Advection-diffusion equations with forward-backward diffusion

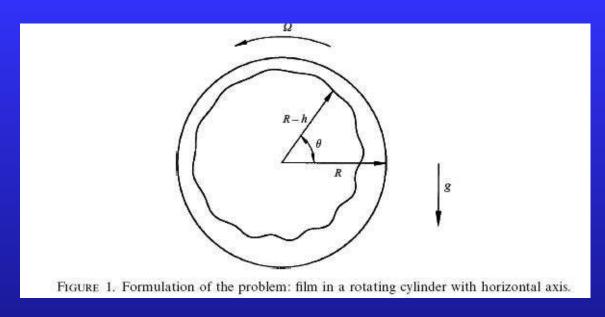
Dmitry Pelinovsky

Department of Mathematics, McMaster University, Canada

Joint work with Marina Chugunova (University of Toronto)

Reference: J. Math. Anal. Appl. 342 970Ű-988 (2008)

The problem



Reference: E. Benilov, S. O'Brien and I. Sazonov, J. Fluid Mech. 497, 201-224 (2003)

- A thin film of liquid on the inside surface of a cylinder rotating around its axis
- $h(\theta, t)$ is a thickness of the film in the limit $h \ll R$
- $\epsilon = ||h||^4/R^4$ is a small parameter.

The Cauchy problem

Linear disturbances of a stationary flow satisfy

$$h_t + h_\theta + \epsilon \left(\sin \theta h_\theta\right)_\theta = 0.$$

The Cauchy problem for the advection–diffusion equation:

$$\begin{cases} \dot{h} = Lh, \quad L = -\partial_{\theta} - \epsilon \partial_{\theta} \sin \theta \partial_{\theta}, \\ h(0) = h_0, \end{cases}$$

subject to the periodic boundary conditions on $[-\pi, \pi]$.

We should expect heuristically that the Cauchy problem is ill-posed because of the backward heat equation on $(0, \pi)$ (for $\epsilon > 0$).

Previous claims on the spectrum of L

Let us consider the associated linear operator

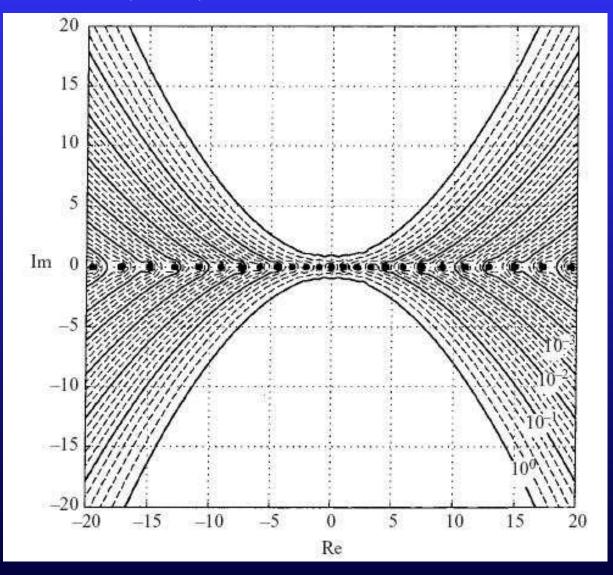
$$L = -\epsilon \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) - \frac{\partial}{\partial \theta}$$

acting on smooth periodic functions $f(\theta)$ on $[-\pi, \pi]$.

- 1. All eigenvalues are simple and purely imaginary.
- 2. The series of eigenfunctions, even if it converges at t = 0, may diverge for some $t \ge t_0 > 0$.
- 3. The level set of $(\lambda L)^{-1}$ form divergent curves to the left and right half-planes.
 - E. Benilov (2004): an explicit example confirms (2).
 - N. Trefethen (2005): the pseudospectral method confirms (3).

Level sets of the resolvent

From Benilov et al. (2003):



Main results

We study the relation between the spectral properties of the operator L and ill-posedness of the advection—diffusion equation.

