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Section 1. The massive Thirring model (MTM)

The coupled mode equations

i(us + ug) + v = (71]ul® + 12|v]*)u
i(vp — V) +u = (a2|ul* + n|v]?)v

is a popular model for dynamics of two counter-propagating resonant waves across
the periodic systems (photonics, Bose—Einstein condensation).

For instance, the Gross—Pitaevskii equation with 27-
periodic, bounded, real-valued potential V(x):

i0pp = —0%) + eV (x) £ Y],

is reduced asymptotically as ¢ — 0 to the coupled mode
equations for the superposition of two 2m-antiperiodic
waves (under Bragg's parameteric 1 : 2 resonance)

Y(,t) ~ /e u(s:c,st)e%x + U(sx,st)e_%x} e%t,

If v1 = 0, the system was introduced in quantum field theory by Thirring in 1958
as the relativistically invariant Dirac equation in one dimension, known now as the
MTM in laboratory coordinates.



Gap solitons

For every 71,72 > 0, there exist spatially decaying (localized) solutions called gap
solitons (solitary waves) in the gaps of purely continuous spectrum of

L:=—-0>+eV(z), Dom(L)=H*R)cC L*[R), Viz+2m) =V(x).

[Y.Kivshar, D.P., A. Sukhorukov (2004)] [A. Pankov (2005)] [M. Weinstein (2006)]
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Power

Power

The decay rate is exponential except for the end points in each finite gap.
Algebraic solitons attain the maximal power fR [9)|?dx in each family and the
solutions are expressed explicitly within the coupled-mode theory.



About exceptionality of the MTM

The MTM in laboratory coordinates

i(uy + ug) +v = |v]%u,
i(ve — vg) +u = |ulv,

is the only example of the coupled-mode system which is relativistically invariant:

(ﬁ) 1/4 U r+ct t+cx
u(x,t) . Vi1—c2’ \/1—¢c2 | ce(—1,1).
v(z,t) 1/4

’ (1—|—c> v x+ct t+cx

1—c \/1—027 v/ 1—c2 |

It also has standard symmetries of translations in x, ¢, and arg(u) = arg(v).

MTM is integrable due to existence of the Lax pair [Mikhailov, 1976]:
O = L(u,v, )y, Orp = A(u, v, Ny, o(z,t) € C?, A e C.

See also [Orfanidis, 1976], [Kaup & Newell, 1977], [Barashenkov & Getmanov,
1989], [Villaroel, 1991], [Lee, 1994], [Zhou, 1995].



About exceptionality of the algebraic solitons

One-soliton solutions are expressed in 1-parameter form:
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with zero limit as v — 0 and nonzero limit as v — 7
P
] = | LR2A% et (u,0) € LA(R).
|1 — 2ix ]

The frequency of standing waves w = cosy € (—1,1) takes values in the gap of

T ] in L*(R), where (D) = (—o0, —1JU[1, c0).

the Dirac operator D := [ 1 i,

The algebraic soliton (v = 7) attains the maximal power
Q(u,v) = [L(|ul* + |v|*)dz = 47 along the family.



Section 2. Stability of algebraic solitons

For stability of exponential solitons, several analytical results are available:

e Orbital stability in H*(R) via constrained minimization of energy:
P. & Shimabukuro (2014)

e Orbital stability in L?(R) via Backlund transformation:
Contreras, P., & Shimabukuro (2016)

e Asymptotic stability via IST:
P. & Saalmann (2019), He, Liu, & Qu (2024)

In the limit of algebraic solitons, all methods fail!

e There is no coercivity of the second variation from higher-order energy.

e Backlund transformation become trivial and generalizations do not help:
[Guo, Ling, & Liu (2013)]

e Solvability of the IST is not justified for slowly decaying potentials.



The only available result is from Klaus, P, & Rothos (2006)

Consider the Kaup—Newell spectral problem

S I

where |w(x)| = |u(x)| = |v(x)| in defined from the solution of the MTM.
Assume that ;

lw(x)| ~ 2l as |r| — oo for some b > 0.
T

e )\og =1 is an embedded eigenvalue only if b > % [b =1 for algebraic soliton.]

o If \yp =7 is an embedded eigenvalue, then its geometric multiplicity is one. lIts
algebraic multiplicity is N + 1 only if b > N + % [No examples were given ]

e Let wq be the algebraic soliton and ew;(x) be a perturbation with fixed profile
wy. For every e = 0, there exists a simple eigenvalue of the Lax spectrum in
each quadrant of C independently of the sign of € provided that w; satisfies a
non-degeneracy condition. [This suggests stability of an algebraic soliton.]



Why is this surprising?

