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Section 1. The massive Thirring model (MTM)

The coupled mode equations

i(us + ug) + v = (71]ul® + 12|v]*)u
i(vp — V) +u = (a2|ul* + n|v]?)v

is a popular model for dynamics of two counter-propagating resonant waves across
the periodic systems (photonics, Bose—Einstein condensation).

For instance, the Gross—Pitaevskii equation with 27-
periodic, bounded, real-valued potential V(x):

i0pp = —0%) + eV (x) £ Y],

is reduced asymptotically as ¢ — 0 to the coupled mode
equations for the superposition of two 2m-antiperiodic
waves (under Bragg's parameteric 1 : 2 resonance)

Y(,t) ~ /e u(s:c,st)e%x + U(sx,st)e_%x} e%t,

If v1 = 0, the system was introduced in quantum field theory by Thirring in 1958
as the relativistically invariant Dirac equation in one dimension, known now as the
MTM in laboratory coordinates.



Gap solitons

For every 71,72 > 0, there exist spatially decaying (localized) solutions called gap
solitons (solitary waves) in the gaps of purely continuous spectrum of

L:=—-0>+eV(z), Dom(L)=H*R)cC L*[R), Viz+2m) =V(x).

[Y.Kivshar, D.P., A. Sukhorukov (2004)] [A. Pankov (2005)] [M. Weinstein (2006)]
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Power

Power

The decay rate is exponential except for the end points in each finite gap.
Algebraic solitons attain the maximal power fR [9)|?dx in each family and the
solutions are expressed explicitly within the coupled-mode theory.



About exceptionality of the MTM

The MTM in laboratory coordinates

i(uy + ug) +v = |v]%u,
i(ve — vg) +u = |ulv,

is the only example of the coupled-mode system which is relativistically invariant:

(ﬁ) 1/4 U r+ct t+cx
u(x,t) . Vi1—c2’ \/1—¢c2 | ce(—1,1).
v(z,t) 1/4

’ (1—|—c> v x+ct t+cx

1—c \/1—027 v/ 1—c2 |

It also has standard symmetries of translations in x, ¢, and arg(u) = arg(v).

MTM is integrable due to existence of the Lax pair [Mikhailov, 1976]:
O = L(u,v, )y, Orp = A(u, v, Ny, o(z,t) € C?, A e C.

See also [Orfanidis, 1976], [Kaup & Newell, 1977], [Barashenkov & Getmanov,
1989], [Villaroel, 1991], [Lee, 1994], [Zhou, 1995].



About exceptionality of the algebraic solitons

One-soliton solutions are expressed in 1-parameter form:

. ﬂ .
]=sm[seCh(x it 3l et yem

, e
sech (z siny — ) ’

with zero limit as v — 0 and nonzero limit as v — 7
P
] = | LR2A% et (u,0) € LA(R).
|1 — 2ix ]

The frequency of standing waves w = cosy € (—1,1) takes values in the gap of

T ] in L*(R), where (D) = (—o0, —1JU[1, c0).

the Dirac operator D := [ 1 i,

The algebraic soliton (v = 7) attains the maximal power
Q(u,v) = [L(|ul* + |v|*)dz = 47 along the family.



Section 2. Stability of algebraic solitons

For stability of exponential solitons, several analytical results are available:

e Orbital stability in H*(R) via constrained minimization of energy:
P. & Shimabukuro (2014)

e Orbital stability in L?(R) via Backlund transformation:
Contreras, P., & Shimabukuro (2016)

e Asymptotic stability via IST: P. & Saalmann (2019), He, Liu, & Qu (2024)

In the limit of algebraic solitons, all methods fail!

e There is no coercivity of the second variation from higher-order energy.

e Backlund transformation become trivial and generalizations do not help:
[Guo, Ling, & Liu (2013)]

e Solvability of the IST is not justified for slowly decaying potentials.



The only available result is from Klaus, P, & Rothos (2006)

Consider the Kaup—Newell spectral problem

S I

where |w(x)| = |u(x)| = |v(x)| in defined from the solution of the MTM.
Assume that ;

lw(x)| ~ 2l as |r| — oo for some b > 0.
T

e )\og =1 is an embedded eigenvalue only if b > % [b =1 for algebraic soliton.]

o If \yp =7 is an embedded eigenvalue, then its geometric multiplicity is one. lIts
algebraic multiplicity is N + 1 only if b > N + % [No examples were given ]

e Let wq be the algebraic soliton and ew;(x) be a perturbation with fixed profile
wy. For every e = 0, there exists a simple eigenvalue of the Lax spectrum in
each quadrant of C independently of the sign of € provided that w; satisfies a
non-degeneracy condition. [This suggests stability of an algebraic soliton.]



