenvalue is simple if it is algebraically (and geometrically)

simple.

1.5.5 Adjoint and Fredholm Operators

Assume that X is a Hilbert space equipped with the inner product 〈·, ·〉X , and that L is a closed

operator with a dense domain D(L) ⊂ X. Let L∗ be the adjoint operator, then its domain is the set

of all v ∈ X for which the linear functional

u→ 〈Lu, v〉

is continuous in the Hilbert norm on X. From Riesz representation theorem we know that there

exists a unique w ∈ X for which

〈Lu, v〉 = 〈u,w〉.

For such v ∈ D(L∗) the adjoint operator L∗ is uniquely defined by the map L∗v = w. The adjoint

operator is closed, and its domain is also dense in X. The spectrum of an operator and its adjoint

are related as

σ(L∗) = σ(L).

Definition 5 (Self-adjoint operator). A linear operator L : D(L) ⊂ X 7→ X in a Hilbert space X,

with dense domain D(L), is called self-adjoint if its adjoint

L∗ : D(L∗) ⊂ X 7→ X satisfies D(L) = D(L∗) and Lu = L∗u for all u ∈ D(L).

The spectrum of a self-adjoint operator is real. The algebraic and geometric multiplicities of an

isolated eigenvalue λ ∈ σ(L) of a self-adjoint operator are the same, i.e., every isolated eigenvalue is

semi-simple.

Definition 6 (Positive operator). Let X be a Hilbert space. A linear operator

L : X → X is called positive if 〈Lu, u〉 ≥ 0 for all u ∈ X.

Definition 7 (Fredholm operator). The operator L is a Fredholm operator if

• ker(L) is finite-dimensional,

• range(L) is closed with finite codimension.

The integer

ind(L) = dim(ker(L))− codim(range(L)).

is called the Fredholm index.
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The operator L is Fredholm if and only if L∗ is, and their indices are related as

ind(L) = − ind(L∗).

If λ ∈ σ(L) is an isolated eigenvalue with finite algebraic multiplicity, then λI − L is a Fredholm

operator with index zero. If Lu = f , then for every v ∈ ker(L∗)

〈f, v〉 = 〈Lu, v〉 = 〈u,L∗v〉 = 0.

In other words, the range of L is orthogonal to the kernel of L∗. It turns out that the orthogonality

〈f, v〉 = 0 for every v ∈ ker(L∗) is a necessary condition for solvability of equation Lu = f . It becomes

also a sufficient condition if L is a Fredholm operator. More precisely, the following theorem holds.

Theorem 3 (Fredholm Alternative). Suppose that X is a Hilbert space with inner product 〈·, ·〉X ,

and L : D(L) ⊂ X 7→ X is a closed Fredholm operator with dense domain D(L) ⊂ X. For f ∈ X
the nonhomogeneous problem Lu = f has a solution u ∈ D(L) if and only if f ∈ ker(L∗)⊥:

range(L) = ker(L∗)⊥.

Moreover, the Fredholm index counts the dimensional mismatch between the kernels of L and L∗:

dim(ker(L))− dim(ker(L∗)) = ind(L).

For any Fredholm operator the space X can be decomposed as

X = range(L)⊕ ker(L∗).

Definition 8. Let X be a Banach space and let L : D(L) ⊂ X → X be a closed linear operator with

dense domain D(L) in X. The spectrum of L is decomposed into the following three sets:

• The point spectrum or discrete spectrum σp(L) is a set of λ ∈ σ(L) such that the operator

λI − L is not invertible.

• The residual spectrum σr(L) is a set of λ ∈ σ(L) such that operator (λI −L)−1 is not defined

on a dense set.

• The continuous spectrum σc(L) is a set of λ ∈ σ(L) such that (λI−L)−1 is defined on a dense

set, but (λI − L)−1 is an unbounded operator.

The following spectral properties hold for self-adjoint operators:

Theorem 4. Let L be a self-adjoint operator on a Hilbert space X. Then

• L has no residual spectrum: σr(L) = ∅.

• The spectrum is real: σ(L) ⊂ R.

• Eigenvectors corresponding to distinct eigenvalues of σp(L) are orthogonal.
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To locate continuous spectrum, one needs to compute the Fredholm index of an operator. One

of the techniques is to perturb a Fredholm operator.

Definition 9. Let L0 be a closed operator with ρ(L0) 6= ∅. The operator L is called a relatively

compact perturbation of L0 (or relatively L0-compact) if

• D(L) ⊂ D(L − L0)

• (L0 − L)(λI − L0)−1 is compact for some (and hence, for all) λ ∈ ρ(L0).

A number of stability theorems for relatively compact perturbations of Fredholm operators exist.

They are usually referred to as the Weyl Spectrum Theorem:

Theorem 5 (Weyl Spectrum Theorem). Let L and L0 be closed linear operators on a Hilbert space

X. If L is a relatively compact perturbation of L0, then the following properties hold:

• The operator λI − L is Fredholm if and only if λI − L0 is Fredholm.

• ind(λI − L) = ind(λI − L0).

• The operators L and L0 have the same continuous spectra: σc(L) = σc(L0).

1.5.6 Useful results

Here we list individual results which will be used in this thesis.

Implicit Function Theorem. (Theorem 4.E in [142]) Let X,Y and Z be Banach spaces

and let F (x, y) : X × Y → Z be a C1 map on an open neighborhood of the point (x0, y0) ∈ X × Y .

Assume that

F (x0, y0) = 0

and that

DxF (x0, y0) : X → Z is one-to-one and onto.

There are r > 0 and σ > 0 such that for each y with ‖y−y0‖Y ≤ σ there exists a unique solution x ∈ X
of the nonlinear equation F (x, y) = 0 with ‖x− x0‖X ≤ r. Moreover, the map Y 3 y 7→ x(y) ∈ X is

C1 near y = y0.
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Perturbation Theory for Linear Operators. (Theorem VII.1.7 in [71])

Let T (ε) be a family of operators from Banach space X to itself, which depends analytically on

the small parameter ε. If the spectrum of T (0) is separated into two parts, the subspaces of X cor-

responding to the separated parts also depend on ε analytically. In particular, the spectrum of T (ε)

is separated into two parts for any ε 6= 0 sufficiently small.

Lyapunov’s Stability Theorem. [87] Consider the following evolution problem on a Hilbert

space X,
d~x

dt
= ~f(~x), ~x ∈ X, (1.14)

where ~f : X → X satisfies ~f(~0) = ~0. Let V : X → R satisfy the following properties:

1. V ∈ C2(X) with V (~0) = 0;

2. There exists C > 0 such that V (~x) ≥ C‖~x‖2X for every ~x ∈ X;

3. d
dtV (~x) ≤ 0 for every solution of (1.14).

Then the zero equilibrium of the evolution system (1.14) is nonlinearly stable in the sense: for every

ν > 0 there is δ > 0 such that if ~x0 ∈ X satisfies ‖~x0‖X ≤ δ, then the unique solution ~x(t) of the

evolution system (1.14) such that ~x(0) = ~x0 satisfies ‖~x(t)‖X ≤ ε for every t ∈ R+.

Hamilton–Krein Index Theorem (Theorem 3.3 in [68]). Let L be a self-adjoint operator

in a Hilbert space X with finitely many negative eigenvalues n(L), a simple zero eigenvalue with

eigenfunction v0, and the rest of its spectrum is bounded from below by a positive number. Let J be

a bounded invertible skew-symmetric operator in X. Let kr be a number of positive real eigenvalues

of JL, kc be a number of quadruplets {±λ,±λ̄} that are neither in R nor in iR, and k−i be a number

of purely imaginary pairs of eigenvalues of JL whose invariant subspaces lie in the negative subspace

of L. Let D = 〈L−1J−1v0, J
−1v0〉X be finite and nonzero. Then,

KHAM = kr + 2kc + 2k−i =

{
n(L)− 1, D < 0,

n(L), D > 0.
(1.15)
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Chapter 2

Breathers in Discrete Systems

2.1 Model

A simple yet universal model widely used to study coupled nonlinear oscillators is the Frenkel-

Kontorova (FK) model [85]. It describes a chain of classical particles coupled to their neighbors and

subjected to a periodic on-site potential. In the continuum approximation, the FK model reduces

to the sine-Gordon equation, which is exactly integrable. The FK model is known to describe a

rich variety of important nonlinear phenomena, which find applications in solid-state physics and

nonlinear science [27].

We consider here a two-array system of coupled pendula, where each pendulum is connected to

the nearest neighbors by linear couplings. Figure 2.1 shows schematically that each array of pendula

is connected in the longitudinal direction by the torsional springs, whereas each pair of pendula is

connected in the transverse direction by a common string. Newton’s equations of motion are given

by {
ẍn + sin(xn) = C (xn+1 − 2xn + xn−1) +Dyn,

ÿn + sin(yn) = C (yn+1 − 2yn + yn−1) +Dxn,
n ∈ Z, t ∈ R, (2.1)

where (xn, yn) correspond to the angles of two arrays of pendula, dots denote derivatives of angles

with respect to time t, and the positive parameters C and D describe couplings between the two

arrays in the longitudinal and transverse directions, respectively. The type of coupling between

the two pendula with the angles xn and yn is referred to as the direct coupling between nonlinear

oscillators (see Section 8.2 in [118]).

We consider oscillatory dynamics of coupled pendula under the following assumptions.

(A1) The coupling parameters C and D are small. Therefore, we can introduce a small parameter

µ such that both C and D are proportional to µ2.

(A2) A resonant periodic force is applied to the common strings for each pair of coupled pendula.

Therefore, D is considered to be proportional to cos(2ωt), where ω is selected near the unit
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frequency of linear pendula indicating the 1 : 2 parametric resonance between the force and

the pendula.

yn

xnxn−1 xn+1

yn+1yn−1

Figure 2.1: A schematic picture for the chain of coupled pendula connected by torsional springs,
where each pair is hung on a common string.

Mathematically, we impose the following representation for parameters C and D(t):

C = εµ2, D(t) = 2γµ2 cos(2ωt), ω2 = 1 + µ2Ω, (2.2)

where γ, ε,Ω are µ-independent parameters, whereas µ is the formal small parameter to characterize

the two assumptions (A1) and (A2).

In the formal limit µ→ 0, the pendula are uncoupled, and their small-amplitude oscillations can

be studied with the asymptotic multi-scale expansion{
xn(t) = µ

[
An(µ2t)eiωt + Ān(µ2t)e−iωt

]
+ µ3Xn(t;µ),

yn(t) = µ
[
Bn(µ2t)eiωt + B̄n(µ2t)e−iωt

]
+ µ3Yn(t;µ),

(2.3)

where (An, Bn) are amplitudes for nearly harmonic oscillations and (Xn, Yn) are remainder terms.

In a similar context of single-array coupled nonlinear oscillators, it is shown in [110] how the asymp-

totic expansions like (2.3) can be justified. From the conditions that the remainder terms (Xn, Yn)

remain bounded as the system evolves, the amplitudes (An, Bn) are shown to satisfy the discrete

nonlinear Schrödinger (dNLS) equations, which bring together all the phenomena affecting the nearly

harmonic oscillations (such as cubic nonlinear terms, the detuning frequency, the coupling between

the oscillators, and the amplitude of the parametric driving force). A similar derivation for a single

pair of coupled pendula is reported in [16].

Using the algorithm in [110] and restricting the scopes of this derivation to the formal level, we

write the truncated system of equations for the remainder terms: Ẍn +Xn = F
(1)
n eiωt + F

(1)
n e−iωt + F

(3)
n e3iωt + F

(3)
n e−3iωt,

Ÿn + Yn = G
(1)
n eiωt +G

(1)
n e−iωt +G

(3)
n e3iωt +G

(3)
n e−3iωt,

n ∈ Z, t ∈ R, (2.4)

where F
(1,3)
n and G

(1,3)
n are uniquely defined. Bounded solutions to the linear inhomogeneous equa-

tions (2.4) exist if and only if F
(1)
n = G

(1)
n = 0 for every n ∈ Z. Straightforward computations show

that the conditions F
(1)
n = G

(1)
n = 0 are equivalent to the following evolution equations for slowly
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vn+1

un un+1

vn−1 vn

un−1

Figure 2.2: The chain of PT -symmetric dimers representing coupled pendula. Filled (empty) circles
correspond to sites with gain (loss).

varying amplitudes (An, Bn):{
2iȦn = ε (An+1 − 2An +An−1) + ΩAn + γB̄n + 1

2 |An|2An,
2iḂn = ε (Bn+1 − 2Bn +Bn−1) + ΩBn + γĀn + 1

2 |Bn|2Bn,
n ∈ Z, t ∈ R. (2.5)

The system (2.5) takes the form of coupled parametrically forced dNLS equations. There exists an

invariant reduction of system (2.5) given by

An = Bn, n ∈ Z (2.6)

to the scalar parametrically forced dNLS equation. Existence and stability of breathers in such scalar

dNLS equations was considered numerically by Susanto et al. in [135, 136].

The reduction (2.6) corresponds to the symmetric synchronized oscillations of coupled pendula

of the model (2.1) with

xn = yn, n ∈ Z. (2.7)

In what follows, we consider a more general class of synchronized oscillations of coupled pendula

of the model (2.1). The solutions we consider also generalize the breather solutions of the coupled

parametrically forced dNLS equations (2.5).

It turns out that the model (2.5) can be cast to the form of the parity–time reversal (PT ) dNLS

equations [16]. Using the variables

un :=
1

4

(
An − iB̄n

)
, vn :=

1

4

(
An + iB̄n

)
, (2.8)

the system of coupled dNLS equations (2.5) is rewritten in the equivalent form{
2iu̇n = ε (vn+1 − 2vn + vn−1) + Ωvn + iγun + 2

[(
2|un|2 + |vn|2

)
vn + u2

nv̄n
]
,

2iv̇n = ε (un+1 − 2un + un−1) + Ωun − iγvn + 2
[(
|un|2 + 2|vn|2

)
un + ūnv

2
n

]
,

(2.9)

which is the starting point for our analytical and numerical work. Figure 2.2 depicts schematically

the chain of coupled pendula represented by (2.9). The invariant reduction (2.6) for system (2.5)

becomes

Im(e
iπ
4 un) = 0, Im(e−

iπ
4 vn) = 0, n ∈ Z. (2.10)
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In the context of hard nonlinear oscillators (e.g. in the framework of the φ4 theory), the cubic

nonlinearity may have the opposite sign compared to the one in the system (2.9). However, given the

applied context of the system of coupled pendula, we will stick to the specific form (2.9) in further

analysis.

2.2 Symmetries and conserved quantities

The system of coupled dNLS equations (2.9) is referred to as the PT -symmetric dNLS equation

because the solutions remain invariant with respect to the action of the parity P and time-reversal

T operators given by

P
[
u

v

]
=

[
v

u

]
, T

[
u(t)

v(t)

]
=

[
ū(−t)
v̄(−t)

]
. (2.11)

The parameter γ introduces the gain–loss coefficient in each pair of coupled oscillators due to the

resonant periodic force. In the absence of all other effects, the γ-term of the first equation of system

(2.9) induces the exponential growth of amplitude un, whereas the γ-term of the second equation

induces the exponential decay of amplitude vn, if γ > 0.

The system (2.9) truncated at a single site (say n = 0) is called the PT -symmetric dimer. In the

work of Barashenkov et al. [16], it was shown that all PT -symmetric dimers with physically relevant

cubic nonlinearities represent Hamiltonian systems in appropriately introduced canonical variables.

However, the PT -symmetric dNLS equation on a lattice does not typically have a Hamiltonian form

if γ 6= 0.

Nevertheless, the particular nonlinear functions arising in the system (2.9) correspond to the

PT -symmetric dimers with a cross–gradient Hamiltonian structure [16], where variables (un, v̄n)

are canonically conjugate. As a result, the system (2.9) on the chain Z has additional conserved

quantities. This fact looked like a mystery in the recent works [15, 16].

Here we clarify the mystery in the context of the derivation of the PT -symmetric dNLS equation

(2.9) from the original system (2.1). Indeed, the system (2.1) of classical Newton particles has a

standard Hamiltonian structure with the energy function

Hx,y(t) =
∑
n∈Z

1

2
(ẋ2
n + ẏ2

n) + 2− cos(xn)− cos(yn)

+
1

2
C(xn+1 − xn)2 +

1

2
C(yn+1 − yn)2 −D(t)xnyn. (2.12)

Since the periodic movement of common strings for each pair of pendula result in the time-periodic

coefficient D(t), the energy Hx,y(t) is a periodic function of time t. In addition, no other conserved

quantities such as momenta exist typically in lattice differential systems such as the system (2.1)

due to broken continuous translational symmetry.

25



PhD Thesis — Alexander Chernyavsky Mathematics — McMaster University

After the system (2.1) is reduced to the coupled dNLS equations (2.5) with the asymptotic

expansion (2.3), we can write the evolution problem (2.5) in the Hamiltonian form with the standard

straight-gradient symplectic structure

2i
dAn
dt

=
∂HA,B

∂Ān
, 2i

dBn
dt

=
∂HA,B

∂B̄n
, n ∈ Z, (2.13)

where the time variable t stands now for the slow time µ2t and the energy function is

HA,B =
∑
n∈Z

1

4
(|An|4 + |Bn|4) + Ω(|An|2 + |Bn|2) + γ(AnBn + ĀnB̄n)

−ε|An+1 −An|2 − ε|Bn+1 −Bn|2. (2.14)

The energy function HA,B is conserved in the time evolution of the Hamiltonian system (2.13). In

addition, there exists another conserved quantity

QA,B =
∑
n∈Z

(|An|2 − |Bn|2), (2.15)

which is related to the gauge symmetry (A,B) → (Aeiα, Beiα) with α ∈ R for solutions to the

system (2.5).

When the transformation of variables (2.8) is used, the PT -symmetric dNLS equation (2.9) is

cast to the Hamiltonian form with the cross-gradient symplectic structure

2i
dun
dt

=
∂Hu,v

∂v̄n
, 2i

dvn
dt

=
∂Hu,v

∂ūn
, n ∈ Z, (2.16)

where the energy function is

Hu,v =
∑
n∈Z

(|un|2 + |vn|2)2 + (unv̄n + ūnvn)2 + Ω(|un|2 + |vn|2)

−ε|un+1 − un|2 − ε|vn+1 − vn|2 + iγ(unv̄n − ūnvn). (2.17)

The gauge-related function is written in the form

Qu,v =
∑
n∈Z

(unv̄n + ūnvn). (2.18)

The functions Hu,v and Qu,v are conserved in the time evolution of the system (2.9). These func-

tions follow from (2.14) and (2.15) after the transformation (2.8) is used. Thus, the cross-gradient

Hamiltonian structure of the PT -symmetric dNLS equation (2.9) is inherited from the Hamiltonian

structure of the coupled oscillator model (2.1).

26



Mathematics — McMaster University PhD Thesis — Alexander Chernyavsky

2.3 Breathers (time-periodic solutions)

We characterize the existence of breathers supported by the PT -symmetric dNLS equation (2.9). In

particular, breather solutions are continued for small values of coupling constant ε from solutions of

the dimer equation arising at a single site, say the central site at n = 0. We shall work in a sequence

space `2(Z) of square integrable complex-valued sequences.

Time-periodic solutions to the PT -symmetric dNLS equation (2.9) are given in the form [80, 115]:

u(t) = Ue−
1
2 iEt, v(t) = V e−

1
2 iEt, (2.19)

where the frequency parameter E is considered to be real, the factor 1/2 is introduced for convenience,

and the sequence (U, V ) is time-independent. The breather (2.19) is a localized mode if (U, V ) ∈
`2(Z), which implies that |Un|, |Vn| → 0 as |n| → ∞. The breather (2.19) is considered to be

PT -symmetric with respect to the operators in (2.11) if V = Ū .

The reduction (2.10) for symmetric synchronized oscillations is satisfied if

E = 0 : Im(e
iπ
4 Un) = 0, Im(e−

iπ
4 Vn) = 0, n ∈ Z. (2.20)

The time-periodic breathers (2.19) with E 6= 0 generalize the class of symmetric synchronized oscil-

lations (2.20).

The time-independent sequence (U, V ) ∈ `2(Z) can be found from the stationary PT -symmetric

dNLS equation: EUn = ε (Vn+1 − 2Vn + Vn−1) + ΩVn + iγUn + 2
[(

2|Un|2 + |Vn|2
)
Vn + U2

nV̄n

]
,

EVn = ε (Un+1 − 2Un + Un−1) + ΩUn − iγVn + 2
[(
|Un|2 + 2|Vn|2

)
Un + ŪnV

2
n

]
.

(2.21)

The PT -symmetric breathers with V = Ū satisfy the following scalar difference equation

EUn = ε
(
Ūn+1 − 2Ūn + Ūn−1

)
+ ΩŪn + iγUn + 6|Un|2Ūn + 2U3

n. (2.22)

Note that the reduction (2.20) is compatible with equation (2.22) in the sense that if E = 0 and

Un = Rne
−iπ/4, then R satisfies a real-valued difference equation.

Let us set ε = 0 for now and consider solutions to the dimer equation at the central site n = 0:

(E − iγ)U0 − ΩŪ0 = 6|U0|2Ū0 + 2U3
0 . (2.23)

The parameters γ and Ω are considered to be fixed, and the breather parameter E is thought

to parameterize continuous branches of solutions to the nonlinear algebraic equation (2.23). The

solution branches depicted on Figure 2.3 are given in the following lemma.

Lemma 4. Assume γ 6= 0. The algebraic equation (2.23) admits the following solutions depending

on γ and Ω:

(a) Ω > |γ| - two symmetric unbounded branches exist for ±E > E0,
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Figure 2.3: Solution branches for the dimer equation (2.23).

(b) Ω < |γ| - an unbounded branch exists for every E ∈ R,

(c) Ω < −|γ| - a bounded branch exists for −E0 < E < E0,

where E0 :=
√

Ω2 − γ2.

Proof. Substituting the decomposition U0 = Aeiθ with A > 0 and θ ∈ [−π, π) into the algebraic

equation (2.23), we obtain

sin(2θ) =
γ

4A2 + Ω
, cos(2θ) =

E

8A2 + Ω
. (2.24)

Excluding θ by using the fundamental trigonometric identity, we obtain the explicit parametrization

of the solutions to the algebraic equation (2.23) by the amplitude parameter A:

E2 = (8A2 + Ω)2

[
1− γ2

(4A2 + Ω)2

]
. (2.25)

The zero-amplitude limit A = 0 is reached if |Ω| > |γ|, in which case E = ±E0, where E0 :=√
Ω2 − γ2. If |Ω| < |γ| , the solution branches (if they exist) are bounded away from the zero

solution.

Now we analyze the three cases of parameters γ and Ω formulated in the lemma.

(a) If Ω > |γ|, then the parametrization (2.25) yields a monotonically increasing map R+ 3 A2 7→
E2 ∈ (E2

0 ,∞) because

dE2

dA2
=

8(8A2 + Ω)

(4A2 + Ω)3

[
2(4A2 + Ω)3 − γ2Ω

]
> 0. (2.26)

In the two asymptotic limits, we obtain from (2.25):

E2 = E2
0 +O(A2) as A→ 0 and E2 = 64A4 +O(A2) as A→∞.

See Figure 2.3(a).
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(b) If Ω < |γ|, the parametrization (2.25) yields a monotonically increasing map (A2
+,∞) 3 A2 7→

E2 ∈ R+, where

A2
+ :=

|γ| − Ω

4
. (2.27)

Indeed, we note that 4A2 + Ω ≥ 4A2
+ + Ω = |γ| > 0 and

2(4A2 + Ω)3 − γ2Ω ≥ γ2(2|γ| − Ω) > 0,

so that the derivative in (2.26) is positive for every A2 ≥ A2
+. We have

E2 → 0 as A2 → A2
+ and E2 = 64A4 +O(A2) as A→∞.

See Figure 2.3(b).

(c) If Ω < −|γ|, then the parametrization (2.25) yields a monotonically decreasing map (0, A2
−) 3

A2 7→ E2 ∈ (0, E2
0), where

A2
− := min

{ |Ω| − |γ|
4

,
|Ω|
8

}
. (2.28)

In (2.28), the first choice is made if |Ω| ∈ (|γ|, 2|γ|) and the second choice is made if |Ω| ∈
(2|γ|,∞). Both choices are the same if |Ω| = 2|γ|. We note that 8A2 ≤ |Ω|, therefore, the

derivative (2.26) needs to be rewritten in the form

dE2

dA2
= −8(|Ω| − 8A2)

(|Ω| − 4A2)3

[
2(|Ω| − 4A2)3 − γ2|Ω|

]
< 0, (2.29)

where 2(|Ω| − 4A2)3 − γ2|Ω| > 0 for both |Ω| ∈ (|γ|, 2|γ|) and |Ω| ∈ [2|γ|,∞). In the two

asymptotic limits, we obtain from (2.25):

E2 = E2
0 +O(A2) as A→ 0 and E2 → 0 as A2 → A2

−.

See Figure 2.3(c).

Note that branches (b) and (c) coexist for Ω < −|γ|.

Remark 1. The reduction (2.20) corresponds to the choice:

E = 0, θ = −π
4
, 4A2 + Ω + γ = 0.

If γ > 0, this choice corresponds to A = A− for Ω ∈ (−2|γ|,−|γ|), that is, the point E = 0 on branch

(c). If γ < 0, it corresponds to A = A+ for any Ω < |γ|, that is, the point E = 0 on branch (b).

Every solution of Lemma 4 can be extended to a breather on the chain Z which satisfies the

spatial symmetry condition in addition to the PT symmetry:

U−n = Un = V̄n = V̄−n, n ∈ Z. (2.30)
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With two applications of the implicit function theorem (see Section 1.5.6), we prove the following

main result of this section.
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Theorem 6. Fix γ 6= 0, Ω 6= −2|γ|, and E 6= ±E0, where E0 :=
√

Ω2 − γ2 > 0 if |Ω| > |γ|. There

exists ε0 > 0 sufficiently small and C0 > 0 such that for every ε ∈ (−ε0, ε0), there exists a unique

solution U ∈ l2(Z) to the difference equation (2.22) satisfying the symmetry (2.30) and the bound

∣∣U0 −Aeiθ
∣∣+ sup

n∈N
|Un| ≤ C0|ε|, (2.31)

where A and θ are defined in Lemma 4. Moreover, the solution U is smooth in ε.

Proof. In the first application of the implicit function theorem, we consider the following system of

algebraic equations

EUn = ε
(
Ūn+1 − 2Ūn + Ūn−1

)
+ ΩŪn + iγUn + 6|Un|2Ūn + 2U3

n, n ∈ N, (2.32)

where U0 ∈ C is given, in addition to parameters γ, Ω, and E.

