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Section 1. The massive Thirring model (MTM)

The coupled mode equations{
i(ut + ux) + v = (γ1|u|2 + γ2|v|2)u
i(vt − vx) + u = (γ2|u|2 + γ1|v|2)v

is a popular model for dynamics of two counter-propagating resonant waves across
the periodic systems (photonics, Bose–Einstein condensation).

For instance, the Gross–Pitaevskii equation with 2π-
periodic, bounded, real-valued potential V (x):

i∂tψ = −∂2xψ + εV (x)ψ ± |ψ|2ψ,

is reduced asymptotically as ε → 0 to the coupled mode
equations for the superposition of two 2π-antiperiodic
waves (under Bragg’s parameteric 1 : 2 resonance)

ψ(x, t) ∼
√
ε
[
u(εx, εt)e

i
2x + v(εx, εt)e−

i
2x
]
e
i
4t,

If γ1 = 0, the system was introduced in quantum field theory by Thirring in 1958
as the relativistically invariant Dirac equation in one dimension, known now as the
MTM in laboratory coordinates.
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Gap solitons

For every γ1, γ2 > 0, there exist spatially decaying (localized) solutions called gap
solitons (solitary waves) in the gaps of purely continuous spectrum of

L := −∂2x + εV (x), Dom(L) = H2(R) ⊂ L2(R), V (x+ 2π) = V (x).

[Y.Kivshar, D.P., A. Sukhorukov (2004)] [A. Pankov (2005)] [M. Weinstein (2006)]

The decay rate is exponential except for the end points in each finite gap.
Algebraic solitons attain the maximal power

∫
R |ψ|

2dx in each family and the
solutions are expressed explicitly within the coupled-mode theory.
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About exceptionality of the MTM

The MTM in laboratory coordinates{
i(ut + ux) + v = |v|2u,
i(vt − vx) + u = |u|2v,

is the only example of the coupled-mode system which is relativistically invariant:

[
u(x, t)
v(x, t)

]
7→


(
1−c
1+c

)1/4
u

(
x+ct√
1−c2

, t+cx√
1−c2

)
(
1+c
1−c

)1/4
v

(
x+ct√
1−c2

, t+cx√
1−c2

)
 , c ∈ (−1, 1).

It also has standard symmetries of translations in x, t, and arg(u) = arg(v).

MTM is integrable due to existence of the Lax pair [Mikhailov, 1976]:

∂xϕ = L(u, v, λ)ϕ, ∂tϕ = A(u, v, λ)ϕ, ϕ(x, t) ∈ C2, λ ∈ C.

See also [Orfanidis, 1976], [Kaup & Newell, 1977], [Barashenkov & Getmanov,
1989], [Villaroel, 1991], [Lee, 1994], [Zhou, 1995].
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About exceptionality of the algebraic solitons

One-soliton solutions are expressed in 1-parameter form:[
u(x, t)
v(x, t)

]
= sin γ

[
sech

(
x sin γ + iγ

2

)
sech

(
x sin γ − iγ

2

)] eit cos γ, γ ∈ (0, π)

with zero limit as γ → 0 and nonzero limit as γ → π:

γ = π :

[
u(x, t)
v(x, t)

]
=

 2

1 + 2ix
2

1− 2ix

 e−it, (u, v) ∈ L2(R).

The frequency of standing waves ω = cos γ ∈ (−1, 1) takes values in the gap of

the Dirac operator D :=

[
i∂x 1
1 −i∂x

]
in L2(R), where σ(D) = (−∞,−1]∪ [1,∞).

The algebraic soliton (γ = π) attains the maximal power
Q(u, v) =

∫
R(|u|2 + |v|2)dx = 4π along the family.
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Section 2. Stability of algebraic solitons

For stability of exponential solitons, several analytical results are available:

• Orbital stability in H1(R) via constrained minimization of energy:
P. & Shimabukuro (2014)

• Orbital stability in L2(R) via Bäcklund transformation:
Contreras, P., & Shimabukuro (2016)

• Asymptotic stability via IST: P. & Saalmann (2019), He, Liu, & Qu (2024)

In the limit of algebraic solitons, all methods fail!

