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Abstract. The Swift–Hohenberg equation (SHE) is a partial differential equation that
explains how patterns emerge from a spatially homogeneous state. It has been widely used
in the theory of pattern formation. Following a recent study by Bramburger and Holzer
[2], we consider discrete SHE on deterministic and random graphs. The two families of
the discrete models share the same continuum limit in the form of a nonlocal SHE on a
circle. The analysis of the continuous system, parallel to the analysis of the classical SHE,
shows bifurcations of spatially periodic solutions at critical values of the control parameters.
However, the proximity of the discrete models to the continuum limit does not guarantee
that the same bifurcations take place in the discrete setting in general, because some of the
symmetries of the continuous model do not survive discretization.

We use the center manifold reduction and normal forms to obtain precise information
about the number and stability of solutions bifurcating from the homogeneous state in the
discrete models on deterministic and sparse random graphs. Moreover, we present detailed
numerical results for the discrete SHE on the nearest-neighbor and small-world graphs.

1. Introduction

Networks of interacting dynamical systems (a.k.a. interacting particle systems) form an
important class of models of natural and technological systems. Examples include neuronal
networks, swarm of fireflies, coupled lasers, and power grids, to name a few [10, 33, 34, 36].

When the number of particles is large, taking a limit as the number of particles goes
to infinity is an effective tool for analyzing network dynamics. The continuum limit in the
form of a nonlocal PDE has been very successful for studying synchronization and pattern
formation in large systems of coupled oscillators on a variety of graphs [25, 28, 29, 40].
Therefore, it is important to understand the accuracy of approximation of large dynamical
networks by a continuum equation. For solutions of initial value problems on convergent
families of graphs, this was done in [23, 24, 26].

In many theoretical studies as well as in practical applications, valuable information
about system dynamics is gained by studying regimes bifurcating from simpler solutions
under the variation of the control parameter. Therefore, it is of interest to understand how
well and under what conditions, the bifurcation structure of large networks can be obtained
from its continuum limit. Specifically, suppose the continuum model undergoes a bifurcation
at a certain value of the control parameter. What can be said about the discrete system?
Will it undergo a bifurcation at a close parameter value? Will the bifurcating solutions
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resemble those obtained in the continuum case? These are nontrivial questions in general,
because certain features (such as symmetries) that are present in the continuum limit may
not survive discretization. The questions become even more challenging if the large network
system is random.

In this paper, following the work of Bramburger and Holzer [2], we address these questions
in the context of the Turing bifurcation in the discrete Swift–Hohenberg equation (SHE) on
deterministic (Cayley) and random graphs. We postpone the discussion of how our approach
and results differ from [2] and turn to the formulation of the discrete and continuous models
next.

The classical SHE plays a prominent role in the theory of pattern formation (see [8] and
references therein). It has the following form

∂tu = −
(
1 + ∂2

x

)2
u+ γu− u3, x ∈ T .

= R/Z, (1.1)

where u(t, x) ∈ R and γ is a control parameter. The normal form reduction near the
bifurcation, which makes use of the symmetries present in the system, shows existence of
a two-parameter family of stable stationary nontrivial solutions bifurcating from the trivial
solution u ≡ 0 (see Section 2.4.3 in [15]):

uγ,δ(x) = 2

√
γ

3
cos(x+ δ) +O(γ3/2) (1.2)

for small positive γ and every δ ∈ T.

The nonlocal SHE is obtained by replacing the second derivative ∂2
x with a nonlocal

operator LW :

∂tu = − (LW − κ)2 u+ γu− u3, x ∈ T, (1.3)

where

(LWf)(x) =

∫
T
W (x, y) [f(y)− f(x)] dy =: (KWf)(x)− dW (x)f(x). (1.4)

Here, W : T2 → [0, 1] is a measurable function that is symmetric a.e. on T2, and f ∈ L1(T).

In this paper, we assume that W has the following form

W (x, y) = S(x− y) (1.5)

for a given even function S ∈ L1(T). In this case, dW is independent of x ∈ T. Graphons
of the form (1.5) arise as limits of convergent sequences of Cayley graphs. For this reason,
they are referred to as Cayley graphons. It is instructive to study this case first, because
the nonlocal SHE (1.3) with (1.4) and (1.5) is the closest nonlocal analog of the classical
model (1.1) on a periodic domain. Since KW has a discrete (real) spectrum with the only
accumulation point at zero, the bifurcation of stable stationary nontrivial solutions occurs if
κ is set to

κ = −dW + λk0 , k0 ∈ N,
where {λk}k∈Z are eigenvalues of KW satisfying λ−k = λk, k ∈ N. Similar to (1.2), we are
interested in solutions bifurcating from u = 0 for small γ. The normal form analysis of (1.3)
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closely resembles the normal form analysis of (1.1) and illustrates the role of translation
invariance in the continuum model, see Theorem 3.8 below.

Along with the nonlocal model (1.3) we consider a discrete model on a graph Γ given by

u̇ = − (LΓ − κ)2 u+ γu− u3, (1.6)

where u(t) ∈ Rn, the cubic nonlinearity u3 is understood in the componentwise sense, and
the graph Laplacian LΓ is defined as follows

(LΓu)i =
1

n

n∑
j=1

aij (uj − ui) , (1.7)

which is associated with the adjacency matrix AΓ = (aij)1≤i,j≤n.

In this paper, we study (1.6) with (1.7) on two families of graphs, one is deterministic
and the other is random. Both families are constructed using a given W and converge to W
almost surely. We refer the reader to [23, 26] for the overview of the ideas from the graph
limit theory that are relevant here and to the references in the literature on this subject. For
either graph model, one can show that the solution of the IVP for (1.3) approximates the
solutions of the IVPs of the discrete problems on finite time intervals (cf. [23, 24, 26]). Thus,
(1.3) provides a common continuum limit for the discrete models on both deterministic and
random graphs. Note that this however does not guarantee that the solutions bifurcating
from the trivial solution will resemble (1.2). In fact, in general, it is not clear that the discrete
models will undergo a bifurcation at all. The reason for this is that the translation symmetry
present in the continuum model does not survive discretization. The lack of the translation
symmetry affects computations of the normal forms and thus the bifurcations. Our analysis
predicts the exact number of solution families bifurcating from the trivial solution in the
deterministic model, see Theorem 4.2, based on the discrete group of symmetries. On the
other hand, the symmetries are broken in the random model and we are only able to find
the lower and upper bounds on the number of solution families bifurcating from the trivial
solution, see Theorem 5.1.

The organization of the paper is as follows. In Section 2, we complete the description
of the discrete model (1.6) with (1.7) by providing the details on the deterministic and
random graphs. The former are weighted Cayley graphs and the latter are W-random graphs
(cf. [21]).

After that we turn to the analysis of the continuous model in Section 3. Specifically, we
demonstrate the well-posedness of the continuous model and analyze the bifurcation of the
spatially homogeneous solutions. The bifurcation analysis is based on the normal form of the
system in the Fourier coordinates. The derivation of the normal form uses the symmetries
present in the system and resembles the analysis of the classical SHE in [15]. The existence
of a family of spatially periodic solutions is invariant with respect to the continuous spatial
translations.

In Section 4, we study discrete SHE on weighted Cayley graphs. The bifurcation analysis
follows the same lines as in the continuous case, where in place of Fourier transform we now
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use the discrete Fourier transform. An important distinction of the discrete model is that the
invariance under any translations in the continuous system is replaced by the invariance with
respect to a discrete group of translations. This results in finitely many solutions bifurcating
from the trivial solution instead of the continuous family (1.2).

In Section 5, we move on to study the discrete model on random graphs, which is the
main problem addressed in this paper. In the random setting, the discrete model does not
possess the discrete translational invariance and the normal form approach, which worked
for Cayley graphs, is no longer applicable. To overcome this obstacle, we use the proximity
of the system on a sufficiently large random graph to that analyzed in Section 4 to derive
a leading order approximation for the normal form of the system at hand. This allows us
to study the bifurcation for the system on random graphs and to obtain precise bounds
on the number of solution families bifurcating in each random realization of the discrete
graph. This is where our approach is different from the approach taken in [2]. The normal
form for the bifurcation on a random graph is compared with the one on the associated
discrete deterministic graph instead of the one on the associated continuous nonlocal model.
We determine the translational parameter precisely from the normal form, whereas the
translational parameter is defined implicitly in [2, Theorem 4.1] from a linear transformation
of eigenvectors of the linearized equations. Additional comments on the differences between
our work and [2] can be found in Remark 5.6.

In Section 6, we present numerical experiments with SHE on small-world graphs. This
example illustrates the selection of random stationary patterns in SHE on random graphs.
We also explain the implications of the lack of continuous translational symmetry in the
corresponding averaged SHE on deterministic Cayley graph. In Section 7, we discuss the
utility of graphons in the analysis of dynamical systems on graphs and potential applications
of our techniques to related network models.

The approximation result needed for the analysis of SHE on random graphs is given in
the Appendix. It is derived in using the method of [12] based on the concentration inequality
for adjacency matrices of W -random graphs.

2. Discretization

The goal of this section is to complete the formulation of the discrete model (1.6) by
supplying the details on the families of deterministic and random graphs. In what follows,
we assume that n is even in (1.6) and denote N = n/2. This assumption is used to simplify
computations of the normal forms. We will denote the deterministic graph by ΓNW and the

random graph by Γ̃NW .
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2.1. The discrete SHE on deterministic graphs. To define the family of deterministic
graphs (ΓNW ), we fix N ∈ N and discretize T as follows. Let h

.
= 1

2N
, xi = ih, and

Qi =

[
xi −

h

2
, xi +

h

2

)
, i ∈ [−N + 1, N − 1],

QN =

[
−1

2
,
−1

2
+
h

2

)⋃[
1

2
− h

2
,
1

2

)
.