Let x = {Un}n∈N, X = `2(N), y = ε, Y = R, and Z = `2(N). Then, we have F (0, 0) = 0 and the

Jacobian operator DxF (0, 0) is given by identical copies of the matrix[
E − iγ −Ω

−Ω E + iγ

]
,

with the eigenvalues λ± := E ±
√

Ω2 − γ2. By the assumption of the lemma, λ± 6= 0, so that the

Jacobian operator DxF (0, 0) is one-to-one and onto. By the implicit function theorem, for every

U0 ∈ C and every ε 6= 0 sufficiently small, there exists a unique small solution U ∈ `2(N) of the

system (2.32) such that

‖U‖l2(N) ≤ C1|ε||U0|, (2.33)

where the positive constant C1 is independent from ε and U0.

Thanks to the symmetry of the difference equation (2.22), we find that U−n = Un, n ∈ N satisfy

the same system (2.32) with −n ∈ N, with the same unique solution.

In the second application of the implicit function theorem, we consider the following algebraic

equation

EU0 = 2ε
(
Ū1 − Ū0

)
+ ΩŪ0 + iγU0 + 6|U0|2Ū0 + 2U3

0 , (2.34)

where U1 ∈ C depends on U0, γ, Ω, and E, satisfies the bound (2.33), and is uniquely defined by the

previous result.

Let x = U0, X = C, y = ε, Y = R, and Z = C. Then, we have F (Aeiθ, 0) = 0, where A and θ

are defined in Lemma 4. The Jacobian operator DxF (Aeiθ, 0) is given by the matrix[
E − iγ − 6U2

0 − 6Ū2
0 −Ω− 12|U0|2

−Ω− 12|U0|2 E + iγ − 6U2
0 − 6Ū2

0

]∣∣∣∣
U0=Aeiθ

=

[
E − iγ − 12EA2

Ω+8A2 −Ω− 12A2

−Ω− 12A2 E + iγ − 12EA2

Ω+8A2

]
. (2.35)

31



PhD Thesis — Alexander Chernyavsky Mathematics — McMaster University

We show in Lemma 5 below that the matrix given by (2.35) is invertible under the conditions γ 6= 0

and Ω 6= −2|γ|. By the implicit function theorem, for every ε 6= 0 sufficiently small, there exists a

unique solution U0 ∈ C to the algebraic equation (2.34) near Aeiθ such that

∣∣U0 −Aeiθ
∣∣ ≤ C2|ε|, (2.36)

where the positive constant C2 is independent from ε. The bound (2.31) holds thanks to the bounds

(2.33) and (2.36). Since both equations (2.32) and (2.34) are smooth in ε, the solution U is smooth

in ε.

In the following result, we show that the matrix given by (2.35) is invertible for every branch of

Lemma 4 with an exception of a single point E = 0 on branch (c) for Ω = −2|γ|.

Lemma 5. With the exception of the point E = 0 on branch (c) of Lemma 4 for Ω = −2|γ|, the

matrix given by (2.35) is invertible for every γ 6= 0.

Proof. The matrix given by (2.35) has zero eigenvalue if and only if its determinant is zero, which

happens at
E2(Ω− 4A2)2

(Ω + 8A2)2
+ γ2 − (Ω + 12A2)2 = 0.

Eliminating E2 by using parametrization (2.25) and simplifying the algebraic equation for nonzero

A2, we reduce it to the form

2(Ω + 4A2)3 = Ωγ2. (2.37)

We now check if this constraint can be satisfied for the three branches of Lemma 4.

(a) If Ω > |γ|, the constraint (2.37) is not satisfied because the left-hand side

2(Ω + 4A2)3 ≥ 2Ω3 > 2Ωγ2

exceeds the right-hand side Ωγ2.

(b) If Ω < |γ| and A2 ≥ A2
+, where A2

+ is given by (2.27), the constraint (2.37) is not satisfied

because the left-hand side

2(Ω + 4A2)3 ≥ 2(Ω + 4A2
+)3 = 2|γ|3

exceeds the left-hand side Ωγ2 both for Ω ∈ [0, |γ|) and for Ω < 0.

(c) If Ω < −|γ| and A2 ≤ A2
−, where A2

− is given by (2.28), the constraint (2.37) is not satisfied

because the left-hand side is estimated by

2(4A2 + Ω)3 ≤ 2(4A2
− − |Ω|)3 = min{−2|γ|3,−|Ω|3/4}.

In the first case, we have |Ω| ∈ (|γ|, 2|γ|), so that the left-hand side is strictly smaller than

−|Ω|γ2. In the second case, we have |Ω| > 2|γ|, so that the left-hand side is also strictly smaller
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than −|Ω|γ2. Only if |Ω| = 2|γ|, the constraint (2.37) is satisfied at E = 0, when A2 = A2
− and

2(4A2 + Ω)3 = −2|γ|3 = −|Ω|γ2 = Ωγ2.

Hence, the matrix (2.35) is invertible for all parameter values with one exceptional case.

Remark 2. In the asymptotic limit E2 = 64A4 +O(A2) as A→∞, see Lemma 4, the matrix (2.35)

is expanded asymptotically as

−1

2

[
E 3|E|

3|E| E

]
+O(1) as |E| → ∞, (2.38)

with the two eigenvalues λ1 = E and λ2 = −2E. Thus, the matrix given by (2.38) is invertible for

every branch extending to sufficiently large values of E.

2.4 Stability of zero equilibrium

Here we discuss the linear stability of the zero equilibrium in the PT -symmetric dNLS equation

(2.9). The following proposition yields a simple result.

Proposition 1. The zero equilibrium of the PT -symmetric dNLS equation (2.9) is linearly stable if

|γ| < γ0, where

γ0 :=

{
Ω− 4ε, Ω > 0,

|Ω|, Ω < 0.
(2.39)

The zero equilibrium is linearly unstable if |γ| > γ0.

Proof. Truncating the PT -symmetric dNLS equation (2.9) at the linear terms and using the Fourier

transform

un(t) =
1

2π

∫ π

−π
Û(k)eikn+iω(k)tdk, (2.40)

we obtain the linear homogeneous system

D̂(k)

[
Û(k)

V̂ (k)

]
=

[
0

0

]
, where D̂(k) :=

[
−2ω(k)− iγ −Ω + 4ε sin2(k/2)

−Ω + 4ε sin2(k/2) −2ω(k) + iγ

]
.

The determinant of D̂(k) is zero if and only if ω(k) is found from the quadratic equation

4ω2(k) + γ2 −
(

Ω− 4ε sin2 k

2

)2

= 0. (2.41)

For any |γ| < γ0, where γ0 is given by (2.39), the two branches ±ω(k) found from the quadratic equa-

tion (2.41) are real-valued and non-degenerate for every k ∈ [−π, π]. Therefore, the zero equilibrium

is linearly stable.

On the other hand, for any |γ| > γ0, the values of ω(k) are purely imaginary either near k = ±π
if Ω > 0 or near k = 0 if Ω < 0. Therefore, the zero equilibrium is linearly unstable.
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Remark 3. The value γ0 given by (2.39) represents the phase transition threshold and the PT -

symmetric dNLS equation (2.9) has broken PT -symmetry for |γ| > γ0.

If ε = 0, the zero equilibrium is only linearly stable for |γ| < |Ω|. Since the localized breathers

cannot be stable when the zero background is unstable, we shall study stability of breathers only for

the case when |γ| < |Ω|, that is, in the regime of unbroken PT -symmetry.

2.5 Variational characterization of breathers

It follows from Theorem 6 that each interior point on the solution branches shown on Figure 2.3 gen-

erates a fundamental breather of the PT -symmetric dNLS equation (2.9). We shall now characterize

these breathers as relative equilibria of the energy function.

Thanks to the cross-gradient symplectic structure (2.16), the stationary PT -symmetric dNLS

equation (2.21) can be written in the gradient form

EUn =
∂Hu,v

∂V̄n
, EVn =

∂Hu,v

∂Ūn
, n ∈ Z. (2.42)

Keeping in mind the additional conserved quantity Qu,v given by (2.18), we conclude that the

stationary solution (U, V ) is a critical point of the combined energy function given by

HE := Hu,v − EQu,v. (2.43)

If we want to apply the Lyapunov method in order to study nonlinear stability of stationary

solutions in Hamiltonian systems, we shall investigate convexity of the second variation of the com-

bined energy functional HE at (U, V ). Using the expansion u = U + u, v = V + v and introducing

extended variables Φ and φ with the blocks

Φn := (Un, Ūn, Vn, V̄n), φn := (un, ūn,vn, v̄n), (2.44)

we can expand the smooth function HE up to the quadratic terms in φ:

HE(Φ + φ) = HE(Φ) +
1

2
〈H′′Eφ, φ〉l2 +O(‖φ‖3l2), (2.45)

where H′′E is the self-adjoint (Hessian) operator defined on `2(Z) and the scalar product was used in

the following form:

〈x, y〉l2 =
∑
k∈Z

xkȳk.

Using (2.17) and (2.18), the Hessian operator can be computed explicitly as follows

H′′E = L+ ε∆, (2.46)
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where blocks of L at each lattice node n ∈ Z are given by

Ln =


Ω + 8|Un|2 2(U2

n + Ū2
n) −E − iγ + 4(U2

n + Ū2
n) 4|Un|2

2(U2
n + Ū2

n) Ω + 8|Un|2 4|Un|2 −E + iγ + 4(U2
n + Ū2

n)

−E + iγ + 4(U2
n + Ū2

n) 4|Un|2 Ω + 8|Un|2 2(U2
n + Ū2

n)

4|Un|2 −E − iγ + 4(U2
n + Ū2

n) 2(U2
n + Ū2

n) Ω + 8|Un|2


and ∆ is the discrete Laplacian operator applied to blocks of φ at each lattice node n ∈ Z:

(∆φ)n = φn+1 − 2φn + φn−1.

In the expression for Ln, we have used the PT -symmetry condition V = Ū for the given stationary

solution (U, V ).

We study convexity of the combined energy functional HE at (U, V ). Since the zero equilibrium

is linearly stable only for |γ| < |Ω| (if ε = 0), we only consider breathers of Theorem 6 for |γ| < |Ω|.
With an application of the perturbation theory for linear operators (see Section 1.5.6), we prove

the following main result of this section.

Theorem 7. Fix γ 6= 0, Ω, and E along branches of the PT -symmetric breathers (U, V ) given by

Theorem 6 such that |Ω|>|γ| and E 6= ±E0, where E0 :=
√

Ω2 − γ2> 0. For every ε > 0 sufficiently

small, the operator H′′E admits a one-dimensional kernel in `2(Z) spanned by the eigenvector σΦ due

to the gauge invariance, where the blocks of the eigenvector are given by

(σΦ)n := (Un,−Ūn, Vn,−V̄n). (2.47)

In addition,

• If |E| > E0, the spectrum of H′′E in `2(Z) includes infinite-dimensional positive and negative

parts.

• If |E| < E0 and Ω < −|γ|, the spectrum of H′′E in `2(Z) includes an infinite-dimensional

negative part and either three or one simple positive eigenvalues for branches (b) and (c) of

Lemma 4 respectively.

Proof. If ε = 0, the breather solution of Theorem 6 is given by Un = 0 for every n 6= 0 and U0 = Aeiθ,

where A and θ are defined by Lemma 4. In this case, the linear operator H′′E = L decouples into

4-by-4 blocks for each lattice node n ∈ Z.
For n = 0, the 4-by-4 block of the linear operator L is given by

L0 =


Ω + 8A2 4A2 cos(2θ) −E − iγ + 8A2 cos(2θ) 4A2

4A2 cos(2θ) Ω + 8A2 4A2 −E + iγ + 8A2 cos(2θ)

−E + iγ + 8A2 cos(2θ) 4A2 Ω + 8A2 4A2 cos(2θ)

4A2 −E − iγ + 8A2 cos(2θ) 4A2 cos(2θ) Ω + 8A2

 .

Using relations (2.24) and (2.25), as well as symbolic computations with MAPLE, we found that the

4-by-4 matrix block L0 admits a simple zero eigenvalue and three nonzero eigenvalues µ1, µ2, and
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µ3 given by

µ1 = 2(4A2 + Ω), (2.48)

µ2,3 = 12A2 + Ω±
√

(4A2 − Ω)2 +
16ΩA2γ2

(4A2 + Ω)2
. (2.49)

For each branch of Lemma 4 with γ 6= 0 and E 6= ±E0, we have 4A2 + Ω 6= 0, so that µ1 6= 0.

Furthermore, either µ2 = 0 or µ3 = 0 if and only if

(12A2 + Ω)2(4A2 + Ω)2 = (16A4 − Ω2)2 + 16Ωγ2A2.

Expanding this equation for nonzero A yields constraint (2.37). With the exception of a single point

E = 0 at Ω = −2|γ|, we showed in Lemma 5 that the constraint (2.37) does not hold for any of the

branches of Lemma 4. Therefore, µ2 6= 0 and µ3 6= 0 along each branch of Lemma 4 and the signs

of µ1, µ2, and µ3 for each branch of Lemma 4 can be obtained in the limit A→∞ for branches (a)

and (b) or A→ 0 for branch (c). By means of these asymptotic computations as A→∞ or A→ 0,

we obtain the following results for the three branches shown on Figure 2.3:

(a) µ1, µ2, µ3 > 0.

(b) µ1, µ2, µ3 > 0.

(c) µ1 < 0, µ2 > 0, and µ3 < 0.

For n ∈ Z\{0}, the 4-by-4 block of the linear operator L is given by

Ln =


Ω 0 −E − iγ 0

0 Ω 0 −E + iγ

−E + iγ 0 Ω 0

0 −E − iγ 0 Ω

 . (2.50)

Each block has two double eigenvalues µ+ and µ− given by

µ+ = Ω +
√
E2 + γ2, µ− = Ω−

√
E2 + γ2.

Since there are infinitely many nodes with n 6= 0, the points µ+ and µ− have infinite multiplicity in

the spectrum of the linear operator L. Furthermore, we can sort up the signs of µ+ and µ− for each

point on the three branches shown on Figure 2.3:

(1),(3) If |E| > E0 :=
√

Ω2 − γ2, then µ+ > 0 and µ− < 0.

(2),(4) If |E| < E0 and Ω < −|γ|, then µ+, µ− < 0.

By using the perturbation theory for linear operators, we argue as follows:

• Since H′′E is Hermitian on `2(Z), its spectrum is a subset of the real line for every ε 6= 0.
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• The zero eigenvalue persists with respect to ε 6= 0 at zero because the eigenvector (2.47) belongs

to the kernel of H′′E due to the gauge invariance for every ε 6= 0.

• The other eigenvalues of L are isolated away from zero. The spectrum of H′′E is continuous

with respect to ε and includes infinite-dimensional parts near points µ+ and µ− for small ε > 0

(which may include continuous spectrum and isolated eigenvalues) as well as simple eigenvalues

near µ1,2,3 (if µ1,2,3 are different from µ±).

The statement of the theorem follows from the perturbation theory and the count of signs of

µ1,2,3 and µ± above.
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Remark 4. In the asymptotic limit E2 = 64A4 +O(A2) as A→∞, we can sort out eigenvalues of

H′′E asymptotically as:

µ1 ≈ |E|, µ2 ≈ 2|E|, µ3 ≈ |E|, µ+ ≈ |E|, µ− ≈ −|E|, (2.51)

where the remainder terms are O(1) as |E| → ∞. The values µ1, µ3, and µ+ are close to each other

as |E| → ∞.

Remark 5. It follows from Theorem 7 that for |E| > E0, the breather (U, V ) is a saddle point of

the energy functional HE with infinite-dimensional positive and negative invariant subspaces of the

Hessian operator H′′E. This is very similar to the Hamiltonian systems of the Dirac type, where

stationary states are located in the gap between the positive and negative continuous spectrum. This

property holds for points 1 and 3 on branches (a) and (b) shown on Figure 2.3.

Remark 6. No branches other than |E| > E0 exist for Ω > |γ|. On the other hand, points 2 and 4

on branches (b) and (c) shown on Figure 2.3 satisfy |E| < E0 and Ω < −|γ|. The breather (U, V )

is a saddle point of HE for these points and it only has three (one) directions of positive energy in

space `2(Z) for point 2 (point 4).

2.6 Spectral and orbital stability of breathers

Spectral stability of breathers can be studied for small values of coupling constant ε by using the

perturbation theory [115]. First, we linearize the PT -symmetric dNLS equation (2.9) at the breather

(2.19) by using the expansion

u(t) = e−
1
2 iEt [U + u(t)] , v(t) = e−

1
2 iEt [V + v(t)] ,

where (u,v) is a small perturbation satisfying the linearized equations

2iu̇n + Eun = ε (vn+1 − 2vn + vn−1) + Ωvn + iγun

+2
[
2
(
|Un|2 + |Vn|2

)
vn + (U2

n + V 2
n )v̄n

+ 2(ŪnVn + UnV̄n)un + 2UnVnūn
]
,

2iv̇n + Evn = ε (un+1 − 2un + un−1) + Ωun − iγvn

+2
[
2
(
|Un|2 + |Vn|2

)
un + (U2

n + V 2
n )ūn

+2 (ŪnVn + UnV̄n)vn + 2UnVnv̄n
]
.

(2.52)

The spectral stability problem arises from the linearized equations (2.52) after the separation of

variables:

u(t) = ϕe
1
2λt, ū(t) = ψe

1
2λt, v(t) = χe

1
2λt, v̄(t) = νe

1
2λt,

where φ := (ϕ,ψ, χ, ν) is the eigenvector corresponding to the spectral parameter λ. Note that (ϕ,ψ)

and (χ, ν) are no longer complex conjugate to each other if λ has a nonzero imaginary part. The
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spectral problem can be written in the explicit form

(E + iλ− iγ)ϕn − Ωχn = ε (χn+1 − 2χn + χn−1)

+ 2
[
2|Un|2(ψn + 2χn) + (U2

n + Ū2
n)(2ϕn + νn)

]
,

(E − iλ+ iγ)ψn − Ωνn = ε (νn+1 − 2νn + νn−1)

+ 2
[
2|Un|2(ϕn + 2νn) + (U2

n + Ū2
n)(2ψn + χn)

]
,

(E + iλ+ iγ)χn − Ωϕn = ε (ϕn+1 − 2ϕn + ϕn−1)

+ 2
[
2|Un|2(2ϕn + νn) + (U2

n + Ū2
n)(ψn + 2χn)

]
,

(E − iλ− iγ)νn − Ωψn = ε (ψn+1 − 2ψn + ψn−1)

+ 2
[
2|Un|2(2ψn + χn) + (U2

n + Ū2
n)(ϕn + 2νn)

]
,

(2.53)

where we have used the condition V = Ū for the PT -symmetric breathers. Recalling definition of

the Hessian operator H′′E in (2.46), we can rewrite the spectral problem (2.53) in the Hamiltonian

form:

SH′′Eφ = iλφ, (2.54)

where S is a symmetric matrix with the blocks at each lattice node n ∈ Z given by

S :=


0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0

 . (2.55)

We note the Hamiltonian symmetry of the eigenvalues of the spectral problem (2.54).

Proposition 2. Eigenvalues of the spectral problem (2.54) occur either as real or imaginary pairs

or as quadruplets in the complex plane.
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Proof. Assume that λ ∈ C is an eigenvalue of the spectral problem (2.54) with the eigenvector

(ϕ,ψ, χ, ν). Then, λ̄ is an eigenvalue of the same problem with the eigenvector (ψ̄, ϕ̄, ν̄, χ̄), whereas

−λ is also an eigenvalue with the eigenvector (ν, χ, ψ, ϕ).

If Ω < −|γ| and |E| < E0 :=
√

Ω2 − γ2 (points 2 and 4 shown on Figure 2.3), Theorem 7 implies

that the self-adjoint operator H′′E in `2(Z) is negative-definite with the exception of either three

(point 2) or one (point 4) simple positive eigenvalues. In this case, we can apply Hamilton–Krein

index theorem (see Section 1.5.6) in order to characterize the spectrum of SH′′E .

Lemma 6. Fix γ 6= 0, Ω < −|γ|, and 0<|E|<E0, where E0 :=
√

Ω2 − γ2 > 0. For every ε > 0

sufficiently small, KHAM = 2 for branch (b) of Lemma 4 and KHAM = 0 for branch (c) of Lemma

4 with Ω < −2
√

2|γ|. For branch (c) with Ω ∈ (−2
√

2|γ|,−|γ|), there exists a value Es ∈ (0, E0)

such that KHAM = 1 for 0 < |E| < Es and KHAM = 0 for Es < |E| < E0.

Proof. If γ 6= 0, Ω < −|γ|, |E| < E0, and ε > 0 is sufficiently small, Theorem 7 implies that the

spectrum of H′′E in `2(Z) has finitely many positive eigenvalues and a simple zero eigenvalue with

eigenvector σΦ. Therefore, the Hamilton–Krein index theorem is applied in `2(Z) for L = −H′′E ,

J = iS, and v0 = σΦ. We shall verify that

H′′E(σΦ) = 0, SH′′E(∂EΦ) = σΦ, (2.56)

where σΦ is given by (2.47) and ∂EΦ denotes derivative of Φ with respect to parameter E. The first

equation H′′E(σΦ) = 0 follows by Theorem 7. By differentiating equations (2.21) in E, we obtain

H′′E(∂EΦ) = SσΦ for every E, for which the solution Φ is differentiable in E. For ε = 0, the limiting

solution of Lemma 4 is differentiable in E for every E 6= 0 and E 6= ±E0. Due to smoothness of the

continuation in ε by Theorem 7, this property holds for every ε > 0 sufficiently small.

By using (2.56) with S−1 = S, we obtain

D = −〈(H′′E)−1SσΦ,SσΦ〉`2 = −〈∂EΦ,SσΦ〉`2

= −
∑
n∈Z

∂E
(
UnV̄n + ŪnVn

)
= −dQu,v

dE
, (2.57)

where we have used the definition of Qu,v in (2.18). We compute the slope condition at ε = 0:

dQu,v
dE

∣∣∣∣
ε=0

= 2
d

dE

A2E

8A2 + Ω
= 4(8A2 + Ω)

dA2

dE2

[
1− Ωγ2

(4A2 + Ω)3

]
, (2.58)

where relations (2.24) and (2.25) have been used.

For branch (b) of Lemma 4 with Ω < −|γ|, we have dA2/dE2 > 0 and |Ω| < 4A2, so that

dQu,v/dE > 0. By continuity, dQu,v/dE remains strictly positive for small ε > 0. Thus, D < 0 and

KHAM = 2 by the Hamilton–Krein index theorem.

For branch (c) of Lemma 4 with Ω < −|γ|, we have dA2/dE2 < 0 and |Ω| > 8A2. Therefore, we

only need to inspect the sign of the expression (4A2 + Ω)3 − Ωγ2. If Ω < −2
√

2|γ|, then for every

40



Mathematics — McMaster University PhD Thesis — Alexander Chernyavsky

A2 ∈ (0, A2
−), we have

(4A2 + Ω)3 − Ωγ2 ≤ (4A2
− + Ω)3 − Ωγ2 =

1

8
Ω3 − Ωγ2 ≤ 1

8
Ω(Ω2 − 8γ2) < 0,

therefore, D < 0 and KHAM = 0 by the Hamilton–Krein index theorem.

On the other hand, if −2
√

2|γ| < Ω < −|γ|, we have (4A2 + Ω)3 − Ωγ2 < 0 at A = 0 (E = E0)

and (4A2 + Ω)3 − Ωγ2 > 0 at A = A− (E = 0). Since the dependence of A versus E is monotonic,

there exists a value Es ∈ (0, E0) such that KHAM = 1 for 0 < |E| < Es and KHAM = 0 for

Es < |E| < E0.

If KHAM = 0 and D 6= 0, orbital stability of a critical point of HE in space `2(Z) can be proved

from the Hamilton–Krein theorem (see [68] and references therein). Orbital stability of breathers is

understood in the following sense.

Definition 10. We say that the breather solution (2.19) is orbitally stable in `2(Z) if for every ν > 0

sufficiently small, there exists δ > 0 such that if ψ(0) ∈ `2(Z) satisfies ‖ψ(0) − Φ‖`2 ≤ δ, then the

unique global solution ψ(t) ∈ `2(Z), t ∈ R to the PT -symmetric dNLS equation (2.9) satisfies the

bound

inf
α∈R
‖eiαψ(t)− Φ‖`2 ≤ ν, for every t ∈ R. (2.59)

The definition of instability of breathers is given by negating Definition 10. The following result

gives orbital stability or instability for branch (c) shown on Figure 2.3.

Theorem 8. Fix γ 6= 0, Ω < −|γ|, and 0 < |E| < E0. For every ε > 0 sufficiently small, the

breather (U, V ) for branch (c) of Lemma 4 is orbitally stable in `2(Z) if Ω < −2
√

2|γ|. For every

Ω ∈ (−2
√

2|γ|,−|γ|), there exists a value Es ∈ (0, E0) such that the breather (U, V ) is orbitally stable

in `2(Z) if Es < |E| < E0 and unstable if 0 < |E| < Es.

Proof. The theorem is a corollary of Lemma 6 for branch (c) of Lemma 4 and the orbital stability

theory from [68].

Orbital stability of breathers for branches (a) and (b) of Lemma 4 does not follow from the

standard theory because KHAM = ∞ for |E| > E0 and KHAM = 2 > 0 for branch (b) with

|E| < E0. Nevertheless, by using smallness of parameter ε and the construction of the breather

(U, V ) in Theorem 6, spectral stability of breathers can be considered directly. Spectral stability and

instability of breathers is understood in the following sense.

Definition 11. We say that the breather solution (2.19) is spectrally stable if λ ∈ iR for every

bounded solution of the spectral problem (2.54). On the other hand, if the spectral problem (2.54)

admits an eigenvalue λ /∈ iR with an eigenvector in `2(R), we say that the breather solution (2.19)

is spectrally unstable.

The following theorem gives spectral stability of breathers for branches (a) and (b) shown on

Figure 2.3.
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Theorem 9. Fix γ 6= 0, |Ω| > |γ|, and E along branches (a) and (b) of Lemma 4 with E 6= 0

and E 6= ±E0. For every ε > 0 sufficiently small, the spectral problem (2.54) admits a double zero

eigenvalue with the generalized eigenvectors

H′′E(σΦ) = 0, SH′′E(∂EΦ) = σΦ, (2.60)

where the eigenvector σΦ is given by (2.47) and the generalized eigenvector ∂EΦ denotes derivative

of Φ with respect to parameter E. For every E such that the following non-degeneracy condition is

satisfied,

2

√
(4A2 + Ω)2 − Ωγ2

4A2 + Ω
6= E ±

√
Ω2 − γ2, (2.61)

the breather (U, V ) is spectrally stable.