• There is no coercivity of the second variation from higher-order energy.

• Bäcklund transformation become trivial and generalizations do not help:
[Guo, Ling, & Liu (2013)]

• Solvability of the IST is not justified for slowly decaying potentials.
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The only available result is from Klaus, P, & Rothos (2006)

Consider the Kaup–Newell spectral problem

∂xϕ =

[
−iλ2 λw(x)
−λw̄(x) iλ2

]
ϕ,

where |w(x)| = |u(x)| = |v(x)| in defined from the solution of the MTM.
Assume that

|w(x)| ∼ b

|x|
as |x| → ∞ for some b > 0.

• λ0 = i is an embedded eigenvalue only if b > 1
2. [b = 1 for algebraic soliton.]

• If λ0 = i is an embedded eigenvalue, then its geometric multiplicity is one. Its
algebraic multiplicity is N + 1 only if b > N + 1

2. [No examples were given.]

• Let w0 be the algebraic soliton and εw1(x) be a perturbation with fixed profile
w1. For every ε 6= 0, there exists a simple eigenvalue of the Lax spectrum in
each quadrant of C independently of the sign of ε provided that w1 satisfies a
non-degeneracy condition. [This suggests stability of an algebraic soliton.]
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Why is this surprising?

The Gardner (modified KdV) equation

ut + 12uux + 6u2ux + uxxx = 0

also has the algebraic soliton

u0(x) = − 4

1 + 4x2

associated with the Zakharov–Shabat spectral problem

∂xϕ =

[
iλ −1− u(x)

1 + u(x) −iλ

]
ϕ.

However, the algebraic soliton is a nonzero minimum of conserved momentum
Q(u) =

∫
R u

2dx among exponential solitons and hence it is nonlinearly unstable.

Instability for similar mKdV and NLS models was shown in analysis papers:
Fukaya & Hayashi (2021), Kfoury, Le Coz & Tsai (2022).
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More results on instability of algebraic solitons in mKdV

• λ0 = i is an embedded eigenvalue of the Zakharov–Shabat spectral problem.

• Let εu1(x) be a perturbation with fixed profile u1. For every ε 6= 0, we have
either a simple eigenvalue λ = i+ iO(|ε|2/3) or a symmetric pair of eigenvalues
λ = i±O(|ε|2/3) depending on the sign of ε. [P & Grimshaw (1997)]
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More results on instability of algebraic solitons in mKdV

The instability of algebraic solitons can be shown from the rational solutions of
the Gardner equation

ut+12uux + 6u2ux + uxxx = 0.

A hierarchy of rational solutions is available in the form:

u1(x) = − 4

1 + 4x2
, u2(x, t) =

P4(x, t)

P6(x, t)
, . . . .

[Chowdury, Ankiewicz & Akhmediev (2016)], [Xing et al. (2017)]

The solution u2 suggests the instability of u1: ‖u2(·, t)− u1‖L2 grows in time t.
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Section 3. Rational solutions of MTM

Consider the MTM in laboratory coordinates{
i(ut + ux) + v = |v|2u,
i(vt − vx) + u = |u|2v.

Rational solutions on nonzero background (rogue waves) were already constructed:
Guo, Wang, Cheng, & He (2017)
Ye, Bu, Pan, Chen, Mihalche, & Baronio (2021)
Chen, Yang, & Feng (2023).

Surprisingly, rational solutions on the zero background have not been constructed
for MTM, although they were constructed for derivative NLS [Wang & Wu (2022)]

We have constructed the second-order rational solution to the MTM:
Jiaqi Han, Cheng He, & D.P. (2024)
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Construction of the second-order rational solution

We use the bilinear formulation of the MTM from [Chen & Feng (2023)]:

u =
g

f̄
, v =

h

f
,

where
if(gt + gx)− ig(ft + fx) + hf̄ = 0,
if̄(ht − hx)− ih(f̄t − f̄x) + gf = 0,

if̄(fx + ft)− if(f̄t + f̄x)− |h|2 = 0,
if(f̄t − f̄x)− if̄(ft − fx)− |g|2 = 0.