ΓNW is a weighted graph on 2N nodes indexed by integers from [−N+1, N ]. An edge between
nodes i and j is supplied with a weight

aij = aji = (2N)2

∫
Qi

∫
Qj

W (x, y)dxdy −N + 1 ≤ i < j ≤ N.

In addition, we assume aii = 0, i ∈ [−N + 1, N ].

Since W (x, y) = S(x− y) according to (1.5), we have a Toeplitz matrix A = (aij) with

ai+k j+k = (2N)2

∫
Qi+k

∫
Qj+k

S(x− y)dxdy

= (2N)2

∫
Qi

∫
Qj

S(x− y)dxdy = aij. (2.1)

If Sk := ak0, then aij = Si−j and the graph Laplacian on ΓNW can be rewritten in the form:

(LNWu)i =
1

2N

N∑
j=−N+1

Si−j (uj − ui)

=
1

2N

N∑
j=−N+1

Si−juj −

(
1

2N

N∑
j=−N+1

Si−j

)
ui

=:
(
ANWu

)
i
− dNWui, (2.2)

where dNW is a constant independent of i. The SHE on the deterministic graph ΓNW has the
following form:

u̇ = −
(
LNW − κ

)2
u+ γu− u3, (2.3)

where LNW is defined in (2.2).

2.2. The discrete SHE on random graphs. The second family of graphs (Γ̃NW ) is ran-

dom and corresponds to ΓNW , N ∈ N. Denote the adjacency matrix of Γ̃NW by ÃN =

(ãij)−N+1≤i,j≤N . We postulate that two distinct nodes of Γ̃NW i and j are connected with
probability aij, i.e.,

P(ãij = 1) = aij, P(ãij = 0) = 1− aij. (2.4)

In addition, ãii = 0 and ãji = ãij. The SHE on the random graph Γ̃NW is given in the form:

u̇ = −
(
L̃NW − κ

)2

u+ γu− u3, (2.5)
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where

(L̃NWu)i =
1

N

N∑
j=1

ãij (uj − ui) =
(
ÃNWu

)
i
− (D̃N

Wu)i, (2.6)

where D̃N
W is a diagonal matrix.

Graphs defined by (2.4) are dense almost surely. In dense graphs the number of edges
scales quadratically with the number of vertices, i.e., under this model ΓNW has O(N2) edges.
In this paper, we extend the random graph model to allow for sparse graphs. To this end,
we introduce a nonincreasing sequence αN ∈ (0, 1] and modify (2.4) as follows

P(ãij = α−1
N ) = αNaij, P(ãij = 0) = 1− αNaij. (2.7)

As before, ãii = 0 and ãji = ãij.

If αN ≡ 1 then (2.7) reduces to (2.4) and we obtain the sequence of dense random graphs
as above. On the other hand, if αN ↘ 0 then the expected number of edges in Γ̃NW is

N(N − 1)αN � N2, which implies that Γ̃NW is a sparse graph with probability 1. By varying

the rate of convergence of αN to zero, one can control the degree of sparseness of Γ̃NW . We
need to impose the following technical condition on (αN):

1 ≥ αN ≥MN−1/3, (2.8)

for some M > 0 dependent of N .

We illustrate the families of graphs, which we just defined, with the following example.

Example 2.1. Fix p ∈ [0, 1], r ∈ (0, 1
2
), and define an even function S ∈ L1(T) in the form:

S(x) =

{
1− p, |x| ≤ r,
p, r < |x| ≤ 1

2
.

If p = 0 ΓNW is very close to the Cayley graph on Z2N with the set of generators given by

{±1,±2, . . . ,±b2Nrc}. For p ∈ (0, 1
2
), Γ̃NW is a small–world graph [39]. Figure 1 illustrates

the example with W (x, y) = S(x− y).

a
 

 

b c

Figure 1. (a) W takes values 1 − p and p over the black and white regions
respectively. (b),(c) Pixel plots of the adjacency matrix of ΓNW and its random

counterpart Γ̃NW .
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Remark 2.2. The W-random graph interpretation of the small-world network (2.4) used in
this paper was introduced in [24]. A slightly different model was considered in [2].

Remark 2.3. The deterministic SHE model (2.3) is a Galerkin approximation of the contin-
uous SHE model (1.3). On the other hand, it is also related to the random model (2.5) via
averaging, because E ãij = aij by construction. Therefore, one can view the continuous SHE
model (1.3) as a continuum limit of either of the discrete models (2.3) or (2.5). For a related
class of nonlocal models, it is known that the initial-value problems for the deterministic
and random discrete models approximate that for the continuum one [23, 26]. The same
techniques apply to the models at hand and the approximation results continue to hold for
the discrete and continuum SHEs. However, the analysis in the remainder of this paper does
not depend on the validity of these results.

3. The continuum SHE

In this section, we study the nonlocal SHE model (1.3), which serves as a continuum
limit for the discrete SHE models (2.3) and (2.5) on deterministic and random graphs ΓNW
and Γ̃NW respectively. Our objective is to obtain a spatially dependent steady state via a
Turing bifurcation of the trivial solution. For W in the form (1.5), the nonlocal SHE on
Cayley graphon can be written in the form

∂tu = − (KS − dS − κ)2 u+ γu− u3, (3.1)

where κ and γ are real parameters and

(KSf)(x) =

∫
T
S(x− y)f(y)dy, (3.2)

dS =

∫
T
S(x)dx. (3.3)

Throughout this section, we assume that S is a given integrable function on T, i.e., S ∈ L1(T).
Furthermore, S is assumed to be even almost everywhere. By Young’s convolution inequality,
KS is a bounded operator from Lp(T) to Lp(T) for any 1 ≤ p ≤ ∞ with the bound

‖KSf‖Lp(T) ≤ ‖S‖L1(T)‖f‖Lp(T). (3.4)

Remark 3.1. Since KS is a bounded operator from L2(T) to L2(T) and T is compact, the
spectrum σ(LS) is purely discrete and consists of eigenvalues {λk}k∈Z obtained from the
Fourier modes:

λk =

∫
T
S(x)e−2πikxdx, k ∈ Z.

Since S is an even function,

σ(KS) = {λ0, λ1 = λ−1, λ2 = λ−2, · · · }
consists of real eigenvalues. However, unless S is even on T, KS is not a self-adjoint operator
in L2(T) and the eigenvalues {λk}k∈Z only satisfy the reduction λk = λ̄−k for k ∈ N which
does not exclude the possibility of complex eigenvalues.
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The following lemma gives the well-posedness result of the time-evolution problem (3.1)
in the phase space X := L∞(T), which is continuously embedded into L2(T) due to the
bound ‖f‖L2(T) ≤ ‖f‖L∞(T).

Lemma 3.2. Assume that S ∈ L1(T) and its periodic extension to R is an even function. For
every u0 ∈ X , there exists a unique global solution u ∈ C1([0,∞),X ) such that u(0, ·) = u0.
The unique solution u ∈ C1([0, τ0],X ) is Lipschitz continuous with respect to u0 ∈ X for
every finite τ0 > 0.

Proof. By (3.4) with p = ∞, KS is a bounded operator from X to X . In addition, the
nonlinear term of (3.1) is closed in X due to the bound ‖f 3‖L∞ ≤ ‖f‖3

L∞ . Hence the vector
field

A(u)
.
= −(KS − dS − κ)2u+ γu− u3

is a C1 map from X to X . By the standard results of the semi-group theory [4, Chapter
3], for every u0 ∈ X , there exists a unique local solution u ∈ C1([0, τ0],X ) for some τ0 > 0.
Thanks to the repulsive cubic nonlinearity, we have the following bound:

d

dt
‖u(t, ·)‖L∞(T) ≤ ‖(KS − dS − κ)2u‖L∞(T) + γ‖u(t, ·)‖L∞(T)

≤ [(‖S‖L1 + |κ|+ |dS|)2 + γ]‖u(t, ·)‖L∞(T)

which shows that the L∞-norm of the local solution u(t, ·) cannot blow up in a finite time
t ∈ [0, τ0]. Hence, the local solution u ∈ C1([0, τ0],X ) is extended to the infinite time as
u ∈ C1([0,∞),X ). Lipschitz continuity of the local solution u ∈ C1([0, τ0],X ) with respect
to u0 ∈ X for every finite τ0 > 0 follows from Gronwall’s inequality. �

Remark 3.3. The nonlinear term of (3.1) is not closed in L2(T). However, it is closed in
H1

per(T) given by

H1
per(T)

.
=
{
f ∈ L2(T) : f ′ ∈ L2(T)

}
,

since H1
per(T) is a Banach algebra with respect to pointwise multiplication. Moreover,

H1
per(T) is continuously embedded into a space of bounded and continuous functions sat-

isfying the periodic boundary conditions. Compared to H1
per(T), functions in the phase

space X = L∞(T) do not have to be continuous or to satisfy the periodic boundary condi-
tions. This is more suitable in the context of solutions of the discrete SHE on deterministic
and random graphs.

Lemma 3.4. If u(t, x) is a solution of (3.1), so are u(t, x+ h), u(t,−x), and −u(t, x).