Why is this surprising?

The Gardner (modified KdV) equation
up + 120, + 6uty + Uppy = 0

also has the algebraic soliton

4
1+ 422

up(x) =

associated with the Zakharov—Shabat spectral problem

I —1 — u(x)

Dutp = 1 4 u(x) —iA ?

However, the algebraic soliton is a nonzero minimum of conserved momentum
Q(u) = [, u*dz among exponential solitons and hence it is nonlinearly unstable.

Instability for similar mKdV and NLS models was shown in analysis papers:
Fukaya & Hayashi (2021), Kfoury, Le Coz & Tsai (2022).



More results on instability of algebraic solitons in mKdV

e )\og =1 is an embedded eigenvalue of the Zakharov—Shabat spectral problem.

o Let cuj(x) be a perturbation with fixed profile u;. For every € # 0, we have
either a simple eigenvalue A = i +iO(|e|?/3) or a symmetric pair of eigenvalues
A =i+ O(|e|?>/3) depending on the sign of €. [P & Grimshaw (1997)]




More results on instability of algebraic solitons in mKdV

The instability of algebraic solitons can be shown from the rational solutions of
the Gardner equation

w+12uu, + 6u2ux + Uprr = 0.

A hierarchy of rational solutions is available in the form:

4 P4(£C, t)

ul(x) — _1 n 43327 ’UQ(CE,t) —

The solution us suggests the instability of uy: ||us(+,t) — u1||z2 grows in time ¢.



Section 3. Rational solutions of MTM

Consider the MTM in laboratory coordinates

i(uy + ug) +v = |v]%u,
i(vy — vz) +u = |ul?v.

Rational solutions on nonzero background (rogue waves) were already constructed:
Guo, Wang, Cheng, & He (2017)

Ye, Bu, Pan, Chen, Mihalche, & Baronio (2021)

Chen, Yang, & Feng (2023).

Surprisingly, rational solutions on the zero background have not been constructed
for MTM, although they were constructed for derivative NLS [Wang & Wu (2022)]

We have constructed the second-order rational solution to the MTM:
Jiagi Han, Cheng He, & D.P. (2024)



Construction of the second-order rational solution

We use the bilinear formulation of the MTM from [Chen & Feng (2023)]:

where

if(9¢ + 92) —ig(fe + fo) +hf =0, )
if(he — he) —ih(fi — fo) + 9f =0,
if (fo + ft) —if(fe + fz) — |h[? =0,
if(fe — fo) —if(fe — fo) — |9I* = 0.

~”~

e [he exponential 2-solitons are obtained with 8 parameters.

e Four parameters yields two eigenvalues \; = 617! and Ay = 6272 in the first
quadrant of C. Four more parameters are translational parameters.

e A limit to the algebraic 2-soliton solutions yields a soluton with 6 parameters:

01 # 02, Y1,7V2 — T.

e The limit 91 — 05 gives the algebraic double-soliton with 5 parameters.



The algebraic double-soliton

The algebraic double-soliton is expressed as the second-order rational solution

4(—3 + 6iz — 122% — 8iz® — 12t(22 — i) — if3)

3 + 24ix — 2422 + 32ix3 — 1624 + 48t2 + 2522 — 1) it
B 4(—3 — 6ix — 1222 + 8iz3 + 12t(2x +1) +ip) !
3 — 24ix — 2422 — 32ix3 — 162* + 482 + 25(2x + i) |

where 5 € R is a parameter in addition to ¢ € (—1,1) and xg, tg, 0y € R.

The existence of the second-order rational solution suggestes the existence of a
hierarchy of rational solutions in the form:

2 —t

u(T,t) = ;e

, us(x,t) =

[Baofeng Feng, Jiagi Han, Cheng He, & D.P. (2025) in progress]



Properties of the algebraic double-soliton

L. u(-t),v(-,t) € C(R) foreveryt e R and g € R
2. Q(u,v) = fy(lul? + o2)dz = 87 = 2Qas.

For the proofs, the bilinear formulation is very useful:

2 > lgl*+1R[? 1(&_&)
=" = )

where
f =162 + 32iz° + 242° + 24ix — 3 — 48" — 23(2x + i)
satisfies

e f has no zeros on R in x foreveryt € R and 5 € R.

e f has one root in C. and three roots in C_: N, =1, N_ = 3.
o folf = Fo/ F = Ol 2) as || = o,

By the argument principle,

Q(u,v) =4n(N_ — N, ) = 8.



