Stability of solitary waves in the massive Thirring model

Dmitry Pelinovsky McMaster University, Canada

February 1, 2025

# Section 1. The massive Thirring model (MTM)

The coupled mode equations

$$\begin{cases} i(u_t + u_x) + v = (\gamma_1 |u|^2 + \gamma_2 |v|^2)u\\ i(v_t - v_x) + u = (\gamma_2 |u|^2 + \gamma_1 |v|^2)v \end{cases}$$

is a popular model for dynamics of two counter-propagating resonant waves across the periodic systems (photonics, Bose–Einstein condensation).

For instance, the Gross–Pitaevskii equation with  $2\pi$ -periodic, bounded, real-valued potential V(x):

$$i\partial_t \psi = -\partial_x^2 \psi + \varepsilon V(x)\psi \pm |\psi|^2 \psi,$$

is reduced asymptotically as  $\epsilon \to 0$  to the coupled mode equations for the superposition of two  $2\pi$ -antiperiodic waves (under Bragg's parameteric 1:2 resonance)

$$\psi(x,t) \sim \sqrt{\varepsilon} \left[ u(\varepsilon x, \varepsilon t) e^{\frac{i}{2}x} + v(\varepsilon x, \varepsilon t) e^{-\frac{i}{2}x} \right] e^{\frac{i}{4}t},$$



If  $\gamma_1 = 0$ , the system was introduced in quantum field theory by Thirring in 1958 as the relativistically invariant Dirac equation in one dimension, known now as the MTM in laboratory coordinates.

## **Gap solitons**

For every  $\gamma_1, \gamma_2 > 0$ , there exist spatially decaying (localized) solutions called gap solitons (solitary waves) in the gaps of purely continuous spectrum of

$$\mathcal{L} := -\partial_x^2 + \varepsilon V(x), \quad \operatorname{Dom}(\mathcal{L}) = H^2(\mathbb{R}) \subset L^2(\mathbb{R}), \qquad V(x + 2\pi) = V(x).$$

[Y.Kivshar, D.P., A. Sukhorukov (2004)] [A. Pankov (2005)] [M. Weinstein (2006)]



The decay rate is exponential except for the end points in each finite gap. Algebraic solitons attain the maximal power  $\int_{\mathbb{R}} |\psi|^2 dx$  in each family and the solutions are expressed explicitly within the coupled-mode theory.

## About exceptionality of the MTM

The MTM in laboratory coordinates

$$\left\{ \begin{array}{l} \mathrm{i}(u_t+u_x)+v=|v|^2 u,\\ \mathrm{i}(v_t-v_x)+u=|u|^2 v, \end{array} \right.$$

is the only example of the coupled-mode system which is relativistically invariant:

$$\begin{bmatrix} u(x,t) \\ v(x,t) \end{bmatrix} \mapsto \begin{bmatrix} \left(\frac{1-c}{1+c}\right)^{1/4} u \left(\frac{x+ct}{\sqrt{1-c^2}}, \frac{t+cx}{\sqrt{1-c^2}}\right) \\ \left(\frac{1+c}{1-c}\right)^{1/4} v \left(\frac{x+ct}{\sqrt{1-c^2}}, \frac{t+cx}{\sqrt{1-c^2}}\right) \end{bmatrix}, \qquad c \in (-1,1).$$

It also has standard symmetries of translations in x, t, and  $\arg(u) = \arg(v)$ .

MTM is integrable due to existence of the Lax pair [Mikhailov, 1976]:

$$\partial_x \varphi = L(u, v, \lambda) \varphi, \qquad \partial_t \varphi = A(u, v, \lambda) \varphi, \qquad \varphi(x, t) \in \mathbb{C}^2, \qquad \lambda \in \mathbb{C}.$$

See also [Orfanidis, 1976], [Kaup & Newell, 1977], [Barashenkov & Getmanov, 1989], [Villaroel, 1991], [Lee, 1994], [Zhou, 1995].

### About exceptionality of the algebraic solitons

One-soliton solutions are expressed in 1-parameter form:

$$\begin{bmatrix} u(x,t)\\v(x,t)\end{bmatrix} = \sin\gamma \begin{bmatrix} \operatorname{sech}\left(x\,\sin\gamma + \frac{\mathrm{i}\gamma}{2}\right)\\\operatorname{sech}\left(x\,\sin\gamma - \frac{\mathrm{i}\gamma}{2}\right)\end{bmatrix} e^{\mathrm{i}t\cos\gamma}, \quad \gamma \in (0,\pi)$$

with zero limit as  $\gamma \to 0$  and nonzero limit as  $\gamma \to \pi$ :

$$\gamma = \pi: \qquad \begin{bmatrix} u(x,t) \\ v(x,t) \end{bmatrix} = \begin{bmatrix} \frac{2}{1+2ix} \\ \frac{2}{1-2ix} \end{bmatrix} e^{-it}, \qquad (u,v) \in L^2(\mathbb{R}).$$

The frequency of standing waves  $\omega = \cos \gamma \in (-1, 1)$  takes values in the gap of the Dirac operator  $\mathcal{D} := \begin{bmatrix} i\partial_x & 1\\ 1 & -i\partial_x \end{bmatrix}$  in  $L^2(\mathbb{R})$ , where  $\sigma(\mathcal{D}) = (-\infty, -1] \cup [1, \infty)$ .