Proof. The continuous SHE (3.1) admits the following symmetries:

• the spatial translation x 7→ x+ h, ∀h ∈ R due to periodic conditions,
• the spatial reflection x 7→ −x due to even S,
• the sign reflection u 7→ −u due to odd nonlinearity,

which can be easily confirmed. The new solutions are generated by the symmetries. �
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Remark 3.5. The nonlocal SHE (3.1) has two real parameters γ and κ. Parameter γ is small
and is used to characterize Turing bifurcation of a spatially dependent steady state from
the zero solution. On the other hand, parameter κ is the tuning parameter defined by the
bifurcation condition according to the following definition.

Assumption 3.6. We fix k0 ∈ N, assume that λk 6= λk0 for every k ∈ N\{k0}, and choose
κ := λk0 − dS = λ−k0 − dS.

Remark 3.7. Since KS is a compact operator on L2(T), eigenvalues {λn}n∈Z satisfy λn → 0
as |n| → ∞. Hence, Assumption 3.6 implies that there is C0 > 0 such that

|λk − λk0 | ≥ C0 for all k ∈ N, k 6= k0. (3.5)

The following theorem presents the main result of this section. Although it is an exercise
from [15, Section 2.4.3], we write the computational details explicitly, since they are useful
for analysis of Turing bifurcation in the discrete SHE.

Theorem 3.8. Under Assumption 3.6, there exists γ0 > 0 and C0 > 0 such that for every
γ ∈ (0, γ0) there exists a non-trivial time-independent solution uγ(·+ δ) in X of the nonlocal
SHE model (3.1), where uγ is an even function satisfying

sup
x∈T

∣∣∣∣uγ(x)−
2
√
γ

√
3

cos(2πk0x)

∣∣∣∣ ≤ C0

√
γ3, (3.6)

and δ ∈ T is an arbitrary translational parameter. The orbit of time-independent solutions
{uγ(·+ δ)}δ∈T is asymptotically stable in the time evolution of the nonlocal SHE in X .

Proof. In order to use the center manifold theorem and to derive slow dynamics along the
center manifold, we use the Fourier series

u(t, x) =
∑
k∈Z

ak(t)e
2πikx

and obtain the evolution problem in the form

ȧk = −(λk − λk0)2ak + γak −
∑

k1,k2∈Z

ak1ak2ak−k1−k2 , (3.7)

where we have used that κ = λk0 − dS. By standard results from Fourier analysis, u(t, ·) ∈
X = L∞(T) if {ak(t)}k∈Z ∈ X̂ = `1(Z) for every t ≥ 0. The nonlinear term of (3.7) is closed
since `1(Z) is a Banach algebra with respect to the convolution sum.

Since u is real, we have a−k = āk for all k ∈ Z. Due to the three symmetries identified in
Lemma 3.4, the vector field in (3.7) is equivariant under the transformation

ak → ake
2πikh, k ∈ Z, h ∈ R, (3.8)

and under the transformations: ak → a−k and ak → −ak. Consequently, the system (3.7) is
closed on the subspaces

X̂sym := {{ak}k∈Z ∈ `1(Z,R) : a−k = ak } (3.9)
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and

X̂bif := {{ak}k∈Z ∈ `1(Z,C) : a−k = ak = 0, for k 6= mk0, m ∈ {1, 3, 5, · · · }}, (3.10)

where k0 ∈ N is defined in Assumption 3.6.

By Assumption 3.6, the rest of eigenvalues {λk}k∈Z\{±k0} are bounded away from λk0 =
λ−k0 with the bound (3.5). By the center manifold theorem [15, Theorem 2.9], there exists a

center manifold in X̂bif spanned by A := ak0 ∈ C and Ā := a−k0 . Since the system is closed
on (3.10), the center manifold can be expressed as graphs of functions:

amk0 = Ψm(A, Ā), a−mk0 = Ψ̄m(A, Ā), m ∈ {3, 5, · · · }.
The dynamics on the center manifold can be expressed by the amplitude equations

Ȧ = F1(A, Ā), ˙̄A = F1(A, Ā),

where F1 is a C∞ function in A and Ā with γ-dependent coefficients which commutes with
the symmetries of (3.7). Due to the equivariance (3.8), the amplitude equations can be
transformed to the normal form:

Ȧ = AP1(|A|2), (3.11)

where P1 is an analytic function in |A|2 with γ-dependent coefficients. Moreover, due to
the symmetry with respect to the transformation ak → a−k, P1 has real-valued coefficients.
Similarly, we express functions Ψm in the form:

Ψm(A, Ā) = AmPm(|A|2), m ∈ {3, 5, · · · }, (3.12)

where Pm is a C∞ function in |A|2 with γ-dependent real-valued coefficients.

Due to the cubic nonlinearity in (3.7), we obtain

Ȧ =
[
γ − 3|A|2 +O(|A|4)

]
A, (3.13)

where the remainder terms of the order of O(|A|4) is defined by Ψ3 since Ψm with m ≥ 5
give a higher-order contribution of O(|A|6) to the normal form (3.13). It follows from (3.13)
that there exists a time-independent solution of the form

Aγ,δ :=

√
γ
√

3
[1 +O(γ)] e2πk0iδ, (3.14)

where δ is an arbitrary parameter. This time-independent solution (3.14) yields a non-trivial
time-independent solution of the nonlocal SHE (3.1) in X satisfying the expansion in (3.6).
Since the system (3.7) is closed on (3.9), if δ = 0, then a−k0 = ak0 = Aγ,δ=0 is real and
so are a±mk0 for every m ∈ {3, 5, · · · }. This yields the even function uγ ∈ X . Due to the
translational symmetry (3.8), the parameter δ is equivalent to the translation of the solution
uγ(·+ δ).

To determine stability of the time-independent solution uγ(· + δ) for every given δ ∈ R,
we note that all eigenvalues in the spectrum of −(KS − dS − κ)2 are located in the left-
half plane of the complex plane with the exception of the double zero eigenvalue. Hence,
there is no unstable manifold of the system (3.7). The time-independent solution (3.14) is
orbitally asymptotically stable in the time evolution of the reduced equation (3.11). By the
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standard decomposition near the orbit {uγ(· + δ)}δ∈T, a perturbation of the initial solution
uγ(·+ δ0) defines a time-dependent solution which approaches as t→ +∞ exponentially fast
to the final solution uγ(·+ δ∞) with δ∞ being close to δ0. Hence, the orbit {uγ(·+ δ)}δ∈T is
asymptotically stable in the time evolution of the nonlocal SHE in X . �

Remark 3.9. The leading-order approximation for Ψ3 in (3.12) can be obtained from (3.7)
and (3.13). Substitution yields

[γ − 3|A|2 +O(|A|4)]
[
3P3(|A|2) + |A|2P ′3(|A|2)

]
=
[
γ − (λ3k0 − λk0)2

]
P3(|A|2)− 1 +O(|A|2),

which is solved by expanding P3(|A|2) in |A|2 with the leading order:

P3(|A|2) =
−1

(λ3k0 − λk0)2 + 2γ
+O(|A|2), (3.15)

where λ3k0 6= λk0 by the assumption. Similarly, one can find the leading-order expansions of
Ψm in (3.12) for m ≥ 5.

Related to the time-independent solution uγ(·+ δ) of the nonlocal SHE in Theorem 3.8,
we can introduce the linearized operator in the form

Lγ := −(KS − λk0)2 + γ − 3u2
γ, (3.16)

where we have used that κ = λk0 − dS according to Assumption 3.6. Since uγ is a bounded
function on T, Lγ is a bounded operator from L2(T) to L2(T) for all sufficiently small γ
for which uγ is defined. Hence, the spectrum of Lγ is purely discrete and consists of real
eigenvalues, see Remark 3.1. The following lemma uses the smallness of γ and gives a precise
information on the location of these eigenvalues.

Lemma 3.10. Let uγ ∈ X be defined by Theorem 3.8 for γ ∈ (0, γ0) and assume that
u′γ ∈ L2(T). The spectrum of Lγ given by (3.16) in L2(T) consists of eigenvalues ordered as
{Λk(γ)}k∈N such that Λ1(γ) = 0 and Λk(γ) < 0, k ≥ 2 satisfy

|Λ2(γ)| ≤ C1γ, |Λk(γ)| ≥ C2, k ≥ 3

where C1, C2 are γ-independent positive constants.

Proof. The existence of Λ1(γ) = 0 follows from the translational invariance of the nonlocal
SHE given by (3.1) since δ ∈ R is a free parameter of the steady state uγ(· + γ) ∈ X in
Theorem 3.8. Since u′γ ∈ L2(T) is assumed, we obtain by direct differentiation that

Lγu′γ(·+ δ) = 0,

so that Λ1(γ) = 0 for γ ∈ (0, γ0).

The rest of the spectrum of Lγ in L2(T) follows from the perturbation theory for self-
adjoint operators with purely discrete spectrum which implies continuity of eigenvalues with
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respect to small parameter γ ∈ (0, γ0). The eigenvalue Λ2(γ) coincides with the linearization
of the slow motion at the center manifold given by (3.13):

Λ2(γ) = γ − 9|Aγ,δ|2 +O(|Aγ|4)

= −2γ +O(γ2),

which is strictly negative with the bound |λ2(γ)| ≤ C1γ with some γ-independent constant
C1 > 0 for γ ∈ (0, γ0). Eigenvalues Λk(γ) for k ≥ 3 are γ-close to −(λk − λk0)

2 for k ∈
Z\{k0,−k0} which are strictly negative and bounded away from 0 by Assumption 3.6. Hence
|Λk(γ)| ≥ C2 for all k ≥ 2 with some γ-independent constant C2 > 0 for γ ∈ (0, γ0). �

Remark 3.11. Due to the presence of zero eigenvalue Λ1(γ) = 0, the operator Lγ is not
invertible. This creates difficulties in the persistence argument when the limiting nonlocal
model (3.1) is replaced by the discrete SHE models on the deterministic or random graphs,
which destroy the continuous translational symmetry.

