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The problem

Reference: E. Benilov, S. O’'Brien and |. Sazonov, J. Fluid Mech.
497, 201-224 (2003)

* A thin film of liquid on the inside surface of a cylinder rotady
around its axis

* h(0,t) is athickness of the film in the limit < R
* ¢ = ||h||*/R*is a small parameter.



The Cauchy problem

Linear disturbances of a stationary flow satisfy

hy + hg + € (Sin th)e = 0.

The Cauchy problem for the advection—diffusion equation:

f.L — Lh, = —(99 — 6(99 sin 95’9,
h(0) = hy,
subject to the periodic boundary conditions|emr, 7|.

We should expect heuristically that the Cauchy problem-isaked
because of the backward heat equatiori@mr) (for € > 0).



Previous claims on the spectrum of L

Let us consider the associated linear operator

o (. ,0 0
L = —6% (Sln9@> — %

acting on smooth periodic functionfgd) on |—, 7|.

1. All eigenvalues are simple and purely imaginary.

2. The series of eigenfunctions, even if it convergess-at), may
diverge for some > ¢, > 0.

3. The level set of A — L)' form divergent curves to the left and
right half-planes.

* E. Benilov(2004): an explicit example confirms (2).

* N. Trefethen(2005): the pseudospectral method confirms (3).



| evel sets of the resolvent

From Benilov et al. (2003):




Main results

We study the relation between the spectral properties obpieeator
L and ill-posedness of the advection—diffusion equation.

* The operatol is closed inL?_ ([—, 7]) with a domain in

per

H! ([-m,x])for0<e< 2.

per

* [ has a compact inverse of the Hilbert—Shmidt type, so its
spectrum consists of an infinite sequence of isolated
eigenvalues accumulating to infinity. Moreover, all eigaoes
are simple and purely imaginary.

* The set of eigenfunctions is complete but does not form abas
in L?_ ([—m, 7).

per



Unexpected developments

=.B. Davieg(2007): same results from difference equations
J. Weir(2008): transformation ofL to a self-adjoint operator

E.B. Davies, J. Wei(2008): spectrum ofL in the asymptotic
limit ¢ — 0

L. Boulton, M. Levitin, M. Marletta(2008): generalization of
the ODE approach for a class of operatérg’hich admit a
purely imaginary spectrum

M. Chugunova, V. Strauq2008): factorization of_ in Krein
spaces

M. Chugunova, |. Karabash, S. Pyatk@008):
characterization of the domain afand proof of ill-posedness



Closure and domain of L

The operatod. is closed inL: . ([—, 7]) with a domain in
H! ([-m,7])for0 < e < 2.

per

A = 0 Is always an eigenvalue with eigenfunctipr= 1. We need
to show that there exists at least one regular paine C with

(L — XoD) fllr2 > Kol| f]] z2-

We use

i

(f’,(L—)\OI)f):—/ (1+ecos€)]f’]2d9—/ sin @ f' f"de,

T —Tr

[

from which the bound follows withy = k) = 5= (1 — £).



Purely discrete spectrum of L

The spectrum of. consists of simple purely imaginary
eigenvalues.

Eigenfunctions of_ are represented by

fO)=) fae™ =) faz"

n>1 n>1

for z = €. The interval—r, 7] for § transforms to a unit circle in
Cforz. Nowu(z) = -, f,2" satisfies the second-order ODE

1 21
21— 21+ 2(2) — 22(2 + S(2) + 22u(z) = 0
€ €
and belong to the Hardy space of square-integrable furebarthe

unit circle which are analytically continued in the unitklis



Proof of A\ € 1R

Consider solutions(z) on{Re(z) € [0, 1],Im(z) = 0} and apply
the singular point analysis:

a+b(l—z)"V as x—1
u(z) —
c+dr, as x — 0
For a proper eigenfunction,= 0 andc = 0.
The second-order ODE is written in the self-adjoint form
— (p()u'(2)) = pw(z)u(z), = €0,1],

wherep = 2i\ /e, p(x) = (1 — ) FV¢(1 + 2)' /¢, and
w(z) = (1 + 2)~¢(1 — 2)'/¢/z. The solution belongs to
L2 (]0,1]), whereu € R.