- The operator L is closed in $L^2_{\rm per}([-\pi,\pi])$ with a domain in $H^1_{\rm per}([-\pi,\pi])$ for $0<\epsilon<2$.
- L has a compact inverse of the Hilbert–Shmidt type, so its spectrum consists of an infinite sequence of isolated eigenvalues accumulating to infinity. Moreover, all eigenvalues are simple and purely imaginary.
- The set of eigenfunctions is complete but does not form a basis in $L^2_{\rm per}([-\pi,\pi])$.

Unexpected developments

- E.B. Davies (2007): same results from difference equations
- J. Weir (2008): transformation of iL to a self-adjoint operator
- E.B. Davies, J. Weir (2008): spectrum of iL in the asymptotic limit $\epsilon \to 0$
- L. Boulton, M. Levitin, M. Marletta (2008): generalization of the ODE approach for a class of operators *L* which admit a purely imaginary spectrum
- M. Chugunova, V. Strauss (2008): factorization of *L* in Krein spaces
- M. Chugunova, I. Karabash, S. Pyatkov (2008): characterization of the domain of L and proof of ill-posedness of $h_t = Lh$

Closure and domain of L

Claim: The operator L is closed in $L^2_{\rm per}([-\pi,\pi])$ with a domain in $H^1_{\rm per}([-\pi,\pi])$ for $0<\epsilon<2$.

 $\lambda = 0$ is always an eigenvalue with eigenfunction f = 1. We need to show that there exists at least one regular point $\lambda_0 \in \mathbb{C}$ with

$$||(L - \lambda_0 I)f||_{L^2} \ge k_0 ||f||_{L^2}.$$

We use

$$(f', (L - \lambda_0 I)f) = -\int_{-\pi}^{\pi} (1 + \epsilon \cos \theta) |f'|^2 d\theta - \int_{-\pi}^{\pi} \sin \theta \overline{f'} f'' d\theta,$$

from which the bound follows with $\lambda_0 = k_0 = \frac{1}{2\pi} \left(1 - \frac{\epsilon}{2} \right)$.

Purely discrete spectrum of L

Claim: The spectrum of L consists of simple purely imaginary eigenvalues.

Eigenfunctions of L are represented by

$$f(\theta) = \sum_{n \ge 1} f_n e^{in\theta} = \sum_{n \ge 1} f_n z^n,$$

for $z = e^{i\theta}$. The interval $[-\pi, \pi]$ for θ transforms to a unit circle in \mathbb{C} for z. Now $u(z) = \sum_{n \ge 1} f_n z^n$ satisfies the second-order ODE

$$z(1-z)(1+z)u''(z) - 2z(z+\frac{1}{\epsilon})u'(z) + \frac{2i\lambda}{\epsilon}u(z) = 0$$

and belong to the Hardy space of square-integrable functions on the unit circle which are analytically continued in the unit disk.

Proof of $\lambda \in i\mathbb{R}$

Consider solutions u(z) on $\{\text{Re}(z) \in [0,1], \text{Im}(z) = 0\}$ and apply the singular point analysis:

$$u(x) \to \begin{cases} a + b(1-x)^{-1/\epsilon}, & \text{as } x \to 1\\ c + dx, & \text{as } x \to 0 \end{cases}$$

For a proper eigenfunction, b = 0 and c = 0.

The second-order ODE is written in the self-adjoint form

$$-(p(x)u'(x))' = \mu w(x)u(x), \quad x \in [0, 1],$$

where $\mu=2i\lambda/\epsilon$, $p(x)=(1-x)^{1+1/\epsilon}(1+x)^{1-1/\epsilon}$, and $w(x)=(1+x)^{-1/\epsilon}(1-x)^{1/\epsilon}/x$. The solution belongs to $L^2_w([0,1])$, where $\mu\in\mathbb{R}$.

Eigenvalues of L

Lemma: Let $\{\lambda_n\}_{n\in\mathbb{N}}$ be a set of eigenvalues with $\mathrm{Im}\lambda_n>0$, ordered in the ascending order of $|\lambda_n|$. There exists a $N\geq 1$, such that $\lambda_n\in i\mathbb{R}$ for all $n\geq N$ and

$$|\lambda_n| = Cn^2 + o(n^2)$$
 as $n \to \infty$,

for some C > 0.