• The exponential 2-solitons are obtained with 8 parameters.

• Four parameters yields two eigenvalues λ1 = δ1e
iγ1 and λ2 = δ2e

iγ2 in the first
quadrant of C. Four more parameters are translational parameters.

• A limit to the algebraic 2-soliton solutions yields a soluton with 6 parameters:

δ1 6= δ2, γ1, γ2 → π.

• The limit δ1 → δ2 gives the algebraic double-soliton with 5 parameters.
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The algebraic double-soliton

The algebraic double-soliton is expressed as the second-order rational solution

[
u(x, t)
v(x, t)

]
=


4(−3 + 6ix− 12x2 − 8ix3 − 12t(2x− i)− iβ)

3 + 24ix− 24x2 + 32ix3 − 16x4 + 48t2 + 2β(2x− i)
4(−3− 6ix− 12x2 + 8ix3 + 12t(2x+ i) + iβ)

3− 24ix− 24x2 − 32ix3 − 16x4 + 48t2 + 2β(2x+ i)

 e−it,
where β ∈ R is a parameter in addition to c ∈ (−1, 1) and x0, t0, θ0 ∈ R.

The existence of the second-order rational solution suggestes the existence of a
hierarchy of rational solutions in the form:

u1(x, t) =
2

1 + 2ix
e−it, u2(x, t) =

P3(x, t)

P4(x, t)
e−it, . . . .

[Baofeng Feng, Jiaqi Han, Cheng He, & D.P. (2025) in progress]
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Properties of the algebraic double-soliton

1. u(·, t), v(·, t) ∈ Cω(R) for every t ∈ R and β ∈ R

2. Q(u, v) =
∫
R(|u|2 + |v|2)dx = 8π = 2QAS.

For the proofs, the bilinear formulation is very useful:

|u|2 + |v|2 =
|g|2 + |h|2

|f |2
= 2i

(
fx
f
− f̄x
f̄

)
,

where
f = 16x4 + 32ix3 + 24x2 + 24ix− 3− 48t2 − 2β(2x+ i)

satisfies

• f has no zeros on R in x for every t ∈ R and β ∈ R.

• f has one root in C+ and three roots in C−: N+ = 1, N− = 3.

• fx/f − f̄x/f̄ = O(|x|−2) as |x| → ∞.

By the argument principle,

Q(u, v) = 4π(N− −N+) = 8π.
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Properties of the algebraic double-soliton

3. The solution suggests slow scattering of two identical algebraic solitons.

This suggests orbital stability of a single algebraic soliton (an open problem).
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Properties of the algebraic double-soliton

4. The two solitons move along the parabolas x2 = ±
√

3t.

5. The algebraic double-soliton corresponds to the double embedded eigenvalue
λ0 = i in the Kaup–Newell spectral problem. [Li, P., Tian (2025)]

This is in agreement with the result from [Klaus,P.,Rothos (2006)]:

Algebraic multiplicity of λ0 = i is N + 1 only if b > N + 1
2, where

|u(x)| ∼ b

|x|
as |x| → ∞ for some b > 0.

The algebraic double-soliton corresponds to b = 2.
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Section 4. Stability of exponential solitons

Consider the initial-value problem for the MTM in laboratory coordinates{
i(ut + ux) + v = |v|2u,
i(vt − vx) + u = |u|2v,

starting with initial data (u, v)|t=0 = (u0, v0).