Proof. If ε = 0, the breather solution of Theorem 6 is given by Un = 0 for every n 6= 0 and U0 = Aeiθ,

where A and θ are defined by Lemma 4. In this case, the spectral problem (2.53) decouples into

4-by-4 blocks for each lattice node n ∈ Z. Recall that H′′E = L at ε = 0.

For n = 0, eigenvalues λ are determined by the 4-by-4 matrix block −iSL0. Using relations

(2.24) and (2.25), as well as symbolic computations with MAPLE, we found that the 4-by-4 matrix

block −iSL0 has a double zero eigenvalue and a pair of simple eigenvalues at λ = ±λ0, where

λ0 = 2i

√
(4A2 + Ω)2 − Ωγ2

4A2 + Ω
. (2.62)

For n ∈ Z\{0}, eigenvalues λ are determined by the 4-by-4 matrix block −iSLn, where Ln is given

by (2.50). If |γ| < |Ω|, E 6= 0, and E 6= ±E0, where

E0 :=
√

Ω2 − γ2, each block has four simple eigenvalues ±λ+ and ±λ−, where

λ± := i(E ± E0), (2.63)

so that λ± ∈ iR. Since there are infinitely many nodes with n 6= 0, the four eigenvalues are semi-

simple and have infinite multiplicity.

If ε > 0 is sufficiently small, we use perturbation theory for linear operators from Section 2.5.

• The double zero eigenvalue persists with respect to ε 6= 0 at zero because of the gauge invariance

of the breather (U, V ) (with respect to rotation of the complex phase). Indeed, H′′E(σΦ) = 0

follows from the result of Theorem 7. The generalized eigenvector is defined by equation

SH′′EΨ = σΦ, which is equivalent to equation H′′EΨ = (V, V̄ , U, Ū)T . Differentiating equations

(2.21) in E, we obtain Ψ = ∂EΦ. Since dim[Ker(H′′E)] = 1 and

〈σΦ,S∂EΦ〉`2 =
∑
n∈Z

∂E
(
UnV̄n + ŪnVn

)
=
dQu,v
dE

, (2.64)

the second generalized eigenvector Ψ̃ ∈ `2(Z) exists as a solution of equation SH′′EΨ̃ = ∂EΦ

if and only if dQu,v/dE = 0. It follows from the explicit computation (2.58) that if ε = 0,
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then dQu,v/dE 6= 0 for every E along branches (a) and (b) of Lemma 4. By continuity,

dQu,v/dE 6= 0 for small ε > 0. Therefore, the zero eigenvalue of the operator −iSH′′E is exactly

double for small ε > 0.

• Using the same computation (2.58), it is clear that λ0 ∈ iR for every E along branches (a)

and (b) of Lemma 4. Assume that λ0 6= ±λ+ and λ0 6= ±λ−, which is expressed by the non-

degeneracy condition (2.61). Then, the pair ±λ0 is isolated from the rest of the spectrum of

the operator −iSH′′E at ε = 0. Since the eigenvalues λ = ±λ0 are simple and purely imaginary,

they persist on the imaginary axis for ε 6= 0 because they cannot leave the imaginary axis by

the Hamiltonian symmetry of Proposition 2.

• If |γ| < |Ω|, E 6= 0, and E 6= ±E0, the semi-simple eigenvalues ±λ+ and ±λ− of infinite

multiplicity are nonzero and located at the imaginary axis at different points for ε = 0. They

persist on the imaginary axis for ε 6= 0 according to the following perturbation argument. First,

for the central site n = 0, the spectral problem (2.53) can be written in the following abstract

form

(SL0(ε)− 2εS − iλI)φ0 = −εS(φ1 + φ−1),

where L0(ε) denotes a continuation of L0 in ε. Thanks to the non-degeneracy condition (2.61)

as well as the condition λ± 6= 0, the matrix SL0− iλ±I is invertible. By continuity, the matrix

SL0(ε)− iλI is invertible for every ε and λ near ε = 0 and λ = λ±. Therefore, there is a unique

φ0 given by

φ0 = −ε (SL0(ε)− 2εS − iλI)
−1
S(φ1 + φ−1),

which satisfies |φ0| ≤ Cε(|φ1| + |φ−1|) near ε = 0 and λ = λ±, where C is a positive ε- and

λ-independent constant. Next, for either n ∈ N or −n ∈ N, the spectral problem (2.53) can be

represented in the form

SLn(ε)φn + εS(∆φ)n − iλφn = −δn,±1εSφ0, ±n ∈ N,

where Ln(ε) denotes a continuation of Ln given by (2.50) in ε, whereas the operator ∆ is applied

with zero end-point condition at n = 0. We have Ln(ε) = Ln +O(ε2) and εSφ0 = O(ε2) near

ε = 0 and λ = λ±. Therefore, up to the first order of the perturbation theory, the spectral

parameter λ near λ± is defined from the truncated eigenvalue problem

SLnφn + εS(∆φ)n = iλφn, ±n ∈ N, (2.65)

which is solved with the discrete Fourier transform (2.40). In order to satisfy the Dirichlet

end-point condition at n = 0, the sine–Fourier transform must be used, which does not affect

the characteristic equation for the purely continuous spectrum of the spectral problem (2.65).

By means of routine computations, we obtain the characteristic equation in the form, see also

equation (2.41):

(E ± iλ)2 + γ2 −
(

Ω− 4ε sin2 k

2

)2

= 0, (2.66)
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where k ∈ [−π, π] is the parameter of the discrete Fourier transform (2.40). Solving the

characteristic equation (2.66), we obtain four branches of the continuous spectrum

λ = ±i

E ±
√(

Ω− 4ε sin2 k

2

)2

− γ2

 , (2.67)

where the two sign choices are independent from each other. If |Ω| > |γ| is fixed and ε > 0

is small, the four branches of the continuous spectrum are located on the imaginary axis near

the points ±λ+ and ±λ− given by (2.63).

In addition to the continuous spectrum given by (2.66), there may exist isolated eigenvalues

near ±λ+ and ±λ−, which are found from the second-order perturbation theory [111]. Under

the condition E 6= 0 and E 6= ±E0, these eigenvalues are purely imaginary. Therefore, the

infinite-dimensional part of the spectrum of the operator −iSH′′E persists on the imaginary

axis for ε 6= 0 near the points ±λ+ and ±λ− of infinite algebraic multiplicity.

The statement of the lemma follows from the perturbation theory and the fact that all isolated

eigenvalues and the continuous spectrum of −iSH′′E are purely imaginary.

Remark 7. In the asymptotic limit E2 = 64A4 + O(A2) as A → ∞, the eigenvalues λ0 and λ±

defined by (2.62) and (2.63) are given asymptotically by

λ0 ≈ i|E|, λ+ ≈ iE, λ− ≈ iE, (2.68)

where the remainder terms are O(1) as |E| → ∞. The values λ0, λ+, and λ− are close to each other

as E → +∞.

Remark 8. Computations in the proof of Theorem 9 can be extended to the branch (c) of Lemma 4.

Indeed, λ0 ∈ iR for branch (c) with either Ω < −2
√

2|γ| or Ω ∈ (−2
√

2|γ|,−|γ|), and E near ±E0.

On the other hand, λ0 ∈ R if Ω ∈ (−2
√

2|γ|,−|γ|) and E near 0. As a result, branch (c) is spectrally

stable in the former case and is spectrally unstable in the latter case, in agreement with Theorem 8.

Remark 9. Observe in the proof of Theorem 9 that λ± /∈ iR if |Ω| < |γ|. In this case, branch (b) of

Lemma 4 is spectrally unstable. This instability corresponds to the instability of the zero equilibrium

for |Ω| < |γ|, in agreement with the result of Proposition 1.

Before presenting numerical approximations of eigenvalues of the spectral problem (2.54), we

compute the Krein signature of wave continuum. This helps to interpret instabilities and resonances

that arise when isolated eigenvalues ±λ0 cross the continuous bands near points ±λ+ and ±λ−. The

Krein signature of simple isolated eigenvalues is defined as follows.

Definition 12. Let φ ∈ `2(Z) be an eigenvector of the spectral problem (2.54) for an isolated simple

eigenvalue λ0 ∈ iR. Then, the energy quadratic form 〈H′′Eφ, φ〉`2 is nonzero and its sign is called the

Krein signature of the eigenvalue λ0.
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Definition 12 is used to simplify the presentation. Similarly, one can define the Krein signature of

isolated multiple eigenvalues and the Krein signature of the continuous spectral bands in the spectral

problem (2.54) [68]. The following lemma characterizes Krein signatures of the spectral points arising

in the proof of Theorem 9.
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Lemma 7. Fix γ 6= 0, |Ω| > |γ|, and E > 0 with E 6= ±E0. Assume the non-degeneracy condition

(2.61). For every ε > 0 sufficiently small, we have the following for the corresponding branches of

Lemma 4:

(a) the subspaces of −iSH′′E in `2(Z) near ±λ+, ±λ−, and ±λ0 have positive, negative, and positive

Krein signature, respectively;

(b) the subspaces of −iSH′′E in `2(Z) near ±λ+, ±λ−, and ±λ0 have negative, positive (if E > E0)

or negative (if E < E0), and positive Krein signature, respectively;

(c) all subspaces of −iSH′′E in `2(Z) near ±λ+, ±λ−, and ±λ0 (if λ0 ∈ iR) have negative Krein

signature.

Proof. We proceed by the perturbation arguments from the limit ε = 0, where −iSH′′E = −iSL is a

block-diagonal operator consisting of 4×4 blocks. In particular, we consider the blocks for n ∈ Z\{0},
where Ln is given by (2.50). Solving (2.53) at ε = 0 and λ = λ±, we obtain the eigenvector

ϕn = −Ω, ψn = 0, χn = ±E0 + iγ, νn = 0, n ∈ Z\{0}.

As a result, we obtain for the eigenvector φn = (ϕn, ψn, χn, νn):

Kn := 〈Lnφn, φn〉`2 = Ω(|ϕn|2 + |χn|2)− (E + iγ)χnϕ̄n − (E − iγ)ϕnχ̄n

= 2ΩE0(E0 ± E).

For branch (a), Ω > |γ| and E > E0. Therefore, Kn > 0 for λ = λ+ and Kn < 0 for λ = λ−.

For branch (b), Ω < −|γ| and either E > E0 or E ∈ (0, E0). In either case, Kn < 0 for λ = λ+.

On the other hand, for λ = λ−, Kn > 0 if E > E0 and Kn < 0 if E ∈ (0, E0).

For branch (c), Ω < −|γ| and E ∈ (0, E0). In this case, Kn < 0 for either λ = λ+ or λ = λ−.

Finally, the Krein signature for the eigenvalue λ = λ0 denoted by K0 follows from the compu-

tations of eigenvalues µ1,2,3 in the proof of Theorem 7. We have K0 > 0 for branches (a) and (b)

because µ1,2,3 > 0 and we have K0 < 0 for branch (c) because µ1,3 < 0, whereas the eigenvalue

µ2 > 0 is controlled by the result of Lemma 6.

The signs of all eigenvalues are nonzero and continuous with respect to parameter ε. Therefore,

the count above extends to the case of small nonzero ε.

The spectrum of −iSH′′E is shown at Figure 2.4. Panels (a), (b) and (c) correspond to branches

shown at Figure 2.3.

(a) We can see on panel (a) of Figure 2.4 that λ0, λ± do not intersect for every E > E0 and are

located within fixed distance O(1), as |E| → ∞. Note that the upper-most λ0 and λ+ have

positive Krein signature, whereas the lowest λ− has negative Krein signature, as is given by

Lemma 7.

(b) We observe on panel (b) of Figure 2.4 that λ+ intersects λ0, creating a small bubble of instability

in the spectrum. The insert shows that the bubble shrinks as ε→ 0, in agreement with Theorem
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Figure 2.4: The spectrum of −iSH′′E for different branches of breathers.

47



PhD Thesis — Alexander Chernyavsky Mathematics — McMaster University

9. There is also an intersection between λ− and λ0, which does not create instability. These

results are explained by the Krein signature computations in Lemma 7. Instability is induced

by opposite Krein signatures between λ+ and λ0, whereas crossing of λ− and λ0 with the same

Krein signatures is safe of instabilities. Note that for small E, the isolated eigenvalue λ0 is

located above both the spectral bands near λ+ and λ−. The gap in the numerical data near

E = E0 indicates failure to continue the breather solution numerically in ε, in agreement with

the proof of Theorem 6.

(c) We observe from panel (c) of Figure 2.4 that λ0 and −λ− intersect but do not create insta-

bilities, since all parts of the spectrum have the same signature, as is given by Lemma 7. In

fact, the branch is both spectrally and orbitally stable as long as λ0 ∈ iR, in agreement with

Theorem 8. On the other hand, there is Es ∈ (0, E0), if Ω ∈ (−2
√

2|γ|,−|γ|), such that λ0 ∈ R
for E ∈ (0, Es), which indicates instability of branch (c), again, in agreement with Theorem 8.

As we see on panel (b) of Figure 2.4, λ0 intersects λ+ for some E = E∗ > E0. In the remainder

of this section, we study whether this crossing point is always located on the right of E0. In fact, the

answer to this question is negative. We shall prove for branch (b) that the intersection of λ0 with

either λ+ or −λ− occurs either for E∗ > E0 or for E∗ < E0, depending on parameters γ and Ω.
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Lemma 8. Fix γ 6= 0, Ω < −|γ|, and E > 0 along branch (b) of Lemma 4. There exists a resonance

λ0 = λ+ at E = E∗ with E∗ > E0 if Ω ∈ (Ω∗,−|γ|) and E∗ ∈ (0, E0) if Ω ∈ (−5|γ|,Ω∗), where

Ω∗ := −
√

1 + 5
√

2√
2

|γ|. (2.69)

Moreover, if Ω < −5|γ|, there exists a resonance λ0 = −λ− at E = E∗ with

E∗ ∈ (0, E0).

Proof. Let us first assume that there exists a resonance λ0 = λ+ at E = E∗ = E0 and find the

condition on γ and Ω, when this is possible. From the definitions (2.62) and (2.63), we obtain the

constraint on A2:

(4A2 + Ω)2 − Ωγ2

4A2 + Ω
= E2

0 = Ω2 − γ2.

After canceling 4A2 since A2 ≥ A2
+ > 0 with A2

+ given by (2.27), we obtain

16A4 + 12ΩA2 + 2Ω2 + γ2 = 0,

which has two roots

A2 = −3

8
Ω± 1

8

√
Ω2 − 4γ2.

Since A2 ≥ A2
+, the lower sign is impossible because this leads to a contradiction√

|Ω| − 2|γ| −
√
|Ω|+ 2|γ| ≥ 0.

The upper sign is possible if |Ω| ≥ 2|γ|. Using the parametrization (2.25), we substitute the root for

A2 to the equation E2
0 = E2 and simplify it:

Ω2 − γ2 =
(

2|Ω|+
√

Ω2 − 4γ2
)2

1− 4γ2(
|Ω|+

√
Ω2 − 4γ2

)2


=

2
√

Ω2 − 4γ2
(

2|Ω|+
√

Ω2 − 4γ2
)2

(
|Ω|+

√
Ω2 − 4γ2

) .

This equation further simplifies to the form:√
Ω2 − 4γ2(9Ω2 − 7γ2) + Ω(31γ2 − 7Ω2) = 0.

Squaring it up, we obtain

8Ω6 − 4Ω4γ2 − 102Ω2γ4 − 49γ6 = 0,

which has only one positive root for Ω2 given by

Ω2 =
1 + 5

√
2

2
γ2.
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This root yields a formula for Ω∗ in (2.69). Since there is a unique value for

Ω ∈ (−∞,−|γ|), for which the case E∗ = E0 is possible, we shall now consider whether E∗ > E0 or

E∗ < E0 for Ω ∈ (−∞,Ω∗) or Ω ∈ (Ω∗,−|γ|).
To inspect the range E∗ < E0, we consider a particular case, for which the intersection λ0 =

λ+ = −λ− happens at E = 0. In this case, A2 = A2
+ given by (2.27), so that the condition λ2

0 = −E2
0

can be rewritten as

4(γ2 − |γ|Ω) = Ω2 − γ2.

There is only one negative root for Ω and it is given by Ω = −5|γ|. By continuity, we conclude

that λ0 = λ+ for Ω ∈ (−5|γ|,Ω∗) and λ0 = −λ− for Ω ∈ (−∞,−5|γ|), both cases correspond to

E∗ ∈ (0, E0).

Finally, we verify that the case λ0 = λ+ occurs for E∗ > E0 if Ω ∈ (Ω∗,−|γ|). Indeed, λ0 =

i(8A2 + 2Ω +O(A−2)) and λ+ = i(8A2 + Ω + E0 +O(A−2)) as A → ∞, so that Im(λ0) < Im(λ+)

as E → ∞. On the other hand, the previous estimates suggest that Im(λ0) > Im(λ+) for every

E ∈ (0, E0) if Ω ∈ (Ω∗,−|γ|). Therefore, there exists at least one intersection λ0 = λ+ for E∗ > E0

if Ω ∈ (Ω∗,−|γ|).

Remark 10. The existence of the resonance at E = 0 for some parameter configurations predicted

by Lemma 8 is in agreement with the numerical results in [135, 136] on the scalar parametrically

forced dNLS equation that follows from system (2.5) under the reduction (2.6). It was reported in

[135, 136] that the instability bubble for breather solutions may appear for every nonzero coupling

constant ε = 0 in a narrow region of the parameter space.

2.7 Summary

We have reduced Newton’s equation of motion for coupled pendula shown on Figure 2.1 under a

resonant periodic force to the PT -symmetric dNLS equation (2.9). We have shown that this system

is Hamiltonian with conserved energy (2.17) and an additional constant of motion (2.18). We have

studied breather solutions of this model, which generalize symmetric synchronized oscillations of

coupled pendula that arise if E = 0. We showed existence of three branches of breathers shown on

Figure 2.3. We also investigated their spectral stability analytically and numerically. The spectral

information on each branch of solutions is shown on Figure 2.4. For branch (c), we were also able to

prove orbital stability and instability from the energy method. The technical results of this Chapter

are summarized in Table 1 and described as follows.

For branch (a), we found that it is disconnected from the symmetric synchronized oscillations

at E = 0. Along this branch, breathers of small amplitudes A are connected to breathers of large

amplitudes A. Every point on the branch corresponds to the saddle point of the energy function

between two wave continua of positive and negative energies. Every breather along the branch is

spectrally stable and is free of resonance between isolated eigenvalues and continuous spectrum. In

Chapter 3, we will prove long-time orbital stability of breathers along this branch.

For branch (b), we found that the large-amplitude breathers as E → ∞ are connected to the

symmetric synchronized oscillations at E = 0, which have the smallest (but nonzero) amplitude
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Table 2.1: A summary of results on breather solutions for small ε. Here, IB is a narrow instability
bubble seen on panel (b) of Figure 2.4.

|E| > E0 |E| < E0

Parameter
intervals

Ω > |γ| Ω < −|γ| Ω < −|γ| Ω < −|γ|
Existence point 1 point 3 point 2 point 4

on Figure 2.3 on branch (a) on branch (b) on branch (b) on branch (c)
Continuum Sign-indefinite Sign-indefinite Negative Negative

Spectral
stability

Yes Yes (IB) Yes (IB)
Depends

on parameters
Orbital
stability

No No
Yes

if |λ0| > |λ±|
Yes

if spectrally stable

A = A+. Breathers along the branch are spectrally stable except for a narrow instability bubble,

where the isolated eigenvalue λ0 is in resonance with the continuous spectrum. The instability bubble

can occur either for E > E0, where the breather is a saddle point of the energy function between two

wave continua of opposite energies or for E < E0, where the breather is a saddle point between the

two negative-definite wave continua and directions of positive energy. When the isolated eigenvalue of

positive energy λ0 is above the continuous spectrum near λ+ and ±λ−, orbital stability of breathers

can be proved by using the technique in [42], which was developed for the dNLS equation.

Finally, for branch (c), we found that the small-amplitude breathers at E → E0 are connected

to the symmetric synchronized oscillations at E = 0, which have the largest amplitude A = A−.

Breathers are either spectrally stable near E = E0 or unstable near E = 0, depending on the detuning

frequency Ω and the amplitude of the periodic resonant force γ. When breathers are spectrally stable,

they are also orbitally stable for infinitely long times.
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Chapter 3

Metastability in Discrete Systems

3.1 Background

We consider the system of amplitude equations (2.9), which is reproduced here for convenience

without factor 2 for the time derivatives:{
idundt = ε (vn+1 − 2vn + vn−1) + iγun + Ωvn + 2

[(
2|un|2 + |vn|2

)
vn + u2

nv̄n
]
,

idvndt = ε (un+1 − 2un + un−1)− iγvn + Ωun + 2
[(
|un|2 + 2|vn|2

)
un + ūnv

2
n

]
,

(3.1)

where {un, vn}n∈Z are complex-valued amplitudes that depend on time t ∈ R, whereas (Ω, γ, ε) are

real-valued parameters arising in a physical context described below. We assume Ω 6= 0, γ > 0, and

ε > 0 throughout this Chapter.

The remarkable property of the PT -symmetric dNLS equation (3.1) is the existence of the cross–

gradient symplectic structure (2.16) with two conserved quantities (2.17) and (2.18) bearing the

meaning of the energy and charge functions. For convenience, we reproduce again the cross-gradient

symplectic structure

i
dun
dt

=
∂H

∂v̄n
, i

dvn
dt

=
∂H

∂ūn
, n ∈ Z, (3.2)

and the Hamiltonian function

H =
∑
n∈Z

(|un|2 + |vn|2)2 + (unv̄n + ūnvn)2 + Ω(|un|2 + |vn|2)

−ε|un+1 − un|2 − ε|vn+1 − vn|2 + iγ(unv̄n − ūnvn). (3.3)

The Hamiltonian system (3.2) has an additional gauge symmetry, with respect to the transformation

{un, vn}n∈Z → {eiαun, eiαvn}n∈Z, where α ∈ R. The charge function related to the gauge symmetry

is written in the form

Q =
∑
n∈Z

(unv̄n + ūnvn). (3.4)

The energy and charge functions H and Q are conserved in the time evolution of the Hamiltonian
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system (3.2). Compared to the other physically relevant PT -symmetric dNLS equations [79, 114,

115], where the Hamiltonian structure is not available and analysis of nonlinear stability of the zero

equilibrium and time-periodic localized breathers is barely possible, we are able to address these

questions for the PT -symmetric dNLS equation (3.1), thanks to the Hamiltonian structure (3.2)

with two conserved quantities (3.3) and (3.4).

The temporal evolution of the PT -symmetric dNLS equation (3.1) is studied in sequence space

`2(Z) for sequences (u, v) as functions of time. Global existence of solutions in `2(Z) follows from

an easy application of Picard’s method and energy estimates (Proposition 3). The global solution in

`2(Z) may still grow at most exponentially in time, due to the destabilizing properties of the gain-

damping terms in the system (3.1). However, thanks to coercivity of the energy function (3.3) near

the zero equilibrium, we can still obtain a global bound on the `2(Z) norm of the solution near the

zero equilibrium, provided it is linearly stable. Moreover, for Ω > (γ+4ε), the global bound holds for

arbitrary initial data. The corresponding result is given by the following theorem (proved in Section

2). A similar result for a single dimer is deemed as the spontaneous PT -symmetry restoration in

[16].

Theorem 10. For every Ω > (γ + 4ε) and every initial data (u(0), v(0)) ∈ `2(Z), there is a positive

constant C that depends on parameters and Ω, γ, ε and (‖u(0)‖`2 , ‖v(0)‖`2) such that

‖u(t)‖2`2 + ‖v(t)‖2`2 ≤ C, for every t ∈ R. (3.5)

The bound (3.5) also holds for every Ω < −γ and every (u(0), v(0)) ∈ `2(Z) with sufficiently small

`2(Z) norm.
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Remark 11. As shown in Chapter 2, the zero equilibrium of the PT -symmetric dNLS equation

(3.1) is linearly stable if |γ| < γ0, where the PT phase transition threshold γ0 is given by

γ0 :=

{
Ω− 4ε, Ω > 0

|Ω|, Ω < 0.

The zero equilibrium is linearly unstable if |γ| ≥ γ0. Thus, the constraints on parameters in Theorem

10 coincide with the criterion of linear stability of the zero equilibrium.

We shall now characterize breathers supported by the PT -symmetric dNLS equation (3.1). These

are solutions of the form

u(t) = Ue−iEt, v(t) = V e−iEt, (3.6)

where the frequency parameter E is considered to be real and the sequence (U, V ) ∈ `2(Z) is time-

independent. By continuous embedding, we note that (U, V ) ∈ `2(Z) implies the decay at infinity:

|Un| + |Vn| → 0 as |n| → ∞. The breather is considered to be PT -symmetric with respect to the

operators in (2.11) if V = Ū .

Thanks to the cross-gradient symplectic structure (3.2), (U, V ) ∈ `2(Z) in (3.6) is a critical point

of the extended energy function HE : `2(Z)→ R given by

HE := H − EQ, (3.7)

where H and Q are given by (3.3) and (3.4). The Euler–Lagrange equations for HE produce the

stationary PT -symmetric dNLS equation:

EUn = ε
(
Ūn+1 − 2Ūn + Ūn−1

)
+ iγUn + ΩŪn + 6|Un|2Ūn + 2U3

n, (3.8)

which corresponds to the reduction of the PT -symmetric dNLS equation (3.1) for the breather

solution (3.6) under the PT symmetry V = Ū .

We denote a solution of the PT -symmetric dNLS equation (3.1) in `2(Z) by

ψ = (u, v) and the localized solution of the stationary dNLS equation (3.8) by Φ = (U, V ). We

fix parameters γ > 0, Ω > γ, and E ∈ (−∞,−E0) ∪ (E0,∞). The following theorem (proved in

Section 3) formulates the main result of this Chapter.
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Theorem 11. For every ν > 0 sufficiently small, there exists ε0 > 0 and δ > 0 such that for

every ε ∈ (0, ε0) the following is true. If ψ(0) ∈ `2(Z) satisfies ‖ψ(0) − Φ‖l2 ≤ δ, then there exist

a positive time t0 . ε−1/2 and a C1 function α(t) : [0, t0] → R/(2πZ) such that the unique solution

ψ(t) : [0, t0]→ `2(Z) to the PT -symmetric dNLS equation (3.1) satisfies the bound

‖eiα(t)ψ(t)− Φ‖l2 ≤ ν, for every t ∈ [0, t0]. (3.9)

Moreover, there exists a positive constant C such that |α̇ − E| ≤ Cν, for every

t ∈ [0, t0].

Remark 12. The statement of Theorem 11 remains true for ε = 0. In this (anti-continuum) limit,

Theorem 11 gives nonlinear stability of the standing localized state Φ compactly supported at the

central site n = 0. The bound (3.9) is extended in the case ε = 0 for all times t ∈ R.