4. The discrete SHE on Cayley graphs

Here we study the discrete SHE (2.3) on the deterministic Cayley graph ΓNW . By using
(2.2), we rewrite the discrete model in the form:

u̇j = −[(ANW − dNW − κ)2u]j + γuj − u3
j , j ∈ ZN := Z/(2NZ), (4.1)

where N is integer, κ and γ are real parameters, and the linear operator ANW : ZN → ZN is
given by the convolution sum

[ANWu]j =
1

2N

∑
l∈ZN

Sj−lul, j ∈ ZN , (4.2)

where {Sj}j∈ZN satisfies S−j = Sj for all j ∈ ZN . System of differential equations (4.1)
can be viewed as an evolution equation on ZN . The classical solutions are interpreted as
elements of C1(R,RZN ), the space of continuously differentiable vector functions of t ∈ R.

Lemma 4.1. If {uj(t)}j∈ZN is a solution of the discrete SHE (4.1), so are

{uj+m(t)}j∈ZN , {u−j(t)}j∈ZN , {um−j(t)}j∈ZN , and {−uj(t)}j∈ZN . (4.3)

Proof. Similarly to the continuous SHE (3.1), the discrete SHE (4.1) admits the following
three symmetries:

• the discrete spatial translation j 7→ j +m, ∀m ∈ ZN due to periodic conditions,
• the spatial reflection j 7→ −j due to even {Sj}j∈ZN ,
• the sign reflection u 7→ −u due to odd nonlinearity,

which can be easily confirmed. The new solutions (4.3) are generated from {uj(t)}j∈ZN by
symmetries. �
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Our objective is to obtain a spatially dependent steady state of the discrete SHE (4.1)
via a Turing bifurcation of the zero solution. By using the discrete Fourier transform, one
can obtain eigenvalues of ANW in the form {λNk }k∈ZN with

λNk =
1

2N

∑
j∈ZN

Sje
− iπkj

N , k ∈ ZN . (4.4)

Since S−j = Sj for all 1 ≤ j ≤ N − 1, then λNk = λN−k for 1 ≤ k ≤ N − 1. We again
use parameter γ in (4.1) to characterize Turing bifurcation and parameter κ to satisfy the
bifurcation condition.

We will locate a spatially dependent steady state bifurcating from the zero solution
by adapting the proof of Theorem 3.8 with the discrete Fourier transform replacing Fourier
series. One key new feature of the center manifold analysis is that the translational parameter
δ ∈ T which was arbitrary in Theorem 3.8 takes exactly 4N admissible values under some
non-degeneracy conditions. In comparison with Assumption 3.6, we set k0 = 1 for the
bifurcating mode in order to simplify computations of the normal form. The following
theorem presents the main result of this section.

Theorem 4.2. Assume that λNk 6= λN1 for k 6= ±1 and choose κ := λN1 − dNW = λN−1 − dNW .
If rN 6= 0 in (4.15), then there exists γ0 > 0 and C0 > 0 such that for every γ ∈ (0, γ0) and
every integer N ≥ 3 there exist two non-trivial time-independent solutions uNγ , v

N
γ ∈ RZN of

the discrete SHE (4.1), where uNγ is symmetric about j = 0 and satisfies

sup
j∈ZN

∣∣∣∣uj − 2√
3

√
γ cos

(
πj

N

)∣∣∣∣ ≤ C0

√
γ3. (4.5)

and vGγ is symmetric about the mid-point between j = 0 and j = 1 and satisfies

sup
j∈ZN

∣∣∣∣uj − 2√
3

√
γ cos

(
πj

N
− π

2N

)∣∣∣∣ ≤ C0

√
γ3. (4.6)

One of the two solutions is asymptotically stable in the time evolution of the discrete SHE
in C1(R,RZN ) and the other one is unstable. These solutions generate (2N) asymptotically
stable and (2N) unstable solutions on ZN via the discrete group of spatial translations.

Proof. We use the discrete Fourier transform

uj =
∑
k∈ZN

ak(t)e
iπkj
N , j ∈ ZN , (4.7)

with real a0, aN , and possibly complex a−k = āk for 1 ≤ k ≤ N − 1. The Fourier amplitudes
are extended periodically with the period 2N as the sequence {ak}k∈ZN . The discrete SHE
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(4.1) transforms to the evolution problem in the form

ȧk = −(λNk − λN1 )2ak + γak −
∑

−N≤k1,k2,k−k1−k2≤N−1

ak1ak2ak−k1−k2

−
∑

−N≤k1,k2,k+2N−k1−k2≤N−1

ak1ak2ak+2N−k1−k2

−
∑

−N≤k1,k2,k−2N−k1−k2≤N−1

ak1ak2ak−2N−k1−k2 , (4.8)

where the summation terms are adjusted due to the (2N)-periodicity of the Fourier modes
in the Fourier space and we have used that κ = λN1 − dNW . Symmetries in Lemma 4.1 imply
that the system (4.8) is equivariant under the transformation

ak → ake
iπkm
N , k,m ∈ ZN (4.9)

and under the transformations: ak → a−k and ak → −ak. In particular, the system (4.9) is
closed on the subspaces

{a ∈ RZN : a−k = ak, 1 ≤ k ≤ N − 1} (4.10)

and
{a ∈ CZN : a−k = ak = 0, for k 6= m, m ∈ {1, 3, 5, . . . ,M}}, (4.11)

where M = N if N is odd or M = N − 1 if N is even.

We apply the center manifold theorem [15, Theorem 2.9] under the assumption that
λNk 6= λN1 for k 6= ±1. Similar to the proof of Theorem 3.8, there exists a center manifold of
the system (4.8) spanned by a1 ≡ A ∈ C and a−1 = Ā. Since the system is closed on (4.11),
the center manifold can be expressed as graphs of functions:

am = Ψm(A, Ā), a−m = Ψ̄m(A, Ā), m ∈ {3, 5, . . . ,M}. (4.12)

The slow dynamics on the center manifold can be expressed by the amplitude equations

Ȧ = F1(A, Ā), ˙̄A = F1(A, Ā),

where F1 is a C∞ function in A and Ā with γ-dependent coefficients which commutes with
the symmetries of (4.8). Compared to the normal form for the amplitude equations in (3.11)
and (3.12) the discrete Fourier modes are (2N)-periodic so that[

Ae
iπkj
N

]2N+1

= A2N+1e
iπkj
N and

[
Āe

−iπkj
N

]2N−1

= Ā2N−1e
iπkj
N .

Following the classification of normal forms under the symmetry (4.9) in [7], we transform
the amplitude equations to the normal form:

Ȧ = AQ1(|A|2, A2N , Ā2N) + Ā2N−1R1(|A|2, A2N , Ā2N), (4.13)

where Q1 and R1 are C∞ functions in |A|2, A2N , and Ā2N with γ-dependent coefficients. Due
to the symmetry with respect to the transformation ak → a−k, Q1 and R1 have real-valued
coefficients. Similarly, we express functions Ψm in the form:

Ψm(A, Ā) = AmQm(|A|2, A2N , Ā2N) + Ā2N−mRm(|A|2, A2N , Ā2N), (4.14)
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where Qm and Rm are C∞ functions in |A|2, A2N , and Ā2N with γ-dependent real-valued
coefficients.

We assume the following non-degeneracy condition:

rN := R1(0, 0, 0) 6= 0, (4.15)

where rN is a γ-dependent real-valued coefficient. Similarly to (3.13), we obtain from the
cubic nonlinearity in (4.8) that

Q1(|A|2, A2N , Ā2N) = γ − 3|A|2 +O(|A|4),

if N ≥ 3. By using the polar form A = ρeiθ, we write{
ρ̇ = ρ[γ − 3ρ2 +O(ρ4)] + cos(2Nθ)ρ2N−1[rN +O(ρ2)],

θ̇ = − sin(2Nθ)ρ2N−2[rN +O(ρ2)].

If rN 6= 0, there exist two distinct time-independent solutions for θ = 0 and θ = π
2N

on
interval [0, π

N
). If N ≥ 3, both solutions can still be expressed at the leading order in the

form:

Aγ,δ =

√
γ
√

3
[1 +O(γ)] e

iπδ
N , (4.16)

with either δ = 0 (which corresponds to θ = 0) or δ = 1
2

(which corresponds to θ = π
2N

).
For δ = 0, we get the real solution {ak}k∈ZN on the subspace (4.10) that corresponds to the
solution uNγ of the discrete SHE (4.1) which is symmetric about j = 0 and satisfies (4.5).

For δ = 1
2
, we get a complex solution {ak}k∈ZN that corresponds to the real solution vNγ of

the discrete SHE (4.1) which satisfies (4.6). The leading order and hence the solution vNγ is
symmetric about the mid-point between j = 0 and j = 1 due to the symmetry with respect
to the transformation uj → u1−j in Lemma 4.1.