The algebraic soliton  $(\gamma = \pi)$  attains the maximal power  $Q(u, v) = \int_{\mathbb{R}} (|u|^2 + |v|^2) dx = 4\pi$  along the family.

## **Section 2. Stability of algebraic solitons**

For stability of exponential solitons, several analytical results are available:

- Orbital stability in H<sup>1</sup>(R) via constrained minimization of energy: P. & Shimabukuro (2014)
- Orbital stability in  $L^2(\mathbb{R})$  via Bäcklund transformation: Contreras, P., & Shimabukuro (2016)
- Asymptotic stability via IST: P. & Saalmann (2019), He, Liu, & Qu (2024)

In the limit of algebraic solitons, all methods fail!

- There is no coercivity of the second variation from higher-order energy.
- Bäcklund transformation become trivial and generalizations do not help: [Guo, Ling, & Liu (2013)]
- Solvability of the IST is not justified for slowly decaying potentials.

## The only available result is from Klaus, P, & Rothos (2006)

Consider the Kaup–Newell spectral problem

$$\partial_x \varphi = \begin{bmatrix} -i\lambda^2 & \lambda w(x) \\ -\lambda \bar{w}(x) & i\lambda^2 \end{bmatrix} \varphi,$$

where |w(x)| = |u(x)| = |v(x)| in defined from the solution of the MTM. Assume that

$$|w(x)| \sim \frac{b}{|x|}$$
 as  $|x| \to \infty$  for some  $b > 0$ .

- $\lambda_0 = i$  is an embedded eigenvalue only if  $b > \frac{1}{2}$ . [b = 1 for algebraic soliton.]
- If  $\lambda_0 = i$  is an embedded eigenvalue, then its geometric multiplicity is one. Its algebraic multiplicity is N + 1 only if  $b > N + \frac{1}{2}$ . [No examples were given.]
- Let w<sub>0</sub> be the algebraic soliton and ew<sub>1</sub>(x) be a perturbation with fixed profile w<sub>1</sub>. For every e ≠ 0, there exists a simple eigenvalue of the Lax spectrum in each quadrant of C independently of the sign of e provided that w<sub>1</sub> satisfies a non-degeneracy condition. [This suggests stability of an algebraic soliton.]

## Why is this surprising?

The Gardner (modified KdV) equation

$$u_t + 12uu_x + 6u^2u_x + u_{xxx} = 0$$

also has the algebraic soliton

$$u_0(x) = -\frac{4}{1+4x^2}$$

associated with the Zakharov-Shabat spectral problem

$$\partial_x \varphi = \begin{bmatrix} i\lambda & -1 - u(x) \\ 1 + u(x) & -i\lambda \end{bmatrix} \varphi.$$

However, the algebraic soliton is a nonzero minimum of conserved momentum  $Q(u) = \int_{\mathbb{R}} u^2 dx$  among exponential solitons and hence it is nonlinearly unstable.

Instability for similar mKdV and NLS models was shown in analysis papers: Fukaya & Hayashi (2021), Kfoury, Le Coz & Tsai (2022).

#### More results on instability of algebraic solitons in mKdV

- $\lambda_0 = i$  is an embedded eigenvalue of the Zakharov–Shabat spectral problem.
- Let  $\epsilon u_1(x)$  be a perturbation with fixed profile  $u_1$ . For every  $\epsilon \neq 0$ , we have either a simple eigenvalue  $\lambda = i + i\mathcal{O}(|\epsilon|^{2/3})$  or a symmetric pair of eigenvalues  $\lambda = i \pm \mathcal{O}(|\epsilon|^{2/3})$  depending on the sign of  $\epsilon$ . [P & Grimshaw (1997)]



#### More results on instability of algebraic solitons in mKdV

The instability of algebraic solitons can be shown from the rational solutions of the Gardner equation

$$u_t + 12uu_x + 6u^2u_x + u_{xxx} = 0.$$

A hierarchy of rational solutions is available in the form:

$$u_1(x) = -\frac{4}{1+4x^2}, \quad u_2(x,t) = \frac{P_4(x,t)}{P_6(x,t)}, \quad \dots$$

[Chowdury, Ankiewicz & Akhmediev (2016)], [Xing et al. (2017)]



The solution  $u_2$  suggests the instability of  $u_1$ :  $||u_2(\cdot, t) - u_1||_{L^2}$  grows in time t.

## Section 3. Rational solutions of MTM

Consider the MTM in laboratory coordinates

$$\left\{ \begin{array}{l} {\rm i}(u_t+u_x)+v=|v|^2 u,\\ {\rm i}(v_t-v_x)+u=|u|^2 v. \end{array} \right.$$

Rational solutions on nonzero background (rogue waves) were already constructed: Guo, Wang, Cheng, & He (2017) Ye, Bu, Pan, Chen, Mihalche, & Baronio (2021) Chen, Yang, & Feng (2023).