Properties of the algebraic double-soliton

3. The solution suggests slow scattering of two identical algebraic solitons.

30,

25

20,

This suggests orbital stability of a single algebraic soliton (an open problem).



Properties of the algebraic double-soliton

4. The two solitons move along the parabolas 22 = ++/3t.

5. The algebraic double-soliton corresponds to the double embedded eigenvalue
Ao = i in the Kaup—Newell spectral problem. [Li, P., Tian (2025)]

This is in agreement with the result from [Klaus,P.,Rothos (2006)]:

Algebraic multiplicity of \g=4is N +1onlyif b > N + % where

b
lu(x)| ~ Tl as |r| — oo for some b > 0.
T

The algebraic double-soliton corresponds to b = 2.



Section 4. Stability of exponential solitons

Consider the initial-value problem for the MTM in laboratory coordinates

i(uy +ug) +v = |v]%u,
i(ve — vg) +u = |ul?v,

starting with initial data (u, v)|t=0 = (g, Vo).
e Local and global solutions in H*(R) for s > 1. [Goodman & Weinstein (2001)]

e Local and global solutions in L*(R) [Candy (2011)], [Huh & Moon (2015)]

Conservation of mass, momentum and energy:
Q- / (1> + o) d
(ully — UL U + VU, — v,0) dx,

(ulhy — UpU — VO, + V,.0) dx + / (—vi — uv + 2|ul?|v|?) dz
R



Orbital stability of exponential solitons

Recall the exponential solitons with frequency w :=cosy € (-1, 1):

| : iy
u<a:.’ t) — Uw<w)elwt7 Uw(x) _ Sin’y SeCh (:,U S111 7Y + 2)

sech (CL’ sin vy — %)

Definition 1. We say that the exponential soliton is orbitally stable in X if for
any € > 0 there is a 6 > 0, such that if |[u(-,0) — Uy(-)||x <9 then

: N —if _ <
Q}gefRHu(,t) e "Uy(-+a)llx <e

for allt > 0. Here X = H'(R) or X = L*(R).

First derivative test: U, is a critical point of H + w(.

Second derivative test: the quadratic part of energy H is not bounded from
neither above or below since w € (—1,1) is in the gap of the spectrum
(D) = (—oo,—1] U [1,00) of the Dirac operator

D= r?’” —ilaJ : HY(R) c L*(R) — L*(R).



l. Orbital stability of exponential solitons in H'(R)

A higher-order energy exists for the MTM due to its integrability:

R= [ Jlusf? + f? = st~ o) (P + 210f)
—(wv +aw)([ul* + [v[*) + 2ul*|[v*(Ju]* + [v]*)] d=.
Theorem 2 (P-Shimabukuro (2014)). We have
o First derivative test: Uy, is a critical point of A, := R+ (1 —w?)Q.

o Second derivative test: Uy, 1s a local non-degenerate minimizer of R in

H1(R) under the constraints of fized mass Q and fized momentum P up to
the translational and rotational symmetries.

The proof is based on the coercivity of the conserved Lyapunov functional
Aw<Uw + U) - AW(Uw) > C (HUH?{l o HUH%l) )

subject to four constraints and control of four modulation parameters in time.



What goes wrong for stability of algebraic solitons in H'(R)

Recall the Lyapunov functional A, := R + (1 — w?)Q with

1
R= [ Jlusf? + oaf? = st~ o) (P + 210
R

— (w0 +aw)(ful* + v]*) + 2[ul*[v[* (Jul* + [v]*)] d=

and

_ 2 2
Q—/R(]u\ + v]?) dz.

For the algebraic soliton with frequency w = —1:

2
u(z,t) = Uy _q(2x)e™ ", Ugy__i(z) = [HQ%“”] ,
1—2iz

coercivity of the Lyapunov functional A,—_1 = R is lost. The continuous
spectrum of R has no gap from the zero eigenvalue due to symmetries.



Il. Orbital stability of exponential solitons in L*(R)

The Backlund transformation B is a map that takes one solution (u,v) of the
MTM system to another solution (u,?) of the MTM system:

~ o~

B:(u,v)— (a,?),

In particular, the Backlund transformation relates zero <+ one soliton:
B
(0, O) < (’LL)\, 2))\)

Theorem 3 (Contreras—P—-Shimabukuro (2016)). Let u(-,t) € C(R; L*(R)) be a
solution of the MTM system and Ay € C be an eigenvalue in the first quadrant.
There exist a real positive constant € such that if the initial value ug € L*(R)
satisfies

HUO - u>\0(07 ')HL2 < €,

then for every t € R, there exists A € C such that |A — \g| < Cl,

inf : £) — e Puy(-.t
a,,lgleRHu( —I—CL, ) € u)\(a )

1,2 S CG,

where the constant C' is independent of € and t.



