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Section 1. The massive Thirring model (MTM)

The coupled mode equations{
i(ut + ux) + v = (γ1|u|2 + γ2|v|2)u
i(vt − vx) + u = (γ2|u|2 + γ1|v|2)v

is a popular model for dynamics of two counter-propagating resonant waves across
the periodic systems (photonics, Bose–Einstein condensation).

For instance, the Gross–Pitaevskii equation with 2π-
periodic, bounded, real-valued potential V (x):

i∂tψ = −∂2
xψ + εV (x)ψ ± |ψ|2ψ,

is reduced asymptotically as ε → 0 to the coupled mode
equations for the superposition of two 2π-antiperiodic
waves (under Bragg’s parameteric 1 : 2 resonance)

ψ(x, t) ∼
√
ε
[
u(εx, εt)e

i
2x + v(εx, εt)e−

i
2x
]
e
i
4t,

If γ1 = 0, the system was introduced in quantum field theory by Thirring in 1958
as the relativistically invariant Dirac equation in one dimension, known now as the
MTM in laboratory coordinates.
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Gap solitons

For every γ1, γ2 > 0, there exist spatially decaying (localized) solutions called gap
solitons (solitary waves) in the gaps of purely continuous spectrum of

L := −∂2
x + εV (x), Dom(L) = H2(R) ⊂ L2(R), V (x+ 2π) = V (x).

[Y.Kivshar, D.P., A. Sukhorukov (2004)] [A. Pankov (2005)] [M. Weinstein (2006)]

The decay rate is exponential except for the end points in each finite gap.
Algebraic solitons attain the maximal power

∫
R |ψ|

2dx in each family and the
solutions are expressed explicitly within the coupled-mode theory.
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About exceptionality of the MTM

The MTM in laboratory coordinates{
i(ut + ux) + v = |v|2u,
i(vt − vx) + u = |u|2v,

is the only example of the coupled-mode system which is relativistically invariant:

[
u(x, t)
v(x, t)

]
7→


(

1−c
1+c

)1/4

u

(
x+ct√
1−c2

, t+cx√
1−c2

)
(

1+c
1−c

)1/4

v

(
x+ct√
1−c2

, t+cx√
1−c2

)
 , c ∈ (−1, 1).

It also has standard symmetries of translations in x, t, and arg(u) = arg(v).

MTM is integrable due to existence of the Lax pair [Mikhailov, 1976]:

∂xϕ = L(u, v, λ)ϕ, ∂tϕ = A(u, v, λ)ϕ, ϕ(x, t) ∈ C2, λ ∈ C.

See also [Orfanidis, 1976], [Kaup & Newell, 1977], [Barashenkov & Getmanov,
1989], [Villaroel, 1991], [Lee, 1994], [Zhou, 1995].
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About exceptionality of the algebraic solitons

One-soliton solutions are expressed in 1-parameter form:[
u(x, t)
v(x, t)

]
= sin γ

[
sech

(
x sin γ + iγ

2

)
sech

(
x sin γ − iγ

2

)] eit cos γ, γ ∈ (0, π)

with zero limit as γ → 0 and nonzero limit as γ → π:

γ = π :

[
u(x, t)
v(x, t)

]
=

 2

1 + 2ix
2

1− 2ix

 e−it, (u, v) ∈ L2(R).

The frequency of standing waves ω = cos γ ∈ (−1, 1) takes values in the gap of

the Dirac operator D :=

[
i∂x 1
1 −i∂x

]
in L2(R), where σ(D) = (−∞,−1]∪ [1,∞).

The algebraic soliton (γ = π) attains the maximal power
Q(u, v) =

∫
R(|u|2 + |v|2)dx = 4π along the family.
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Section 2. Stability of algebraic solitons

For stability of exponential solitons, several analytical results are available:

• Orbital stability in H1(R) via constrained minimization of energy:
P. & Shimabukuro (2014)

• Orbital stability in L2(R) via Bäcklund transformation:
Contreras, P., & Shimabukuro (2016)

• Asymptotic stability via IST:
P. & Saalmann (2019), He, Liu, & Qu (2024)

In the limit of algebraic solitons, all methods fail!

• There is no coercivity of the second variation from higher-order energy.