Surprisingly, rational solutions on the zero background have not been constructed for MTM, although they were constructed for derivative NLS [Wang & Wu (2022)]

We have constructed the second-order rational solution to the MTM: Jiaqi Han, Cheng He, & D.P. (2024)

## **Construction of the second-order rational solution**

We use the bilinear formulation of the MTM from [Chen & Feng (2023)]:

$$u = \frac{g}{\overline{f}}, \qquad v = \frac{h}{f},$$

where

$$\left. \begin{array}{l} \mathrm{i}f(g_t + g_x) - \mathrm{i}g(f_t + f_x) + h\bar{f} = 0, \\ \mathrm{i}\bar{f}(h_t - h_x) - \mathrm{i}h(\bar{f}_t - \bar{f}_x) + gf = 0, \\ \mathrm{i}\bar{f}(f_x + f_t) - \mathrm{i}f(\bar{f}_t + \bar{f}_x) - |h|^2 = 0, \\ \mathrm{i}f(\bar{f}_t - \bar{f}_x) - \mathrm{i}\bar{f}(f_t - f_x) - |g|^2 = 0. \end{array} \right\}$$

- The exponential 2-solitons are obtained with 8 parameters.
- Four parameters yields two eigenvalues  $\lambda_1 = \delta_1 e^{i\gamma_1}$  and  $\lambda_2 = \delta_2 e^{i\gamma_2}$  in the first quadrant of  $\mathbb{C}$ . Four more parameters are translational parameters.
- A limit to the algebraic 2-soliton solutions yields a soluton with 6 parameters:

$$\delta_1 \neq \delta_2, \qquad \gamma_1, \gamma_2 \to \pi.$$

• The limit  $\delta_1 \rightarrow \delta_2$  gives the algebraic double-soliton with 5 parameters.

#### The algebraic double-soliton

The algebraic double-soliton is expressed as the second-order rational solution

$$\begin{bmatrix} u(x,t) \\ v(x,t) \end{bmatrix} = \begin{bmatrix} \frac{4(-3+6ix-12x^2-8ix^3-12t(2x-i)-i\beta)}{3+24ix-24x^2+32ix^3-16x^4+48t^2+2\beta(2x-i)} \\ \frac{4(-3-6ix-12x^2+8ix^3+12t(2x+i)+i\beta)}{3-24ix-24x^2-32ix^3-16x^4+48t^2+2\beta(2x+i)} \end{bmatrix} e^{-it},$$

where  $\beta \in \mathbb{R}$  is a parameter in addition to  $c \in (-1, 1)$  and  $x_0, t_0, \theta_0 \in \mathbb{R}$ .

The existence of the second-order rational solution suggestes the existence of a hierarchy of rational solutions in the form:

$$u_1(x,t) = \frac{2}{1+2ix}e^{-it}, \quad u_2(x,t) = \frac{P_3(x,t)}{P_4(x,t)}e^{-it}, \quad \dots$$

[Baofeng Feng, Jiaqi Han, Cheng He, & D.P. (2025) in progress]

#### Properties of the algebraic double-soliton

1. 
$$u(\cdot, t), v(\cdot, t) \in C^{\omega}(\mathbb{R})$$
 for every  $t \in \mathbb{R}$  and  $\beta \in \mathbb{R}$ 

2. 
$$Q(u,v) = \int_{\mathbb{R}} (|u|^2 + |v|^2) dx = 8\pi = 2Q_{AS}.$$

For the proofs, the bilinear formulation is very useful:

$$|u|^{2} + |v|^{2} = \frac{|g|^{2} + |h|^{2}}{|f|^{2}} = 2i\left(\frac{f_{x}}{f} - \frac{\bar{f}_{x}}{\bar{f}}\right),$$

where

$$f = 16x^4 + 32ix^3 + 24x^2 + 24ix - 3 - 48t^2 - 2\beta(2x + i)$$

satisfies

- f has no zeros on  $\mathbb{R}$  in x for every  $t \in \mathbb{R}$  and  $\beta \in \mathbb{R}$ .
- f has one root in  $\mathbb{C}_+$  and three roots in  $\mathbb{C}_-$ :  $N_+ = 1$ ,  $N_- = 3$ .

• 
$$f_x/f - \overline{f}_x/\overline{f} = \mathcal{O}(|x|^{-2})$$
 as  $|x| \to \infty$ .

By the argument principle,

$$Q(u,v) = 4\pi(N_{-} - N_{+}) = 8\pi.$$

## **Properties of the algebraic double-soliton**

3. The solution suggests slow scattering of two identical algebraic solitons.



This suggests orbital stability of a single algebraic soliton (an open problem).

## **Properties of the algebraic double-soliton**

4. The two solitons move along the parabolas  $x^2 = \pm \sqrt{3}t$ .



5. The algebraic double-soliton corresponds to the double embedded eigenvalue  $\lambda_0 = i$  in the Kaup–Newell spectral problem. [Li, P., Tian (2025)]

This is in agreement with the result from [Klaus, P., Rothos (2006)]:

Algebraic multiplicity of  $\lambda_0 = i$  is N + 1 only if  $b > N + \frac{1}{2}$ , where

$$|u(x)| \sim \frac{b}{|x|}$$
 as  $|x| \to \infty$  for some  $b > 0$ .

The algebraic double-soliton corresponds to b = 2.

### Section 4. Stability of exponential solitons

Consider the initial-value problem for the MTM in laboratory coordinates

$$\begin{cases} i(u_t + u_x) + v = |v|^2 u, \\ i(v_t - v_x) + u = |u|^2 v, \end{cases}$$

starting with initial data  $(u, v)|_{t=0} = (u_0, v_0)$ .