For $0 < \pm \theta < \pi$, let

$$\cos \theta = \tanh t, \quad \sin \theta = \pm \operatorname{sech} t, \qquad t \in \mathbb{R},$$

and find two uncoupled problems for $f_{\pm}(t) = f(\theta)$ on $0 < \pm \theta < \pi$:

$$-\epsilon f_{\pm}''(t) + f_{\pm}'(t) = \pm \lambda \operatorname{sech} t f_{\pm}(t),$$

allowing for the WKB solution $f_{\pm}(t) = e^{\int_{\infty}^{t} S_{\pm}(t')dt'}$.

Eigenvalues of L

The boundary conditions $f(\pi) = f(-\pi)$ or $\lim_{t \to -\infty} f_{-}(t) = \lim_{t \to -\infty} f_{+}(t)$ imply that λ is a root of

$$G_n(\lambda) = \frac{1}{4\pi i\epsilon} \int_{-\infty}^{\infty} \left[\sqrt{1 + 4\epsilon \lambda \operatorname{sech} t - 4\epsilon^2 R_{-}(t)} \right] dt - n, \quad n \in \mathbb{N}.$$

- $G_n(0) = -n$
- $G_n(i\omega)$ is real-valued for $\omega \in \mathbb{R}$.
- As $\omega \to \infty$

$$G_n(i\omega) = \frac{\sqrt{\omega}}{\sqrt{2\epsilon\pi}} \int_{-\infty}^{\infty} \frac{dt}{\sqrt{\cosh t}} + o(\sqrt{\omega}) - n$$

Completeness of eigenfunctions

Definition: The set of functions $\{f_n\}_{n\in\mathbb{Z}}$ is said to be complete in Banach space X if any function $f\in X$ can be approximated by a

finite linear combination $f_N(\theta) = \sum_{n=-N}^{N} c_n f_n(\theta)$ in the following

sense: for any fixed $\varepsilon > 0$, there exists $N \ge 1$ and $\{c_n\}_{-N \le n \le N}$, such that $||f - f_N||_X < \epsilon$ holds.

Theorem: Let $\{f_n(\theta)\}_{n\in\mathbb{Z}}$ be the set of eigenfunctions of L corresponding to the set of eigenvalues $\{\lambda_n\}_{n\in\mathbb{Z}}$. The set of eigenfunctions is complete in $L^2_{\rm per}([-\pi,\pi])$.

Completeness follows from Lidskii's Completeness Theorem since the two sufficient conditions are satisfied: (1) eigenvalues of L are purely imaginary and (2) $|\lambda_n| = O(n^2)$ as $n \to \infty$.

Basis of eigenfunctions

Definition: The set of functions $\{f_n\}_{n\in\mathbb{Z}}$ is said to form a Schauder basis in Banach space X if, for every $f\in X$, there exists a unique representation $f(\theta)=\sum_{n\in\mathbb{Z}}c_nf_n(\theta)$ with some coefficients $\{c_n\}_{n\in\mathbb{Z}}$ such that $\lim_{N\to\infty}\|f-f_N\|_X=0$.

Theorem: Let $\{f_n\}_{n\in\mathbb{Z}}$ be a complete set of eigenfunctions of L. It forms a basis in Hilbert space $L^2_{\rm per}([-\pi,\pi])$ if and only if

$$\lim_{n\to\infty}\cos(\widehat{f_n,f_{n+1}})<1 \text{ or } \lim_{n\to\infty}\|P_n\|<\infty, \text{ where}$$

$$\cos(\widehat{f_n, f_{n+1}}) = \frac{|(f_n, f_{n+1})|}{\|f_n\| \|f_{n+1}\|}, \quad \|P_n\| = \frac{\|f_n\| \|f_n^*\|}{|(f_n, f_n^*)|}.$$