The Gardner (modified KdV) equation
up + 120, + 6uty + Uppy = 0

also has the algebraic soliton

4
1+ 422

up(x) =

It is associated with the embedded eigenvalue A = ¢ in the Zakharov—Shabat
spectral problem

B I —1 — u(x)
ap = |1 + u(x) —ix |7

Since the algebraic soliton is a nonzero minimum of conserved momentum
Q(u) = [, u*dx among exponential solitons, it is nonlinearly unstable.

Instability for similar mKdV and NLS models was shown in analysis papers:
Fukaya & Hayashi (2021), Kfoury, Le Coz & Tsai (2022).



More results on instability of algebraic solitons in mKdV

e )\og =1 is an embedded eigenvalue of the Zakharov—Shabat spectral problem.

o Let cuj(x) be a perturbation with fixed profile u;. For every € # 0, we have
either a simple eigenvalue A = i +iO(|e|?/3) or a symmetric pair of eigenvalues
A =i+ O(|e|?>/3) depending on the sign of €. [P & Grimshaw (1997)]




More results on instability of algebraic solitons in mKdV

The instability of algebraic solitons can be shown from the rational solutions of
the Gardner equation

w120, + 6u2ux + Uprr = 0.

A hierarchy of rational solutions is available in the form:

P4($, t)
PG(.CE, t),

4

us(x,t) =

[Chowdury, Ankiewicz & Akhmediev (2016)], [Xing et al. (2017)],
[Bilman, Miller, Young (2025)]

The solution us suggests the instability of uy: ||us(+,t) — u1||z2 grows in time ¢.



Section 3. Rational solutions of MTM

Consider the MTM in laboratory coordinates

i(uy + ug) +v = |v]%u,
i(vy — vz) +u = |ul?v.

Rational solutions on nonzero background (rogue waves) were already constructed:
Guo, Wang, Cheng, & He (2017)

Ye, Bu, Pan, Chen, Mihalche, & Baronio (2021)

Chen, Yang, & Feng (2023).

Surprisingly, rational solutions on the zero background have not been constructed
for MTM.

We have constructed the second-order rational solution to the MTM:
Jiagi Han, Cheng He, & D.P. (2024)



Construction of the second-order rational solution

We use the bilinear formulation of the MTM from [Chen & Feng (2023)]:

where

if(9¢ + 92) —ig(fe + fo) +hf =0, )
if(he — he) —ih(fi — fo) + 9f =0,
if (fo + ft) —if(fe + fz) — |h[? =0,
if(fe — fo) —if(fe — fo) — |9I* = 0.

~”~

e [he exponential 2-solitons are obtained with 8 parameters.

e Four parameters yields two eigenvalues \; = 617! and Ay = 6272 in the first
quadrant of C. Four more parameters are translational parameters.

e A limit to the algebraic 2-soliton solutions yields a soluton with 6 parameters:

01 # 02, Y1,7V2 — T.

e The limit 91 — 05 gives the algebraic double-soliton with 5 parameters.



The algebraic double-soliton

The algebraic double-soliton is expressed as the second-order rational solution

4(—3 + 6iz — 122% — 8iz® — 12t(22 — i) — if3)

3 + 24ix — 2422 + 32ix3 — 1624 + 48t2 + 2522 — 1) it
B 4(—3 — 6ix — 1222 + 8iz3 + 12t(2x +1) +ip) !
3 — 24ix — 2422 — 32ix3 — 162* + 482 + 25(2x + i) |

where 5 € R is a parameter in addition to ¢ € (—1,1) and xg, tg, 0y € R.

The existence of the second-order rational solution suggestes the existence of a
hierarchy of rational solutions in the form:

2 —t

u(T,t) = ;e

, us(x,t) =

[Baofeng Feng, Jiagi Han, Cheng He, & D.P. (2025) in progress]



Properties of the algebraic double-soliton

L. u(-t),v(-,t) € C(R) foreveryt e R and g € R
2. Q(u,v) = fy(lul? + o2)dz = 87 = 2Qas.

For the proofs, the bilinear formulation is very useful:

2 > lgl*+1R[? 1(&_&)
=" = )

where
f =162 + 32iz° + 242° + 24ix — 3 — 48" — 23(2x + i)
satisfies

e f has no zeros on R in x foreveryt € R and 5 € R.

e f has one root in C. and three roots in C_: N, =1, N_ = 3.
o folf = Fo/ F = Ol 2) as || = o,

By the argument principle,

Q(u,v) =4n(N_ — N, ) = 8.



Properties of the algebraic double-soliton

3. The solution suggests slow scattering of two identical algebraic solitons.

This suggests the nonlinear stability of a single algebraic soliton.