• Local and global solutions in Hs(R) for s > 1
2. [Goodman & Weinstein (2001)]

• Local and global solutions in L2(R) [Candy (2011)], [Huh & Moon (2015)]

Conservation of mass, momentum and energy:

Q =

∫
R

(
|u|2 + |v|2

)
dx,

P =
i

2

∫
R

(uūx − uxū+ vv̄x − vxv̄) dx,

H =
i

2

∫
R

(uūx − uxū− vv̄x + vxv̄) dx+

∫
R

(
−vū− uv̄ + 2|u|2|v|2

)
dx.
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Orbital stability of exponential solitons

Recall the exponential solitons with frequency ω := cos γ ∈ (−1, 1):

u(x, t) = Uω(x)eiωt, Uω(x) = sin γ

[
sech

(
x sin γ + iγ

2

)
sech

(
x sin γ − iγ

2

)] .
Definition 1. We say that the exponential soliton is orbitally stable in X if for
any ε > 0 there is a δ > 0, such that if ‖u(·, 0)−Uω(·)‖X ≤ δ then

inf
θ,a∈R

‖u(·, t)− e−iθUω(·+ a)‖X ≤ ε,

for all t > 0. Here X = H1(R) or X = L2(R).

First derivative test: Uω is a critical point of H + ωQ.
Second derivative test: the quadratic part of energy H is not bounded from
neither above or below since ω ∈ (−1, 1) is in the gap of the spectrum
σ(D) = (−∞,−1] ∪ [1,∞) of the Dirac operator

D =

[
i∂x 1
1 −i∂x

]
: H1(R) ⊂ L2(R)→ L2(R).

18



I. Orbital stability of exponential solitons in H1(R)

A higher-order energy exists for the MTM due to its integrability:

R =

∫
R

[
|ux|2 + |vx|2 −

i

2
(uxu− uxu)(|u|2 + 2|v|2)

−(uv + uv)(|u|2 + |v|2) + 2|u|2|v|2(|u|2 + |v|2)
]
dx.

Theorem 2 (P–Shimabukuro (2014)). We have

• First derivative test: Uω is a critical point of Λω := R+ (1− ω2)Q.

• Second derivative test: Uω is a local non-degenerate minimizer of R in
H1(R) under the constraints of fixed mass Q and fixed momentum P up to
the translational and rotational symmetries.

The proof is based on the coercivity of the conserved Lyapunov functional

Λω(Uω + U)− Λω(Uω) ≥ C
(
‖U‖2H1 − ‖U‖4H1

)
,

subject to four constraints and control of four modulation parameters in time.
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What goes wrong for stability of algebraic solitons in H1(R)

Recall the Lyapunov functional Λω := R+ (1− ω2)Q with

R =

∫
R

[
|ux|2 + |vx|2 −

i

2
(uxu− uxu)(|u|2 + 2|v|2)

−(uv + uv)(|u|2 + |v|2) + 2|u|2|v|2(|u|2 + |v|2)
]
dx

and

Q =

∫
R

(
|u|2 + |v|2

)
dx.

For the algebraic soliton with frequency ω = −1:

u(x, t) = Uω=−1(x)e−it, Uω=−1(x) =

[ 2
1+2ix

2
1−2ix

]
,

coercivity of the Lyapunov functional Λω=−1 = R is lost. The continuous
spectrum of R′′ has no gap from the zero eigenvalue due to symmetries.
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II. Orbital stability of exponential solitons in L2(R)

The Bäcklund transformation B is a map that takes one solution (u, v) of the
MTM system to another solution (ũ, ṽ) of the MTM system:

B : (u, v) 7→ (ũ, ṽ),

In particular, the Bäcklund transformation relates zero ↔ one soliton:

(0, 0)
B←→ (uλ, vλ)

Theorem 3 (Contreras–P–Shimabukuro (2016)). Let u(·, t) ∈ C(R;L2(R)) be a
solution of the MTM system and λ0 ∈ C be an eigenvalue in the first quadrant.
There exist a real positive constant ε such that if the initial value u0 ∈ L2(R)
satisfies

‖u0 − uλ0(0, ·)‖L2 ≤ ε,
then for every t ∈ R, there exists λ ∈ C such that |λ− λ0| ≤ Cε,

inf
a,θ∈R

‖u(·+ a, t)− e−iθuλ(·, t)‖L2 ≤ Cε,

where the constant C is independent of ε and t.
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Bäcklund transformation for the MTM system

• Let (u, v) be a C1 solution of the MTM system.