Numerical shooting method

By the ODE theory near regular singular points, $f(\theta)$ is spanned by

$$f_1 = 1 + \sum_{n \in \mathbb{N}} c_n \theta^n, \quad f_2 = \theta^{-1/\epsilon} \left(1 + \sum_{n \in \mathbb{N}} d_n \theta^n \right)$$

near $\theta = 0$ and

$$f_1^{\pm} = 1 + \sum_{n \in \mathbb{N}} a_n^{\pm} (\pi \mp \theta)^n, \quad f_2^{\pm} = (\pi \mp \theta)^{1/\epsilon} \left(1 + \sum_{n \in \mathbb{N}} b_n^{\pm} (\pi \mp \theta)^n \right)$$

near $\theta = \pm \pi$. If $f \in H^1_{per}([-\pi, \pi])$, then

$$f = Cf_1(\theta) = A_{\pm}f_1^{\pm}(\theta) + B_{\pm}f_2^{\pm}(\theta)$$

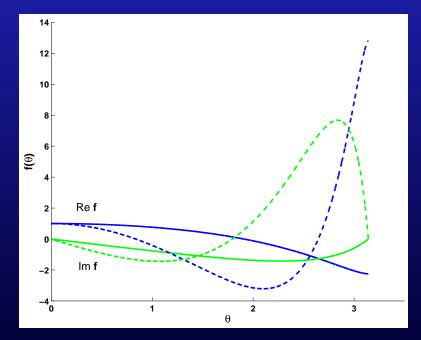
for some constants C, A_{\pm}, B_{\pm} with $A_{+} = A_{-}$.

Results of the shooting method

Purely imaginary eigenvalues:

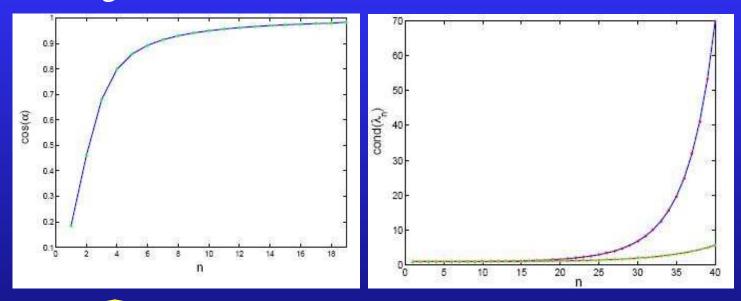
ϵ	ω_1	ω_2	ω_3	ω_4
0.5	1.167342	2.968852	5.483680	8.715534
1.0	1.449323	4.319645	8.631474	14.382886
1.5	1.757278	5.719671	11.846709	20.138824

and their eigenfunctions:



Spectral projections

Criteria for eigenfunctions to form a basis:



Left -
$$\cos(\widehat{f_n}, \widehat{f_{n+1}})$$
, right - $||P_n||$, where

$$\cos(\widehat{f_n, f_{n+1}}) = \frac{|(f_n, f_{n+1})|}{\|f_n\| \|f_{n+1}\|}, \quad \|P_n\| = \frac{\|f_n\| \|f_n^*\|}{|(f_n, f_n^*)|}.$$

Numerical results indicate that the complete set of eigenfunctions does not form a basis in $L^2_{\rm per}([-\pi,\pi])$.

Grande Finale

Summary: The spectrum of L is on the imaginary axis but the series of eigenfunctions can not be used for solutions of the advection-diffusion equation $\dot{h} = Lh$. Does it indicate ill-posedness of the advection equation?

Hille-Yosida theorem: A densely defined operator L forms a strongly continuous contraction semigroup in $L^2_{\rm per}([-\pi,\pi])$ if and only if for any ray in ${\rm Re}(\lambda)>0$, the operator $\lambda I-L$ has an everywhere defined inverse such that

$$\|(\lambda I - L)^{-1}\|_{L^2 \to L^2} \le \frac{1}{\lambda}.$$

From pseudo-spectrum, we know that this condition is not satisfied and, therefore, the Cauchy problem for the advection—diffusion equation is ill-posed.