- Local and global solutions in  $H^{s}(\mathbb{R})$  for  $s > \frac{1}{2}$ . [Goodman & Weinstein (2001)]
- Local and global solutions in  $L^2(\mathbb{R})$  [Candy (2011)], [Huh & Moon (2015)]

Conservation of mass, momentum and energy:

$$\begin{split} Q &= \int_{\mathbb{R}} \left( |u|^2 + |v|^2 \right) dx, \\ P &= \frac{i}{2} \int_{\mathbb{R}} \left( u\bar{u}_x - u_x\bar{u} + v\bar{v}_x - v_x\bar{v} \right) dx, \\ H &= \frac{i}{2} \int_{\mathbb{R}} \left( u\bar{u}_x - u_x\bar{u} - v\bar{v}_x + v_x\bar{v} \right) dx + \int_{\mathbb{R}} \left( -v\bar{u} - u\bar{v} + 2|u|^2|v|^2 \right) dx. \end{split}$$

### **Orbital stability of exponential solitons**

Recall the exponential solitons with frequency  $\omega := \cos \gamma \in (-1, 1)$ :

$$\mathbf{u}(x,t) = \mathbf{U}_{\omega}(x)e^{i\omega t}, \quad \mathbf{U}_{\omega}(x) = \sin\gamma \begin{bmatrix} \operatorname{sech}\left(x \, \sin\gamma + \frac{\mathrm{i}\gamma}{2}\right) \\ \operatorname{sech}\left(x \, \sin\gamma - \frac{\mathrm{i}\gamma}{2}\right) \end{bmatrix}.$$

**Definition 1.** We say that the exponential soliton is orbitally stable in X if for any  $\epsilon > 0$  there is a  $\delta > 0$ , such that if  $\|\mathbf{u}(\cdot, 0) - \mathbf{U}_{\omega}(\cdot)\|_X \leq \delta$  then

$$\inf_{\theta,a\in\mathbb{R}} \|\mathbf{u}(\cdot,t) - e^{-i\theta} \mathbf{U}_{\omega}(\cdot+a)\|_{X} \le \epsilon,$$

for all t > 0. Here  $X = H^1(\mathbb{R})$  or  $X = L^2(\mathbb{R})$ .

First derivative test:  $U_{\omega}$  is a critical point of  $H + \omega Q$ . Second derivative test: the quadratic part of energy H is not bounded from neither above or below since  $\omega \in (-1, 1)$  is in the gap of the spectrum  $\sigma(\mathcal{D}) = (-\infty, -1] \cup [1, \infty)$  of the Dirac operator

$$\mathcal{D} = \begin{bmatrix} i\partial_x & 1\\ 1 & -i\partial_x \end{bmatrix} : H^1(\mathbb{R}) \subset L^2(\mathbb{R}) \to L^2(\mathbb{R}).$$

## I. Orbital stability of exponential solitons in $H^1(\mathbb{R})$

A higher-order energy exists for the MTM due to its integrability:

$$R = \int_{\mathbb{R}} \left[ |u_x|^2 + |v_x|^2 - \frac{i}{2} (u_x \overline{u} - \overline{u}_x u) (|u|^2 + 2|v|^2) - (u\overline{v} + \overline{u}v) (|u|^2 + |v|^2) + 2|u|^2 |v|^2 (|u|^2 + |v|^2) \right] dx.$$

Theorem 2 (P–Shimabukuro (2014)). We have

- First derivative test:  $\mathbf{U}_{\omega}$  is a critical point of  $\Lambda_{\omega} := R + (1 \omega^2)Q$ .
- Second derivative test:  $U_{\omega}$  is a local non-degenerate minimizer of R in  $H^1(\mathbb{R})$  under the constraints of fixed mass Q and fixed momentum P up to the translational and rotational symmetries.

The proof is based on the coercivity of the conserved Lyapunov functional

$$\Lambda_{\omega}(\mathbf{U}_{\omega} + \mathbf{U}) - \Lambda_{\omega}(\mathbf{U}_{\omega}) \ge C\left(\|\mathbf{U}\|_{H^1}^2 - \|\mathbf{U}\|_{H^1}^4\right),$$

subject to four constraints and control of four modulation parameters in time.

## What goes wrong for stability of algebraic solitons in $H^1(\mathbb{R})$

Recall the Lyapunov functional  $\Lambda_{\omega} := R + (1 - \omega^2)Q$  with

$$R = \int_{\mathbb{R}} \left[ |u_x|^2 + |v_x|^2 - \frac{i}{2} (u_x \overline{u} - \overline{u}_x u) (|u|^2 + 2|v|^2) - (u\overline{v} + \overline{u}v) (|u|^2 + |v|^2) + 2|u|^2 |v|^2 (|u|^2 + |v|^2) \right] dx$$

and

$$Q = \int_{\mathbb{R}} \left( |u|^2 + |v|^2 \right) dx.$$

For the algebraic soliton with frequency  $\omega = -1$ :

$$\mathbf{u}(x,t) = \mathbf{U}_{\omega=-1}(x)e^{-it}, \quad \mathbf{U}_{\omega=-1}(x) = \begin{bmatrix} \frac{2}{1+2ix} \\ \frac{2}{1-2ix} \end{bmatrix},$$

coercivity of the Lyapunov functional  $\Lambda_{\omega=-1} = R$  is lost. The continuous spectrum of R'' has no gap from the zero eigenvalue due to symmetries.