Remark 13. It becomes clear from the proof of Theorem 11 for ε 6= 0, see inequality (3.59) below,

that the bound (3.9) on the perturbation φ to the stationary solution Φ is defined within the size of

O(ε1/2 + δ). Therefore, if Φn = O(ε|n|) for every n 6= 0 (Proposition 4), then the perturbation term

is φn = O(ε1/2 + δ) for every n ∈ Z. This is a limitation of the result of Theorem 11. Not only it

holds for long but finite times t0 = O(ε−1/2) but also it gives a larger than expected bound on the

perturbation term φ. It may be quite possible to improve the approximation result with a sequence of

normal form transformations, similar to what was done recently in [110].

Remark 14. The statement of Theorem 11 can be improved on a shorter time scale t0 = O(1). In

this case, see inequality (3.58) below, the perturbation term φ has the size of O(ε + δ). Thus, the

perturbation term φn at n = ±1 is comparable with the standing localized state Φn at n = ±1, but it

is still much larger than Φn for every n such that |n| ≥ 2.

Remark 15. Theorem 11 cannot be extended to the solution branch with Ω < −γ < 0 and |E| > E0

(point 3 on Figure 2.3) because the second variation of ΛE at (U, V ) is not coercive and does not

control the size of perturbation terms. This analytical difficulty reflects the unfortunate location of

the discrete and continuous spectra that leads to a resonance studied in Chapter 2. No resonance

was found for the solution branch with Ω > γ > 0 and |E| > E0 (point 1 on Figure 2.3) and this

numerical result from Chapter 2 is in agreement with the analytical method used in the proof of

Theorem 11.

The remainder of this Chapter is devoted to the proof of Theorems 10 and 11.

3.2 Proof of the global bound

The following proposition gives the global existence result for the PT -symmetric dNLS equation

(3.1).

Proposition 3. For every (u(0), v(0)) ∈ `2(Z), there exists a unique solution

(u, v)(t) ∈ C1(R, `2(Z)) of the PT -symmetric dNLS equation (3.1) such that

(u, v)(0) = (u(0), v(0)). The unique solution depends continuously on initial data (u(0), v(0)) ∈ `2(Z).
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Proof. Since discrete Laplacian is a bounded operator in `2(Z) and the sequence space `2(Z) forms a

Banach algebra with respect to pointwise multiplication, the local well-posedness of the initial-value

problem for the PT -symmetric dNLS equation (3.1) follows from the standard Picard’s method.

The local solution (u, v)(t) exists in C0([−t0, t0], `2(Z)) for some finite t0 > 0. Thanks again to the

boundedness of the discrete Laplacian operator in `2(Z), bootstrap arguments extend this solution

in C1([−t0, t0], `2(Z)).

The local solution is continued globally by using the energy method. For any solution (u, v)(t)

in C1([−t0, t0], `2(Z)), we obtain the following balance equation from system (3.1):

d

dt

∑
n∈Z

(|un|2 + |vn|2) = −γ
∑
n∈Z

(|un|2 − |vn|2).

Integrating this equation in time and applying Gronwall’s inequality, we get

‖u(t)‖2l2 + ‖v(t)‖2l2 ≤
(
‖u(0)‖2l2 + ‖v(0)‖2l2

)
e|γt|, t ∈ [−t0, t0].

Therefore ‖u(t)‖l2 and ‖v(t)‖l2 cannot blow up in a finite time, so that the local solution (u, v)(t) ∈
C1([−t0, t0], `2(Z)) is continued for every t0 > 0.

A critical question also addressed in [79, 115] for other PT -symmetric dNLS equations is whether

the `2(Z) norms of the global solution of Proposition 3 remain bounded as t→∞. In the context of

the Hamiltonian PT -symmetric dNLS equation (3.1), this question can be addressed by using the

energy function given by (3.3). In what follows, we use coercivity of the energy function and prove

the result stated in Theorem 10.

Proof of Theorem 10. We use γ > 0 and ε > 0 everywhere in the proof. If Ω > (γ + 4ε), the

following lower bound is available for the energy function H given by (3.3) using Cauchy–Schwarz

inequality:

H ≥ (Ω− γ − 4ε)
(
‖u‖2`2 + ‖v‖2`2

)
. (3.10)

Since H is time-independent and bounded for any (u, v)(t) ∈ C1(R, `2(Z)) due to the continuous

embedding ‖u‖`4 ≤ ‖u‖`2 , we obtain the time-independent bound (3.5) for any Ω > (γ + 4ε).

If Ω < −γ, the following lower bound is available for the energy function −H:

−H ≥ (|Ω| − γ)
(
‖u‖2`2 + ‖v‖2`2

)
−
(
‖u‖2`2 + ‖v‖2`2

)2
, (3.11)

where the continuous embedding ‖u‖`4 ≤ ‖u‖`2 has been used. If ‖u(0)‖`2 + ‖v(0)‖`2 is sufficiently

small, then |H| is sufficiently small, and the bound (3.5) with sufficiently small C holds for every

t ∈ R. �

Remark 16. For every Ω ≤ (γ + 4ε), the energy functions H or −H do not produce a useful lower

bound, which would result in a time-independent bound on the `2(Z) norm for the global solution

(u, v)(t). This is because the continuous embedding
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‖u‖`4 ≤ ‖u‖`2 is not sufficient to control H or −H from below. If the lattice is truncated on a

finitely many (say, N) sites, then the bound ‖u‖`2 ≤ N1/4‖u‖`4 can be used to obtain from (3.3):

H ≥
(
‖u‖4`4 + ‖v‖4`4

)
− (γ + 4ε− Ω)N1/2

(
‖u‖2`4 + ‖v‖2`4

)
.

Thus, the time-independent bound on the `4(ZN ) (and then `2(ZN )) norms for the global solution

(u, v)(t) restricted on N sites of the lattice Z is available for every Ω. However, the control becomes

impossible in the limit N →∞ if Ω ≤ (γ + 4ε).

Remark 17. It is an interesting open question to investigate if the global dynamics of the PT -

symmetric dNLS equation (3.1) on the infinite lattice is globally bounded in time for Ω ≤ (γ + 4ε).

This open question would include the case −γ ≤ Ω ≤ (γ + 4ε), when the zero equilibrium is linearly

unstable, and the case Ω < −γ with sufficiently large initial data (u(0), v(0)) ∈ `2(Z), when the zero

equilibrium is linearly stable but the bound (3.11) can no longer be closed. This open question is

addressed numerically for a similar model without phase invariance in [46], where it was shown that

l2 norm of the solution grows while l∞ norm remains finite.

3.3 Proof of metastability

We divide the proof of Theorem 11 into several subsections.

3.3.1 Characterization of the localized solutions

For ε = 0, a solution to the stationary dNLS equation (3.8) is supported on the central site n = 0

and satisfies

(E − iγ)U0 − ΩŪ0 = 6|U0|2Ū0 + 2U3
0 . (3.12)

The parameters γ and Ω are considered to be fixed, and parameter E is thought to parameter-

ize a continuous branch of solutions of the nonlinear algebraic equation (3.12). Substituting the

decomposition U0 = Aeiθ with A > 0 and θ ∈ [0, 2π) into the algebraic equation (3.12), we obtain

sin(2θ) =
γ

4A2 + Ω
, cos(2θ) =

E

8A2 + Ω
, (3.13)

from which the solution branches of E versus A are obtained in Chapter 2 as shown on Figure 2.3.

The dependence of E versus A is given analytically by

E2 = (Ω + 8A2)2

[
1− γ2

(Ω + 4A2)2

]
. (3.14)

Persistence of the central dimer in the unbounded lattice with respect to the coupling parameter ε

is given by the following proposition.

Proposition 4. Fix γ > 0, Ω > γ, and E 6= ±E0, where E0 :=
√

Ω2 − γ2 > 0. There exist

ε0 > 0 sufficiently small and C0 > 0 such that for every ε ∈ (−ε0, ε0), there exists a unique solution
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U ∈ l2(Z) to the difference equation (3.8) such that

∣∣U0 −Aeiθ
∣∣ ≤ C0|ε|, |Un| ≤ C0|ε||n|, n 6= 0, (3.15)

where A and θ are defined in (3.13). Moreover, the solution U is smooth in ε.

Proof. Persistence and smoothness of a solution U ∈ l2(Z) to the difference equation (3.8) in ε, as

well as the first bound in (3.15), were proved in Theorem 6.

It remains to prove the second bound in (3.15), for which we employ the implicit function theorem

(see Section 1.5.6). Inspecting the difference equation (3.8) shows that if U±1 = O(|ε|) according to

the bound (2.33), then Un = U−n can be expressed by using the scaling transformation

Un = ε|n|W|n|, ±n ∈ N, (3.16)

where the sequence W ∈ `2(N) is found from the system

EWn − iγWn − ΩW̄n = W̄n−1 + ε2W̄n+1 − 2εW̄n + 6ε2|n||Wn|2W̄n + 2ε2|n|W 3
n , n ∈ N, (3.17)

with W0 = U0 given by the previous result. Let x = {Wn}n∈N, X = `2(N), y = ε, Y = R, and

Z = `2(N) in the definition of system F : X × Y → Z. Then, we have F (x0, 0) = 0, where

x0 = {W (0)
n }n∈N is a unique solution of the recurrence equation

EW (0)
n − iγW (0)

n − ΩW̄ (0)
n = W̄

(0)
n−1, n ∈ N, (3.18)

starting with a given W
(0)
0 = U0. Indeed, each block in the left-hand side of system (3.18) is given

by the invertible matrix [
E − iγ −Ω

−Ω E + iγ

]
,

with eigenvalues λ± = E ± E0 6= 0. Hence, a unique solution for W (0) ∈ `∞(N) is found from the

recurrence relation (3.18). Moreover, since DxF (0, 0) : X → Z is one-to-one and onto (as a lower

block-triangular matrix with invertible diagonal blocks), the solution W (0) is actually in X = `2(N).

By the implicit function theorem, for every ε 6= 0 sufficiently small, there exists a unique solution

W ∈ `2(N) to the system (3.17) such that

‖W −W (0)‖`2(N) < C ′′′|ε|, (3.19)

where a positive constant C ′′′ is independent of ε. Thus, the second bound in (3.15) is proved from

(3.16) and (3.19).

3.3.2 Decomposition of the solution

Let ψ = (u, ū, v, v̄) denote a solution of the PT -symmetric dNLS equation (3.1) in `2(Z) given by

Proposition 3. Let Φ = (U, Ū , V, V̄ ) denote a localized solution of the stationary dNLS equation (3.8)

given by Proposition 4. Let φ = ψ − Φ = (u, ū,v, v̄) denote a perturbation to Φ. Note that these
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are extended 4-component variables at each lattice site (concatenated by the complex conjugate

functions) compared to the two-component variables used in the formulation of Theorem 11. The

extended variables are more suitable for dealing with the energy functions such as (3.7) or (6.3),

which we reproduce here for convenience:

ΛE := H − E(u0v̄0 + ū0v0). (3.20)

By using the energy function (3.20), we introduce the energy difference function

∆ := ΛE(Φ + φ)− ΛE(Φ). (3.21)

Let us write the expansion for ∆ explicitly:

∆ = N1(φ) +N2(φ) +N3(φ) +N4(φ), (3.22)

where the linear part is

N1(φ) = E
∑

n∈Z\{0}

(
V̄nun + Vnūn + Ūnvn + Unv̄n

)
, (3.23)

the quadratic part is

N2(φ) =
1

2
〈H′′Eφ, φ〉l2 + E

∑
n∈Z\{0}

(v̄nun + vnūn) , (3.24)

whereas the cubic and quartic parts of ∆ denoted by N3(φ) and N4(φ) are not important for esti-

mates, thanks to the bounds

|N3(φ)| ≤ C3‖φ‖3l2 , |N4(φ)| ≤ C4‖φ‖4l2 , (3.25)

where C3, C4 are positive constants and we have used continuous embedding

‖u‖`p ≤ ‖u‖`2 for any p ≥ 2.

In the next three subsections, we show that the quadratic part N2(φ) is positive, the linear part

N1(φ) can be removed by a local transformation, and the time evolution of ∆ can be controlled on

a long but finite time interval.

In what follows, all constants depend on parameters γ > 0, Ω > γ, and

E ∈ (−∞,−E0) ∪ (E0,∞). The parameter ε > 0 is sufficiently small, and unless it is stated

otherwise, the constants do not depend on the small parameter ε.

3.3.3 Positivity of the quadratic part of ∆

The quadratic part (3.24) can be analyzed by a parameter continuation from the case ε = 0. Com-

pared to the self-adjoint (Hessian) operator H′′E : `2(Z) → `2(Z) which is a second variation of HE
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in (3.7), the Hessian operator for N2(φ) denoted by Λ′′E : `2(Z)→ `2(Z) is given by

Λ′′E = M̃+ εL, (3.26)

where L is the discrete Laplacian operator applied to blocks of φ at each lattice site n ∈ Z:

(Lφ)n = φn+1 − 2φn + φn−1,

and the blocks of M̃ at each site n ∈ Z are given differently for n = 0 and n 6= 0. For n = 0, the
4-by-4 matrix block of M̃0 is given by

M̃0 =


Ω + 8A2 4A2 cos(2θ) −E − iγ + 8A2 cos(2θ) 4A2

4A2 cos(2θ) Ω + 8A2 4A2 −E + iγ + 8A2 cos(2θ)

−E + iγ + 8A2 cos(2θ) 4A2 Ω + 8A2 4A2 cos(2θ)

4A2 −E − iγ + 8A2 cos(2θ) 4A2 cos(2θ) Ω + 8A2

 ,
whereas for n 6= 0, we have

M̃n =


Ω + 8|Un|2 2(U2

n + Ū2
n) −iγ + 4(U2

n + Ū2
n) 4|Un|2

2(U2
n + Ū2

n) Ω + 8|Un|2 4|Un|2 +iγ + 4(U2
n + Ū2

n)

+iγ + 4(U2
n + Ū2

n) 4|Un|2 Ω + 8|Un|2 2(U2
n + Ū2

n)

4|Un|2 −iγ + 4(U2
n + Ū2

n) 2(U2
n + Ū2

n) Ω + 8|Un|2

 .

The following proposition characterizes eigenvalues of M̃ at ε = 0.

Proposition 5. Fix ε = 0, γ > 0, Ω > γ, and E 6= ±E0, where E0 :=
√

Ω2 − γ2 > 0. The matrix

block of M̃n has three positive and one zero eigenvalues for n = 0 and two double positive eigenvalues

for every n 6= 0.

Proof. If ε = 0, the stationary state of Proposition 4 is given by Un = 0 for every n 6= 0 and

U0 = Aeiθ, where A and θ are defined by the parametrization (3.13).

Using relations (3.13) and (3.14), as well as symbolic computations with MAPLE, we found that

the 4-by-4 matrix block M̃0 has a simple zero eigenvalue and three nonzero eigenvalues µ1, µ2, and

µ3 given by

µ1 = 2(Ω + 4A2),

µ2,3 = Ω + 12A2 ±
√

(Ω− 4A2)2 +
16ΩA2γ2

(Ω + 4A2)2
.

It is shown in Chapter 2 that µ1, µ2, µ3 > 0 for every point on the solution branch with Ω > γ > 0,

and |E| > E0.

For every n ∈ Z\{0}, the 4-by-4 matrix block of M̃n is given by

M̃n =


Ω 0 −iγ 0

0 Ω 0 +iγ

+iγ 0 Ω 0

0 −iγ 0 Ω

 .

60



Mathematics — McMaster University PhD Thesis — Alexander Chernyavsky

Each block has two double eigenvalues µ+ and µ− given by

µ+ = Ω + γ, µ− = Ω− γ,

which are positive since Ω > γ.

By Proposition 5, if ε = 0, then N2(φ) ≥ 0 for every φ ∈ `2(Z) and, moreover, N2(φ) = 0 if and

only if φ is proportional to an eigenvector supported at n = 0. The existence of the zero eigenvalue

at ε = 0 is related to the gauge symmetry of the PT -symmetric dNLS equation (3.1). Both for ε = 0

and ε 6= 0, there exists a nontrivial kernel of the Hessian operator H′′E : `2(Z) → `2(Z) associated

with the standing localized state (U, V ), thanks to the identity

H′′E(σΦ) = 0, (3.27)

where the blocks of the eigenvector σΦ are given by

(σΦ)n := (Un,−Ūn, Vn,−V̄n), n ∈ Z. (3.28)

In the limit of ε → 0, the eigenvector σΦ is supported at the central site n = 0 and it corresponds

to the zero eigenvalue of the matrix block M̃0. By using Proposition 5 and identity (3.27), we can

now state that if ε = 0, then N2(φ) = 0 if and only if φ ∈ span{σΦ}.
By the perturbation theory for linear operators (see Section 1.5.6), the strictly positive part of

Λ′′E remains strictly positive for a sufficiently small ε. On the other hand, the simple zero eigenvalue

may drift away from zero if ε 6= 0.

In order to avoid a problem of degeneracy (or even slight negativity) of Λ′′E , we introduce a

constrained subspace of `2(Z) by

l2c(Z) = {φ ∈ l2(Z) : 〈σΦ, φ〉l2 = 0}. (3.29)

If ε = 0 and φ belongs to l2c(Z), then the quadratic form N2(φ) in (3.24) is strictly positive and

coercive. By the perturbation theory for linear operators (Appendix A), for ε 6= 0 sufficiently small,

the quadratic part N2(φ) given by (3.24) for φ ∈ l2c(Z), remains strictly positive and coercive. This

argument yields the proof of the following proposition.

Proposition 6. Fix γ > 0, Ω > γ, and E 6= ±E0. There exist ε0 > 0 sufficiently small and C2 > 0

such that for every ε ∈ (−ε0, ε0),

N2(φ) ≥ C2‖φ‖2`2 for every φ ∈ l2c(Z), (3.30)

where l2c(Z) is given by (3.29).

Bounds (3.25) and (3.30) allow us to estimate the principal part of ∆ in (3.22) from below, e.g.

|∆−N1(φ)| ≥
(
C2 − C3‖φ‖`2 − C4‖φ‖2`2

)
‖φ‖2`2 for every φ ∈ l2c(Z).
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However, the linear part N1(φ) is an obstacle for such estimates. Therefore, we need to remove the

obstacle by a local transformation.

3.3.4 Removal of the linear part of ∆

Let us define

φ = φ̃+ ρ, (3.31)

where φ̃ = (ũn, ũn, ṽn, ṽn) is a new variable and ρ = (a, ā, b, b̄) is a correction term to be found

uniquely by removing the linear term N1(φ). Since the breather is PT -symmetric with V = Ū , we

shall look for a PT -symmetric correction term with b = ā.

The easiest way of finding a ∈ `2(Z) is to write the Euler–Lagrange equations for the energy

function ΛE given by (3.20). For the PT -symmetric solution with v = ū, the Euler–Lagrange

equations for ΛE take the form

Eunδn,0 = ε (ūn+1 − 2ūn + ūn−1) + iγun + Ωūn + 6|un|2ūn + 2u3
n, (3.32)

where δn,0 is the Kronecker symbol supported at n = 0. Let u = U + a, where U is a solution of the

stationary dNLS equation (3.8). Then, a satisfies the nonlinear equation

Eanδn,0 − Ωān − iγan − ε(ān+1 − 2ān + ān−1)− 12|Un|2ān

−6(U2
n + Ū2

n)an − 6Un(a2n + ā2n)− 12Ūn|an|2 − 6|an|2ān − 2a3n = EUn(1− δn,0), (3.33)

where n ∈ Z. Thanks to the bounds (3.15) Proposition 4, the right-hand side of system (3.33) is

small in ε. The following proposition characterizes a unique solution to system (3.33). This solution

with b = ā defines a unique ρ in the transformation (3.31).
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Proposition 7. Fix γ > 0, Ω > γ, and E 6= ±E0. There exist ε0 > 0 sufficiently small and C1 > 0

such that for every ε ∈ (−ε0, ε0), there exists a unique solution a ∈ `2(Z) to the system (3.33) such

that

|a0| ≤ C1ε
2, |an| ≤ C1|ε||n|, n ∈ Z\{0}. (3.34)

Proof. The proof repeats the three steps in the proof of Proposition 4. On the sites n ∈ Z\{0}, the

Jacobian operator DxF (0, 0) is block-diagonal with identical blocks given by[
−iγ −Ω

−Ω iγ

]
. (3.35)

Each block is invertible thanks to the constraint Ω > γ. On the central site n = 0, the Jacobian

operator DxF (Aeiθ, 0) coincides with the block (2.35), which is invertible for every γ 6= 0, Ω > γ > 0,

and |E| > E0 (see Theorem 6 in Chapter 2). Thus, existence and uniqueness of solutions to the

nonlinear system (3.33) for small ε is established with two applications of the implicit function

theorem.

In order to justify the bound (3.34), we use (3.16) and substitute

a0 = ε2A0, an = ε|n|A|n|, ±n ∈ N (3.36)

to the system (3.33). The sequence {An}n∈N is found from the system

−ΩĀn − iγAn − ε2Ān+1 + 2εĀn − Ān−1(1− δn,1)− ε2A0δn,1

−6ε2|n|(W 2
n + W̄ 2

n)An − 12ε2|n||Wn|2Ān − 6ε2|n|Wn(A2
n + Ā2

n)

−12ε2|n|W̄n|An|2 − 6ε2|n||An|2Ān − 2ε2|n|A3
n = EWn, (3.37)

whereas the term A0 satisfies the nonlinear equation

EA0 − ΩĀ0 − iγA0 − 2Ā1 + 2εĀ0 − 6(U2
0 + Ū2

0 )A0 − 12|U0|2Ā0

−6ε2U0(A2
0 + Ā2

0)− 12ε2Ū0|A0|2 − 6ε4|A0|2Ā0 − 2ε2A3
0 = 0. (3.38)

It follows from the invertibility of the block (2.35) that there exists a unique solution to the nonlinear

equation (3.38) for A0 ∈ C if ε is sufficiently small and A1 ∈ C is given. The solution satisfies the

bound

|A0| ≤ C ′|A1|, (3.39)

where the positive constant C ′ is ε-independent. By substituting this solution for A0 ∈ C to the

system (3.37), we observe that the leading-order system is given by the recurrence equation

−ΩĀ(0)
n − iγA(0)

n − Ā(0)
n−1(1− δn,1) = EWn, n ∈ N. (3.40)

Since Ω > γ, there exists a unique solution A(0) ∈ `∞(N) of the leading-order system (3.40). More-

over, because the Jacobian operator DxF (0, 0) is one-to-one and onto, the solution A(0) is actually
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in `2(N). By using the implicit function theorem again, for ε 6= 0 sufficiently small, there exists a

unique solution A ∈ `2(N) to the system (3.37) satisfying the bound

‖A−A(0)‖`2(N) < C ′′|ε|, (3.41)

where the positive constant C ′′ is ε-independent. Combining bounds (3.39), (3.41) with the repre-

sentation (3.36) yields the bounds (3.34).

By using the transformation (3.31), we rewrite the expansion (3.22) in the following equivalent

form

∆ = ∆0 + ∆2(φ̃) + ∆3(φ̃) + ∆4(φ̃), (3.42)

where the φ̃-independent term ∆0 is given by

∆0 := N1(ρ) +N2(ρ) +N3(ρ) +N4(ρ),

the quadratic and cubic parts ∆2(φ̃) and ∆3(φ̃) are ε-close to N2(φ̃) and N3(φ̃), while ∆4(φ̃) = N4(φ̃).

The following proposition characterizes each term of the decomposition (3.42). The new definitions

of constants override the previous definitions of constants.
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Proposition 8. Fix γ > 0, Ω > γ, and E 6= ±E0. There exist ε0 > 0 sufficiently small and

C0, C1, C2, C3, C4 > 0 such that for every ε ∈ (−ε0, ε0), we have

|∆0| ≤ C0ε
2, (3.43)

‖φ̃‖l2 ≤ ‖φ‖l2 + C1ε, ‖φ‖l2 ≤ ‖φ̃‖l2 + C1ε, (3.44)

‖∆3(φ̃)‖l2 ≤ C3‖φ̃‖3l2 , ‖∆4(φ̃)‖l2 ≤ C4‖φ̃‖4l2 , (3.45)

and

∆2(φ̃) ≥ C2‖φ̃‖2`2 for every φ̃ ∈ l2c(Z). (3.46)

Proof. Since ρ is constructed in Proposition 7 with the PT -symmetric correction term b = ā, it is

true that ρ ∈ `2c(Z). Therefore, the condition φ ∈ `2c(Z) is satisfied if and only if φ̃ ∈ `2c(Z). Since

the constants C2, C3, and C4 in the bounds (3.25) and (3.30) are ε-independent, whereas ∆2, ∆3,

and ∆4 are ε-close to N2, N3, and N4 in space `2(Z), then the bounds (3.45) and (3.46) follow from

the bounds (3.25) and (3.30) respectively, thanks to the smallness of ε.

In order to obtain the bounds (3.43) and (3.44), we use the bounds (3.15) and (3.34) and obtain

|N1(ρ)| ≤ C
∑

n∈Z\{0}

ε2|n| ≤ C ′ε2, ‖ρ‖2l2 ≤ C

ε4 +
∑

n∈Z\{0}

ε2|n|

 ≤ C ′ε2, (3.47)

where the positive constants C, C ′ are ε-independent and ε is sufficiently small. Since N2, N3, and

N4 are quadratic, cubic, and quartic respectively, the bound (3.43) is obtained from the triangle

inequality and the estimates (3.47). The bounds (3.44) follow from the triangle inequality and the

second estimate (3.47).

3.3.5 Time evolution of ∆

We recall that H given by (3.3) is a constant of motion for the PT -symmetric dNLS equation (3.1).

On the other hand, the part of Q at n = 0 satisfies the balance equation

i
d

dt
(u0v̄0 + ū0v0) = ε [ū0(u1 + u−1)− u0(ū1 + ū−1) + v̄0(v1 + v−1)− v0(v̄1 + v̄−1)] . (3.48)

If the initial data ψ(0) ∈ l2(Z) is close to Φ in the sense of the bound

‖ψ(0)−Φ‖`2 ≤ δ, then the unique solution ψ(t) ∈ C1(R, l2(Z)) to the PT -symmetric dNLS equation

(3.1) with the same initial data can be defined in the modulation form

ψ(t) = e−iα(t)σ [Φ + φ(t)] , (3.49)

as long as the solution remains close to the orbit of Φ under the phase rotation in the sense of the

bound (3.9). Note again that the vectors ψ, Φ, and φ are extended 4-component vectors at each

lattice site compared to the 2-component vectors used in the formulation of Theorem 11. As a result,

the gauge symmetry is represented by the matrix operator σ defined by (3.28).
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The decomposition (3.49) is defined uniquely only if a constraint is imposed to φ(t) ∈ `2(R). In

agreement with the definition (3.29) on the constrained space `2c(R), we impose the orthogonality

condition:

〈σΦ, φ(t)〉l2 = 0. (3.50)

The decomposition (3.49) under the orthogonality condition (3.50) and the modulation equation for

α are justified in the next section. Here we estimate how the time-dependent energy quantity ∆

changes along the solution ψ(t) ∈ C1(R, l2(Z)) represented by the decomposition (3.49).