To obtain the stability conclusion for the time-independent solutions, we observe that all
eigenvalues in the spectrum of −(ANW −λN1 )2 are located in the left-half plane of the complex
plane with the exception of the double zero eigenvalue. If rN 6= 0, then linearization of the
time-dependent equation (4.13) at the leading-order solution (4.16) for N ≥ 3 yields for the
perturbations (ρ′, θ′): {

ρ̇′ = −2γρ′ +O(γ2),

θ̇′ = ∓
(
γ
3

)N−1
[rN +O(γ)] θ′,

(4.17)

where the upper sign corresponds to the solution uNγ and the lower sign corresponds to the

solution vNγ . Dynamics of (4.17) in ρ′ is asymptotically stable, whereas dynamics of (4.17)
in θ′ is either asymptotically stable or unstable. This yields the conclusion that one of the
two solutions uNγ and vNγ is asymptotically stable in the time evolution of the discrete SHE

in R2N
per and the other one is unstable.

The two solutions uNγ and vNγ generate (4N) solutions by using the discrete group of
translations uj 7→ uj±m for every m ∈ ZN by Lemma 4.1. The stability of the translated
solutions coincide with the stability of uNγ and vNγ . �
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Remark 4.3. Since

cos

(
πj

N
− π

N

)
= − cos

(
πj

N

)
,

N of (2N) states obtained from either (4.5) or (4.6) with the discrete group of translations
are the sign reflections of the other N states, in accordance with the sign reflection symmetry
in Lemma 4.1.

Remark 4.4. The graphons defined by the graphs ΓNW used the formulation of the discrete
SHE (4.1) converge to W , the kernel used in the continuous SHE (3.1), in the cut-norm as
N →∞. Thus, λNk → λk for every fixed k ∈ Z [37]. From this we conclude that Assumption
3.6 with k0 = 1 implies the corresponding assumption of Theorem 4.2, i.e., λNk 6= λN1 , k 6= ±1
for sufficiently large N .

Remark 4.5. If the non-degeneracy condition (4.15) is not satisfied, one needs to expand
functions Q1 and R1 in (4.13) to the higher orders and to obtain the higher-order non-
degeneracy conditions. If it happens that R1 ≡ 0 and Q1(|A|2, A2N , Ā2N) = P1(|A|2), then
the time-independent solution (4.16) exists with arbitrary δ ∈ R/Z. In this degenerate case,
there exists a family of non-trivial time-independent solutions uNγ,δ ∈ RZN of the discrete
SHE (4.1) with arbitrary parameter δ ∈ [0, 1], where uγ,δ satisfies

sup
−N≤j≤N

∣∣∣∣uj − 2√
3

√
γ cos

(
πj

N
− πδ

2N

)∣∣∣∣ ≤ C0

√
γ3. (4.18)

The orbit of time-independent solutions {uNγ,δ}δ∈R/Z is asymptotically stable in the time

evolution of the discrete SHE in C1(R,RZN ). Although such degenerate cases may exist in
other discrete models, see, e.g., [16], the explicit computations for the particular discrete
SHE model (4.1) show that rN 6= 0 for every N ≥ 3.

Remark 4.6. Cases N = 1 and N = 2 are exceptional. In both cases, the discrete Fourier
transform in the subspace (4.11) is given by the sum of two terms

uj = A(t)e
iπj
N + Ā(t)e−

iπj
N , (4.19)

If N = 1, then A in (4.19) is real and satisfies

Ȧ = γA− 4A3,

from which the stable nontrivial solutions at A = ±√γ/2 exist in addition to the unstable
solution A = 0 for γ > 0. If N = 2, then A in (4.19) is complex and satisfies

Ȧ = γA− 3|A|2A− Ā3.

Using the polar form A = ρeiθ, this equation is reduced to the system{
ρ̇ = γρ− 3ρ3 − ρ3 cos(4θ),

θ̇ = ρ2 sin(4θ),

from which the two nontrivial time-independent solutions are given by

(ρ, θ) =

(√
γ

2
, 0

)
and (ρ, θ) =

(√
γ
√

2
,
π

4

)
.
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The linearization shows that the first solution is linearly unstable and the second solution is
asymptotically stable.

The following two examples give details of computations of the center manifold reductions
for N = 3 and N = 4, for which the discrete Fourier transform in the subspace (4.11) is
given by the sum

uj = A(t)e
iπj
N + Ā(t)e−

iπj
N +B(t)e

3iπj
N + B̄(t)e−

3iπj
N . (4.20)

These details show that the non-degeneracy condition (4.15) is satisfied for N = 3, 4.

Example 4.7. If N = 3, then A is complex and B is real. The system (4.1) in the decom-
position (4.20) is reduced to the system of two equations{

Ȧ = γA− 3|A|2A− 12B2A− 6Ā2B,

Ḃ = −(λN3 − λN1 )2B + γB − 1
2
(A3 + Ā3)− 6|A|2B − 4B3.

We compute the center manifold reduction B = Ψ3(A, Ā) in powers of A according to (4.14)
with real B by writing

Ψ3(A, Ā) =
1

2
(A3 + Ā3)

[
c0 +O(|A|2)

]
,

where c0 is a real coefficient that depends on γ. From the system of differential equations for
A and B, we find at the cubic order that

c0 =
−1

(λN3 − λN1 )2 + 2γ
,

which agrees with the expansion (3.15). Substituting B = Ψ3(A, Ā) into the first equation of
the system, we obtain consistently with (4.13) that the slow dynamics of A is given by

Ȧ = A
[
γ − 3|A|2 +O(|A|4)

]
− 3c0Ā

5
[
1 +O(|A|2)

]
.

Since rN=3 = −3c0 > 0, the non-degeneracy condition (4.15) is satisfied.

Example 4.8. If N = 4, then both A and B are complex. The system (4.1) in the decom-
position (4.20) is reduced to the system of two complex-valued equations{

Ȧ = γA− 3(|A|2 + 2|B|2)A−B3 − 3(ĀB + B̄2)Ā,

Ḃ = −(λN3 − λN1 )2B + γB − A3 − 3(2|A|2 + |B|2)B − 3(AB̄ + Ā2)B̄.

We compute the center manifold reduction B = Ψ3(A, Ā) in powers of A according to (4.14)
by writing

Ψ3(A, Ā) = A3
[
c0 + c1|A|2 +O(|A|4)

]
+ Ā5

[
b0 +O(|A|2)

]
,
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where c0, c1, and b0 are real coefficients that depend on γ. From the system of differential
equations for A and B, we find recursively at the cubic and quintic powers of A that

c0 =
−1

(λN3 − λN1 )2 + 2γ
,

c1 =
−3

[(λN3 − λN1 )2 + 2γ][(λN3 − λN1 )2 + 4γ]
,

b0 =
3

[(λN3 − λN1 )2 + 2γ][(λN3 − λN1 )2 + 4γ]
.

Substituting B = Ψ3(A, Ā) into the first equation of the system, we obtain consistently with
(4.13) that the slow dynamics of A is given by

Ȧ = A
[
γ − 3|A|2 +O(|A|4)

]
− 3(b0 + c2

0)Ā7
[
1 +O(|A|2)

]
.

Since rN=4 = −3(b0 + c2
0) < 0, the non-degeneracy condition (4.15) is satisfied.

Remark 4.9. One can show with the method of mathematical induction that the non-
degeneracy condition (4.15) is satisfied for every N ≥ 3.

The following lemma is important for the persistence argument, when the discrete SHE
is perturbed by a small correction term.

Lemma 4.10. Let uNγ , v
N
γ ∈ RZN be defined by Theorem 4.2 for γ ∈ (0, γ0) under the non-

degeneracy condition (4.15). Then, the matrix operator

Aγ := −(ANW − λN1 )2 + γ − 3(uγ)
2 : ZN → ZN ,

where (uγ)
2 is a diagonal matrix computed on the squared entries of uNγ , v

N
γ , is invertible.

Proof. This follows from the available information about the eigenvalues of the linearized
system (4.8) at the time-independent solutions {ak}k∈ZN constructed from (4.13) with (4.12)
and (4.14). Eigenvalues of the linearized system (4.17) are bounded away from zero and so
are eigenvalues −(λNk − λN1 )2 for k 6= ±1. �

Remark 4.11. The inverse matrix A−1
γ in Lemma 4.10 behaves poorly as γ → 0 because the

linearized system (4.17) has one eigenvalue −2γ+O(γ2) and the other eigenvalue of O(γN−1)
under the non-degeneracy condition (4.15). As a result, ‖A−1

γ ‖ = O(γ1−N)→∞ as γ → 0.

5. The discrete SHE on W -random graphs

We now turn to the discrete SHE model (2.5) on the W -random graph Γ̃NW . Using (2.6),
we rewrite it as follows

u̇ = −
(
ÃNW − D̃N

W − κ
)2

u+ γu− u3, j ∈ ZN , (5.1)

where u ∈ C1(R,RZN ) and ÃNW = (ãij) is the adjacency matrix of Γ̃NW . To make the setting
for the model on a random graph consistent with the model on the deterministic Cayley
graph, we have kept the periodic setting ZN in (5.1). The matrix ÃNW and the diagonal
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matrix D̃N
W acts on components of u ∈ ZN inside [−N,N − 1] only. The same notations ÃNW

and D̃N
W are used to denote the linear operators on ZN and on [−N,N − 1].

We are interested in the Turing bifurcation of the trivial solution of (5.1). Appendix A
shows that the matrix ÃNW is close to the matrix ANW in the cut-norm. Consequently, eigen-

values of ÃNW are close to the eigenvalues {λNk }k∈ZN of ANW given by (4.4) [37]. The following
theorem presents the main result on the steady-state solutions in (5.1).