## II. Orbital stability of exponential solitons in $L^2(\mathbb{R})$

The Bäcklund transformation  $\mathcal{B}$  is a map that takes one solution (u, v) of the MTM system to another solution  $(\tilde{u}, \tilde{v})$  of the MTM system:

 $\mathcal{B}: (u,v) \mapsto (\tilde{u},\tilde{v}),$ 

In particular, the Bäcklund transformation relates  $zero \leftrightarrow one soliton$ :

$$(0,0) \stackrel{\mathcal{B}}{\longleftrightarrow} (u_{\lambda}, v_{\lambda})$$

**Theorem 3** (Contreras–P–Shimabukuro (2016)). Let  $\mathbf{u}(\cdot, t) \in C(\mathbb{R}; L^2(\mathbb{R}))$  be a solution of the MTM system and  $\lambda_0 \in \mathbb{C}$  be an eigenvalue in the first quadrant. There exist a real positive constant  $\epsilon$  such that if the initial value  $\mathbf{u}_0 \in L^2(\mathbb{R})$  satisfies

$$\|\mathbf{u}_0 - \mathbf{u}_{\lambda_0}(0, \cdot)\|_{L^2} \le \epsilon,$$

then for every  $t \in \mathbb{R}$ , there exists  $\lambda \in \mathbb{C}$  such that  $|\lambda - \lambda_0| \leq C\epsilon$ ,

$$\inf_{a,\theta\in\mathbb{R}} \|\mathbf{u}(\cdot+a,t) - e^{-i\theta}\mathbf{u}_{\lambda}(\cdot,t)\|_{L^{2}} \le C\epsilon,$$

where the constant C is independent of  $\epsilon$  and t.

#### Bäcklund transformation for the MTM system

- Let (u, v) be a  $C^1$  solution of the MTM system.
- Let  $\vec{\phi} = (\phi_1, \phi_2)^t$  be a  $C^2$  nonzero solution of the linear system

$$\vec{\phi}_x = L(u,v,\lambda)\vec{\phi} \quad \text{and} \quad \vec{\phi}_t = A(u,v,\lambda)\vec{\phi},$$

for  $\lambda = e^{\frac{i\gamma}{2}}$ ,  $\gamma \in (0, \pi)$ .

A new  $C^1$  solution of the MTM system is given by

$$\begin{split} \tilde{u} &= -u \frac{e^{-i\gamma/2} |\phi_1|^2 + e^{i\gamma/2} |\phi_2|^2}{e^{i\gamma/2} |\phi_1|^2 + e^{-i\gamma/2} |\phi_2|^2} + \frac{2i \sin \gamma \overline{\phi}_1 \phi_2}{e^{i\gamma/2} |\phi_1|^2 + e^{-i\gamma/2} |\phi_2|^2} \\ \tilde{v} &= -v \frac{e^{i\gamma/2} |\phi_1|^2 + e^{-i\gamma/2} |\phi_2|^2}{e^{-i\gamma/2} |\phi_1|^2 + e^{i\gamma/2} |\phi_2|^2} - \frac{2i \sin \gamma \overline{\phi}_1 \phi_2}{e^{-i\gamma/2} |\phi_1|^2 + e^{i\gamma/2} |\phi_2|^2}, \end{split}$$

If (u,v) = (0,0) and

$$\phi_1 = e^{\frac{i}{4}(\lambda^2 - \lambda^{-2})x + \frac{i}{4}(\lambda^2 + \lambda^{-2})t},$$
  
$$\phi_2 = e^{-\frac{i}{4}(\lambda^2 - \lambda^{-2})x - \frac{i}{4}(\lambda^2 + \lambda^{-2})t},$$

then  $(\tilde{u}, \tilde{v})$  is 1-soliton.

## The proof of orbital stability consists of three steps

Fix  $\lambda_0 \in \mathbb{C}_I$  for a MTM soliton  $\mathbf{u}_{\lambda_0}$ . Take  $\mathbf{u}_0 \in L^2(\mathbb{R})$  s.t.  $\|\mathbf{u}_0 - \mathbf{u}_{\lambda_0}(\cdot, 0)\|_{L^2} < \epsilon$ .

#### 1 From a perturbed one-soliton to a small solution at t = 0:

There exists  $\lambda \in \mathbb{C}$  and  $\vec{\psi} \in H^1(\mathbb{R})$  of  $\partial_x \vec{\psi} = L(\mathbf{u}_0; \lambda) \vec{\psi}$  such that  $|\lambda - \lambda_0| \leq \epsilon$ . The Bäcklund transformation  $\mathcal{B}(\vec{\psi}, \lambda) : \mathbf{u}_0 \mapsto \widetilde{\mathbf{u}}_0$  yields the estimate

$$\|\widetilde{\mathbf{u}}_0\|_{L^2} \lesssim \|\mathbf{u}_0 - \mathbf{u}_{\lambda_0}(\cdot, 0)\|_{L^2}.$$

- 2 Time evolution:  $\|\widetilde{\mathbf{u}}(\cdot,t)\|_{L^2} = \|\widetilde{\mathbf{u}}_0\|_{L^2}$ ,  $t \in \mathbb{R}$ .
- 3 From the small solution to the perturbed one-soliton for  $t \in \mathbb{R}$ :