Backlund transformation for the MTM system

o Let (u,v) be a C! solution of the MTM system.
o Let ¢ = (¢1, 2)t be a C*? nonzero solution of the linear system
555 = L(u,v, )\)5 and q;t = A(u, v, )\)5,
for A = e, v € (0, 7).

A new C! solution of the MTM system is given by

e~ /2| 1) + e/ 2| o |? 2i sin y¢1 o
eN2|p1|2 + e=1/2po|2  €1V/2|p1|2 + e 1/2|hy)?

U= —1U

ei’Y/Q\qblIz 4+ e—iv/2,¢2|2 21 Sinvaﬁbz
e~ 1/2|p1|2 + eV/2|po|?2 e 1V/2| 1|2 + e1V/2| g2

If (u,v)=(0,0) and

N

b1 = eﬁ'(x2—x2)x+%’(,\2+x2)t7
by = o~ VA= (ATt

then (@, ) is 1-soliton.



The proof of orbital stability consists of three steps

Fix Ao € C; for a MTM soliton uy,. Take ug € L*(R) s.t. ||[ug — uy,(+,0)|z2 < €.

1 From a perturbed one-soliton to a small solution at ¢ = O:

There exists A € C and ¢ € HY(R) of 9,00 = L(up; \)¢ such that [X — X\o| < e.
The Backlund transformation B(1, \) : ug — ug yields the estimate

laollzz < flao = axg (-, 0] 2.

2 Time evolution: |[u(-,t)||z2 = |[aol|z2, t € R.

3 From the small solution to the perturbed one-soliton for t € RR:

There exists two linearly independent solutions of

—

¢a: — L<l~1(7t)7 )‘>§; and ggt — A(ﬁ(at)7 )‘)57
The Bicklund transformation B(¢, A) : U(-,t) — u(-, ) yields the estimate
lu-,t) — e Pus(-+a(t), )2 S al, )l VEER.

where a(t) and 6(t) are defined in the linear combination of two solutions.



What goes wrong for stability of algebraic solitons in L*(R)

Recall Backlund transformation:

e~ /2| p1)? + e1/2| o |? 2i sin y¢, o
e /2 1|2 + e~ 11/2| o2 | €i1/2] 1|2 + e~ 11/2| g |2

U= —u

e 2|1 |* + e ol 2i siny¢, éo
—v . . — . .
6—27/2‘¢1|2 + 6@7/2’¢2|2 6—27/2|¢1‘2 + 6@’y/2‘¢2’2’

g
I

If v =7, then (@, 0) = (u,v) and the Backlund transformation fails to provide the
mapping: zero <> one soliton.

A generalized Backlund transformation is available [Guo, Ling, & Liu (2013)].
However, the estimate

Iaollzz S fluo — ux (- 0)| 2

is based on estimates of solutions ¢ € H*(R) of 8,10 = L(ug; A\)¢ in the
exponentially weighted spaces. It is not clear how to introduce similar algebraically
weighted spaces for a generalized Backlund transformation which would work for
algebraically decaying potentials uy, with A\g = 3.



I1l. Asymptotic stability of exp. solitons in H*(R) N H'1(R)

The MTM system is a compatibility condition of the linear system
br = L(u,0,\)$ and ¢y = A(u,v,\)d,

where

T TINT BT N % O AL N VA W S A VR 7 SR A A S
-t D)0 B ()

and

SR E A LA W AU R VI
A= 4(|u\ + |v]%)os > (v O) ) (u O>+4()\ +)\2>03

Theorem 4 (P-Saalmann (2019); He-Liu—Qu (2023)). Let Ao € C be the only
eigenvalue in the first quadrant for ug € H*(R) N HYY(R). There exist € > 0
such that if |[ug — ux, (0, )| 12 < €, then there exist functions a(t),0(t) € CO(R)
such that the solution u(-,t) € C°(R, H*(R) N HY'(R)) satisfies

lim [Ju(-,t) — e @®uy (- — a(t),t)||p=~ = 0.

t——+o0



Direct scattering

Assuming (u,v) — (0,0) as || — oo fast enough, there exist matrix Jost
functions satisfying the asymptotic values