The rate of change of ∆ defined by (3.21) along the solution ψ(t) represented by (3.49) is obtained

from (3.48) as follows: ∣∣∣∣d∆

dt

∣∣∣∣ ≤ CEε‖Φ0 + φ0‖ (‖Φ1 + φ1‖+ ‖Φ−1 + φ−1‖) (3.51)

where CE is a positive ε-independent constant. By using the bounds (3.15) and (3.34), the transfor-

mation (3.31), and the triangle inequality (3.44), we obtain from (3.51):∣∣∣∣d∆

dt

∣∣∣∣ ≤ CEε
(

1 + ‖φ̃0‖
)(

ε+ ‖φ̃1‖+ ‖φ̃−1‖
)

≤ C ′Eε
(
ε+ ‖φ̃0‖+ ‖φ̃1‖+ ‖φ̃−1‖+ ‖φ̃0‖2 + ‖φ̃1‖2 + ‖φ̃−1‖2

)
, (3.52)

where C ′E is another positive ε-independent constant.

Let us now define a ball in the space `2c(Z) of a finite size K > 0 by

MK :=
{
φ ∈ `2c(Z) : ‖φ‖`2 ≤ K

}
. (3.53)

From estimates (3.45) and (3.46), there is a positive K-dependent constant CK such that

∆−∆0 ≥ CK‖φ̃‖2`2 for every φ̃ ∈MK . (3.54)

By using coercivity (3.54) in the ball MK and the Young inequality

|ab| ≤ α

2
a2 +

1

2α
b2, a, b ∈ R,

where α ∈ R+ is arbitrary, we estimate

‖φ̃0‖+ ‖φ̃1‖+ ‖φ̃−1‖ ≤
√
C−1
K (∆−∆0) ≤ α

2CK
+

1

2α
(∆−∆0),

where ∆−∆0 ≥ 0 follows from (3.54). Substituting this estimate to (3.52) yields∣∣∣∣d∆

dt

∣∣∣∣ ≤ CEε (ε+ α+ (∆−∆0) + α−1(∆−∆0)
)
, (3.55)

for another constant CE > 0. In what follows, we will set the scaling parameter α such that α→ 0

as ε→ 0. Therefore, the constant α−1 is much larger compared to unity. Integrating (3.55) with an
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integrating factor, ∣∣∣∣ ddte−CEεα−1t(∆−∆0)

∣∣∣∣ ≤ CEε(ε+ α)e−CEεα
−1t,

we obtain with the Gronwall’s inequality:

∆(t)−∆0 ≤ eCEεα
−1t

(
∆(0)−∆0 + CEε(ε+ α)

∫ t

0

e−CEεα
−1sds

)
≤ eCEεα

−1t (∆(0)−∆0 + α(ε+ α)) . (3.56)

It is clear from the estimate (3.56) that ∆(t)−∆0 is small only if α→ 0 as ε→ 0. If α = ε, then

α = ε : ∆(t)−∆0 ≤ eCEt
(
∆(0) + C0ε

2
)
,

where the bound (3.43) has been used and C0 is an ε-independent constant. Therefore, if ∆(0) is

small, then ∆(t) remains small on the time scale t = O(1) as ε→ 0. On the other hand, if α = ε1/2,

then the estimate (3.56) yields

α = ε1/2 : ∆(t)−∆0 ≤ eCEε
1/2t (∆(0) + C0ε) ,

so that ∆(t) remains small on the time scale t = O(ε−1/2).

The initial value for ∆(0) is estimated from (3.42), (3.43), and (3.44). By (3.44), for every

φ(0) ∈Mδ with δ > 0 sufficiently small, we have φ̃(0) ∈MK with K = δ + ε and there are positive

(ε,δ)-independent constants C,C ′ such that

|∆(0)| ≤ C
(
ε2 + ‖φ̃(0)‖2`2

)
≤ C ′(ε2 + δ2). (3.57)

By using the triangle inequality (3.44), coercivity (3.54), and the bound (3.57), we finally obtain the

following two estimates:

α = ε : ‖φ(t)‖2`2 ≤ CeCEt
(
ε2 + δ2

)
and

α = ε1/2 : ‖φ(t)‖2`2 ≤ CeCEε
1/2t

(
ε+ δ2

)
,

where the positive constant C is independent of ε and δ. Comparing with the bound (3.9) stated in

Theorem 11, we obtain

α = ε, t0 . 1 : C(ε+ δ) ≤ ν (3.58)

and

α = ε1/2, t0 . ε
−1/2 : C

(
ε1/2 + δ

)
≤ ν, (3.59)

where t0 is the final time in the bound (3.9) and C is another positive (ε,δ)-independent constant.

For every ν > 0, there exist ε0 > 0 and δ > 0 such that inequalities (3.58) and (3.59) can be

satisfied for every ε ∈ (0, ε0). The statement of Theorem 11 is formulated on the extended time scale

corresponding to the inequality (3.59). The short time scale corresponding to the inequality (3.58)

is mentioned in Remark 14.
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3.3.6 Modulation equations in `2
c(Z)

It remains to show how we can define the decomposition (3.49) under the constraint (3.50) for a

solution to the PT -symmetric dNLS equation (3.1) and how the evolution of α in time t can be

estimated from the modulation equation. Here we modify standard results on modulation equations,

see, e.g., Lemmas 6.1 and 6.3 in [56] for similar analysis. For reader’s convenience, we only give the

main ideas behind the proofs.

Proposition 9. There exist constants ν0 ∈ (0, 1) and C0 ≥ 1 such that, for any ψ ∈ l2(Z) satisfying

d := inf
α∈R
‖eiασψ − Φ‖l2 ≤ ν0, (3.60)

one can find modulation parameter α ∈ R/(2πZ) such that ψ = e−iασ(Φ+φ) with φ ∈ `2c(Z) satisfying

d ≤ ‖φ‖l2 ≤ C0d.

Proof. We consider a function f : R→ R given by

f(α) := 〈σΦ, eiασψ − Φ〉`2 = 0.

Let α0 ∈ R/(2πZ) be the argument of the infimum in (3.60). Then, |f(α0)| ≤ d‖Φ‖`2 by the

Cauchy–Schwartz inequality. On the other hand, the derivative f ′(α0) is bounded away from zero

because

f ′(α0) = 〈σΦ, iσeiα0σψ〉`2 = i‖Φ‖2`2 + i〈Φ, eiα0σψ − Φ〉`2 ,

where the second term is bounded by d‖Φ‖`2 and the first term is d-independent. The function

f : R → R is smooth in α. By the implicit function theorem, for any d > 0 sufficiently small, there

is a unique solution of the equation f(α) = 0 for α near α0 such that |α − α0| ≤ Cd, where C is

d-independent. By the triangle inequality, ‖φ‖l2 ≤ C0d, where C0 is also d-independent.

Proposition 10. Assume that the solution ψ(t) to the PT -symmetric dNLS equation (3.1) satisfies

d(t) ≤ ν for every t ∈ [0, t0], where d(t) is given by (3.60). Then the modulation parameter α(t)

defined by (3.49) in Proposition 9 is a continuously differentiable function of t and there is a positive

constant C such that |α̇− E| ≤ Cν, for every t ∈ [0, t0].

Proof. Let ψ(t) ∈ C1(R, l2(Z)) be a solution to the PT -symmetric dNLS equation (3.1). Substituting

the decomposition (3.49) into the PT -symmetric dNLS equation (3.1), we obtain the evolution

equation in the form

iφ̇ = SH′′Eφ+ (E − α̇)σ(Φ + φ) +N(φ), (3.61)

where the bounded invertible operator S : `2(Z) → `2(Z) represents the symplectic structure (3.2)

of the PT -symmetric dNLS equation (3.1), N(φ) contains quadratic and cubic terms in φ, and the

gauge invariance of the PT -symmetric dNLS equation (3.1) has been used. From the condition

(3.50), projecting the evolution equation (3.61) to σΦ yields

α̇− E =
〈H′′ESσΦ, φ〉`2 + 〈σΦ, N(φ)〉`2

‖Φ‖2`2 + 〈Φ, φ〉`2
. (3.62)
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By Proposition 9, if d(t) ≤ ν is sufficiently small for every t ∈ [0, t0], then ‖φ(t)‖`2 ≤ C0d(t) for

a positive constant C0. Then, the denominator in (3.62) is bounded away from zero, whereas the

numerator is bounded by Cd(t), which yields the bound |α̇− E| ≤ Cν, for every t ∈ [0, t0].
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Chapter 4

Krein signature in Hamiltonian

Systems

4.1 Background

We consider the prototypical example of the one-dimensional Gross-Pitaevskii (GP) equation arising

in the context of cigar-shaped Bose–Einstein (BEC) condensates [116, 119]. The model takes the form

of the following defocusing nonlinear Schrödinger (NLS) equation with a harmonic potential [31, 76]:

i∂tu = −∂2
xu+ V (x)u+ |u|2u, (4.1)

where u represents the complex wave function and V characterizes the external potential. The

probability density of finding atoms at a given location and time is characterized by |u|2.

In the case of magnetic trapping of the BECs [116, 119], the potential V is real-valued and is

given by

V (x) = Ω2x2, (4.2)

where Ω is the ratio of longitudinal to transverse confinement strengths of the parabolic trapping.

The NLS equation (4.1) with the potential (4.2) is a Hamiltonian system written in the symplectic

form

i
∂u

∂t
=
δH

δū
, (4.3)

where H is the following real-valued Hamiltonian function

H(u) =

∫
R

[
|∂xu|2 + V (x)|u|2 +

1

2
|u|4
]
dx. (4.4)

In the setting of the NLS equation (4.1) with the potential (4.2), the linear Hamiltonian system

can be formulated as the spectral problem

JLv = λv, (4.5)
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where L is a self-adjoint unbounded operator in the space of square-integrable functions L2(R) with

a dense domain in L2(R) and J is a skew-adjoint bounded operator in L2(R). The operators L and

J are assumed to satisfy J2 = −I and JL+ L̄J̄ = 0, thanks to the Hamiltonian symmetry.

If λ0 ∈ C is an eigenvalue of the spectral problem (4.5), then it is neutrally stable if Re(λ0) = 0

and unstable if Re(λ0) > 0. Thanks to the Hamiltonian symmetry of L and J , the eigenvalues

appear in symmetric pairs relative to the axis Re(λ) = 0. Indeed, if v is an eigenvector of the

spectral problem (4.5) for the eigenvalue λ, then w = −Jv̄ is an eigenvector of the same spectral

problem (4.5) with the eigenvalue −λ̄. Indeed, substituting v = J̄ w̄ into (4.5) yields

JLJ̄ w̄ = λJ̄w̄ ⇔ L̄w̄ = λJ̄w̄ ⇔ J̄L̄w̄ = −λw̄ ⇔ JLw = −λ̄w.

Definition 13. For a nonzero eigenvalue λ0 ∈ C of the spectral problem (4.5) with the eigenvector

v0 in the domain of L, we define the Krein quantity K(λ0) by

K(λ0) := 〈Lv0, v0〉, (4.6)

where 〈·, ·〉 is the standard inner product in L2(R).

Proposition 11. Krein quantity in (4.6) satisfies the following properties:

1. K(λ0) is real if λ0 ∈ iR.

2. K(λ0) is nonzero if λ0 ∈ iR\{0} is simple.

3. K(λ0) is zero if λ0 ∈ C\{iR}.

The Krein signature is defined as the sign of the Krein quantity K(λ0) for a simple neutrally stable

eigenvalue λ0 ∈ iR\{0}. If parameters of the NLS equation (4.1) change, parameters of the spectral

problem (4.5) change, however, the simple eigenvalue λ0 ∈ iR remains on the axis Re(λ) = 0 unless

it coalesces with another eigenvalue or a part of the continuous spectrum, thanks to the preservation

of its multiplicity and the Hamiltonian symmetry of eigenvalues. In this case, the eigenvalue λ0 and

its Krein quantity K(λ0) are at least continuous functions of the parameters of the NLS equation

(4.1).

It is quite typical in the parameter continuations of the spectral problem (4.5) to see that the

simple eigenvalue λ0 ∈ iR coalesces at a bifurcation point with another simple eigenvalue λ′0 ∈ iR
and that both eigenvalues split into the complex plane as unstable eigenvalues past the bifurcation

point. The Krein signature is a helpful tool towards predicting this instability bifurcation in the

sense of the following necessary condition.

Theorem 12 (Necessary condition for instability bifurcation.). Under some non-degeneracy con-

straints, the double eigenvalue λ0 = λ′0 ∈ iR of the spectral problem (4.5) with a bifurcation parameter

ε ∈ R splits into a pair of complex eigenvalues symmetric relative to Re(λ) = 0 for ε > 0 only if

there exist two simple eigenvalues λ0, λ
′
0 ∈ iR with the opposite Krein signature for ε < 0.
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In other words, if two neutrally stable eigenvalues of the same Krein signature move towards each

other in the parameter continuation of the spectral problem (4.5), then their coalescence will not

result in the onset of instability, whereas if the two neutrally stable eigenvalues have the opposite

Krein signature, their coalescence is likely to result in the onset of instability, subject to technical

non-degeneracy constraints.

The concept of Krein signature in the infinite-dimensional setting, e.g. for the NLS equation,

was introduced independently in works [68, 107]. It was justified in a number of mathematical

publications [38, 70] and it remains a practical tool to trace instability bifurcations in physically

relevant Hamiltonian systems [113, 130] (see review in [83]).

The purpose of this Chapter is to explain definitions and properties of the Krein signature on

the prototypical example of the NLS equation (4.1) with the potential (4.2).

4.2 Krein signature for the NLS equation

In the context of the NLS equation (4.1) with the potential (4.2), we consider the nonlinear stationary

states of the form u(x, t) = e−iµtφ(x), where µ ∈ R is referred to as the chemical potential [45] and

the real-valued function φ satisfies the differential equation

µφ(x) = −φ′′(x) + x2φ(x) + φ(x)3, (4.7)

where we have set Ω = 1 without loss of generality. In the linear (small-amplitude) limit, we obtain

the quantum harmonic oscillator with the eigenvalues µn = 1 + 2n, n ∈ N0 := {0, 1, 2, ...} and the

L2-normalized eigenfunctions

ϕn(x) =
1√

2nn!
√
π
Hn(x)e−x

2/2, (4.8)

where Hn is the Hermite polynomial of degree n, e.g., H0(x) = 1, H1(x) = 2x, H2(x) = 4x2− 2, etc.

Each eigenfunction ϕn for a simple eigenvalue µn generates a branch of solutions bifurcating in

the stationary problem (4.7). This follows from the general Crandall–Rabinowitz bifurcation theory

[41] and is generally used in physics community, see, e.g., [51, 143]. Each branch can be approximated

by the following expansion in terms of the small parameter ε:{
µ = µn + ε2µ

(2)
n + . . . ,

φ = εϕn + ε3ϕ
(3)
n + . . . ,

(4.9)

where (µn, ϕn) is the n-th eigenvalue–eigenfunction pair, (µ
(2)
n , ϕ

(3)
n ) are the next-order correction

terms to be found, and the dots denote the higher-order corrections terms. The n-th branch of the

nonlinear stationary states is smooth with respect to the small parameter ε, which parameterizes

both µ and φ, whereas it has a square-root singularity when it is written in terms of the parameter

µ− µn.
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The formal solvability condition for the correction terms (µ
(2)
n , ϕ

(3)
n ) yields

µ(2)
n =

∫
R
ϕn(x)4dx > 0, (4.10)

which implies that the branch of nonlinear stationary states extends towards µ > µn. The limit

µ→∞ can be rescaled as the semi-classical limit of the stationary NLS equation. Each n-th branch

of the nonlinear stationary states is uniquely extended to the limit µ→∞, where it is matched with

the asymptotic approximation involving bound states of n dark solitons on the background of V in

(4.2) [40, 106].

When considering the stability of the nonlinear stationary state of the form

u(x, t) = e−iµtφ(x), we linearize the NLS equation (4.1) with the expansion

u(x, t) = e−iµt
[
φ(x) + δ

(
a(x)e−λt + b̄(x)e−λ̄t

)
+ . . .

]
, (4.11)

where δ is a formal small parameter. To the leading order in δ, the eigenvalue–eigenvector pair (λ, v)

with v = (a, b)T is found from the spectral problem

Lv = −iλσ3v, (4.12)

where σ3 = diag(1,−1) and the linear operator L is written in the differential form:

L =

[
−∂2

x + x2 − µ+ 2φ(x)2 φ(x)2

φ(x)2 −∂2
x + x2 − µ+ 2φ(x)2

]
. (4.13)

The operator L is extended to a self-adjoint operator in L2(R) with the domain H2(R) ∩ L2,2(R)

(see [62], Ch. 4, p.37), where H2(R) is the Sobolev space of square integrable functions and their

second derivatives and L2,2(R) is the space of square integrable functions multiplied by (1 + x2).

The spectrum of L is purely discrete (see [121], Ch. XIII, Theorem 16 on p.120).

The spectral problem (4.12) takes the abstract form (4.5) with the self-adjoint operator L given

by (4.13) and the skew-symmetric operator J = iσ3. The Hamiltonian symmetry J2 = −I and

JL + L̄J̄ = 0 (or, equivalently, σ3L = L̄σ3) is satisfied. The eigenvalues are symmetric relative to

the imaginary axis. To be precise, if λ0 is an eigenvalue with the eigenvector v0 = (a, b)T , then −λ0 is

another eigenvalue with the eigenvector σ3v̄0 = (a,−b)T by the Hamiltonian symmetry σ3L = L̄σ3.

In addition to the Hamiltonian symmetry, the operator L in (4.13) satisfies

σ1L = L̄σ1, which implies that the eigenvalues are symmetric relative to the real axis. Indeed,

if λ0 is an eigenvalue with the eigenvector v0 = (a, b)T , then λ̄0 is another eigenvalue with the

eigenvector σ1v̄0 = (b̄, ā). Hence, the unstable eigenvalues with Re(λ0) > 0 occur either as pairs on

the real axis or as quadruplets in the complex plane, whereas the neutrally stable eigenvalues with

Re(λ0) = 0 occur as pairs on the imaginary axis.

For each nonzero eigenvalue λ0 ∈ C of the spectral problem (4.12) with the eigenvector v0 =

(a, b)T ∈ H2(R)∩L2,2(R), the Krein quantity K(λ0) introduced in (4.6) can be written explicitly as
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follows:

K(λ0) = 〈Lv0, v0〉 = −iλ0〈σ3v0, v0〉 = −iλ0

∫
R

(|a(x)|2 − |b(x)|2)dx. (4.14)

If K(λ0) is nonzero and real, the sign of K(λ0) is referred to as the Krein signature. In what follows,

we only consider eigenvalues with λ0 ∈ iR+, for which −iλ0 > 0.

Let us verify the three main properties of the Krein quantity K(λ0).

Proof of Proposition 11.

1. If λ0 ∈ iR, then (−iλ0) ∈ R. The integral in (4.14) is also real. Hence, K(λ0) is real.

2. Let us write the eigenvalue problem (4.13) for the generalized eigenvector vg:

(L+ iλ0σ3)vg = σ3v0. (4.15)

If λ0 ∈ iR\{0}, then v0 is in the kernel of the adjoint operator (L + iλ0σ3)∗, and Fredholm

solvability condition of the above equation is 〈σ3v0, v0〉 = 0. If K(λ0) = 0, then there exists a

solution to the nonhomogeneous equation (4.15), so that λ0 is not simple. Hence, K(λ0) 6= 0.

3. Using self-adjoint property of L, one can write

〈Lv0, v0〉 = 〈v0,Lv0〉,

which can be expanded as
−iλ0〈σ3v0, v0〉 = iλ̄0〈v0, σ3v0〉,

where the equality holds either for λ0 ∈ iR or 〈σ3v0, v0〉 = 0. Hence K(λ0) = 0 for λ0 6∈ iR.

Let us now illustrate how the Krein signatures can be used to predict instability bifurcations

from multiple neutrally stable eigenvalues of the spectral problem (4.12). We restrict consideration

to the small-amplitude limit. If ε = 0 and µ = µn, the linear operator (4.13) becomes diagonal:

L0 =

[
−∂2

x + x2 − µn 0

0 −∂2
x + x2 − µn

]
(4.16)

and the eigenvalues are located at σ(L0) = {2(m − n), m ∈ N0}, where n ∈ N0 is fixed. Because

of the skew-symmetric operator J = iσ3 in the right-hand side of the spectral problem (4.12), these

eigenvalues are mapped to the imaginary axis in the pairs λ ∈ ±i{2(m− n), m ∈ N0}.
If n = 0, the ground state branch (4.9) leads to a double zero eigenvalue and a set of simple

eigenvalues in pairs λ ∈ ±i{2m, m ∈ N0\{0}}. The double zero eigenvalue is preserved in ε due to

gauge symmetry, whereas the simple neutrally stable eigenvalues are preserved on the imaginary axis

due to Hamiltonian symmetry (at least for small ε). Moreover, each eigenvalue has a positive Krein

signature, therefore, by the necessary condition for instability bifurcations, no complex eigenvalue
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quartets can arise in parameter continuations of solutions to the spectral problem (4.12) in ε. These

spectral stability properties are natural for the ground state solution.

If n = 1, the first excited state branch (4.9) associated with a single dark soliton [40, 106] leads

to a double zero eigenvalue, a pair of double eigenvalues λ = ±2i, and a set of simple eigenvalues in

pairs λ ∈ ±i{2(m− 1), m ∈ N0\{0,±1}}. The double zero eigenvalue is again preserved in ε due to

gauge symmetry but the pair of nonzero double eigenvalues λ = ±2i may split if ε 6= 0. Note that

two linearly independent eigenvectors exist for λ0 = 2i:

v1 =

[
ϕ2

0

]
, v2 =

[
0

ϕ0

]
. (4.17)

The two eigenvectors induce opposite Krein signatures for the coalescent double eigenvalue since

K(λ0) > 0 for v1 and K(λ0) < 0 for v2. Therefore, by the necessary condition on the splitting of the

double eigenvalues, we may anticipate unstable eigenvalues for small ε.

Similarly, if n = 2, the second excited state branch (4.9) associated with two dark solitons [40, 106]

leads to a double zero eigenvalue, two pairs of double eigenvalues λ = ±2i and λ = ±4i, and a set

of simple eigenvalues in pairs λ ∈ ±i{2(m − 2), m ∈ N0\{0,±1,±2}}. The double zero eigenvalue

is again preserved in ε due to gauge symmetry but the pairs of nonzero double eigenvalues λ = ±2i

and λ = ±4i may split if ε 6= 0. Note that two linearly independent eigenvectors exist as follows:

λ0 = 2i : v1 =

[
ϕ3

0

]
, v2 =

[
0

ϕ1

]
(4.18)

and

λ0 = 4i : v1 =

[
ϕ4

0

]
, v2 =

[
0

ϕ0

]
. (4.19)

Again, the two eigenvectors induce opposite Krein signatures for each coalescent double eigenvalue,

hence by the necessary condition on the splitting of the double eigenvalues, we may anticipate

unstable eigenvalues for small ε.

In order to compute definite predictions whether or not the double eigenvalues produce instability

bifurcations for the first and second excited states, we shall proceed using perturbation theory

arguments. We substitute expansion (4.9) into the spectral problem (4.12) and expand it into

powers of ε2 as follows:

(L0 + ε2L1 + . . . )v = −iλσ3v, (4.20)

where

L1 =

[
2ϕn(x)2 − µ(2)

n ϕn(x)2

ϕn(x)2 2ϕn(x)2 − µ(2)
n

]
. (4.21)

Let −iλ = ω0 + ε2ω1 + . . . , where ω0 is a coalescent double eigenvalue and ω1 is a correction

term. Representing v = c1v1 + c2v2 + . . . and projecting the perturbed spectral problem (4.20) to
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the eigenvectors v1 and v2 yield the matrix eigenvalue problem

M

[
c1

c2

]
= ω1σ3

[
c1

c2

]
, (4.22)

where Mij = 〈L1vi, vj〉, 1 ≤ i, j ≤ 2, and the L2 normalization of eigenvectors has been taken into

account.

Let us consider the first excited state n = 1 bifurcating from µ1 = 3. For ε = 0, the eigenvalue at

ω0 = 2 is double with two eigenvectors (4.17). However, there exists a linear combination of v1 and v2

which produces the so-called dipolar oscillation (also known as the Kohn mode, see explicit solutions

in [77]) and thus the eigenvalue at ω0 = 2 related to this linear combination is independent of the

variations of the chemical potential in ε. The shift of the eigenvalue for another linear combination

of v1 and v2 has been the subject of intense scrutiny as it is associated with the oscillation frequency

of the dark soliton in the parabolic trap [28, 109].

By using (4.10) for n = 1, we find µ
(2)
1 = 3/(4

√
2π). The matrix M in the matrix eigenvalue

problem (4.22) is computed explicitly as

M =

[
1

8
√

2π
1

8
√
π

1
8
√
π

1
4
√

2π

]
. (4.23)

Computations of eigenvalues of the matrix eigenvalue problem (4.22) yield 0 and −1/(8
√

2π). The

zero eigenvalue corresponds to the dipolar oscillations. The nonzero eigenvalue near ω0 = 2 is given

by the following expansion:

ω = 2− 1

6
(µ− 3) + . . . (4.24)

Numerical results on the top left panel of Figure 4.1 confirm this prediction. The smallest nonzero

eigenvalue remains below ω0 = 2 and approaches ω →
√

2 as µ→∞, in agreement with the previous

results [28, 109].

It is relevant to indicate that the asymptotic limit of the eigenfrequencies of the ground state

solution with n = 0 can be computed in the limit of large µ [132] (see also [77] for a recent account of

the relevant analysis). These modes include the so-called dipolar oscillation, quadrupolar oscillation,

etc. (associated, respectively, to m = 1, m = 2, etc.) and the corresponding eigenfrequencies are

given by the analytical expression in the limit µ→∞:

ωm =
√

2m(m+ 1), m ∈ N. (4.25)

We can see from the top left panel of Fig. 4.1 that these frequencies of the ground state solution

are present in the linearization of the first excited state in addition to the eigenfrequency ω∗ =
√

2,

which corresponds to the oscillation of the dark soliton inside the trap.