There exists two linearly independent solutions of

$$\vec{\phi}_x = L(\widetilde{\mathbf{u}}(\cdot,t),\lambda)\vec{\phi}$$
 and  $\vec{\phi}_t = A(\widetilde{\mathbf{u}}(\cdot,t),\lambda)\vec{\phi},$ 

The Bäcklund transformation  $\mathcal{B}(\vec{\phi}, \lambda) : \widetilde{\mathbf{u}}(\cdot, t) \mapsto \mathbf{u}(\cdot, t)$  yields the estimate

$$\|\mathbf{u}(\cdot,t) - e^{-i\theta(t)}\mathbf{u}_{\lambda}(\cdot + a(t),t)\|_{L^{2}} \lesssim \|\widetilde{\mathbf{u}}(\cdot,t)\|_{L^{2}} \quad \forall t \in \mathbb{R}.$$

where a(t) and  $\theta(t)$  are defined in the linear combination of two solutions.

# What goes wrong for stability of algebraic solitons in $L^2(\mathbb{R})$

Recall Bäcklund transformation:

$$\tilde{u} = -u \frac{e^{-i\gamma/2} |\phi_1|^2 + e^{i\gamma/2} |\phi_2|^2}{e^{i\gamma/2} |\phi_1|^2 + e^{-i\gamma/2} |\phi_2|^2} + \frac{2i \sin \gamma \overline{\phi}_1 \phi_2}{e^{i\gamma/2} |\phi_1|^2 + e^{-i\gamma/2} |\phi_2|^2}$$

$$\tilde{v} = -v \frac{e^{i\gamma/2} |\phi_1|^2 + e^{-i\gamma/2} |\phi_2|^2}{e^{-i\gamma/2} |\phi_1|^2 + e^{i\gamma/2} |\phi_2|^2} - \frac{2i \sin \gamma \overline{\phi}_1 \phi_2}{e^{-i\gamma/2} |\phi_1|^2 + e^{i\gamma/2} |\phi_2|^2},$$

If  $\gamma = \pi$ , then  $(\tilde{u}, \tilde{v}) = (u, v)$  and the Bäcklund transformation fails to provide the mapping: zero  $\leftrightarrow$  one soliton.

A generalized Bäcklund transformation is available [Guo, Ling, & Liu (2013)]. However, the estimate

$$\|\widetilde{\mathbf{u}}_0\|_{L^2} \lesssim \|\mathbf{u}_0 - \mathbf{u}_{\lambda_0}(\cdot, 0)\|_{L^2}$$

is based on estimates of solutions  $\vec{\psi} \in H^1(\mathbb{R})$  of  $\partial_x \vec{\psi} = L(\mathbf{u}_0; \lambda) \vec{\psi}$  in the exponentially weighted spaces. It is not clear how to introduce similar algebraically weighted spaces for a generalized Bäcklund transformation which would work for algebraically decaying potentials  $\mathbf{u}_{\lambda_0}$  with  $\lambda_0 = i$ .

# III. Asymptotic stability of exp. solitons in $H^2(\mathbb{R}) \cap H^{1,1}(\mathbb{R})$

The MTM system is a compatibility condition of the linear system

$$\vec{\phi}_x = L(u, v, \lambda)\vec{\phi}$$
 and  $\vec{\phi}_t = A(u, v, \lambda)\vec{\phi}$ ,

where

$$L = \frac{i}{2}(|v|^2 - |u|^2)\sigma_3 - \frac{i\lambda}{\sqrt{2}}\begin{pmatrix} 0 & \overline{v} \\ v & 0 \end{pmatrix} - \frac{i}{\sqrt{2}\lambda}\begin{pmatrix} 0 & \overline{u} \\ u & 0 \end{pmatrix} + \frac{i}{4}\left(\frac{1}{\lambda^2} - \lambda^2\right)\sigma_3$$

and

$$A = -\frac{i}{4}(|u|^2 + |v|^2)\sigma_3 - \frac{i\lambda}{2}\begin{pmatrix} 0 & \overline{v} \\ v & 0 \end{pmatrix} - \frac{i}{2\lambda}\begin{pmatrix} 0 & \overline{u} \\ u & 0 \end{pmatrix} + \frac{i}{4}\left(\lambda^2 + \frac{1}{\lambda^2}\right)\sigma_3$$

**Theorem 4** (P–Saalmann (2019); He–Liu–Qu (2023)). Let  $\lambda_0 \in \mathbb{C}$  be the only eigenvalue in the first quadrant for  $\mathbf{u}_0 \in H^2(\mathbb{R}) \cap H^{1,1}(\mathbb{R})$ . There exist  $\epsilon > 0$ such that if  $\|\mathbf{u}_0 - \mathbf{u}_{\lambda_0}(0, \cdot)\|_{L^2} \leq \epsilon$ , then there exist functions  $a(t), \theta(t) \in C^0(\mathbb{R})$ such that the solution  $\mathbf{u}(\cdot, t) \in C^0(\mathbb{R}, H^2(\mathbb{R}) \cap H^{1,1}(\mathbb{R}))$  satisfies

$$\lim_{t \to +\infty} \|\mathbf{u}(\cdot, t) - e^{-i\theta(t)}\mathbf{u}_{\lambda_0}(\cdot - a(t), t)\|_{L^{\infty}} = 0.$$