• Let ~φ = (φ1, φ2)
t be a C2 nonzero solution of the linear system

~φx = L(u, v, λ)~φ and ~φt = A(u, v, λ)~φ,

for λ = e
iγ
2 , γ ∈ (0, π).

A new C1 solution of the MTM system is given by

ũ = −ue
−iγ/2|φ1|2 + eiγ/2|φ2|2

eiγ/2|φ1|2 + e−iγ/2|φ2|2
+

2i sin γφ1φ2
eiγ/2|φ1|2 + e−iγ/2|φ2|2

ṽ = −ve
iγ/2|φ1|2 + e−iγ/2|φ2|2

e−iγ/2|φ1|2 + eiγ/2|φ2|2
− 2i sin γφ1φ2
e−iγ/2|φ1|2 + eiγ/2|φ2|2

,

If (u, v) = (0, 0) and {
φ1 = e

i
4(λ

2−λ−2)x+ i
4(λ

2+λ−2)t,

φ2 = e−
i
4(λ

2−λ−2)x− i4(λ
2+λ−2)t.

then (ũ, ṽ) is 1-soliton.

22



The proof of orbital stability consists of three steps

Fix λ0 ∈ CI for a MTM soliton uλ0. Take u0 ∈ L2(R) s.t. ‖u0− uλ0(·, 0)‖L2 < ε.

1 From a perturbed one-soliton to a small solution at t = 0:

There exists λ ∈ C and ~ψ ∈ H1(R) of ∂x ~ψ = L(u0;λ)~ψ such that |λ− λ0| . ε.

The Bäcklund transformation B(~ψ, λ) : u0 7→ ũ0 yields the estimate

‖ũ0‖L2 . ‖u0 − uλ0(·, 0)‖L2.

2 Time evolution: ‖ũ(·, t)‖L2 = ‖ũ0‖L2, t ∈ R.

3 From the small solution to the perturbed one-soliton for t ∈ R:

There exists two linearly independent solutions of

~φx = L(ũ(·, t), λ)~φ and ~φt = A(ũ(·, t), λ)~φ,

The Bäcklund transformation B(~φ, λ) : ũ(·, t) 7→ u(·, t) yields the estimate

‖u(·, t)− e−iθ(t)uλ(·+ a(t), t)‖L2 . ‖ũ(·, t)‖L2 ∀t ∈ R.

where a(t) and θ(t) are defined in the linear combination of two solutions.
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What goes wrong for stability of algebraic solitons in L2(R)

Recall Bäcklund transformation:

ũ = −ue
−iγ/2|φ1|2 + eiγ/2|φ2|2

eiγ/2|φ1|2 + e−iγ/2|φ2|2
+

2i sin γφ1φ2
eiγ/2|φ1|2 + e−iγ/2|φ2|2

ṽ = −ve
iγ/2|φ1|2 + e−iγ/2|φ2|2

e−iγ/2|φ1|2 + eiγ/2|φ2|2
− 2i sin γφ1φ2
e−iγ/2|φ1|2 + eiγ/2|φ2|2

,

If γ = π, then (ũ, ṽ) = (u, v) and the Bäcklund transformation fails to provide the
mapping: zero ↔ one soliton.