Properties of the algebraic double-soliton

4. The two solitons move along the parabolas 2 = £+/3t.

5. The algebraic double-soliton corresponds to the double embedded eigenvalue

Ao = ¢ in the Kaup—Newell spectral problem.
[Zhi-Qiang Li, P., Shou-Fu Tian (2025)]

This is in agreement with the result from [Klaus,P.,Rothos (2006)]:

Algebraic multiplicity of \g=4is N +1only if b > N + % where

b
lu(x)| ~ Tl as |r| — oo for some b > 0.
T

The algebraic double-soliton corresponds to b = 2.



Section 4. Construction of higher-order rational solutions.

The construction is done by the double-Wronskian formulas. In characteristic
variables t = 2(£ + 1) and x = 2({ — 7)), we have

iug + 2v = 2|v|*u,
v, + 2u = 2|ul?v.

The bilinear transformation

g h
f7 f?
gives the bilinear equations
(iDe(g- f) +2hf =0,
JiDy(h - f) +29f =0,
iDe(f - f) —2hh =0,
1Dy(f - f) — 299 =0

|[Baofeng Feng, Jiagi Han, Cheng He, & D.P. (2025) in progress]



Double-Wronskian solutions

Let A € M2V X2V be a complex-valued invertible matrix for N € N. Define two
vectors ¢, 1) € C?YV from solutions of the linear equations

Ond = 1A, Optp = —i A1),

Furthermore, relate ) = S¢, where S = /—A € M?V*2N_ Then, the bilinear
equations are solved by

(F=18" 0", ..., 6N ap o, ... pN=D)
g=|b,¢" ..., 0N " L N
b= iS¢, ¢ M) L (N

2\

Higher-order rational solutions are obtained from the N-multiple e-value Ay = i:

-1 0 0 0 0] 1 0 0 0 O]
1 -1 0 0 0 -1 1 0 0 0
A=1o 1 1 0 0| 77 —; -5 1 0 0
I : 1 —1] I F —% 1




Properties of the higher-order rational solutions

For each integer IV, we have

2 — QN(x7t)e—it7 v — RJ\T(ZUat)e—z't7
PN(xvt)

where Py is a polynomial in = of degree N? and Qn, Ry are of degree N? — 1.

This follows from the leading-order behavior of f, g, and h, if we can prove that

1 0 0 0 1 0 0 0
1 1 0 0 -1 1 0 0 ...
AN:%110 5 —1 1 0 ..]#0.
5 9 11 -3 3 —1 1

For 1 < N < 10, we confirmed the formula

2N (=N

AN =
N T 12N-132N-3 (2N — 3)3(2N — 1)1

but cannot prove it for now. This computation yields |u(x)| ~ % with b = N for
N-multiple eigenvalue A\g = 7 in agreement with [Klaus,P.,Rothos (2006)].



The example of N =3

The separation distance grows as 22 = \/9 + 6v/6|t| and the mass Q(u,v) = 127.

Generally, we conjecture for every integer N that
Q) = [ (uf? +[o*)dz = 4N
R

and that 22 ~ [t| as [t| — oo.



Section 5. Algebraic solitons in the limit of periodic solutions

Here is the phase plane for the standing wave solutions

u(z,t) = Ulx)e ™, v(z,t) = U(z)e ™",

(a) w=—1.

Algebraic soliton corresponds to the degenerate homoclinic orbit for w = —1.



Algebraic solitons between two different exponential solitons

Algebraic soliton at w = —1 is located in between exponential soliton for
w € (—1,1) and solitons on the constant background for w < —1.

(b) w € (—1,0). (c) w < —1.

[Shikun Cui, P. (2025)]



Squared eigenfunction relation

Linear stability is solved by the squared eigenfunctions [Kaup—Lakoba (1996)]

1 1 2
A = +iy/P(N), P(A):Z<>\2+ﬁ—2w> — b,

where b is the conserved energy for the spatial profile U(x) and A € C belongs to
the Lax spectrum with bounded eigenfunctions

Or0 = L(u,v, Ny, o € L(R,C?)



Algebraic soliton between unstable and stable periodic waves
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(f) Lax spectrum in A-plane. (g) Stability spectrum in A-plane.



Section 6. Conclusion

There are multiple evidences of stability of algebraic solitons in the MTM system:

e Persistence with respect to perturbations. [Klaus, P, & Rothos (2006)]
e Persistence in rational solutions. [Cheng, Han, P. (2024)]

e Linear stability with squared eigenfunctions. [Cui, P. (2025)]

However, there exists no mathematically rigorous proof of the nonlinear stability of
algebraic solitons for the MTM system.

A similar question is open for the derivative NLS equation.