• Bäcklund transformation become trivial and generalizations do not help:
[Guo, Ling, & Liu (2013)]

• Solvability of the IST is not justified for slowly decaying potentials.
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The only available result is from Klaus, P, & Rothos (2006)

Consider the Kaup–Newell spectral problem

∂xϕ =

[
−iλ2 λw(x)
−λw̄(x) iλ2

]
ϕ,

where |w(x)| = |u(x)| = |v(x)| in defined from the solution of the MTM.
Assume that

|w(x)| ∼ b

|x|
as |x| → ∞ for some b > 0.

• λ0 = i is an embedded eigenvalue only if b > 1
2. [b = 1 for algebraic soliton.]

• If λ0 = i is an embedded eigenvalue, then its geometric multiplicity is one. Its
algebraic multiplicity is N + 1 only if b > N + 1

2. [No examples were given.]

• Let w0 be the algebraic soliton and εw1(x) be a perturbation with fixed profile
w1. For every ε 6= 0, there exists a simple eigenvalue of the Lax spectrum in
each quadrant of C independently of the sign of ε provided that w1 satisfies a
non-degeneracy condition. [This suggests stability of an algebraic soliton.]
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Why is this surprising?

The Gardner (modified KdV) equation

ut + 12uux + 6u2ux + uxxx = 0

also has the algebraic soliton

u0(x) = − 4

1 + 4x2
.

It is associated with the embedded eigenvalue λ = i in the Zakharov–Shabat
spectral problem

∂xϕ =

[
iλ −1− u(x)

1 + u(x) −iλ

]
ϕ.

Since the algebraic soliton is a nonzero minimum of conserved momentum
Q(u) =

∫
R u

2dx among exponential solitons, it is nonlinearly unstable.

Instability for similar mKdV and NLS models was shown in analysis papers:
Fukaya & Hayashi (2021), Kfoury, Le Coz & Tsai (2022).
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More results on instability of algebraic solitons in mKdV

• λ0 = i is an embedded eigenvalue of the Zakharov–Shabat spectral problem.

• Let εu1(x) be a perturbation with fixed profile u1. For every ε 6= 0, we have
either a simple eigenvalue λ = i+ iO(|ε|2/3) or a symmetric pair of eigenvalues
λ = i±O(|ε|2/3) depending on the sign of ε. [P & Grimshaw (1997)]
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More results on instability of algebraic solitons in mKdV

The instability of algebraic solitons can be shown from the rational solutions of
the Gardner equation

ut+12uux + 6u2ux + uxxx = 0.

A hierarchy of rational solutions is available in the form:

u1(x) = − 4

1 + 4x2
, u2(x, t) =

P4(x, t)

P6(x, t)
, . . . .

[Chowdury, Ankiewicz & Akhmediev (2016)], [Xing et al. (2017)],
[Bilman, Miller, Young (2025)]

The solution u2 suggests the instability of u1: ‖u2(·, t)− u1‖L2 grows in time t.
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Section 3. Rational solutions of MTM

Consider the MTM in laboratory coordinates{
i(ut + ux) + v = |v|2u,
i(vt − vx) + u = |u|2v.

Rational solutions on nonzero background (rogue waves) were already constructed:
Guo, Wang, Cheng, & He (2017)
Ye, Bu, Pan, Chen, Mihalche, & Baronio (2021)
Chen, Yang, & Feng (2023).

Surprisingly, rational solutions on the zero background have not been constructed
for MTM.

We have constructed the second-order rational solution to the MTM:
Jiaqi Han, Cheng He, & D.P. (2024)
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Construction of the second-order rational solution

We use the bilinear formulation of the MTM from [Chen & Feng (2023)]:

u =
g

f̄
, v =

h

f
,

where
if(gt + gx)− ig(ft + fx) + hf̄ = 0,
if̄(ht − hx)− ih(f̄t − f̄x) + gf = 0,

if̄(fx + ft)− if(f̄t + f̄x)− |h|2 = 0,
if(f̄t − f̄x)− if̄(ft − fx)− |g|2 = 0.


• The exponential 2-solitons are obtained with 8 parameters.