A generalized Bäcklund transformation is available [Guo, Ling, & Liu (2013)].
However, the estimate

‖ũ0‖L2 . ‖u0 − uλ0(·, 0)‖L2

is based on estimates of solutions ~ψ ∈ H1(R) of ∂x ~ψ = L(u0;λ)~ψ in the
exponentially weighted spaces. It is not clear how to introduce similar algebraically
weighted spaces for a generalized Bäcklund transformation which would work for
algebraically decaying potentials uλ0 with λ0 = i.
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III. Asymptotic stability of exp. solitons in H2(R) ∩H1,1(R)

The MTM system is a compatibility condition of the linear system

~φx = L(u, v, λ)~φ and ~φt = A(u, v, λ)~φ,

where

L =
i

2
(|v|2 − |u|2)σ3 −

iλ√
2

(
0 v
v 0

)
− i√

2λ

(
0 u
u 0

)
+
i

4

(
1

λ2
− λ2

)
σ3

and

A = − i
4

(|u|2 + |v|2)σ3 −
iλ

2

(
0 v
v 0

)
− i

2λ

(
0 u
u 0

)
+
i

4

(
λ2 +

1

λ2

)
σ3

Theorem 4 (P–Saalmann (2019); He–Liu–Qu (2023)). Let λ0 ∈ C be the only
eigenvalue in the first quadrant for u0 ∈ H2(R) ∩H1,1(R). There exist ε > 0
such that if ‖u0 − uλ0(0, ·)‖L2 ≤ ε, then there exist functions a(t), θ(t) ∈ C0(R)
such that the solution u(·, t) ∈ C0(R, H2(R) ∩H1,1(R)) satisfies

lim
t→+∞

‖u(·, t)− e−iθ(t)uλ0(· − a(t), t)‖L∞ = 0.
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Direct scattering

Assuming (u, v)→ (0, 0) as |x| → ∞ fast enough, there exist matrix Jost
functions satisfying the asymptotic values

φ(±) →

(
e
i
4(λ

2−λ−2)x+ i
4(λ

2+λ−2)t 0

0 e−
i
4(λ

2−λ−2)x− i4(λ
2+λ−2)t

)
as x→ ±∞

and the scattering relations

φ(−) = φ(+)

(
a(λ) b(λ)

−b(λ) a(λ)

)
,

Fixed point arguments are not uniform in λ as |λ| → ∞ and |λ| → 0 because of
the singularity of L(u, v, λ):

L =
i

2
(|v|2 − |u|2)σ3 −

iλ√
2

(
0 v
v 0

)
− i√

2λ

(
0 u
u 0

)
+
i

4

(
1

λ2
− λ2

)
σ3
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Renormalized direct scattering

By introducing the transformation{
n
(±)
1 := T (v, λ)φ

(±)
1 e−

i
4(λ

2−λ−2)x− i4(λ
2+λ−2)t,

n
(±)
2 := λ−1T (v, λ)φ

(±)
2 e

i
4(λ

2−λ−2)x+ i
4(λ

2+λ−2)t,
T (v, λ) :=

(
1 0
v λ

)

we get renormalized Jost functions satisfying the asymptotic values

n
(±)
1 →

(
1
0

)
, n

(±)
2 →

(
0
1

)
as x→ ±∞.

and the scattering relation

n(−) = n(+)

(
α(z) β−(z)e2iθ(z)

−β+(z)e−2iθ(z) α(z)

)
,

where z := λ2, α(z) = a(λ), β+(z) = λb(λ), β−(z) = λ−1b(λ), and

θ(z) :=
1

4
(z − z−1)x+

1

4
(z + z−1)t.
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Direct scattering result [P–Saalmann (2019)]

Lemma 5. Let (u, v) ∈ L1(R) ∩ L∞(R) and (ux, vx) ∈ L1(R). For every

z ∈ R \ {0}, there exists unique bounded Jost functions n
(±)
1 and n

(±)
2 . For

every x ∈ R, n
(±)
1 and n

(±)
2 are continued analytically in C± and satisfy the

following limits as |z| → ∞ and |z| → 0 along a contour in the domains of
their analyticity:

lim
|z|→∞

n
(±)
1

n±∞1
= e1, lim

|z|→∞

n
(±)
2

n±∞2
= e2,

and

lim
|z|→0

[
n±∞1 n

(±)
1

]
= e1 + ve2, lim

|z|→0

[
n±∞2 n

(±)
2

]
= ūe1 + (1 + ūv)e2,

where

n±∞1 := e
i
4

∫ x
±∞(|u|2+|v|2)dy, n±∞2 := e−

i
4

∫ x
±∞(|u|2+|v|2)dy.