Theorem 5.1. Assume that λNk 6= λN1 for k 6= ±1 and choose κ := λN1 − dNW = λN−1 − dWN .
Fix γ ∈ (0, γ0) with γ0 given in Theorem 4.2 and with rN 6= 0 in (4.15). There exist N0 ≥ 3
such that for every N ≥ N0 there exist at least 4 and at most 4N values of δ such that the
discrete SHE (5.1) admits time-independent solutions u ∈ RZN satisfying

sup
j∈ZN

∣∣∣∣uj − 2√
3

√
γ cos

(
πj

N
− δ
)∣∣∣∣ ≤ C0

√
γ3. (5.2)

Half of solutions are asymptotically stable in the time evolution of the discrete SHE (5.1) in
C1(R,RZN ) and the other half of solutions are unstable.

Remark 5.2. The system (5.1) does not have any symmetries except of the symmetry with
respect to the sign reflection u 7→ −u. Theorem 4.2 gives existence and stability of two
distinct state uNγ and vNγ for sufficiently small γ > 0, which are translated to every point
of the lattice chain by the discrete translational symmetry of Lemma 4.1. Since the lattice
chain in ZN has 2N sites, we can count 4N distinct steady-state solutions in the discrete
SHE model (4.1), of which 2N are stable and 2N are unstable. Compared to this conclusion,
we do not have an exact count of the number of steady-state solutions on the random graph
because of the broken symmetries. The number of steady solution is a random number
divisible by 4 between 4 and 4N.

Remark 5.3. Recall that the matrix Aγ in Lemma 4.10 has a very small eigenvalue of the
size O(γN−1) for large N ≥ 3. Due to this small eigenvalue, we cannot not prove that
the steady-state solutions of (4.1) persist as the steady-state solutions of (5.1) because the
perturbation is not sufficiently small, see Appendix A, and the implicit function theorem
cannot be used for the persistence argument. To overcome this problem, we develop again
the approach based on the center manifold reduction, where the main difference is that the
linear part of (5.1) is no longer diagonalizable by the discrete Fourier transform. The cubic
nonlinear term still enjoys the same transformation under the discrete Fourier transform as
in the proof of Theorem 4.2. The other distinction from the deterministic setting is that we
can no longer use γ > 0 as a small continuation parameter. Instead, we consider the small
parameter γ as fixed in (0, γ0) with γ0 given in Theorem 4.2 and continue the solution with
respect to an additional small parameter µ induced by randomness which is only small for
sufficiently large N ≥ N0.

Proof of Theorem 5.1. As in the proof of Theorem 4.2, we use discrete Fourier transform

uj(t) =
∑
k∈ZN

ak(t)e
iπkj
N , j ∈ ZN .
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To apply the result in Appendix A, we write

u = Fa, F =
(
ωjk
)
−N≤j,k≤N−1

, ω = eiπ/N ,

with F−1 = (2N)−1F ∗, where F ∗ stands for the conjugate transpose of F . By applying the
inverse Fourier transform to both sides of (5.1), we have

ȧk = −(L̂a)k + γak −
∑

−N≤k1,k2,k−k1−k2≤N−1

ak1ak2ak−k1−k2

−
∑

−N≤k1,k2,k+2N−k1−k2≤N−1

ak1ak2ak+2N−k1−k2

−
∑

−N≤k1,k2,k−2N−k1−k2≤N−1

ak1ak2ak−2N−k1−k2 , (5.3)

where

L̂ = F−1
(
ÃNW − D̃N

W − κ
)2

F.

Recall that similarity transformation ANW 7→ F−1ANWF diagonalizes the linear part of the
deterministic model (4.1). Thus,

L̂ = diag{(λN−N − λN1 )2}, . . . , (λNN−1 − λN1 )2}+ ∆, (5.4)

where

∆ = F−1
{

((2N)−1ÃNW − D̃N
W − κ)2 − ((2N)−1ANW − dNW − κ)2

}
F (5.5)

and we have used that κ = λN1 − dNW . Ã is a symmetric matrix, whose entries above the

main diagonal are independent random variables. Further, E Ã = A. From these facts, by
Bernstein’s inequality, it follows that with probability at least 1−O

(
25−N

)
, we have

max
−N≤j,k≤N−1

|∆jk| ≤ C(α3
NN)−1/2 (5.6)

(cf. Lemma A.1). Pick µ > 0 small and fixed. It follows from (5.6) that with high probability
for sufficiently large N , we have

max
−N≤j,k≤N−1

|∆jk| ≤ µ. (5.7)

Proceeding along the lines of the proof of Theorem 4.2, we express the slow manifold of
the system (5.3) as the graph of functions a0 = Ψ0(A, Ā), a1 = A, a−1 = Ā, and

ak = Ψk(A, Ā), a−k = Ψ̄k(A, Ā), k ∈ {2, 3, . . . , N}.

Note that the difference from (4.12) that the general L̂ couples the odd-numbered and even-
numbered Fourier amplitudes.

The functions Ψk(A, Ā), k 6= ±1 can be obtained from the condition that γ and µ are

small, whereas (λNk −λN1 )2 in L̂kk are strictly positive and bounded away from zero for every
k 6= ±1. The dynamics on the slow manifold can be expressed by the amplitude equation:

Ȧ = F1(A, Ā), ˙̄A = F1(A, Ā), (5.8)
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where F1 is a C∞ function in A and Ā with (γ,µ)-dependent coefficients. The Taylor series
expansion includes only odd powers of A and Ā due to the only symmetry of the random
model (5.1) with respect to the sign reflection u 7→ −u.

The power expansion of F1(A, Ā) is different from those in the proof of Theorem 4.2 due

to the presence of the perturbation terms in L̂κ which are of the order of O(µ). In addition, it
is no longer true that F1(A, Ā) can be written in the form (4.13). Nevertheless, the nonzero
terms in the expansion of (4.13) remain dominant terms in the expansion of (5.8) if µ is
sufficiently small. Thus, we have

F1(A, Ā) = (γ + µα1)A+ µα2Ā

+ (−3 + µβ1)|A|2A+ µβ2A
3 + µβ3|A|2Ā+ µβ4Ā

3 + . . .

+ [rN +O(µ)]Ā2N−1 + . . . (5.9)

with some (γ, µ)-dependent coefficients which are bounded as |γ|+ |µ| → 0. Since γ ∈ (0, γ0)
is fixed and µ in (5.7) can be chosen sufficiently small, we have γ + µα1 > 0, −3 + µβ1 < 0,
and rN +O(µ) 6= 0. By using the polar form A = ρeiθ, we write

ρ̇ = [γ + µα1 + µα2 cos(2θ)]ρ
+[−3 + µβ1 + µβ2 cos(2θ) + µβ3 cos(2θ) + µβ4 cos(4θ)]ρ3 +O(ρ5),

θ̇ = −µα2 sin(2θ) + µ[β2 sin(2θ)− β3 sin(2θ)− β4 sin(4θ)]ρ2 + . . .
−[rN +O(µ)]ρ2N−2 sin(2Nθ) +O(ρ2N).

(5.10)

Since µ is selected to be much smaller than γ, there exists only one positive root of equation

γ + µα1 + µα2 cos(2θ) + [−3 + µβ1 + µβ2 cos(2θ) + µβ3 cos(2θ) + µβ4 cos(4θ)]ρ2 +O(ρ4) = 0

given by

ρ =

√
γ
√

3
[1 +O(γ, µ)] , (5.11)

independently of the value of θ. The value of θ is defined from the second equation of system
(5.10) with ρ2 = O(γ). Since there is no discrete translational symmetry of the system (5.1),
compared to the system (4.1), we have to consider θ defined on [0, 2π). Roots of θ are defined
from equation

− µα2 sin(2θ) + µ[β2 sin(2θ)− β3 sin(2θ)− β4 sin(4θ)]ρ2 + . . .

− [rN +O(µ)]ρ2N−2 sin(2Nθ) +O(ρ2N) = 0,

where ρ is expressed from (5.11). Since the left-hand-side is a trigonometric polynomial in
2θ, there exist at least four roots of θ in [0, 2π) and at most 4N roots since rN +O(µ) 6= 0.
The total number of roots is divisible by 4. For each root of θ, the root of ρ in (5.11) is
uniquely defined and the bound (5.2) with δ := N

π
θ follows.

The stability conclusion of Theorem 5.1 follows from the linearization of system (5.10)

near each root and from the fact that all other eigenvalues of −L̂κ are strictly negative of
the order of O(1) for small γ and µ. Using notations (ρ′, θ′) for perturbation terms to the
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root (ρ, θ), we write the linearized equations in the form:{
ρ̇′ = −[2γ +O(γ2, µ)]ρ′ +O(

√
γµ)θ′,

θ̇′ = O(
√
γµ)ρ′ + [−µα2 cos(2θ) +O(γµ) +

(γ
3

)N−1

[rN +O(γ, µ)]2N cos(2Nθ)]θ′.

Linearized evolution in ρ′ is asymptotically stable, whereas linearized evolution in θ′ is asymp-
totically stable for half of solutions and is unstable for the other half of solutions. �

Remark 5.4. Coefficients α1 and α2 in (5.9) can be easily computed from the linear part of
system (5.3). Since Ψk(A, Ā) = O(µ)|A| for k 6= ±1, we have at the leading order:

µα1 = ∆1,1 +O(µ2), µα2 = ∆1,−1 +O(µ2).

Remark 5.5. If α2 6= 0, we have exactly four time-independent solutions, from which two
are asymptotically stable and two are unstable. The two stable (or unstable) solutions are
related to each other by the sign reflection symmetry u 7→ −u of the discrete SHE (5.1). This
follows from the fact that the center manifold reduction relies on a trigonometric polynomial
in 2θ for which θ0 and π + θ0 are equivalent points. If ∆ = 0 in (5.4), then we have 4N
time-independent solutions, identically to the outcome of Theorem 4.2.