While the example of the first excited state is instructive, it does not show any instability bifur-

cations due to coalescence of eigenvalues of the opposite Krein signatures. This is because although

the eigenfrequency at ω0 = 2 is double, the dipolar oscillations do not allow the manifestation of an
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Figure 4.1: The top left panel corresponds to the case of the first excited state, the top right one corresponds
to the second excited state, while the bottom panel corresponds to the third excited state. Eigenvalues
of negative (positive) Krein signature are shown in red (green), complex eigenvalues are shown in black.
For the first excited state, only the lowest nonzero eigenfrequency has a negative Krein signature (but its
linear degeneracy with a symmetry mode yields no instability). For the second excited state, there are two
degenerate modes at 2 and 4. Only the latter yields the quartet of complex eigenvalues. For the third excited
states, there are three degenerate modes at 2, 4, and 6, the last two yield quartets of complex eigenvalues.

instability as a result of resonance. However, the onset of instability can still be found for the other

excited states, e.g. for the second excited state corresponding to n = 2 bifurcating out of µ2 = 5.

By using (4.10) for n = 2, we find µ
(2)
2 = 41/(64

√
2π). At ε = 0, the eigenvalue at ω0 = 2 is double

with the two eigenvectors (4.18). The dipolar oscillation mode is present again and corresponds to

the eigenvalue at ω0 = 2 independently of the variations of the chemical potential in ε. The other

eigenvalue at ω0 = 2 is shifted for small ε. The matrix M in the matrix eigenvalue problem (4.22) is

computed explicitly as

M =

[
5

32
√

2π
15

64
√

3π
15

64
√

3π
15

64
√

2π

]
. (4.26)

Computations of eigenvalues of the matrix eigenvalue problem (4.22) yield 0 and −5/(64
√

2π). The

nonzero eigenvalue near ω0 = 2 is given by the following expansion:

ω = 2− 5

41
(µ− 5) + . . . (4.27)

While the degeneracy at ω0 = 2 does not lead to the onset of instability, let us consider the
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double eigenvalue at ω0 = 4 with the two eigenvectors (4.19). The matrix M in the matrix eigenvalue

problem (4.22) is computed explicitly as

M =

 1
512
√

2π
9

128
√

3π

9
128
√

3π
7

64
√

2π

 . (4.28)

The complex eigenvalues of the matrix eigenvalue problem (4.22) are given by

(−55 ± 3
√

23i)/(2048
√

2π). The complex eigenvalues near ω0 = 4 are given by the following ex-

pansion:

ω = 4 +
−55± 3

√
23i

656
(µ− 5) + . . . (4.29)

The eigenvalues remain complex for values of µ & 5 but coalesce again on the imaginary axis at

µ ≈ 13.75 and reappear as pairs of imaginary eigenvalues of the opposite Krein signatures. This

reversed instability bifurcation takes place in a complete agreement with the necessary condition for

the instability bifurcations.

In the large chemical potential limit, the eigenfrequencies of the linearization at the excited state

with n = 2 include the same eigenfrequencies of the linearization at the ground state with n = 0

given by (4.25), see the top right panel of Fig. 4.1. In addition, two modes with negative Krein

signature appear due to the dynamics of the two dark solitary waves on the ground state. One mode

represents the in-phase oscillation of the two dark solitons and it is continued from the eigenvalue

expanded by (4.27) to the limit µ→∞, where it approaches ω∗ =
√

2. The other mode represents the

out-of-phase oscillation of the two dark solitons and it appears from the complex pair (4.29) which

reappears back on the imaginary axis for higher values of the chemical potential µ. Asymptotic

approximation of the out-of-phase oscillation in the limit µ→∞ is reported in [40].

This pattern continues for other excited states with n ≥ 3. The bottom panel on Fig. 4.1 shows

the case n = 3. For every n ≥ 3, there are n double eigenvalues with opposite Krein signature at

ε = 0. If ε 6= 0, the lowest double eigenvalue does not lead to instability due to its linear degeneracy

with the dipolar symmetry mode. The remaining n − 1 double eigenvalues may yield instability

bifurcations with complex eigenvalues. For large µ, these eigenvalues reappear on the imaginary

axis after the reversed instability bifurcations in agreement with the necessary condition for the

instability bifurcation. The n eigenvalues of negative Krein signature characterize n dark solitons on

the top of the ground state solution. As such, they provide a rather lucid example of the nature and

relevance the negative Krein signature concept. Further details can be found in [40] for the large µ

case and in [74] for the small µ case.
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Chapter 5

Krein signature in PT -symmetric

systems

5.1 Background

In this Chapter, we address the following nonlinear Schrödinger’s equation (NLSE) with a general

complex potential:

i∂tψ + ∂2
xψ − (V (x) + iγW (x))ψ + g|ψ|2ψ = 0, (5.1)

where γ ∈ R is a gain–loss parameter, g = +1 (g = −1) defines focusing (defocusing) nonlinearity,

and the real potentials V and W satisfy the even and odd symmetry, respectively:

V (x) = V (−x), W (−x) = −W (x), x ∈ R. (5.2)

In quantum physics, the complex potential V+iγW is used to describe effects observed when quantum

particles are loaded in an open system [32, 45]. The intervals with positive and negative imaginary

part correspond to the gain and loss of quantum particles, respectively. When gain exactly matches

loss, which happens under the symmetry condition (5.2), the potential V + iγW is PT -symmetric

with respect to the parity operator P and the time reversal operator T , defined in Chapter 1. The

NLSE (5.1) is PT -symmetric under the condition (5.2) in the sense that if ψ(x, t) is a solution to

(5.1), then

ψ̃(x, t) = PT ψ(x, t) = ψ(−x,−t)

is also a solution to (5.1).

The NLSE (5.1) with a PT -symmetric potential is also used in the paraxial nonlinear optics. In

that context, time and space have a meaning of longitudinal and transverse coordinates, and complex

potential models the complex refractive index [124]. Another possible application of the NLSE (5.1)

is Bose-Einstein condensate, where it models the dynamics of the self-gravitating boson gas trapped

in a confining potential V . Intervals, where W is positive and negative, allow one to compensate

atom injection and particle leakage, correspondingly [32].
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Here we deal with the stationary states in the NLSE (5.1) and introduce Krein signature of

isolated eigenvalues in the spectrum of their linearization. We prove that the necessary condition for

the onset of instability of the stationary states from a defective eigenvalue of algebraic multiplicity

two is the opposite Krein signature of the two simple isolated eigenvalues prior to their coalescence.

Compared to the Hamiltonian system in Chapter 4, or the linear Schrödinger equation in [105], the

Krein signature of eigenvalues cannot be computed from the eigenvectors in the linearized problem,

as the adjoint eigenvectors need to be computed separately and the sign of the adjoint eigenvector

needs to be chosen by a continuity argument.

5.2 Stationary states, eigenvalues of the linearization, and

Krein signature

Let us define the stationary state of the NLSE (5.1) by ψ(x, t) = Φ(x)e−iµt, where µ ∈ R is a param-

eter. In the context of Bose-Einstein condensate, µ has the meaning of the chemical potential [45].

The function Φ(x) : R→ C is a suitable solution of the stationary NLSE in the form

−Φ′′(x) + (V (x) + iγW (x))Φ(x)− g|Φ(x)|2Φ(x) = µΦ(x), (5.3)

where x ∈ R. We say that Φ is a PT -symmetric stationary state if Φ satisfies the PT symmetry:

Φ(x) = PT Φ(x) = Φ(−x), x ∈ R. (5.4)

In addition to the symmetry constraints on the potentials V and W in (5.2), our basic assumptions

are given below. Here and in what follows, we denote the Sobolev space of square integrable functions

with square integrable second derivatives by H2(R) and the weighted L2 space with a finite second

moment by L2,2(R).

Assumption 1. We assume that the linear Schrödinger operator L0 := −∂2
x + V in L2(R) admits

a self-adjoint extension with a dense domain D(L0) in L2(R).

Remark 18. If V ∈ L2(R)∩L∞(R) as in (5.43), then Assumption 1 is satisfied with D(L0) = H2(R)

(see [63], Ch. 14, p.143). If V is harmonic as in (5.44), then Assumption 1 is satisfied with

D(L0) = H2(R) ∩ L2,2(R) (see [62], Ch. 4, p.37).

Assumption 2. We assume that W is a bounded and exponentially decaying potential satisfying

|W (x)| ≤ Ce−κ|x|, x ∈ R,

for some C > 0 and κ > 0.

Remark 19. Both examples in (5.43) and (5.44) satisfy Assumption 2. By Assumption 2, the

potential iγW is a relatively compact perturbation to L0 (see [121], Ch. XIII, p.113). This implies

that the continuous spectrum of L0 + iγW is the same as L0. If V ∈ L2(R) ∩ L∞(R), then the
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continuous spectrum of L0 is located on the positive real line. If V is harmonic, then the continuous

spectrum of L0 is empty (see [121], Ch. XIII, Theorem 16 on p.120).

Assumption 3. We assume that for a given µ ∈ R, there exist γ∗ > 0 and a bounded, exponentially

decaying, and PT -symmetric solution Φ ∈ D(L0) ⊂ L2(R) to the stationary NLSE (5.3) with γ ∈
(−γ∗, γ∗) satisfying (5.4) and

|Φ(x)| ≤ Ce−κ|x|, x ∈ R,

for some C > 0 and κ > 0. Moreover, the map (−γ∗, γ∗) 3 γ 7→ Φ ∈ D(L0) is real-analytic.

Remark 20. Since the nonlinear equation (5.3) is real-analytic in γ, the Implicit Function Theorem

(see [142], Ch. 4, Theorem 4.E on p.250) provides real analyticity of the map (−γ∗, γ∗) 3 γ 7→ Φ ∈
D(L0) as long as the Jacobian operator

L :=

[
−∂2

x + V + iγW − µ− 2g|Φ|2 −gΦ2

−gΦ
2 −∂2

x + V − iγW − µ− 2g|Φ|2

]
(5.5)

is invertible in the space of PT -symmetric functions in L2(R).

Remark 21. Under Assumption 3, we treat µ as a fixed parameter and γ as a varying parameter

in the interval (−γ∗, γ∗). The interval includes the Hamiltonian case γ = 0. In the context of the

example of V in (5.43), it will be more natural to fix the value of γ and to consider the parame-

ter continuation of Φ ∈ D(L0) with respect to µ. The continuation results for the latter case are

analogous to what we present here under Assumption 3.

We perform the standard linearization of the NLSE (5.1) near the stationary state Φ by substi-

tuting

ψ(x, t) = e−iµt [Φ(x) + u(x, t)]

into (5.1) and truncating at the linear terms in u:iut = (−∂2
x + V + iγW − µ− 2g|Φ|2)u− gΦ2u,

−iūt = (−∂2
x + V − iγW − µ− 2g|Φ|2)u− gΦ

2
u.

Using u = Y e−λt and u = Ze−λt with the spectral parameter λ yields the spectral stability problem

in the form

L
[
Y

Z

]
= −iλσ3

[
Y

Z

]
, (5.6)

where σ3 = diag(1,−1) is the third Pauli’s matrix and L is given by (5.5). Note that if λ 6∈ R, then

Z 6= Y .

Lemma 9. The continuous spectrum of the operator iσ3L : D(L0)×D(L0)→ L2(R)× L2(R), if it

exists, is a subset of iR.
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Proof. Thanks to the Assumptions 1, 2 and 3, W and Φ2 terms in (5.5) are relatively compact

perturbations to the diagonal unbounded operator L0 := diag(L0−µ,L0−µ), where L0 = −∂2
x + V

is introduced in Assumption (A1). Therefore,

σc(iσ3L) = σc(iσ3L0) ⊂ iR,

where σc(A) denotes the absolutely continuous part of the spectrum of the operator A : D(A) ⊂
L2(R)→ L2(R).

Remark 22. If V ∈ L2(R) ∩ L∞(R) and µ < 0, then

σc(iσ3L) = i(−∞,−|µ|] ∪ i[|µ|,∞).

If V is harmonic, then σc(iσ3L) is empty.

Definition 14. We say that the stationary state Φ is spectrally stable if every nonzero solution

(Y,Z) ∈ D(L0)×D(L0) to the spectral problem (5.6) corresponds to λ ∈ iR.

We note the quadruple symmetry of eigenvalues in the spectral problem (5.6).

Lemma 10. If λ0 is an eigenvalue of the spectral problem (5.6), so are −λ0, λ̄0, and −λ̄0.

Proof. We note the symmetry of L and σ3:

L = σ1Lσ1, σ3 = −σ1σ3σ1, (5.7)

where σ1 = antidiag(1, 1) is the first Pauli’s matrix. If λ0 is an eigenvalue of the spectral problem (5.6)

with the eigenvector v0 := (Y, Z), then so is λ0 with the eigenvector σ1v0 = (Z, Y ). We note the

second symmetry of L and σ3:

L = PLP, σ3 = Pσ3P. (5.8)

If λ0 is an eigenvalue of the spectral problem (5.6) with the eigenvector v0 := (Y, Z), then so is −λ0

with the eigenvector PT v0(x) = (Y (−x), Z(−x)). As a consequence of the two symmetries (5.7) and

(5.8), −λ0 is also an eigenvalue with the eigenvector Pσ1v0(x) = (Z(−x), Y (−x)).

Besides the spectral problem (5.6), we also introduce the adjoint spectral problem with the adjoint

eigenvector denoted by (Y #, Z#):

L∗
[
Y #

Z#

]
= −iλσ3

[
Y #

Z#

]
, (5.9)

where

L∗ :=

[
−∂2

x + V − iγW − µ− 2g|Φ|2 −gΦ2

−gΦ
2 −∂2

x + V + iγW − µ− 2g|Φ|2

]
.

Remark 23. Unless γ = 0 or Φ = 0, the adjoint eigenvector (Y #, Z#) cannot be related to the

eigenvector (Y,Z) for the same eigenvalue λ.
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Our next assumption is on the existence of a nonzero isolated eigenvalue of the spectral problem

(5.6).

Assumption 4. We assume that there exists a simple isolated eigenvalue λ0 ∈ C\{0} of the spec-

tral problems (5.6) and (5.9) with the eigenvector v0 := (Y,Z) ∈ D(L0) × D(L0) and the adjoint

eigenvector v#
0 := (Y #, Z#) ∈ D(L0)×D(L0), respectively.

Lemma 11. Under Assumption 4, if λ0 ∈ iR, then the corresponding eigenvectors v0 := (Y, Z) and

v#
0 := (Y #, Z#) can be normalized to satisfy

Y (x) = Y (−x), Z(x) = Z(−x), x ∈ R (5.10)

and

Y #(x) = Y #(−x), Z#(x) = Z#(−x), x ∈ R. (5.11)

Proof. By Lemma 10, if λ0 ∈ iR is a nonzero eigenvalue with the eigenvector

v0 := (Y,Z), so is −λ0 = λ0 with the eigenvector PT v0. Since λ0 is a simple eigenvalue, there

is a constant C ∈ C such that v0 = CPT v0. Taking norms on both sides, we have |C| = 1. There-

fore C = eiα for some α ∈ [0, 2π], and α can be chosen so that v0 satisfies v0 = PT v0 as in (5.10).

The same argument applies to the adjoint eigenvector v#
0 := (Y #, Z#).

We shall now introduce the main object of our study, the Krein signature of the simple nonzero

isolated eigenvalue λ0 in Assumption 4.

Definition 15. The Krein signature of the eigenvalue λ0 in Assumption 4 is the sign of the Krein

quantity K(λ0) defined by

K(λ0) = 〈v0, σ3v
#
0 〉 =

∫
R

[
Y (x)Y #(x)− Z(x)Z#(x)

]
dx. (5.12)

The following lemma states the main properties of the Krein quantity K(λ0).
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Lemma 12. Assume (A4) and define K(λ0) by (5.12). Then,

1. K(λ0) is real if λ0 ∈ iR\{0}.

2. K(λ0) 6= 0 if λ0 ∈ iR\{0}.

3. K(λ0) = 0 if λ0 ∈ C\{iR}.

Proof. First, we prove that if f and g are PT -symmetric functions, then their inner product 〈f, g〉
is real-valued. Indeed, this follows from

〈f, g〉 =

∫
R
f(x)g(x)dx =

∫ +∞

0

(
f(x)g(x) + f(−x)g(−x)

)
dx

=

∫ +∞

0

(
f(x)g(x) + f(x)g(x)

)
dx.

Since λ0 ∈ iR\{0} is simple by Assumption 4, then the eigenvectors v0 := (Y,Z) and v#
0 := (Y #, Z#)

satisfy the PT -symmetry (5.10) and (5.11) by Lemma 11. Hence, the inner products in the definition

of K(λ0) in (5.12) are real.

Next, we prove that K(λ0) 6= 0 if λ0 ∈ iR\{0} is simple. Consider a generalized eigenvector

problem for the spectral problem (5.6):

(L+ iλ0σ3)

[
Yg

Zg

]
= σ3

[
Y

Z

]
. (5.13)

Since λ0 /∈ σc(iσ3L) is isolated and simple by Assumption 4, there exists a solution vg := (Yg, Zg) ∈
D(L0)×D(L0) to the nonhomogeneous equation (5.13) if and only if σ3v0 is orthogonal to v#

0 , which

is the kernel of adjoint operator L∗ + iλ0σ3. The orthogonality condition coincides with K(λ0) = 0.

However, no vg exists since

λ0 ∈ iR\{0} is simple by Assumption 4. Hence K(λ0) 6= 0.

Finally, we show that K(λ0) = 0 if λ0 ∈ C\{iR}. Taking inner products for the spectral problems

(5.6) and (5.9) with the corresponding eigenvectors yields〈Lv0, v
#
0 〉 = −iλ0〈σ3v0, v

#
0 〉,

〈v0,L∗v#
0 〉 = iλ0〈v0, σ3v

#
0 〉,

hence
i(λ0 + λ0)K(λ0) = 0.

If λ0 ∈ C\{iR}, then λ0 + λ0 6= 0 and K(λ0) = 0.

We shall now compare the Krein quantity K(λ0) in (5.12) for simple eigenvalues of the PT -

symmetric spectral problem (5.6) with the corresponding definition of the Krein quantity in the

Hamiltonian case γ = 0 and in the linear PT -symmetric case Φ = 0.
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In the Hamiltonian case (γ = 0), the operator L in the spectral problem (5.6) is self-adjoint in

L2(R), that is, L = L∗. The standard definition of Krein quantity [69, 92] is given by

γ = 0 : K(λ0) = 〈Lv0, v0〉 = −iλ0

∫
R

[
|Y (x)|2 − |Z(x)|2

]
dx. (5.14)

If γ = 0 and λ0 ∈ iR, then the adjoint eigenvector (Y #, Z#) satisfies the same equation as (Y,Z).

Therefore, it is natural to choose the adjoint eigenvector in the form:

γ = 0 : Y #(x) = Y (x), Z#(x) = Z(x), x ∈ R, (5.15)

in which case the definition (5.12) yields the integral in the right-hand side of (5.14). Note that the

signs of K(λ0) in (5.12) and (5.14) are the same if λ0 ∈ iR+.

Remark 24. Since the potential V is even in (5.2), the eigenvector v0 := (Y, Z) of the spectral

problem (5.6) for a simple eigenvalue λ0 ∈ iR\{0} is either even or odd in the Hamiltonian case

γ = 0 by the parity symmetry. It follows from the PT -symmetry (5.10) that the PT -normalized

eigenvector v0 is real if it is even and is purely imaginary if it is odd.

Remark 25. Since the adjoint eigenvector v#
0 := (Y #, Z#) satisfying the PT -symmetry condition

(5.11) is defined up to an arbitrary sign, the Krein quantity K(λ0) in (5.12) is defined up to the sign

change. In the continuation of the NLSE (5.1) with respect to the parameter γ from the Hamiltonian

case γ = 0, the sign of the Krein quantity K(λ0) in (5.12) can be chosen so that it matches the sign

of K(λ0) in (5.14) for λ0 ∈ iR+ and γ = 0. In other words, the choice (5.15) is always made for

γ = 0 and the Krein quantity K(λ0) is extended continuously with respect to the parameter γ.

In the linear PT -symmetric case (Φ = 0), the spectral problem (5.6) becomes diagonal. If Z = 0,

then Y satisfies the scalar Schrödinger equation

(
−∂2

x + V (x) + iγW (x)− µ
)
Y (x) = −iλY (x). (5.16)

The PT -Krein signature for the simple eigenvalue λ0 ∈ iR of the scalar Schrödinger equation (5.16)

is defined in [105] as follows:

Φ = 0, Z = 0 : K(λ0) =

∫
R
Y (x)Y (−x)dx. (5.17)

If λ0 ∈ iR, then the adjoint eigenfunction Y # satisfies a complex-conjugate equation to the spectral

problem (5.16), which becomes identical to (5.16) after the parity transformation. Therefore, it is

natural to choose the adjoint eigenfunction Y # in the form:

Φ = 0, Z = 0 : Y #(x) = Y (−x), x ∈ R,
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after which the definition (5.12) with Z = 0 corresponds to the definition (5.17). If Y = 0, then Z

satisfies the scalar Schrödinger equation

(
−∂2

x + V (x)− iγW (x)− µ
)
Z(x) = iλZ(x). (5.18)

The PT -Krein signature for the simple eigenvalue λ0 ∈ iR of the scalar Schrödinger equation (5.18)

is defined by

Φ = 0, Y = 0 : K(λ0) =

∫
R
Z(x)Z(−x)dx, (5.19)

which coincides with the definition (5.12) for Y = 0 if the adjoint eigenfunction Z# is chosen in the

form:

Φ = 0, Y = 0 : Z#(x) = −Z(−x), x ∈ R. (5.20)

Note that if the choice Z#(x) = Z(−x) is made instead of (5.20), then the definition (5.12) with

Y = 0 is negative with respect to the definition (5.19).

5.3 Necessary condition for instability bifurcation

Recall that the eigenvalue is called semi-simple if algebraic and geometric multiplicities coincide and

defective if algebraic multiplicity exceeds geometric multiplicity. Here we consider the case when the

nonzero eigenvalue λ0 ∈ iR of the spectral problem (5.6) is defective with geometric multiplicity one

and algebraic multiplicity two. This situation occurs in the parameter continuations of the NLSE

(5.1) when two simple isolated eigenvalues λ1, λ2 ∈ iR\{0} coalesce at the point λ0 6= 0 and split

into the complex plane resulting in the instability bifurcation. We will use the parameter γ to control

the coalescence of two simple eigenvalues λ1, λ2 ∈ iR.

Our main result states that the instability bifurcation occurs from the defective eigenvalue λ0 ∈ iR
of algebraic multiplicity two only if the Krein signatures of K(λ1) and K(λ2) for the two simple

isolated eigenvalues λ1, λ2 ∈ iR before coalescence are opposite to each other. Therefore, we obtain

the necessary condition for the instability bifurcation in the PT -symmetric spectral problem (5.6),

which has been proven for the Hamiltonian spectral problems [69, 92].

Remark 26. The necessary condition for instability bifurcation allows us to predict the transition

from stability to instability when a pair of imaginary eigenvalues collide. Pairs with the same Krein

signature do not bifurcate off the imaginary axis if they collide, whereas pairs with the opposite Krein

signature may bifurcate off the imaginary axis under a technical non-degeneracy condition (5.27)

below.

First, we state why the perturbation theory can be applied to the spectral problem (5.6).

Lemma 13. Under Assumptions 1, 2, and 3, the operator

L : D(L0)×D(L0)→ L2(R)× L2(R)
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in the spectral problem (5.6) is real-analytic with respect to γ ∈ (−γ∗, γ∗). Consequently, if L(γ0) with

γ0 ∈ (−γ∗, γ∗) has a spectrum consisting of two separated parts, then the subspaces of L2(R)×L2(R)

corresponding to the separated parts are also real-analytic in γ.

Proof. Operator L depends on γ via the potential iγW and the bound state Φ, the latter is real-

analytic for γ ∈ (−γ∗, γ∗) by Assumption 3. The assertion of the lemma follows from Theorem 1.7

in Chapter VII on p.368 in [71].

By Lemma 13, simple isolated eigenvalues λ1, λ2 ∈ iR of the spectral problem (5.6) and their

eigenvectors v1 := (Y1, Z1) and v2 := (Y2, Z2) are continued analytically in γ before the coalescence

point. Similarly, the adjoint eigenvectors v#
1 := (Y #

1 , Z#
1 ) and v#

2 := (Y #
2 , Z#

2 ) of the adjoint spectral

problem (5.9) for λ1, λ2 ∈ iR are continued analytically in γ. Therefore, the Krein quantities K(λ1)

and K(λ2) are continued analytically in γ.

Let γ0 denote the bifurcation point when the two eigenvalues coalesce: λ1 = λ2 = λ0 ∈ iR\{0}.
For this γ0 ∈ R, we can define a small parameter ε ∈ R such that γ = γ0 + ε. If L is denoted by

L(γ), then L(γ) can be represented by the Taylor expansion:

L(γ) = L(γ0) + εL′(γ0) + ε2L̂(ε), (5.21)

where L̂(ε) denotes the remainder terms,

L′(γ0) =

[
iW − 2g∂γ |Φ(γ0)|2 −g∂γΦ2(γ0)

−g∂γΦ2(γ0) −iW − 2g∂γ |Φ(γ0)|2

]
, (5.22)

and ∂γ denotes a partial derivative with respect to the parameter γ. Since the remainder terms

in L̂(ε) come from the second derivative of Φ in γ near γ0, then L̂(ε) ∈ L2(R) ∩ L∞(R) thanks to

Assumption 3.

Instead of Assumption 4, we shall now use the following assumption.

Assumption (A4′). For γ = γ0, we assume that there exists a defective isolated eigenvalue λ0 ∈
iR\{0} of the spectral problems (5.6) and (5.9) with the eigenvector v0 := (Y0, Z0) ∈ D(L0)×D(L0),

the generalized eigenvector vg := (Yg, Zg) ∈ D(L0) × D(L0) and the adjoint eigenvector v#
0 :=

(Y #
0 , Z#

0 ) ∈ D(L0)×D(L0), the adjoint generalized eigenvector v#
g := (Y #

g , Z
#
g ) ∈ D(L0)×D(L0),

respectively.

By setting λ0 = iΩ0, we can write the linear equations for the eigenvectors and generalized

eigenvectors in Assumption (A4′):

L(γ0)v0 = Ω0σ3v0,

L(γ0)vg = Ω0σ3vg + σ3v0, (5.23)

L∗(γ0)v#
0 = Ω0σ3v

#
0 ,

L∗(γ0)v#
g = Ω0σ3v

#
g + σ3v

#
0 . (5.24)
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The solvability conditions for the inhomogeneous equations (5.23) and (5.24) yield the following

elementary facts.