LA+ 4 (N A2t
@, [ ! 0
¢ — < 0 6_%@\2_)\_2)&:_%()\2_'_)\_2)75 as T — oo

and the scattering relations
() g0 [ TN D)
60 =0 (50w )

Fixed point arguments are not uniform in A as |A\| = oo and |A\| — 0 because of
the singularity of L(u, v, \):

e oy A0 WY 1 (0 m) i1
L=yl = fuPro =25 (0 0) = (0 §) 45 (2 o




Renormalized direct scattering

By introducing the transformation

) i= T NgPe e
n$) = AT (0, \) e ed (AT ) (AT JA) =

we get renormalized Jost functions satisfying the asymptotic values

ngi) — (é) , ngi) — (?) as & — LOO.

and the scattering relation



Direct scattering result [P-Saalmann (2019)]

Lemma 5. Let (u,v) € LY(R) N L®(R) and (ug,v,) € LY(R). For every

z € R\ {0}, there exists unique bounded Jost functions ngi) and néi). For

every x € R, ngi) and néi) are continued analytically in CT and satisfy the
following limits as |z| — oo and |z| — 0 along a contour in the domains of

their analyticity:

n(E) n(E)
lim —e lim —=— =¢
+ L + 2
|z| =00 N7 |z| =00 N5

and

lim [nfoongi)} =e; +vep, lim [nétoongi)} = ue; + (1 4+ uv)eq,

|z|—=0 |z|—0
where

ny> = ef oo (lul*+lv*)dy. ny ™ 1= e~ JEoo([ul*+vI)dy.
Similarly, o is continued analytically into CT with the following limits in CT:

lim a(z) = e thRlaPHDd gy o(z) = et fallul oy,
|z| =00 2] —0



Choice of function spaces

We have the requirement of (u,v) € L'(R) N L*°(R) and (uy,v,) € L'(R) based
on solutions of Volterra's integral equations after the transformation uniformly as
2| — oo

ng = [@1(%?}) + 2@2(%’0) + % (Z — %) 03] 5,

where

; (2 + Jof?) i

Ql u,v) = ( 4(| ) ) ) 2 y
()= o gluPo+ Ju —3(lul®+ Jof?)

~ ? uv —u

Q2(u, v) _5( v+ Tuv?  —uwv )

To use Fourier theory, it is better to work in H'}(R) with u, d,u € L*!(R).

The time evolution also requires u € H%(R) for the reflection data to stay at the
same spaces for t # 0. Thus, the stability result is formulated in H*(R) N HY1(R).



Function spaces for reflection coefficients

Lemma 6 (P-Saalmann (2019)). Let (u,v) € H*(R) N HYY(R). Then,
ro € HYR)NL*(R)NL» 2(R) and r_(z) = ro(z)/z belongs to
r_ € HYY(R)N L2%(R) N L% Y(R), where r4(z) = B+(2)/a(z).

Fourier transform is an isomorphism between H!(R) N L*!(R). However, we need
further restriction in L% ~2(R) for r; because of the time evolution, which gives

ri(z,t) = ro(z,0)e 2=+
with _
0,r+(z,t) = |0,r+(2,0) — %t(l — 27 %) r4(2,0) etz

With the constraint r(-,0) € L*»~?(R), r+(-,t) belongs to the same function
space for every t # 0.

The asymptotic stability of exponential solitons is obtained by applications of the
steepest descent method and reformulations of the Riemann—Hilbert problem in
different regions of the (x,t) plane. [Cheng, Liu, Qu (2024)].



What goes wrong for stability of algebraic solitons in
H*(R) N HYYR)

Recall the algebraic soliton:

S,
]_ e

|1 — 21z
o (u,v) € H*(R) but (u,v) ¢ L**(R) due to slow spatial decay at infinity.

e The embedded eigenvalue A\ =1 corresponds to z = —1 so that the scattering
data r+(z) have the simple pole singularity on R.

e Inverse scattering is not available.



Section 5. Conclusion

| have explained three methods in the proof of nonlinear (orbital and asymptotic)
stability of exponential solitons in the MTM system:

e Lyapunov functional with the higher-order energy.
e Backlund transformation and the stability of the zero solution.

e Inverse scattering and steepest descent method.

Rational solutions of the MTM system suggest the nonlinear stability of the
algebraic soliton but the proof of stability remains an open problem.

e Coercivity of the Lyapunov functional is lost at the algebraic soliton.
e Backlund transformation becomes trivial for embedded eigenvalues.

e Inverse scattering is not allowed due to slow spatial decay of algebraic solitons.

Many thanks for your attention! Questions?