Similarly, α is continued analytically into C+ with the following limits in C+:

lim
|z|→∞

α(z) = e−
i
4

∫
R(|u|

2+|v|2)dy, lim
|z|→0

α(z) = e
i
4

∫
R(|u|

2+|v|2)dy.
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Choice of function spaces

We have the requirement of (u, v) ∈ L1(R) ∩ L∞(R) and (ux, vx) ∈ L1(R) based
on solutions of Volterra’s integral equations after the transformation uniformly as
|z| → ∞:

~φx =

[
Q̂1(u, v) +

1

z
Q̂2(u, v) +

i

4

(
z − 1

z

)
σ3

]
~φ,

where

Q̂1(u, v) =

(
i
4(|u|2 + |v|2) − i2v

vx + i
2|u|

2v + i
2u − i4(|u|2 + |v|2)

)
,

Q̂2(u, v) = − i
2

(
uv −u

v + uv2 −uv

)
.

To use Fourier theory, it is better to work in H1,1(R) with u, ∂xu ∈ L2,1(R).

The time evolution also requires u ∈ H2(R) for the reflection data to stay at the
same spaces for t 6= 0. Thus, the stability result is formulated in H2(R)∩H1,1(R).
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Function spaces for reflection coefficients

Lemma 6 (P–Saalmann (2019)). Let (u, v) ∈ H2(R) ∩H1,1(R). Then,
r+ ∈ H1(R) ∩ L2,1(R) ∩ L2,−2(R) and r−(z) = r+(z)/z belongs to
r− ∈ H1,1(R) ∩ L2,2(R) ∩ L2,−1(R), where r±(z) = β±(z)/α(z).

Fourier transform is an isomorphism between H1(R) ∩ L2,1(R). However, we need
further restriction in L2,−2(R) for r+ because of the time evolution, which gives

r±(z, t) = r±(z, 0)e−
i
2t(z+z

−1)

with

∂zr±(z, t) =

[
∂zr±(z, 0)− i

2
t(1− z−2)r±(z, 0)

]
e−

i
2t(z+z

−1).

With the constraint r+(·, 0) ∈ L2,−2(R), r±(·, t) belongs to the same function
space for every t 6= 0.

The asymptotic stability of exponential solitons is obtained by applications of the
steepest descent method and reformulations of the Riemann–Hilbert problem in
different regions of the (x, t) plane. [Cheng, Liu, Qu (2024)].
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What goes wrong for stability of algebraic solitons in
H2(R) ∩H1,1(R)

Recall the algebraic soliton:

[
u(x, t)
v(x, t)

]
=

 2

1 + 2ix
2

1− 2ix

 e−it.
• (u, v) ∈ H2(R) but (u, v) /∈ L2,1(R) due to slow spatial decay at infinity.

• The embedded eigenvalue λ = i corresponds to z = −1 so that the scattering
data r±(z) have the simple pole singularity on R.

• Inverse scattering is not available.
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Section 5. Conclusion

I have explained three methods in the proof of nonlinear (orbital and asymptotic)
stability of exponential solitons in the MTM system:

• Lyapunov functional with the higher-order energy.

• Bäcklund transformation and the stability of the zero solution.

• Inverse scattering and steepest descent method.

Rational solutions of the MTM system suggest the nonlinear stability of the
algebraic soliton but the proof of stability remains an open problem.

• Coercivity of the Lyapunov functional is lost at the algebraic soliton.

• Bäcklund transformation becomes trivial for embedded eigenvalues.

• Inverse scattering is not allowed due to slow spatial decay of algebraic solitons.

Many thanks for your attention! Questions?
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