Lemma 14. Under Assumption (A4′), we have

K(λ0) = 〈v0, σ3v
#
0 〉 = 0. (5.25)

and

〈vg, σ3v
#
0 〉 = 〈v0, σ3v

#
g 〉 6= 0. (5.26)

Proof. Since vg exists by Assumption (A4′), the solvability condition for (5.23) implies (5.25), see

similar computations in Lemma 12. Since the eigenvalue λ0 is double, no second generalized eigen-

vector ṽg exists from solutions of the inhomogeneous equation

L(γ0)ṽg = Ω0σ3ṽg + σ3vg.

The nonsolvability condition for this equation implies 〈vg, σ3v
#
0 〉 6= 0. Finally, equations (5.23) and

(5.24) yield

〈vg, σ3v
#
0 〉 = 〈vg, (L∗ − Ω0σ3)v#

g 〉 = 〈(L − Ω0σ3)vg, v
#
g 〉

= 〈σ3v0, v
#
g 〉 = 〈v0, σ3v

#
g 〉,

which proves the symmetry in (5.26).

Remark 27. Since the generalized eigenvectors are given by solutions of the inhomogeneous linear

equations (5.23) and (5.24) and the eigenvectors satisfy the PT -symmetry (5.10) and (5.11), the

generalized eigenvectors also satisfy the same PT -symmetry (5.10) and (5.11).

The following result gives the necessary condition that the defective eigenvalue λ0 in Assump-

tion (A4′) splits into the complex plane in a one-sided neighborhood of the bifurcation point γ0.

Theorem 13. Assume 1, 2, 3, (A4′), and the non-degeneracy condition

〈L′(γ0)v0, v
#
0 〉 6= 0. (5.27)

There exists ε0 > 0 such that two simple eigenvalues λ1, λ2 of the spectral problem (5.6) exist near

λ0 for every ε ∈ (−ε0, ε0)\{0} with λ1,2 → λ0 as ε → 0. On one side of ε = 0, the eigenvalues are

λ1, λ2 ∈ iR and

sign [K(λ1)] = −sign [K(λ2)] . (5.28)

On the other side of ε = 0, the eigenvalues are λ1, λ2 /∈ iR.

Proof. We are looking for an eigenvalue Ω(ε) of the perturbed spectral problem(
L0 + εL̃(ε)

)
v(ε) = Ω(ε)σ3v(ε), (5.29)
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such that Ω(ε) → Ω0 as ε → 0. Here we denote operators from the decomposition (5.21) as L0 =

L(γ0) and L̃(ε) = L′(γ0) + εL̂(ε). Since Ω0 is a defective eigenvalue of geometric multiplicity one

and algebraic multiplicity two, we apply Puiseux expansions [82]:{
Ω(ε) = Ω0 + ε1/2Ω̃(ε),

v(ε) = v0 + ε1/2a(ε)vg + εṽ1(ε),
(5.30)

where v0 and vg are the eigenvector and the generalized eigenvector for the eigenvalue Ω0, a(ε) is

the projection coefficient to be defined, and Ω̃(ε) and ṽ1(ε) are the remainder terms. To define ṽ1(ε)

uniquely, we add the orthogonality condition

〈ṽ1(ε), σ3v
#
0 〉 = 〈ṽ1(ε), σ3v

#
g 〉 = 0. (5.31)

Plugging (5.30) into (5.29) and dropping the dependence on ε for L̃, ṽ1, a and Ω̃ gives us the

nonhomogeneous equation (
L0 − Ω0σ3 + εL̃ − ε1/2Ω̃σ3

)
ṽ1 = h, (5.32)

where

h = ε−1/2(Ω̃− a)σ3v0 − L̃v0 + a
(
Ω̃σ3 − ε1/2L̃

)
vg.

By Assumption (A4′), the limiting operator σ3(L0−Ω0σ3) has the two-dimensional generalized null

space X0 = span{v0, vg} ⊂ L2(R) × L2(R). Since Ω0 /∈ σc(σ3L0) is isolated from the rest of the

spectrum of σ3L0, the range of σ3(L0 − Ω0σ3) is orthogonal with respect to generalized null space

Y0 = span{σ3v
#
0 , σ3v

#
g } ⊂ L2(R) × L2(R) of the adjoint operator (L∗0 − Ω0σ3)σ3. As a result,

σ3(L0 − Ω0σ3) is invertible on an element of Y ⊥0 and the inverse operator is uniquely defined and

bounded in Y ⊥0 . In other words, there exist positive constants ε0, Ω0, and C0 such that for all

|ε| ≤ ε0, |Ω̃| ≤ Ω0, and all σ3f ∈ Y ⊥0 , there exists a unique (L0 − Ω0σ3)−1f ∈ D(L0) × D(L0)

satisfying the orthogonality conditions (5.31) and the bound

‖(L0 − Ω0σ3)−1f‖L2 ≤ C0‖f‖L2 . (5.33)

In order to provide existence of a unique (L0 − Ω0σ3)−1f , we add the orthogonality constraints

〈f, v#
0 〉 = 〈f, v#

g 〉 = 0. By using (5.26) and (5.31), we obtain two equations from (5.32):

ε〈L̃ṽ1, v
#
0 〉+ 〈L̃v0, v

#
0 〉 = Ω̃a〈vg, σ3v

#
0 〉 − ε1/2a〈L̃vg, v#

0 〉, (5.34)

and

ε〈L̃ṽ1, v
#
g 〉+ 〈L̃v0, v

#
g 〉 = Ω̃a〈vg, σ3v

#
g 〉 − ε1/2a〈L̃vg, v#

g 〉
+ ε−1/2(Ω̃− a)〈v0, σ3v

#
g 〉. (5.35)
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Since L̃ and Ω̃σ3 are relatively compact perturbations to (L0 − Ω0σ3), there exists a unique solu-

tion of the nonhomogeneous equation (5.32) under the constraints (5.34) and (5.35) satisfying the

orthogonality conditions (5.31) and the resolvent estimate (5.33). In particular, there exist posi-

tive constants ε0, Ω0, A0, and C0 such that for all |ε| ≤ ε0, |Ω̃| ≤ Ω0, and |a| ≤ A0, the solution

ṽ1 ∈ D(L0)×D(L0) of equation (5.32) satisfies the estimate

‖ṽ1‖L2 ≤ C0

(
ε−1/2|a− Ω̃|+ 1

)
. (5.36)

Equation (5.35) yields

ε−1/2(a− Ω̃) =
1

〈v0, σ3v
#
g 〉

(
Ω̃a〈vg, σ3v

#
g 〉 − ε1/2a〈L̃vg, v#

g 〉

− 〈L̃v0, v
#
g 〉 − ε〈L̃ṽ1, v

#
g 〉
)
,

where 〈v0, σ3v
#
g 〉 6= 0 due to Lemma 14. Combining with the estimate (5.36), we obtain for some

C1 > 0

|a− Ω̃| ≤ C1ε
1/2 and ‖ṽ1‖L2 ≤ C1. (5.37)

Equation (5.34) yields

Ω̃a =
1

〈vg, σ3v
#
0 〉

(
〈L̃v0, v

#
0 〉+ ε1/2a〈L̃vg, v#

0 〉+ ε〈L̃ṽ1, v
#
0 〉
)
,

where 〈vg, σ3v
#
0 〉 6= 0 due to Lemma 14. Thanks to (5.37), we obtain

|Ω̃− Ωg| ≤ C2ε
1/2,

where C2 > 0 is a constant, and Ωg is a root of the quadratic equation

Ω2
g =
〈L′(γ0)v0, v

#
0 〉

〈vg, σ3v
#
0 〉

, (5.38)

with L′(γ0) given by (5.22). Since L′(γ0)v0, vg, and v#
0 satisfy the PT -symmetry conditions, both

the nominator and the denominator of (5.38) are real-valued by the same computations as in the

proof of Lemma 12. By the assumption (5.27), Ω2
g is nonzero, either positive or negative.

Let us assume that Ω2
g > 0 without loss of generality and pick Ωg > 0. Then ε1/2Ωg ∈ R if ε > 0

and we obtain the expansions for the two simple eigenvalues:Ω1(ε) = Ω0 + ε1/2Ωg +O(ε),

Ω2(ε) = Ω0 − ε1/2Ωg +O(ε)
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and their corresponding eigenvectors:v1(ε) = v0 + ε1/2Ωgvg +O(ε),

v2(ε) = v0 − ε1/2Ωgvg +O(ε).

The same expansions hold for eigenvectors of the adjoint spectral problems corresponding to the

same eigenvalues Ω1,Ω2: v
#
1 (ε) = v#

0 + ε1/2Ωgv
#
g +O(ε),

v#
2 (ε) = v#

0 − ε1/2Ωgv
#
g +O(ε).

The leading order of Krein quantities for eigenvalues λ1 = iΩ1 and λ2 = iΩ2 is given byK(λ1) = 〈v1, σ3v
#
1 〉 = ε1/2Ωg〈vg, σ3v

#
0 〉+ ε1/2Ωg〈v0, σ3v

#
g 〉+O(ε),

K(λ2) = 〈v2, σ3v
#
2 〉 = −ε1/2Ωg〈vg, σ3v

#
0 〉 − ε1/2Ωg〈v0, σ3v

#
g 〉+O(ε),

which is simplified with the help of (5.26) toK(λ1) = 2ε1/2Ωg〈vg, σ3v
#
0 〉+O(ε),

K(λ2) = −2ε1/2Ωg〈vg, σ3v
#
0 〉+O(ε).

Since ε1/2Ωg ∈ R and 〈vg, σ3v
#
0 〉 6= 0, we obtain (5.28). If ε < 0, then ε1/2Ωg ∈ iR, so that

λ1, λ2 /∈ iR.

Remark 28. If the non-degeneracy assumption (5.27) is not satisfied, then Ωg = 0 and the pertur-

bation theory must be extended to the next order. In this case, the defective eigenvalue λ0 = iΩ0 may

split along iR both for ε > 0 and ε < 0.

5.4 Numerical Approximations

We approximate nonlinear modes Φ of the stationary NLSE (5.3) and eigenvectors (Y,Z) of the

spectral problem (5.6) with the Chebyshev interpolation method [137]. This method was recently

applied to massive Dirac equations in [112]. Chebyshev polynomials are defined on the interval

[−1, 1]. The stationary NLSE (5.3) is defined on the real line, therefore we make a coordinate

transformation for the Chebyshev grid points {zj = cos( jπN )}j=Nj=0 :

xj = L arctanh(zj), j = 1, 2, . . . , N − 1, (5.39)

where x0 = +∞ and xN = −∞. The scaling parameter L is chosen so that the grid points {xj}j=N−1
j=1

are concentrated in the region where the nonlinear mode Φ changes fast. We apply the chain rule

for the second derivative:

d2u

dx2
=

d

dx

(
du

dx

)
=

d

dz

(
du

dz

dz

dx

)
=
d2u

dz2

(
dz

dx

)2

+
du

dz

d2z

dx2
,
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where
dz

dx
=

1

L
sech2

( x
L

)
=

1

L
(1− z2)

and
d2z

dx2
= − 2

L2
sech2

( x
L

)
tanh

( x
L

)
= − 2

L2
z(1− z2).

The first and second derivatives for ∂z and ∂2
z are approximated by the Chebyshev differentiation

matrices DN and D2
N , respectively (see p.53 in [137]).

The stationary NLSE (5.3) is written in the form:

F (Φ) := (−∂2
x + V + iγW − µ− g|Φ|2)Φ = 0. (5.40)

We fix µ, γ, g, V , W and use Newton’s method to look for a solution Φ satisfying Assumption 3:[
Φn+1

Φ̄n+1

]
=

[
Φn

Φ̄n

]
− L−1

n

[
F (Φn)

F̄ (Φn)

]
, (5.41)

where Ln is the Jacobian operator to the nonlinear problem (5.40), which coincides with (5.5)

computed at Φn. Since Φ(x0) = Φ(xN ) = 0, the Jacobian operator Ln is represented by the

2(N − 1)× 2(N − 1) matrix.

It follows by the gauge transformation that

L
[

iΦ

−iΦ̄

]
=

[
0

0

]
, (5.42)

where L is computed at Φ. Therefore, L is a singular operator for every parameter choice of equa-

tion (5.40). However, if the eigenvector satisfies the symmetry Z̄ = Y as in (5.42), then the eigen-

vector does not satisfy the PT -symmetry:

PT
[

iΦ

−iΦ̄

]
=

[
−iΦ(−x)

iΦ(−x)

]
= −

[
iΦ

−iΦ̄

]
.

Hence, L is invertible on the space of PT -symmetric functions satisfying (5.4). In terms of the

coefficients of Chebyshev polynomials, the restriction means that the even-numbered coefficients are

purely real, whereas the odd-numbered coefficients are purely imaginary.

Choosing a first guess for the iterative procedure (5.41) depends on the choice of the potentials

V and W . For the Scarf II potential

V (x) = −V0 sech2(x), W (x) = sech(x) tanh(x), (5.43)

where V0 ∈ R is a parameter, one can use a scalar multiple of the sech(x) function for the first

branch of solutions and a scalar multiple of the sech(x) tanh(x) function for the second branch of
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‖Φexact − Φnumerical‖2
N = 50 1.5× 10−6

N = 100 2.4× 10−13

N = 500 2.2× 10−13

Table 5.1: The numerical error for the exact solution (5.45) versus N .

solutions [3] (See also Appendix B. For the confining potential

V (x) = x2, W (x) = xe−
x2

2 , (5.44)

one can use the corresponding Gauss-Hermite functions of the linear system for each branch [145].

The spectral problem (5.6) uses the same operator L and can be discretized similarly. One looks

for eigenvalues and eigenvectors of the discretized matrix by using the standard numerical methods

for non-Hermitian matrices. For example, MATLAB R© performs these computations by using the

QZ algorithm.

Throughout the numerical results, we pick the value of a scaling parameter L to be L = 10. This

choice ensures that Φ remains nonzero up to 16 decimals on the interior grid points {xj}j=N−1
j=1 . The

algorithm was tested on the exact solution derived in Appendix C for the Scarf II potential (5.43)

with V0 = 1 and µ = γ = −1:

Φ(x) = sinα sech(x) exp

[
i

2
cosα arctan(sinh(x))

]
, (5.45)

where α = arccos(2/3). Table 5.1 shows a good agreement between exact and numerical results.

Once we computed eigenvalues and eigenvectors for the spectral problem (5.6), we proceed to

computations of the Krein quantity defined by (5.12). Several obstacles arise in the definition of

the Krein quantity:

1. Eigenvectors of the Chebyshev discretization matrices are normalized with respect to z.

2. Eigenvectors are not necessarily PT -symmetric.

3. The sign of the adjoint eigenvectors relative to the eigenvectors is undefined.

Here we explain how to deal with these difficulties.

1. The eigenvectors are normalized in the L2([−1, 1]) norm with respect to the variable z. In

order to normalize them in the L2(R) norm with respect to the variable x, we perform the

change of coordinates (5.39). In particular, we use integration with the composite trapezoid

method on the grid points {xj}j=N−1
j=1 and neglect integrals for (−∞, xN−1) and (x1,+∞).

2. In order to restore the PT -symmetry condition (5.10), we multiply the component Y of the

eigenvector (Y,Z) by eiθ with θ ∈ [0, 2π] and require

eiθY (x) = e−iθY (−x) ⇒ 2iθ = log
Y (−x)

Y (x)
,
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where the point x is chosen so that Y (x) and Y (−x) are nonzero. For example, we compute θ

for all interior grid points {xj}j=N−1
j=1 for which Y (xj) 6= 0 and take the average. Both Y and

Z in the same eigenvector are rotated with the same angle θ. Similarly, this step is performed

for Y # and Z# according to the PT -symmetry condition (5.11).

3. We fix the sign of the adjoint eigenvectors at the Hamiltonian case γ = 0 by using (5.15).

Then we continue the eigenvectors and the adjoint eigenvectors for simple eigenvalues before

coalescence points. Numerically, we take two steps in γ: γ1 < γ2, with |γ2 − γ1| � 1. Suppose

that the sign of eigenvector for γ1 has been chosen already. We take eigenvectors for γ1 and γ2

and compare them. If eigenvectors have been made PT -symmetric and properly normalized,

then the norm of their difference is either small (the eigenvectors are almost the same) or close

to 2 (the eigenvectors are negatives of each other). We choose the sign of the eigenvector so

that the norm of their difference is small.

With the refinements described above, we can now compute the Krein quantity K(λ) defined by

(5.12) using the same numerical method as the one used for computing the norms of eigenvectors.

In numerical computations, we have often encountered situations when eigenvalues nearly coa-

lesce, but the standard MATLAB R© numerical routines do not approximate well the coalescence of

eigenvalues. In order to check if the eigenvectors are linearly dependent near the possible coalescence

point, we compute the norm of the difference between the two eigenvectors and plot it with respect

to the parameter γ. If the difference between the two eigenvectors vanishes as γ is increased towards

the coalescence point, we say that the defective eigenvalue arises at the bifurcation point. If the

difference remains finite, either we are dealing with the semi-simple eigenvalue at the coalescence

point or the two simple eigenvalues pass each other without coalescence.

5.5 Numerical Examples

In the numerical examples, we set N = 500. This gives enough accuracy for computing eigenvalues,

as it was shown in [112]. We will demonstrate numerical results in Figures 5.1,5.2,5.3 and 5.4.

Each figure displays branches of the nonlinear modes Φ versus a parameter used in the numerical

continuations (either µ or γ), where the blue solid line corresponds to stable modes and the red

dashed line denotes unstable ones. The top and middle panels show the power curves of ‖Φ‖2,

a sample profile of the nonlinear mode Φ, and the spectrum of linearization before and after the

instability bifurcation. The bottom panels show the imaginary part of eigenvalues λ and the Krein

quantity of isolated eigenvalues. Green color corresponds to eigenvalues λ ∈ iR with the positive

Krein signature, red – to those with the negative Krein signature, and black color is used for complex

eigenvalues λ /∈ iR and for the continuous spectrum.

Figure 5.1 (a)-(f) shows the instability bifurcation for the Scarf II potential (5.43) studied in [105]

in the focusing case with g = 1. Here V0 = 2, γ = −2.21, and the first branch of the nonlinear modes

Φ is considered. As two eigenvalues with different Krein signatures coalesce, they bifurcate into a

complex quadruplet, in agreement with Theorem 13. Note that there is a small region of stability

for the nonlinear modes Φ of small amplitudes, as it was shown in [105].
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Figure 5.1: Scarf II potential (5.43) with V0 = 2, γ = −2.21. (a) Power curves versus µ. (b)
Amplitude profile for point A. (c) Spectrum of linearization for point A. (d) Same for point B. (e)
Im(λ) for the spectrum of linearization versus µ. (f) Krein quantities for isolated eigenvalues versus
µ.
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Figure 5.2: Scarf II potential (5.43) with V0 = 3, γ = −3.7. (a) Power curves versus µ. (b) Amplitude
profile for point A. (c) Spectrum of linearization for point A. (d) Same for point B. (e) Im(λ) for
the spectrum of linearization versus µ. (f) Krein quantities for isolated eigenvalues versus µ.
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Figure 5.3: Confining potential (5.44), scaled as in (5.46). (a) Power curves versus γ. (b) Amplitude
profile for point A. (c) Spectrum of linearization for point A. (d) Same for point B. (e) Im(λ) for
the spectrum of linearization versus γ. (f) Krein quantities for isolated eigenvalues versus γ.
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Figure 5.4: Confining potential (5.44), scaled as in (5.46). (a) Power curves versus γ. (b) Amplitude
profile for point A. (c) Spectrum of linearization for point A. (d) Same for point B. (e) Im(λ) for
the spectrum of linearization versus γ. (f) Krein quantities for isolated eigenvalues versus γ.
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Figure 5.2 (a)-(f) shows the instability bifurcation for the Scarf II potential (5.43) studied in [17]

in the focusing case with g = 1. Here V0 = 3, γ = −3.7, and the second branch of the nonlinear modes

Φ is considered. The second branch is unstable with at least one complex quadruplet for all values of

parameter µ used. The imaginary part of this complex quadruplet is not visible in Figure 5.2 (e) as it

coincides with the location of the continuous spectrum. In the presence of this complex quadruplet,

we observe a coalescence of two simple eigenvalues λ1, λ2 ∈ iR and the instability bifurcation into

another complex quadruplet. Numerical evidence confirms that the eigenvalues have the opposite

Krein signatures prior to collision, allowing us to predict the instability bifurcation, in agreement

with Theorem 13.

Figures 5.3,5.4 (a)-(f) show the confining potential (5.44) studied in [1], in the defocusing case

with g = −2. Compared to (5.44), we use a scaled version of this potential to match the one in [1]:

V (x) = x2, W (x) = 2Ω−3/2xe−
x2

2Ω , (5.46)

where Ω = 10−1 is a scaling parameter. There are four branches of the nonlinear modes Φ shown,

out of which we highlight only the third and fourth branches. The first branch is stable, whereas the

second branch becomes unstable because of a coalescence of a pair of eigenvalues ±λ ∈ iR with the

negative Krein signature at the origin [1]. The third and fourth branches are studied in Figures 5.3

and 5.4.

In Figure 5.3 we can see that there are three bifurcations occurring at γ1 ≈ 0.07, γ2 ≈ 0.1031

and γ3 ≈ 0.1069. For each bifurcation two eigenvalues with different Krein signatures collide and

bifurcate off to the complex plane in accordance with Theorem 13. In addition, two simple eigenvalues

with different Krein signatures nearly coalesce near γ4 ≈ 0.1. Figure 5.5 (a) shows the norm of the

difference between the two eigenvectors and two adjoint eigenvectors for the two simple eigenvalues

while γ is increased towards γ4. As the difference does not vanish, we rule out this point as the

bifurcation point for the defective eigenvalue. Consequently, the eigenvalues are continued past this

point with preservation of their Krein signatures.

In Figure 5.4 we can see three bifurcations occurring at γ1 ≈ 0.1303, γ2 ≈ 0.1427, and γ3 ≈
0.2078. At γ1, an eigenvalue pair with negative Krein signature coalesce at zero and become a

pair of real (unstable) eigenvalues. As γ is increased towards γ2, two eigenvalues with opposite

Krein signature move towards each other. Figure 5.5 (b) illustrates that the norm of the difference

between the two eigenvectors and the two adjoint eigenvectors vanishes at the coalescence point.

Therefore, we conclude that at γ2 we have a defective eigenvalue which does not split into a complex

quadruplet. According to Theorem 13, the defective eigenvalue does not split into complex unstable

eigenvalues only if the non-degeneracy condition (5.27) is not satisfied. Similar safe passing of

eigenvalues of opposite Krein signature through each other is observed in [105]. The behavior near

γ2 shows that having opposite Krein signatures prior to coalescence of two simple eigenvalues into

a defective eigenvalue is a necessary but not sufficient condition for the instability bifurcation. At

γ3, two eigenvalues with opposite Krein signatures coalesce and bifurcate into a complex quadruplet

according to Theorem 13.
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#

#

Figure 5.5: The norm of the difference between the two eigenvectors and the two adjoint eigenvectors
prior to a possible coalescence point: (a) for Figure 5.3 (b) for Figure 5.4.
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Chapter 6

Conclusion

In this thesis, we have presented several new contributions to stability analysis in PT -symmetric

systems both in discrete and continuous settings. Let us review the original results and provide some

possible considerations for future work.

6.1 Summary of Main Results

Chapter 2 is dedicated to the study of existence and stability of breather type solutions in infinite-

dimensional dNLS model (1.3). These are solutions of the form

u(t) = Ue−iEt, v(t) = V e−iEt,

where the frequency parameter E is real, and the sequence (U, V ) ∈ l2(Z) is time-independent.

Existence and spectral stability of breathers can be characterized in the limit of small coupling

constant ε, when breathers bifurcate from solutions of the dimer equation arising at a single site, say

the central site at n = 0. This technique was introduced for the PT -symmetric systems in [80, 115]

and is applied to the system of amplitude equations (1.3) in Chapter 2.

Figure 6.1 represents branches of the time-periodic solutions of the central dimer at ε = 0, where

the amplitude of the central dimer A = |U0| = |V0| is plotted versus the frequency parameter E. The

left panel corresponds to the solution with Ω > γ > 0, whereas the right panel corresponds to the

solution with Ω < −γ < 0. The constraint |γ| < |Ω| is used for stability of the zero equilibrium at

ε = 0 outside the central dimer. The values ±E0 with E0 :=
√

Ω2 − γ2 correspond to bifurcation of

the small-amplitude solutions. The small-amplitude solutions are connected with the large-amplitude

solutions for Ω > γ > 0, whereas the branches of small-amplitude and large-amplitude solutions are

disconnected for Ω < −γ < 0.

Every time-periodic solution supported at the central dimer for ε = 0 is continued uniquely and

smoothly with respect to the small coupling parameter ε by the implicit function arguments. The
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Figure 6.1: Time-periodic solutions of the PT -symmetric dimer with A = |U0| = |V0| versus fre-
quency E for γ = 1

2 and (a) Ω = 3
4 > γ or (b) Ω = − 3

4 < −γ.

resulting breather is symmetric about the central site and PT -symmetric so that

Vn = Ūn = Ū−n = V−n, n ∈ Z. (6.1)

Moreover, the breather profile decays fast at infinity.

Since breather solutions (U, V ) are critical points of the extended energy function

HE := H − EQ, (6.2)

we study the nonlinear stability of breathers by the Lyapunov method if the second variation of HE

is sign-definite in `2(Z). The second variation of HE is given by a quadratic form associated with

the self-adjoint (Hessian) operator H′′E : `2(Z)→ `2(Z).

For the two solution branches with Ω < −γ < 0 and |E| < E0 (points 2 and 4 on Figure 6.1), it

is shown in Chapter 2 that the infinite-dimensional part of the spectrum of H′′E in `2(Z) is negative

definite and the rest of the spectrum includes a simple zero eigenvalue due to gauge symmetry and

either three (in case of point 2) or one (in case of point 4) positive eigenvalues. As a result, the

nonlinear orbital stability of the corresponding breathers is developed in Chapter 2 by using the

standard energy methods [42, 68].

On the other hand, for the solution branches with |E| > E0 (points 1 and 3 on Figure 6.1),

it is shown in Chapter 2 that the spectrum of H′′E in `2(Z) includes infinite-dimensional positive

and negative parts. Therefore, for |E| > E0 both for Ω > γ > 0 and Ω < −γ < 0, (U, V ) is an

infinite-dimensional saddle point of the extended energy function HE . This is very similar to the

Hamiltonian systems of the Dirac type, where the zero equilibrium and standing waves are located

in the gap between the positive and negative continuous spectrum.