Remark 5.6. In comparison with Theorem 4.1 in [2], we do not include the quadratic terms
in the discrete SHE models to avoid technical computations of the near-identity transfor-
mations. We also specify the particular case k0 = 1 in Theorems 4.2 and 5.1 to simplify
computations of the normal forms. On the other hand, we give a precise statement of how
the translational parameter δ of Theorem 3.8 is determined in the case of the discrete graphs
(both in the deterministic and random cases) and how many time-independent solutions ex-
ist for the discrete graph models. In addition, the proof of Theorem 4.1 in [2] is incomplete.
The analysis of the Fourier mode w2 corresponding to the small eigenvalue l2 = −δ2N2ρ2 is
not included in the proof. In our setting, the dynamics of w2 is captured by the equation
for θ in (5.10). This equation is important, because it determines the number of branches
bifurcating from the spatially homogeneous equilibrium.

6. The discrete SHE on small-world graphs

In this section, we illustrate the bifurcation analysis of the discrete SHE models on the
deterministic and random graphs with numerical results. To this end, we use the family of
small-world graphs from Example 2.1. This is a representative example, for which Assump-
tion 3.6 can be verified analytically.

Recall the definition of the small-world graphon W (x, y) = S(x − y) with S ∈ L1(T)
given by

S(x) =

{
1− p, |x| ≤ r,
p, r < |x| ≤ 1

2
,

(6.1)
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where p ∈ [0, 1] and r ∈
(
0, 1

2

)
. The eigenvalues of the Hilbert-Schmidt operator KS in (3.2)

are known explicitly (cf. [5]):

λk =

{
2r(1− 2p) + p, k = 0,
(πk)−1(1− 2p) sin (2πkr) , k ∈ Z\{0}. (6.2)

Eigenvalues for k = 0 and k ∈ N\{1} are shown in Figure 2 by blue dots. The red dot shows
the bifurcating eigenvalue at k0 = 1 for which we select κ = λ1− dS with dS = λ0. It is clear
from Figure 2 that λk < λ1 for k ≥ 2 so that Assumption 3.6 is satisfied.

0 10 20 30 40 50

k

-0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 2. Eigenvalues of KS given by (6.2) for N = 50, p = 0.1 and r = 0.2.

By Theorem 3.8, for small γ > 0, the continuous SHE model (3.1) has a continuous
family of asymptotically orbitally stable solutions {uγ(·+ δ)}δ∈T, where uγ is approximated
by

uγ(x) = 2

√
γ

3
cos(2πx) +O(γ3/2). (6.3)

We shall now consider how the stable solutions with the expansion (6.3) persist in the
discrete SHE models on the deterministic and random graphs. For the discrete SHE model
(4.1) with (4.2) and (6.1), we compute the eigenvalues of ANW in the form

λNk =
1− p
2N

∑
|j|≤drNe

e
−iπkj
N +

p

2N

∑
|j|>drNe

e
−iπkj
N .

We set κ = λN1 − dNW with dNW = λN0 . For small γ > 0, Theorem 4.2 yields existence of
the two discrete families of solutions {σmuNγ }m∈ZN and {σmvNγ }m∈ZN , where σm is the shift

operator defined by (σmu)j = uj+m, j ∈ ZN and the profiles of uNγ and vNγ are approximated
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respectively by

uj =
2√
3

√
γ cos

(
πj

N

)
+O

(
γ3/2

)
, (6.4)

vj =
2√
3

√
γ cos

(
πj

N
− π

2N

)
+O

(
γ3/2

)
, (6.5)

for j ∈ ZN . One of the two solutions is asymptotically stable and the other solution is
unstable.

The random SHE model (5.1), we use the same κ and define the symmetric matrix ÃNW
with zeros on the main diagonal and with the entries above the main diagonal ãNij being
independent random variables such that

P(ãNij = 1) = aNij , and P(ãNij = 0) = 1− aNij ,

where aNij is a coefficient of the adjacency matrix of the weighted Cayley graph. Theorem 5.1
implies the existence of asymptotically stable solutions with the approximation

uγ,δ =
2√
3

√
γ cos

(
πj

N
− δ
)

+O
(
γ3/2

)
(6.6)

for small γ > 0 and appropriate fixed δ.

a b

Figure 3. Numerical solutions of the SHE on deterministic SHE with kernel
(6.1) with parameters N = 400, p = 0.1, r = 0.2, and γ = 0.05 plotted in
red and its random counterpart plotted in blue. Both models were initialized
with the discretization of the leading order term in (6.3) and integrated for
100 units of time. The shift δ was set to −π/2 in plot a and to 0 in plot b.

Figure 3 presents results of numerical simulations of the discrete models derived from the
nonlocal SHE with kernel (6.1) with parameters N = 400, p = 0.1, r = 0.2, and γ = 0.05.
Both the deterministic and random models were initialized with the leading order term on
the right-hand side of (6.3). The shift δ was set to −π/2 in plot a and to 0 in plot b. The
two models were integrated for 100 units of time. The solutions of the deterministic models
are plotted in red and the solutions of the random model are plotted in blue.
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On finite time intervals, the solutions of the discrete SHE on deterministic and random
graphs are expected to remain close, provided the initial data are sufficiently close and N is
large (cf. [26]). This is clearly seen in the simulations shown in Figure 3. The snapshots of the
trajectories of the deterministic and the random models, shown in red and blue respectively,
lie very close to each other. For the deterministic model, we know that the trajectory relaxes
to one of the 2N stable states lying in the vicinity of the initial condition. As to the snapshots
of the SHE on random graph, we see that they relax to the form predicted by Theorem 5.1.
We do not know whether the solutions of the random SHE shown in Figure 3 are close to
the actual equilibria, because the evolution in the translational direction is extremely slow
due to the O(γN−1) eigenvalue, and cannot be resolved by numerics for large N .

a
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-0.1
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0.1
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b
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Figure 4. Numerical approximations of the discrete SHE model (4.1) for
N = 5, p = 0.9, r = 0.2, and γ = 0.03. a Two initial conditions (red and
cyan curves) and the outcomes of numerical simulations at t = 100 (blue and
black curves). b Numerically obtained zeros of the two solutions versus time
relative to the midpoint between two grid points (red dotted line).

To illustrate the effects of the slow drift in numerical simulations, we have performed
simulations of the deterministic and random SHE models forN = 5. Figure 4 shows outcomes
of the numerical simulations for the discrete SHE model (4.1) with two different initial
conditions given by the red and cyan lines. The two initial data are given by (6.3) with a
half of the amplitude and shifted to the right and to the left relative to the grid points (shown
by magenta dots). The two solutions quickly converge to the near-equilibrium solutions with
the correct amplitude of 0.2 (blue and black curves) which then slowly shift further from the
grid points towards the mid-point between the two grid points. The snapshot on the left
panel was stopped at time t = 100, but the slow drift of the zeros of the two solutions on the
much longer time interval is shown on the right panel. Zeros are computed from the linear
interpolation between the grid points and the color scheme is the same as that for the final
states on the left panel. This numerical experiment shows that the asymptotically stable
solution is given by a discrete translation of the solution vNγ given by the expansion (6.5).
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Figure 5. Numerical approximations of random realizations of the discrete
SHE model (5.1) for N = 5, p = 0.9, r = 0.2, and γ = 0.03. a Five initial con-
ditions shifted relative to each other. b-d Outcomes of numerical simulations
with two, four, and six stable solutions.

Figure 5 shows outcomes of the numerical simulations for the random realizations of the
discrete SHE model (5.1) with five different initial conditions shown on the top left panel.
The drift generally occurs faster in the random model because the relevant small eigenvalue is
of the size O(µ) if α2 6= 0, where µ is defined by (5.7). Only two time-independent solutions
are stable if α2 6= 0 and this generic case is shown on the top right panel. The two stable
solutions are given by (6.6) with some specific δ and they are related by the sign reflection of
each other. The color scheme of the final states corresponds to that of the initial conditions
and the missing colors correspond to the final states identical to those shown in red and
yellow.

If α2 is zero or close to zero, then four, six, eight, or ten time-independent solutions could
be stable according to Theorem 5.1 and since half states are related by the sign reflection of
the other half states, five numerical conditions could be used to detect all cases. However,
the cases with more stable states become rare events. Our numerical simulations showed
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random configuration of the discrete SHE model with four and six stable states (bottom left
and right panels, respectively) but we did not find random configurations with eight and ten
stable states. The four configurations on the bottom left panel shows that two states are
given by the sign reflection of the other two states (red versus yellow and blue versus cyan).
The same is true for the bottom right panel (red versus cyan and black versus yellow) but
there is one more stable state (blue line) which is not matched by the sign reflected state
(since our simulations only involve five initial conditions).

7. Discussion

Dynamical principles underlying formation of patterns in complex systems are important
for understanding a range of phenomena arising across multiple disciplines from morphogen-
esis to autocatalytic reactions, to firing patterns in neuronal networks [30]. Traditionally,
pattern formation has been studied in the continuous setting through the framework of
reaction-diffusion partial differential equations. Recently, the interest has shifted towards
understanding patterns in discrete systems, driven by the ubiquity of networks in contempo-
rary science. Interestingly, already in his seminal paper on morphogenesis, Turing considered
a reaction-diffusion model on a lattice, i.e., a discrete system [38]. There is an extensive lit-
erature on lattice dynamical systems, which covers pattern formation and propagation phe-
nomena [14]. In the past decade, there have been many studies exploring pattern formation
in complex networks including random networks. The key analytical challenge in dealing
with this class of models, which was not present in studies of partial differential equations
or lattice dynamical systems, is handling network topology, which can be random. Until
recently most studies of the dynamics of complex and random networks had to resort to
heuristic and numerical arguments (see [31, 41, 17, 1, 18] for a representative albeit limited
sample of studies of Turing patterns in networks).