#### **Direct scattering**

Assuming  $(u, v) \to (0, 0)$  as  $|x| \to \infty$  fast enough, there exist matrix Jost functions satisfying the asymptotic values

$$\phi^{(\pm)} \to \begin{pmatrix} e^{\frac{i}{4}\left(\lambda^2 - \lambda^{-2}\right)x + \frac{i}{4}\left(\lambda^2 + \lambda^{-2}\right)t} & 0\\ 0 & e^{-\frac{i}{4}\left(\lambda^2 - \lambda^{-2}\right)x - \frac{i}{4}\left(\lambda^2 + \lambda^{-2}\right)t} \end{pmatrix} \quad \text{as} \quad x \to \pm \infty$$

and the scattering relations

$$\phi^{(-)} = \phi^{(+)} \begin{pmatrix} \overline{a}(\lambda) & b(\lambda) \\ -\overline{b}(\lambda) & a(\lambda) \end{pmatrix},$$

Fixed point arguments are not uniform in  $\lambda$  as  $|\lambda| \to \infty$  and  $|\lambda| \to 0$  because of the singularity of  $L(u, v, \lambda)$ :

$$L = \frac{i}{2}(|v|^2 - |u|^2)\sigma_3 - \frac{i\lambda}{\sqrt{2}} \begin{pmatrix} 0 & \overline{v} \\ v & 0 \end{pmatrix} - \frac{i}{\sqrt{2}\lambda} \begin{pmatrix} 0 & \overline{u} \\ u & 0 \end{pmatrix} + \frac{i}{4} \left(\frac{1}{\lambda^2} - \lambda^2\right)\sigma_3$$

By introducing the transformation

$$\begin{cases} n_1^{(\pm)} := T(v,\lambda)\phi_1^{(\pm)}e^{-\frac{i}{4}(\lambda^2 - \lambda^{-2})x - \frac{i}{4}(\lambda^2 + \lambda^{-2})t}, & T(v,\lambda) := \begin{pmatrix} 1 & 0 \\ v & \lambda \end{pmatrix} \\ n_2^{(\pm)} := \lambda^{-1}T(v,\lambda)\phi_2^{(\pm)}e^{\frac{i}{4}(\lambda^2 - \lambda^{-2})x + \frac{i}{4}(\lambda^2 + \lambda^{-2})t}, & T(v,\lambda) := \begin{pmatrix} 1 & 0 \\ v & \lambda \end{pmatrix} \end{cases}$$

we get renormalized Jost functions satisfying the asymptotic values

$$n_1^{(\pm)} \to \begin{pmatrix} 1\\0 \end{pmatrix}, \quad n_2^{(\pm)} \to \begin{pmatrix} 0\\1 \end{pmatrix} \quad \text{as} \quad x \to \pm \infty.$$

and the scattering relation

$$n^{(-)} = n^{(+)} \begin{pmatrix} \overline{\alpha}(z) & \beta_{-}(z)e^{2i\theta(z)} \\ -\overline{\beta}_{+}(z)e^{-2i\theta(z)} & \alpha(z) \end{pmatrix},$$

where  $z := \lambda^2$ ,  $\alpha(z) = a(\lambda)$ ,  $\beta_+(z) = \lambda b(\lambda)$ ,  $\beta_-(z) = \lambda^{-1}b(\lambda)$ , and

$$\theta(z) := \frac{1}{4}(z - z^{-1})x + \frac{1}{4}(z + z^{-1})t.$$

### Direct scattering result [P–Saalmann (2019)]

**Lemma 5.** Let  $(u, v) \in L^1(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$  and  $(u_x, v_x) \in L^1(\mathbb{R})$ . For every  $z \in \mathbb{R} \setminus \{0\}$ , there exists unique bounded Jost functions  $n_1^{(\pm)}$  and  $n_2^{(\pm)}$ . For every  $x \in \mathbb{R}$ ,  $n_1^{(\pm)}$  and  $n_2^{(\pm)}$  are continued analytically in  $\mathbb{C}^{\pm}$  and satisfy the following limits as  $|z| \to \infty$  and  $|z| \to 0$  along a contour in the domains of their analyticity:

$$\lim_{|z| \to \infty} \frac{n_1^{(\pm)}}{n_1^{\pm \infty}} = e_1, \quad \lim_{|z| \to \infty} \frac{n_2^{(\pm)}}{n_2^{\pm \infty}} = e_2,$$

and

$$\lim_{|z|\to 0} \left[ n_1^{\pm\infty} n_1^{(\pm)} \right] = e_1 + v e_2, \quad \lim_{|z|\to 0} \left[ n_2^{\pm\infty} n_2^{(\pm)} \right] = \bar{u} e_1 + (1 + \bar{u}v) e_2,$$

where

$$n_1^{\pm\infty} := e^{\frac{i}{4}\int_{\pm\infty}^x (|u|^2 + |v|^2)dy}, \quad n_2^{\pm\infty} := e^{-\frac{i}{4}\int_{\pm\infty}^x (|u|^2 + |v|^2)dy}.$$