• Four parameters yields two eigenvalues λ1 = δ1e
iγ1 and λ2 = δ2e

iγ2 in the first
quadrant of C. Four more parameters are translational parameters.

• A limit to the algebraic 2-soliton solutions yields a soluton with 6 parameters:

δ1 6= δ2, γ1, γ2 → π.

• The limit δ1 → δ2 gives the algebraic double-soliton with 5 parameters.
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The algebraic double-soliton

The algebraic double-soliton is expressed as the second-order rational solution

[
u(x, t)
v(x, t)

]
=


4(−3 + 6ix− 12x2 − 8ix3 − 12t(2x− i)− iβ)

3 + 24ix− 24x2 + 32ix3 − 16x4 + 48t2 + 2β(2x− i)
4(−3− 6ix− 12x2 + 8ix3 + 12t(2x+ i) + iβ)

3− 24ix− 24x2 − 32ix3 − 16x4 + 48t2 + 2β(2x+ i)

 e−it,

where β ∈ R is a parameter in addition to c ∈ (−1, 1) and x0, t0, θ0 ∈ R.

The existence of the second-order rational solution suggestes the existence of a
hierarchy of rational solutions in the form:

u1(x, t) =
2

1 + 2ix
e−it, u2(x, t) =

P3(x, t)

P4(x, t)
e−it, . . . .

[Baofeng Feng, Jiaqi Han, Cheng He, & D.P. (2025) in progress]
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Properties of the algebraic double-soliton

1. u(·, t), v(·, t) ∈ Cω(R) for every t ∈ R and β ∈ R

2. Q(u, v) =
∫
R(|u|2 + |v|2)dx = 8π = 2QAS.

For the proofs, the bilinear formulation is very useful:

|u|2 + |v|2 =
|g|2 + |h|2

|f |2
= 2i

(
fx
f
− f̄x
f̄

)
,

where
f = 16x4 + 32ix3 + 24x2 + 24ix− 3− 48t2 − 2β(2x+ i)

satisfies

• f has no zeros on R in x for every t ∈ R and β ∈ R.

• f has one root in C+ and three roots in C−: N+ = 1, N− = 3.

• fx/f − f̄x/f̄ = O(|x|−2) as |x| → ∞.

By the argument principle,

Q(u, v) = 4π(N− −N+) = 8π.
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Properties of the algebraic double-soliton

3. The solution suggests slow scattering of two identical algebraic solitons.

This suggests the nonlinear stability of a single algebraic soliton.
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Properties of the algebraic double-soliton

4. The two solitons move along the parabolas x2 = ±
√

3t.

5. The algebraic double-soliton corresponds to the double embedded eigenvalue
λ0 = i in the Kaup–Newell spectral problem.
[Zhi-Qiang Li, P., Shou-Fu Tian (2025)]

This is in agreement with the result from [Klaus,P.,Rothos (2006)]:

Algebraic multiplicity of λ0 = i is N + 1 only if b > N + 1
2, where

|u(x)| ∼ b

|x|
as |x| → ∞ for some b > 0.

The algebraic double-soliton corresponds to b = 2.
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Section 4. Construction of higher-order rational solutions.

The construction is done by the double-Wronskian formulas. In characteristic
variables t = 2(ξ + η) and x = 2(ξ − η), we have{

iuξ + 2v = 2|v|2u,
ivη + 2u = 2|u|2v.

The bilinear transformation

u =
g

f̄
, v =

h

f
,

gives the bilinear equations 
iDξ(g · f) + 2hf̄ = 0,

iDη(h · f̄) + 2gf = 0,

iDξ(f · f̄)− 2hh̄ = 0,

iDη(f̄ · f)− 2gḡ = 0.

[Baofeng Feng, Jiaqi Han, Cheng He, & D.P. (2025) in progress]
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Double-Wronskian solutions

Let A ∈M2N×2N be a complex-valued invertible matrix for N ∈ N. Define two
vectors φ, ψ ∈ C2N from solutions of the linear equations{

∂ξφ = iAφ,

∂ηφ = iA−1φ,
and

{
∂ξψ = −iAψ,
∂ηψ = −iA−1ψ,

Furthermore, relate ψ = Sφ̄, where S =
√
−A ∈M2N×2N . Then, the bilinear

equations are solved by
f = |φ′, φ′′, . . . , φ(N), ψ, ψ′, . . . , ψ(N−1)|
g = |φ, φ′, . . . , φ(N), ψ′, ψ′′, . . . , ψ(N−1)|
h = iN+1|S||φ, φ′, . . . , φ(N), ψ, ψ′, . . . , ψ(N−2)|.