Eigenvalues of L

Let {\, }.en De a set of eigenvalues witin\,, > 0,
ordered in the ascending order|af,|. There exists & > 1, such
that\,, € :R foralln > N and

M| = Cn® 4+ o(n?) as n — oo,

for someC > 0.
ForO < 40 < 7, let

cosf) = tanht, sinf = +secht, t e R,
and find two uncoupled problems fér (¢) = f(6) on0 < +6 < 7
—efU(t) + fL(t) = Esecht fu(t),

allowing for the WKB solutionf. (¢) = e/s St)dt’,



Eigenvalues of L

The boundary conditiong(w) = f(—m) or
thﬁn f-(t)= lim f.(¢) imply that) is a root of

t——0o0

1 0
Gn(\) = —— {\/l + 4eXsecht — 4e2R_(t)

Amre |

@)

—+/1 — 4esecht — 4€2R+(t)} dt —mn, neN.

* G,(0)=—n
* G, (iw) is real-valued fow € R.

°* ASw — 0

G, (iw) =

Vo[ dt
it Byt R



Completeness of eigenfunctions

The set of functiong f,, },.cz is said to be complete in

Banach spac« if any function f € X can be approximated by a
Y

finite linear combinatiorfy(0) = > ¢, f.(8) in the following
n=—N

sense: for any fixed > 0, there existsV > 1 and{c¢,} y<n<n,
such that| f — fnx||x < € holds.

Let{f.(0)}.cz be the set of eigenfunctions &f
corresponding to the set of eigenvalyes, },.cz. The set of
eigenfunctions is complete i .. ([—7, 7]).

Completeness follows from Lidskii's Completeness Theosamse
the two sufficient conditions are satisfied: (1) eigenvalfes are
purely imaginary and (2)\,,| = O(n?) asn — oo.



Basis of eigenfunctions

The set of functiong f,, } .7 Is said to form a Schauder
basis in Banach spack if, for every f € X, there exists a unigue

representatiorf () = > ¢, f.(6) with some coefficient$c, } <z
nez

such thatth ||f — fN”X = 0.

Let{f,}.cz be a complete set of eigenfunctions/ofit
forms a basis in Hilbert spade; .. ([—x, 7]) if and only if

lim,, o Cos(fml) < lorlim, . |[|P,|| < oo, Wwhere

COS(fnafn+1) — ||an||fn+1||’ |(fn7ffr>zk>’ |




Numerical shooting method

By the ODE theory near regular singular poinfsg) is spanned by

fl =1+ chena f2 — (9_1/6 (1 + Zdn6n>

neN neN

neard = 0 and

ff=1+) af(xF0)", f5 (W$9)1/6<1+Zbi7ﬂ?9)>

neN neN

nearf = £r. If f € H . ([—m,7]), then

f=Cf0) = AL fi7(0) + B+ fy(0)

for some constantS’, A, B with A, = A_.



Results of the shooting method

Purely imaginary eigenvalues:

€ | wy W9 W3 Wy

0.5 | 1.167342 | 2.968852 | 5.483680 | 8.715534
1.0 | 1.449323 | 4.319645 | 8.631474 | 14.382886
1.5 | 1.757278 | 5.719671 | 11.846709 | 20.138824

and their eigenfunctions:




Spectral projections

Criteria for eigenfunctions to form a basis:

Left - cos(fml), right - | P, ||, where
— (frs frt1)] |l fall
ny Jn+l) — y Pn = .
st fre) = el =0 )

Numerical results indicate that the complete set of eigactfans
does not form a basis ih?_ ([—, 71]).

per



Grande Finale

The spectrum of. is on the imaginary axis but the series
of eigenfunctions can not be used for solutions of the

advection-diffusion equatioh = Lh. Does it indicate ill-posedness
of the advection equation?

A densely defined operatdrforms a
strongly continuous contraction semigroup/ip..([—, ) if and

only if for any ray inRe(\) > 0, the operaton/ — L has an
everywhere defined inverse such that

1
H()\[ — L)_1HL2—>L2 < X

From pseudo-spectrum, we know that this condition is nasfsad
and, therefore, the Cauchy problem for the advection—siiiu
equation is ill-posed.
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