Spectral stability of the solution branches with Ω > γ > 0 and |E| > E0 is proved for sufficiently

small ε under the non-resonance condition, which is checked numerically. On the other hand, the

solution branch with Ω < −γ < 0 and |E| > E0 is spectrally stable for sufficiently small ε almost

everywhere except for the narrow interval in the parameter space, where the non-resonance condition
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is not satisfied. Since in both cases, (U, V ) is an infinite-dimensional saddle point of the extended

energy function HE , the standard energy methods [68] can not be applied to the proof of nonlinear

stability of the solution branches with |E| > E0.

The main contribution of Chapter 3 is a proof of long-time nonlinear stability of the infinite-

dimensional saddle point (U, V ) by using the asymptotic limit of small coupling parameter ε. The

novel method which we develop there works for the solution branches with Ω > γ > 0 (point 1 on

Figure 6.1) but does not work for the solution branch with Ω < −γ < 0 and |E| > E0 (point 3 on

Figure 6.1).

To remedy the difficulty with the energy method, we select the energy function in the form

ΛE := H − E(u0v̄0 + ū0v0). (6.3)

Note that ΛE is different from the extended energy function HE in (6.2), since ΛE only includes the

part of Q at the central site n = 0, where (U, V ) is supported if ε = 0. With the definition of ΛE

given by (6.3), we obtain a function with a positive second variation at (U, V ), however, two new

obstacles arise now:

• the first variation of ΛE does not vanish at (U, V ) if ε 6= 0;

• the value of ΛE is no longer constant in the time evolution of the dNLS equation (1.3).

The first difficulty is overcome with a local transformation of dependent variables. However, due

to the second difficulty, instead of the nonlinear stability for all times, as in Lyapunov’s stability

theorem (see Section 1.5), we only establish a long-time nonlinear stability of the breather on a long

but finite time interval. This long-time stability is usually referred as metastability.

We note that the energy functional similar to (6.3) is typically used in the normal form trans-

formations as the leading-order Hamiltonian, where it can be adopted for the proof of asymptotic

stability of breathers under some restrictive assumptions on the nonlinear functions [12]. Com-

pared to this approach, we do not use dispersive decay estimates and hence have no control on the

perturbations to extend the time interval for long-time stability of breathers to all times.

Chapter 4 does not contain original results. We review the Hamiltonian theory, including the

necessary condition for instability bifurcation as a result of the splitting upon collision of two eigen-

values of opposite Krein signature. An instructive case example from the area of Bose–Einstein

condensation provides a countable sequence of nonlinear states bifurcating from eigenstates of a

quantum harmonic oscillator. The Krein signature is defined for the linearized NLS equation at each

of these nonlinear states in the Hamiltonian case.

In Chapter 5 we introduce the Krein quantity for simple isolated eigenvalues in the linearization

of the nonlinear modes in the PT -symmetric NLS equation. We prove that the Krein quantity is

zero for complex eigenvalues and nonzero for simple purely imaginary eigenvalues. When two simple

eigenvalues coalesce on the imaginary axis in a defective eigenvalue, the Krein quantity vanishes

and we prove under the non-degeneracy assumption that this bifurcation point produces complex

unstable eigenvalues on one side of the bifurcation point. This result shows that the main feature of

the instability bifurcation in Hamiltonian systems is extended to the PT -symmetric NLS equation.
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There are nevertheless limitations of this theory in the PT -symmetric systems. First, the adjoint

eigenvectors are no longer related to the eigenvectors of the spectral problem, which opens up a

problem of normalizing the adjoint eigenvector relative to the eigenvector. We fix the sign of the

adjoint eigenvector in the Hamiltonian limit and continue the sign off the Hamiltonian limit by using

continuity of eigenvectors along the parameters of the model.

104



Mathematics — McMaster University PhD Thesis — Alexander Chernyavsky

Second, if the bifurcation point corresponds to a semi-simple eigenvalue, then the bifurcation

theory does not lead to the same conclusion as in the Hamiltonian case. The first-order perturbation

theory results in the non-Hermitian matrices, hence it is not clear how to conclude on the splitting

of the semi-simple eigenvalues on each side of the bifurcation point.

Finally, coalescence of the simple purely imaginary eigenvalues at the origin and the related insta-

bility bifurcations are observed frequently in the PT -symmetric systems and they are not predicted

from the Krein quantity. Therefore, we conclude that the stability theory of Hamiltonian systems

cannot be fully extended to the PT -symmetric NLS equation, only the necessary condition for the

instability bifurcation can be, as is shown in Chapter 5.

6.2 Future Directions

This thesis leads to the following open questions and directions for further studies:

• It is known that in Hamiltonian systems negative Krein signature of an eigenvalue can lead

to nonlinear instability even if the stationary state is linearly stable [78]. It is worthwhile to

use our definition of PT -Krein signature to verify whether the same phenomena is present in

general PT -symmetric systems.

• In the studies of the spectral stability problems, we have often encountered bifurcation at zero,

i.e. when the smallest eigenvalue coalesces with its symmetric counterpart at λ = 0. The role

of bifurcation at zero is not well understood. Classical bifurcation theory suggests that there

might exist additional stationary states appearing after this bifurcation, i.e., a symmetry-

breaking point occurs. Notice that unlike PT -symmetry breaking point defined in a linear

system, this symmetry-breaking bifurcation occurs in the nonlinear system and is of interest

in its own.

• It is worthwhile to consider two-dimensional PT -symmetric version of nonlinear Schrödinger

equation arising in condensed matter theory [43, 73, 116]. Using a traditional simplification,

one can replace the non-local interaction potential with a localized short-range interaction

proportional to the delta function. This leads to the Gross–Pitaevskii equation, more precisely

to nonlinear Schrödinger equation with cubic nonlinearity and with a spatially dependent trap

potential stationary in a frame rotating with a certain frequency about the vertical axis. The

equation in question, like many other nonlinear Schrödinger equations, supports the existence

of localized-in-space solutions of different kinds. In particular, one could look for vortex-type

solutions and investigate their stability properties in the case of complex-valued PT -symmetric

potential.

• In the Hamiltonian version of the Gross–Pitaevskii equation (with real-valued potential) there

has been a great progress in numerical algorithms utilizing the so-called Evans function [83].

Evans function enables one to find spectra more efficiently and precisely. It will be worthwhile

to adapt Evans function to PT -symmetric systems and equip the algorithm with the ability

to compute PT -Krein signature.
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Overall, there are a number of other challenging problems in the topic of PT -symmetry. One can

study formation of PT -symmetric rogue waves in inhomogeneous and non-Hermitian optical systems,

or the connection between modulational instability and formation of PT -symmetric lattice solitons,

to name a few [39].
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Appendix A

Perturbation theory near

Hamiltonian case

In this Appendix we attempt to build a connection between eigenvectors and adjoint eigenvectors

of the stability problem (5.6) near the Hamiltonian case γ = 0. We show that there is no simple

relationship between eigenvectors of original and adjoint operators. This is the reason why we have

to compute both eigenvectors in Krein signature definition for PT -symmetric systems.

A.1 Series in γ

Recall the eigenvalue problem (5.6) describing the spectrum of linearization about a stationary state

Φ: [
L −Φ2

−Φ2 L∗

][
Y

Z

]
= iλσ3

[
Y

Z

]
, (A.1)

where L = −∂2
x + V (x) + iγW (x) − µ − 2|Φ(x)|2, and W (x),Φ(x) decay to zero at x → ±∞.

Moreover, V (−x) = V (x),W (−x) = −W (x) are real-valued functions, and µ ∈ R. Recall that Φ(x)

is PT -symmetric: Φ(x) = Φ(−x) and satisfies the equation

µΦ = (−∂2
x + V (x) + iγW (x)− |Φ|2)Φ. (A.2)

Let γ = 0 in eigenvalue problem (A.1). Then it can be rewritten as:[
L0 −Φ2

0

−Φ2
0 L0

][
Y0

Z0

]
= iλ0σ3

[
Y0

Z0

]
, (A.3)

where we have used the fact that operator L0 = −∂2
x +V −µ− 2|Φ0|2 is self-adjoint. We will denote

operator in (A.3) as L0. For λ0 ∈ iR problem (A.3) is self-adjoint. If λ0 is also simple, then the
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eigenvector for the adjoint operator can be chosen so that[
Y ∗0

Z∗0

]
=

[
Y0

Z0

]
. (A.4)

Recall that Φ0 satisfies the following equation:

µΦ0 = (−∂2
x + V (x)− |Φ0|2)Φ0. (A.5)

Notice that coefficients in this equation are all real, therefore Φ0(x) ∈ R. Since Φ0(x) is also PT -

symmetric, it follows that it is an even function.

Putting λ0 = iΩ0,Ω0 ∈ R simple, we set γ 6= 0, γ ∈ R and employ perturbation theory. First of

all, we write series in γ for all terms that depend on γ. Notice that Φ, although not visibly, depends

on γ. We write series up to O(γ3):

iλ(γ) = −Ω0 − iγΩ1 − γ2Ω2 +O(γ3),

Φ(γ) = Φ0 + iγΦ1 + γ2Φ2 +O(γ3),[
Y (x; γ)

Z(x; γ)

]
=

[
Y0

Z0

]
+ iγ

[
Y1

Z1

]
+ γ2

[
Y2

Z2

]
+O(γ3),[

Y ∗(x; γ)

Z∗(x; γ)

]
=

[
Y0

Z0

]
+ iγ

[
Y ∗1

Z∗1

]
+ γ2

[
Y ∗2

Z∗2

]
+O(γ3).

Let us write O(γ) terms for (A.2):

µΦ1 = (−∂2
x + V (x)− |Φ0|2)Φ1 +WΦ0 − Φ2

0(Φ1 + Φ1). (A.6)

As we can see, this equation has real-valued coefficients and thus Φ1(x) is real-valued. Symmetries

of coefficients in the equation also imply that Φ1(x) is an odd function: Φ1(−x) = −Φ1(x). For

O(γ2) terms, (A.2) gives

µΦ2 = (−∂2
x + V (x)− |Φ0|2)Φ2 −WΦ1 − Φ0Φ2

1 − Φ2
0(Φ2 + Φ2). (A.7)

From here we have Φ2(x) ∈ R, and Φ2(x) is even: Φ2(x) = Φ2(−x).

A.2 O(γ) balance equations

Let us rewrite eigenvalue problem (A.1) for γ 6= 0, keeping only O(γ) terms:

(L0 + Ω0σ3)

[
Y1

Z1

]
= (−W (x) + 2σ1Φ0Φ1 − Ω1)σ3

[
Y0

Z0

]
, (A.8)
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and the adjoint problem becomes

(L0 + Ω0σ3)

[
Y ∗1

Z∗1

]
= (W (x) + 2σ1Φ0Φ1 − Ω1)σ3

[
Y0

Z0

]
. (A.9)

According to the Fredholm theory, (A.8) and (A.9) have solutions only when the right-hand side

is orthogonal to the kernel of corresponding adjoint operator, in our case consisting of a single

eigenvector [Y0, Z0]T . Let us split the right-hand side into several terms and consider them separately:

• W (x)σ3[Y0, Z0]T : 〈
W (x)σ3

[
Y0

Z0

]
,

[
Y0

Z0

]〉
=

∫
R
W (x)(Y 2

0 − Z2
0 )dx = 0, (A.10)

as an integral of odd function over the real line is equal to zero.

• σ1Φ0Φ1σ3[Y0, Z0]T :〈
σ1Φ0Φ1σ3

[
Y0

Z0

]
,

[
Y0

Z0

]〉
=

∫
R

Φ0Φ1(Y0Z0 − Z0Y0) = 0. (A.11)

• Ω1σ3[Y0, Z0]T : 〈
Ω1σ3

[
Y0

Z0

]
,

[
Y0

Z0

]〉
= Ω1

∫
R
(Y 2

0 − Z2
0 )dx, (A.12)

where the integral is nonzero. This follows from nonexistence condition for the generalized

eigenvector [Yg, Zg]
T , as eigenvalue λ0 = iΩ0 is assumed to be simple. Therefore we must

choose Ω1 = 0.

Moreover, if [Y1, Z1]T is orthogonal to [Y0, Z0]T , then the solution of (A.8) is unique. Same holds

for the adjoint counterpart. By adding and subtracting (A.8) with (A.9), we can relate eigenvectors

in a unique way.

Note that both (A.8) and (A.9) have real-valued coefficients, which also have odd symmetry,

therefore [Y1, Z1]T and [Y ∗1 , Z
∗
1 ]T are both real-valued functions and possess odd symmetry property.

A.3 O(γ2) balance equations

Collecting only O(γ2) terms in (A.1) for γ 6= 0, we get

(L0 + Ω0σ3)

[
Y2

Z2

]
= (W (x)− 2σ1Φ0Φ1)σ3

[
Y1

Z1

]

+

([
2Φ2

1 + 4Φ0Φ2 −Φ2
1 + 2Φ0Φ2

−Φ2
1 + 2Φ0Φ2 2Φ2

1 + 4Φ0Φ2

]
− Ω2σ3

)[
Y0

Z0

]
. (A.13)
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For the adjoint problem we have:

(L0 + Ω0σ3)

[
Y ∗2

Z∗2

]
= (−W (x)− 2σ1Φ0Φ1)σ3

[
Y ∗1

Z∗1

]

+

([
2Φ2

1 + 4Φ0Φ2 −Φ2
1 + 2Φ0Φ2

−Φ2
1 + 2Φ0Φ2 2Φ2

1 + 4Φ0Φ2

]
− Ω2σ3

)[
Y0

Z0

]
. (A.14)

In both equations (A.13), (A.14), coefficients are given by real-valued even functions, therefore

[Y2, Z2]T , [Y ∗2 , Z
∗
2 ]T are real-valued and even, as well.

We could employ Fredholm theory again, but this time the projections on the kernel of the adjoint

operator would have to be incorporated in the coefficient Ω2, which will be nonzero, in general. If

both [Y2, Z2]T and [Y ∗2 , Z
∗
2 ]T exist and are orthogonal to [Y0, Z0]T , they are unique and so is their

relationship (add or subtract (A.13) and (A.14)).

To find a relationship between [Y,Z]T and [Y ∗, Z∗]T we could use the obtained equations to

split each eigenvector as [Y, Z]T = [Y +, Z+]T + [Y −, Z−]T , and adjoint eigenvector as [Y ∗, Z∗]T =

[Y +, Z+]T − [Y −, Z−]T . Let us consider this separation for the first order in γ:[
Y1

Z1

]
=

[
Y +

1

Z+
1

]
−
[
Y −1
Z−1

]
, (A.15)[

Y +
1

Z+
1

]
= (2σ1Φ0Φ1 − Ω1)σ3

[
Y0

Z0

]
,[

Y −1
Z−1

]
= W (x)σ3

[
Y0

Z0

]
.

For the next order in γ we get[
Y2

Z2

]
=

[
Y +

2

Z+
2

]
−
[
Y −2
Z−2

]
,[

Y +
2

Z+
2

]
= (−2σ1Φ0Φ1)σ3

[
Y1

Z1

]

+

([
2Φ2

1 + 4Φ0Φ2 −Φ2
1 + 2Φ0Φ2

−Φ2
1 + 2Φ0Φ2 2Φ2

1 + 4Φ0Φ2

]
− Ω2σ3

)[
Y0

Z0

]
,[

Y −2
Z−2

]
= W (x)σ3

[
Y1

Z1

]
.

Unfortunately, here [Y +
2 , Z+

2 ]T depends on both [Y +
1 , Z+

1 ]T and [Y −1 , Z−1 ]T through (A.15). Therefore

the solution cannot be separated into [Y +, Z+]T and [Y −, Z−]T parts independent of each other,

and there is no simple relationship between eigenvectors and adjoint eigenvectors for γ 6= 0.
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Appendix B

Spectrum of the linear problem for

Scarf II potential

In this Appendix we are going to derive analytic formulas for eigenvalues and eigenfunctions of the

stationary problem for linear Schrödinger equation with Scarf II type potential (1.12). Our goal is

to correct the mistake of [3], where the author missed one of the solutions to the eigenvalue problem.

Consider a linear Schrödinger equation:

i∂tψ + ∂2
xψ − U(x)ψ = 0,

with Scarf II potential

U(x) = V1 sech2(x) + iV2 sech(x) tanh(x),

where V1, V2 are real constants. We will be looking for stationary modes in the form ψ(x, t) =

Φ(x)eiEt, where E ∈ R, Φ(x) decays to zero at infinity, and solves

Φxx + (−E + V1 sech2(x) + iV2 sech(x) tanh(x))Φ = 0. (B.1)

This equation can also be viewed as an eigenvalue problem for E with eigenfunctions Φ. In that

case the mode Φ is stable when E is real, and unstable otherwise, due to symmetry of eigenvalues

in PT -symmetric systems. Using a change of coordinates z = 1
2 (1 − i sinh(x)) and a substitution

Φ = z−p(1− z)−qw(z), we can rewrite linear stationary problem (B.1) as

z(1− z)w′′(z) +

(
−2p+

1

2
− (−2p− 2q + 1)z

)
w′(z)−

(
(p+ q)2 − E

)
w(z) = 0, (B.2)

where p, q are given by:

p1,2 = −1

4
± 1

2

√
1

4
+ V1 + V2, q1,2 = −1

4
± 1

2

√
1

4
+ V1 − V2. (B.3)
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Recall Gauss hypergeometric equation [58]:

z(1− z)d
2u

dz2
+ (γ − (α+ β + 1)z)

du

dz
− αβu = 0, (B.4)

where α, β, γ ∈ C are constants. Comparing (B.4) with (B.2), one can find α, β, γ:
α = 1

2 ∓ 1
2

√
1
4 + V1 + V2 ∓ 1

2

√
1
4 + V1 − V2 ±

√
E,

β = 1
2 ∓ 1

2

√
1
4 + V1 + V2 ∓ 1

2

√
1
4 + V1 − V2 ∓

√
E,

γ = 1∓
√

1
4 + V1 + V2.

(B.5)

The solution of (B.4) is given by hypergeometric series [58]:

u = F (α, β, γ, z)

= 1 +
α · β
γ · 1 z +

α(α+ 1)β(β + 1)

γ(γ + 1) · 1 · 2 z2 +
α(α+ 1)(α+ 2)β(β + 1)(β + 2)

γ(γ + 1)(γ + 2) · 1 · 2 · 3 z3 + . . .

Notice that when α or β is a negative integer, series are truncated and contain finitely many terms.

More precisely, α and β have to satisfy one of the quantization conditions:

α = −n or β = −n, where n = 0, 1, 2, . . . (B.6)

The final solution of (B.1) is given by

Φ(x) =

(
1− i sinh(x)

2

)−p(
1 + i sinh(x)

2

)−q
F

(
α, β, γ,

1− i sinh(x)

2

)
, (B.7)

where by quantization condition F is a polynomial of degree n. In order for the eigenfunction Φ(x)

to satisfy the boundary condition at ±∞, the following inequality must hold:

0 ≤ n < Re(p+ q),

or, using (B.3),

0 ≤ n < Re

(
−1

2
± 1

2

√
1

4
+ V1 + V2 ±

1

2

√
1

4
+ V1 − V2

)
, (B.8)

where the upper bound has to be positive. Therefore minus-minus sign combination cannot be chosen

for both ± in (B.8). Note that the expression in brackets is real when |V2| < V1 + 1
4 .

Using either one of quantization conditions (B.6) and definitions of α, β in (B.5), we derive a

formula for n and discuss all possible cases:

n = −1

2
± 1

2

√
1

4
+ V1 + V2 ±

1

2

√
1

4
+ V1 − V2 ±

√
E. (B.9)
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In order for inequality (B.8) to be satisfied, the minus sign for
√
E must be selected. Out of 8

possible combinations, there are only 3 left:

n(1) = −1

2
+

1

2

√
1

4
+ V1 + V2 +

1

2

√
1

4
+ V1 − V2 −

√
E,

n(2) = −1

2
+

1

2

√
1

4
+ V1 + V2 −

1

2

√
1

4
+ V1 − V2 −

√
E,

n(3) = −1

2
− 1

2

√
1

4
+ V1 + V2 +

1

2

√
1

4
+ V1 − V2 −

√
E.

The case n(1) was studied in detail in [3], where it was shown that the corresponding eigenvalue E(1)

becomes complex for |V2| > V1 + 1
4 . Unfortunately, in [3] branches n(2) and n(3) were omitted, and

author did not discuss why eigenvalue bifurcates off to the complex plane. We know from bifurcation

theory that generally such bifurcation happens when two simple discrete eigenvalues coalesce on the

real axis, or a simple discrete eigenvalue collides with continuous spectrum, in our case located on

the real axis [0,+∞). Using expressions for n(j) above, we can write three branches of eigenvalues

explicitly:

E(1)
n =

(
−n− 1

2
+

1

2

√
1

4
+ V1 + V2 +

1

2

√
1

4
+ V1 − V2

)2

,

E(2)
n =

(
−n− 1

2
+

1

2

√
1

4
+ V1 + V2 −

1

2

√
1

4
+ V1 − V2

)2

,

E(3)
n =

(
−n− 1

2
− 1

2

√
1

4
+ V1 + V2 +

1

2

√
1

4
+ V1 + V2

)2

.

Notice that for V2 = V1 + 1
4 , eigenvalues corresponding to first and second branches coalesce and

bifurcate off to the complex plane for V2 > V1 + 1
4 . Also, for V2 = −V1 − 1

4 , first and third branches

coalesce and bifurcate into the complex plane for V2 < −V1 − 1
4 .

For example, for V1 = 1, V2 = 1.2, the upper bound for n for first and second branches is positive

and nonzero, therefore n = 0 gives E
(1)
0 ≈ 0.1556, E

(2)
0 ≈ 0.0292, and for V2 = 1.25 these two are

equal: E
(1)
0 = E

(2)
0 ≈ 0.0844. For V2 > 1.25 both become complex. See also Figure B.1.
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Figure B.1: First two eigenvalues for spectral problem (B.1) with n = 0. Red color corresponds to

E
(1)
0 , whereas blue corresponds to E

(2)
0 . a) Real parts b) Imaginary parts.
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Appendix C

Wadati potentials: exact solutions

In this Appendix we derive a formula for exact solutions for PT -symmetric stationary NLS (1.11)

with Wadati-type potentials, for which Scarf II potential (1.12) is a special case. The technique used

here was presented in [17], where authors described the way to construct potentials for which exact

solutions are available. Notice that the exact solutions are obtained for the full nonlinear equation,

unlike the Appendix B. The exact solutions obtained via this method were used for verification of

numerical algorithms presented in Chapter 5.

C.1 Derivation

Let us write the problem (A.2) for the nonlinear mode Φ:

Φxx + (U2 − iUx)Φ + 2Φ|Φ|2 = µΦ,

where Φ(x) = Φ(−x) is PT -symmetric, µ ∈ R is a real eigenvalue parameter, and U(x) = U(−x) is

a real valued function. Let us rewrite this equation as a system of equations:dΦ
dx = iUΦ−Ψ,

dΨ
dx = µΦ− iUΦ + 2|Φ|2Φ,

(C.1)

where Ψ = −dΦ/dx+ iUΦ. Take

Φ = aeiθ, Ψ = beiχ, (C.2)

where a(x), b(x), θ(x), χ(x) are real-valued functions of x. Substituting these into system (C.1), one

can get: 

ax = −b cos ν,

bx = a(2a2 + µ) cos ν,

a(U − θx) = b sin ν,

b(χx + U) = −a(2a2 + µ) sin ν,

(C.3)
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where ν(x) = χ(x)− θ(x). System (C.3) has a conserved quantity:

a2(µ+ a2) + b2 = 0. (C.4)

From here we can see that µ must be chosen negative: µ = −κ2, κ ∈ R.

Using (C.4) and first equation in (C.3), we get:∫ x

0

dy

a
√
κ2 − a2

= −
∫ x

0

cos ν(y)dy + C,

and choosing seed function cos ν(y), we take D(x) to be

D(x) = κ

∫ x

0

cos ν(y)dy + C,

where constant of integration C can be chosen to be zero without loss of generality. Then we rewrite

the equation for a:

a = κ sech(D(x)),

and for b

b = a
√
κ2 − a2 = κ2 sech(D(x)) tanh(D(x)).

Adding and subtracting two last equations in (C.3), one can get:

U = −νx
2

+
a

2b
(2κ2 − 3a2) sin ν (C.5)

and

θ = −ν
2
−
∫
a3

2b
sin νdx. (C.6)

The main idea of [17] can be summarized as follows: given a seed function cos ν(x), find potential

U and exact solution Φ(x), namely find a(x) and θ(x). We would also like to find an exact solution

in a simple form.

One can rewrite equation (C.5) as

U =
(cos ν(x))′

2 sin ν(x)
− κ sin ν(x)

2 tanh(D(x))
+

3

2
κ sin ν(x) tanh(D(x))

or, using the definition of D(x), as

U =
(cos ν(x))′

2 sin ν(x)
− κ sin ν(x)

2 tanh
(
κ
∫

cos ν(x)dx
) +

3

2
κ sin ν(x) tanh

(
κ

∫
cos ν(x)dx

)
.

From here we can see that to construct a potential (and a corresponding exact solution), one needs

a smart choice of a seed function cos ν(x). As we see, it is not trivial to find a seed function cos ν(x)

such that U(x) will be independent of κ. Otherwise the solutions obtained by this method will only

be valid for fixed µ.
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C.2 An example

Let us select the seed function as

cos ν =
sinh(κx)√

1− κ sin2 α+ sinh2(κx)
, (C.7)

where α ∈ (0, π2 ) is a parameter. Then

D(x) = arctanh

√
1− κ sin2 α sech2(κx),

a = κ3/2 sinα sech(κx), (C.8)

b = κ5/2 sinα sech(κx)

√
1− κ sin2 α sech2(κx). (C.9)

In order to find U , we need to find νx and sin ν, as well:

νx =
−κ cosh(κx)(1− κ sin2 α)

,
(cosh2(κx)− κ sin2 α)

√
1− κ sin2 α,

sin ν =

√
1− κ sin2 α

cosh2(κx)− κ sin2 α
.

Let us write equation for U :

U =
κ cosh(κx)

√
1− κ sin2 α

2(cosh2(κx)− κ sin2 α)
+

cosh(κx)
√

1− κ sin2 α

2κ(cosh2(κx)− κ sin2 α)
(2κ2 − 3κ3 sin2 α sech2(κx))

=
3

2
κ sech(κx)

√
1− κ sin2 α,

where for κ = 1 we obtain Scarf II potential (1.12) with V0 = − 9
4 cos2 α, and

V1 = − 3
2 cosα. The associated exact solution Φ = aeiθ follows from (C.6), (C.8) and (C.9):

Φ(x) = sinα sech(x) exp

[
i

2
cosα arctan(sinh(x))

]
. (C.10)
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