The situation has changed with the development of the theory of graphons [20]. The use
of graphons allows a rigorous derivation of the continuum limit for interacting dynamical
systems on a large class of graphs including random graphs [23, 24, 26], which can be used
effectively for studying dynamics on large networks. For example, the use of graphons led
to the breakthrough in the analysis of synchronization and pattern formation in systems
of coupled phase oscillators on networks [6, 27], interacting diffusions on graphs [32, 22],
mean-field games [3], and graph signal processing [35, 11].

Graphons provide multiple analytical benefits. Oftentimes, graph limits possess addi-
tional symmetries that are not present in the individual realizations of random graphs.
For example, the graph limit of the small-world family of graphs used in the present work
is isotropic, in contrast to the graphons corresponding to the realizations of small-world
graphs. This symmetry enables the effective use of the Fourier transform for analyzing the
limiting model (cf. Section 3). Likewise, the deterministic (averaged) discrete model (4.1)
is shift invariant and can be studied using discrete Fourier transform (cf. Section 4). This
in turn can be used to understand the dynamics of the random model (5.1). In general, the
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proximity in cut norm of a network to a symmetric network in can facilitate the analysis of
the original nonsymmetric model.

In the context of the bifurcation problems considered in this paper, the relationship be-
tween the spectra and eigenspaces of the deterministic and random discrete models, as well
as their continuum counterpart, is crucial. The theory of graph limits offers very efficient
tools for tracking this relation. The convergence of kernel operators in cut–norm automati-
cally implies the proximity of the corresponding eigenvalues and eigenspaces [37]. This has
significant implications for the analysis of dynamical systems. For instance, once the proxim-
ity in cut norm of the linear operators corresponding to the interaction terms of the random
model and its deterministic counterpart was verified (cf. Appendix A), the proximity of the
eigenvalues and the corresponding eigenspaces followed automatically. In contrast, the anal-
ysis in [2] based on operator norm topology and Davis-Kahane estimates requires substantial
efforts. Importantly, the analysis in the present paper extends to sparse networks.

Our techniques apply naturally to other pattern–forming systems on random graphs, in-
cluding Gierer–Meinhardt model [17], Mimura–Murray model of interacting prey-predator
populations [31] and many other activator–inhibitor systems. An interesting area of po-
tential applications are neural fields [9]. Fourier methods played an important role in the
analysis of pattern in nonlocal neural field models, which are very similar to the continuum
limit analyzed in Section 3 [19]. We expect that the methods developed this paper may
lead to interesting results for discrete neural fields with random connectivity. Finally, the
concentration estimate for the random linearized operator in Fourier space (cf. Appendix A)
may be useful in graph signal processing.

Appendix A. A concentration inequality

Let A = (aij) ∈ Rn×n be a symmetric matrix such that 0 ≤ aij ≤ 1 and aii = 0, i ∈ [n],

and let Ã = (ãij) ∈ Rn×n such that ãij, 1 ≤ i < j ≤ n are independent random variables
defined as follows

P(ãij = α−1
n ) = αnaij, P(ãij = 0) = 1− αnaij,

and ãij = aji, ãii = 0. Here, αn is a positive sequence satisfying

1 ≥ αn ≥Mn−1/3, (A.1)

for some M > 0 dependent of N . Further, define

D = diag(d1, d2, . . . , dn), di = n−1

n∑
j=1

aij,

D̃ = diag(d̃1, d̃2, . . . , d̃n), d̃i = n−1

n∑
j=1

ãij,
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and A = n−1A, Ã = n−1A. Consider

∆ = F−1
{

(A−D − κ)2 − (Ã− D̃ − κ)2
}
F, (A.2)

where
F =

(
ω−(j−1)(k−1)

)
1≤j,k≤n , ω

.
= e

i2π
n , F−1 = n−1F ∗.

The main result of this appendix is the following lemma with the straightforward corollary.

Lemma A.1. With probability at least 1−O (5−n),

max
1≤j,k≤n

|∆jk| ≤ C(α3
nn)−1/2,

where C does not depend on n.

Corollary A.2. For a given ε > 0 with high probability, for all sufficiently large n,

max
1≤j,k≤n

|∆jk| ≤ ε,

provided M in (A.1) is large enough.

We precede the proof of Lemma A.1 with a few comments. By construction of Ã, ãij, 1 ≤
i < j ≤ n are independent random variables, E Ã = EA, and

p
.
=

2

n(n− 1)

∑
i<j

Varαnãij =
2

n(n− 1)

∑
i<j

αnaij (1− αnaij) . (A.3)

Note that

p '
{ 1

2

∫
Q
W (1−W )dx+ o(1), αn ≡ 1 (dense case),

αn
1
2

∫
Q
Wdx+ o(1), αn ↘ 0 (sparse case).

In either case,
C1αn ≤ p ≤ C2αn (A.4)

for appropriate positive C1, C2 independent of n.

The proof of Lemma A.1 relies on the estimates of
∥∥∥Ã−A

∥∥∥
∞→1

and
∥∥∥D̃ −D∥∥∥

∞→1
based

on the Bernstein inequality (cf. [13, Theorem 4.3]). Here, the ∞ → 1 norm of A ∈ Rn×n is
defined as follows

‖A‖∞→1

.
= max

x,y∈{−1,1}n

∣∣∣∣∣
n∑

i,j=1

aijxiyj

∣∣∣∣∣ . (A.5)

In particular, for X ∈ {A, D}, we have∥∥∥X̃ −X∥∥∥
∞→1

≤ 3α−1
n p1/2n3/2 ' α−1/2

n n3/2. (A.6)

holding with probability at least 1− e35−n provided

p >
9

n
.

For X = A (A.6) follows from Lemma 4.1 in [13] and (A.4) For X = D (A.6) is proved by
following the same steps as in the proof of Lemma 4.1 in [13].
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Proof of Lemma A.1. We rewrite (A.2) as follows

∆ = F−1
(
Ã2 −A2

)
F − 2κF−1

(
Ã−A

)
F

− F−1
(
Ã−A

)
D̃F − F−1A

(
D̃ −D

)
F (A.7)

− F−1D
(
Ã−A

)
F − F−1

(
D̃ −D

)
AF.

Denote the six terms in the order as they appear on the right hand side of (A.7) by
F−1SiF, i ∈ [6]. We claim for each i ∈ [6],∥∥F−1SiF

∥∥
∞ ≤ C(α3

nn)−1/2 (A.8)

holding with probability 1− O(5−n). Once we verify (A.8), the proof will be complete. We
verify (A.8) only for i = 1, 2, as the remaining terms are estimated in the same manner.

We start with the second term on the right hand side of (A.7)∣∣∣∣(F−1
(
Ã−A

)
F
)
ij

∣∣∣∣ = n−2

∣∣∣∣∣∑
l,k

Fil

(
Ã− A

)
lk
Fkj

∣∣∣∣∣ ≤ 4n−2 max
x,y∈{−1,1}n

∣∣∣∣∣∑
l,k

xl

(
Ã− A

)
lk
yk

∣∣∣∣∣
= n−2‖A− Ã‖∞→1 ≤ C(αnn)−1/2,

where we used F−1 = nF ∗, |Fkl| = 1, and (A.6).

We now turn to the first term

F−1
(
Ã2 −A2

)
F = n−3F ∗

(
Ã2 − A2

)
F

In this case, we need to estimate,

n−3F ∗
(
Ã2 − A2

)
F = n−3F ∗Ã

(
Ã− A

)
F + n−3F ∗

(
Ã− A

)
AF. (A.9)

We estimate the first term on the right hand side of (A.9). The second term is dealt with
similarly. Let

E = n−3F ∗Ã
(
Ã− A

)
F = α−1

n n−3F ∗(αnÃ)
(
Ã− A

)
F (A.10)

Denote

x = coli

(
n−1αnÃF

)
= n−1(αnÃ) coli(F

∗),

y = colj(F ).

Note ‖x‖∞ ≤ 1. Thus,

|Eij| = α−1
n n−2

∣∣∣∣∣∑
i,j

xi

(
Ã− A

)
ij
yj

∣∣∣∣∣
≤ 4α−1

n n−2
∥∥∥Ã− A∥∥∥

∞→1
≤ C

1

(α3
nn)1/2

.
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This completes the analysis of S1, the first term on the right hand side of (A.7). The
remaining terms are analyzed similarly and result in either O

(
(αnn)−1/2

)
bound as for S2

above or in O
(
(α3

nn)1/2
)

bound for S1. Thus, ‖∆‖∞ = O
(
(α3

nn)1/2
)

as claimed. �

Remark A.3. Note that O
(
(α3

nn)1/2
)

come from quadratic terms like S2. In the second
order nonlocal spatial operator in (3.1) is replaced with the first order operator (3.2), as one
encounters in the neural field type models, then the bound on ‖∆‖∞ can be improved to
O
(
(αnn)1/2

)
. This means that the results of this paper would hold for αn = O(n−1), i.e.,

for graphs of bounded degree.
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