Similarly,  $\alpha$  is continued analytically into  $\mathbb{C}^+$  with the following limits in  $\mathbb{C}^+$ :

$$\lim_{|z| \to \infty} \alpha(z) = e^{-\frac{i}{4} \int_{\mathbb{R}} (|u|^2 + |v|^2) dy}, \quad \lim_{|z| \to 0} \alpha(z) = e^{\frac{i}{4} \int_{\mathbb{R}} (|u|^2 + |v|^2) dy}$$

#### **Choice of function spaces**

We have the requirement of  $(u, v) \in L^1(\mathbb{R}) \cap L^\infty(\mathbb{R})$  and  $(u_x, v_x) \in L^1(\mathbb{R})$  based on solutions of Volterra's integral equations after the transformation uniformly as  $|z| \to \infty$ :

$$\vec{\phi}_x = \left[\widehat{Q}_1(u,v) + \frac{1}{z}\widehat{Q}_2(u,v) + \frac{i}{4}\left(z - \frac{1}{z}\right)\sigma_3\right]\vec{\phi},$$

where

$$\widehat{Q}_{1}(u,v) = \begin{pmatrix} \frac{i}{4}(|u|^{2} + |v|^{2}) & -\frac{i}{2}\overline{v} \\ v_{x} + \frac{i}{2}|u|^{2}v + \frac{i}{2}u & -\frac{i}{4}(|u|^{2} + |v|^{2}) \end{pmatrix},$$
  
$$\widehat{Q}_{2}(u,v) = -\frac{i}{2}\begin{pmatrix} \overline{u}v & -\overline{u} \\ v + \overline{u}v^{2} & -\overline{u}v \end{pmatrix}.$$

To use Fourier theory, it is better to work in  $H^{1,1}(\mathbb{R})$  with  $\mathbf{u}, \partial_x \mathbf{u} \in L^{2,1}(\mathbb{R})$ .

The time evolution also requires  $\mathbf{u} \in H^2(\mathbb{R})$  for the reflection data to stay at the same spaces for  $t \neq 0$ . Thus, the stability result is formulated in  $H^2(\mathbb{R}) \cap H^{1,1}(\mathbb{R})$ .

## **Function spaces for reflection coefficients**

**Lemma 6** (P–Saalmann (2019)). Let  $(u, v) \in H^2(\mathbb{R}) \cap H^{1,1}(\mathbb{R})$ . Then,  $r_+ \in H^1(\mathbb{R}) \cap L^{2,1}(\mathbb{R}) \cap L^{2,-2}(\mathbb{R})$  and  $r_-(z) = r_+(z)/z$  belongs to  $r_- \in H^{1,1}(\mathbb{R}) \cap L^{2,2}(\mathbb{R}) \cap L^{2,-1}(\mathbb{R})$ , where  $r_{\pm}(z) = \beta_{\pm}(z)/\alpha(z)$ .

Fourier transform is an isomorphism between  $H^1(\mathbb{R}) \cap L^{2,1}(\mathbb{R})$ . However, we need further restriction in  $L^{2,-2}(\mathbb{R})$  for  $r_+$  because of the time evolution, which gives

$$r_{\pm}(z,t) = r_{\pm}(z,0)e^{-\frac{i}{2}t(z+z^{-1})}$$

with

$$\partial_z r_{\pm}(z,t) = \left[\partial_z r_{\pm}(z,0) - \frac{i}{2}t(1-z^{-2})r_{\pm}(z,0)\right] e^{-\frac{i}{2}t(z+z^{-1})}.$$

With the constraint  $r_+(\cdot, 0) \in L^{2,-2}(\mathbb{R})$ ,  $r_{\pm}(\cdot, t)$  belongs to the same function space for every  $t \neq 0$ .

The asymptotic stability of exponential solitons is obtained by applications of the steepest descent method and reformulations of the Riemann–Hilbert problem in different regions of the (x, t) plane. [Cheng, Liu, Qu (2024)].

# What goes wrong for stability of algebraic solitons in $H^2(\mathbb{R})\cap H^{1,1}(\mathbb{R})$

Recall the algebraic soliton:

$$\begin{bmatrix} u(x,t) \\ v(x,t) \end{bmatrix} = \begin{bmatrix} \frac{2}{1+2ix} \\ \frac{1}{1-2ix} \end{bmatrix} e^{-it}.$$

- $(u,v) \in H^2(\mathbb{R})$  but  $(u,v) \notin L^{2,1}(\mathbb{R})$  due to slow spatial decay at infinity.
- The embedded eigenvalue λ = i corresponds to z = −1 so that the scattering data r<sub>±</sub>(z) have the simple pole singularity on ℝ.
- Inverse scattering is not available.

## **Section 5. Conclusion**

I have explained three methods in the proof of nonlinear (orbital and asymptotic) stability of exponential solitons in the MTM system:

- Lyapunov functional with the higher-order energy.
- Bäcklund transformation and the stability of the zero solution.
- Inverse scattering and steepest descent method.

Rational solutions of the MTM system suggest the nonlinear stability of the algebraic soliton but the proof of stability remains an open problem.

- Coercivity of the Lyapunov functional is lost at the algebraic soliton.
- Bäcklund transformation becomes trivial for embedded eigenvalues.
- Inverse scattering is not allowed due to slow spatial decay of algebraic solitons.
  Many thanks for your attention! Questions?