Higher-order rational solutions are obtained from the N -multiple e-value λ0 = i:

A =


−1 0 0 . . . 0 0
1 −1 0 . . . 0 0
0 1 −1 . . . 0 0
... ... ... . . . 1 −1

 , S =


1 0 0 . . . 0 0
−1

2 1 0 . . . 0 0
− 1

23 −1
2 1 . . . 0 0

... ... ... . . . −1
2 1

 .
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Properties of the higher-order rational solutions

For each integer N , we have

u =
QN(x, t)

P̄N(x, t)
e−it, v =

RN(x, t)

PN(x, t)
e−it,

where PN is a polynomial in x of degree N2 and QN , RN are of degree N2 − 1.

This follows from the leading-order behavior of f , g, and h, if we can prove that

∆N :=

∣∣∣∣∣∣∣∣∣∣
1 0 0 0 . . . 1 0 0 0 . . .
1 1 0 0 . . . −1 1 0 0 . . .
1
2! 1 1 0 . . . 1

2! −1 1 0 . . .
1
3!

1
2! 1 1 . . . − 1

3!
1
2! −1 1 . . .

... ... ... ... ... ... ... ... ... ...

∣∣∣∣∣∣∣∣∣∣
6= 0.

For 1 ≤ N ≤ 10, we confirmed the formula

∆N =
2N(−1)N

12N−132N−3 . . . (2N − 3)3(2N − 1)1

but cannot prove it for now. This computation yields |u(x)| ∼ b
|x| with b = N for

N -multiple eigenvalue λ0 = i in agreement with [Klaus,P.,Rothos (2006)].
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The example of N = 3

The separation distance grows as x2 =
√

9 + 6
√

6|t| and the mass Q(u, v) = 12π.

Generally, we conjecture for every integer N that

Q(u, v) =

∫
R
(|u|2 + |v|2)dx = 4πN

and that x2 ∼ |t| as |t| → ∞.
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Section 5. Algebraic solitons in the limit of periodic solutions

Here is the phase plane for the standing wave solutions

u(x, t) = U(x)e−iωt, v(x, t) = Ū(x)e−iωt,

with U(x) =
√
ξ(x)e

i
2θ(x).

(a) ω = −1.

Algebraic soliton corresponds to the degenerate homoclinic orbit for ω = −1.
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Algebraic solitons between two different exponential solitons

Algebraic soliton at ω = −1 is located in between exponential soliton for
ω ∈ (−1, 1) and solitons on the constant background for ω < −1.

(b) ω ∈ (−1, 0). (c) ω < −1.

[Shikun Cui, P. (2025)]
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Squared eigenfunction relation

Linear stability is solved by the squared eigenfunctions [Kaup–Lakoba (1996)]

Λ = ±i
√
P (λ), P (λ) =

1

4

(
λ2 +

1

λ2
− 2ω

)2

− b,

where b is the conserved energy for the spatial profile U(x) and λ ∈ C belongs to
the Lax spectrum with bounded eigenfunctions

∂xϕ = L(u, v, λ)ϕ, ϕ ∈ L∞(R,C2)
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Algebraic soliton between unstable and stable periodic waves

(d) Lax spectrum in λ-plane.
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(e) Stability spectrum in Λ-plane.

(f) Lax spectrum in λ-plane.
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(g) Stability spectrum in Λ-plane.
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Section 6. Conclusion

There are multiple evidences of stability of algebraic solitons in the MTM system:

• Persistence with respect to perturbations. [Klaus, P, & Rothos (2006)]

• Persistence in rational solutions. [Cheng, Han, P. (2024)]

• Linear stability with squared eigenfunctions. [Cui, P. (2025)]

However, there exists no mathematically rigorous proof of the nonlinear stability of
algebraic solitons for the MTM system.

A similar question is open for the derivative NLS equation.
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