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I. NLS models with a regularized
and intensity-dependent dispersion
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Generalized NLS models

The classical NLS equation realizes a balance between nonlinearity and
dispersion for propagation of nonlinear dispersive waves.

iψt + αψxx + β|ψ|2ψ = 0. (NLS)

Taking into account higher-order nonlinearity and dispersion gives an
extended version of the NLS equation:

iψt + αψxx + β|ψ|2ψ + iα1ψxxx + α2ψxxxx

+ iβ1|ψ|2ψx + iβ2(|ψ|2ψ)x + γ|ψ|4ψ = 0. (gNLS)

Well-posedness of initial-value problem, stability of nonlinear waves, global
dynamics (scattering versus blowup in a finite time), ...
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NLS equation with regularized dispersion

The NLS with regularized dispersion was derived from Maxwell equations:

i(1− µ2∂2x )ψt + αψxx + β|ψ|2ψ = 0. (rNLS)

M. Colin, D. Lannes SIMA 41 (2009) 708–732

D. Lannes, Proc. R. Soc. Edinburgh Ser A 141 (2011) 253–286

The dispersion relation is bounded as

ω(k) =
αk2

1 + µ2k2
, k ∈ R,

similar to the BBM regularization for the KdV equation.

Well-posedness and stability of solitary waves was recently addressed in
P. Antonelli, J. Arbunich, and C. Sparber, SIMA 51 (2019), 110–130
J. Arbunich, C. Klein, and C. Sparber, ESAIM Math. Model. 53 (2019), 1477-1505
D.P. and M. Plum, Proc. AMS 152 (2024) 1217–1231

J. Albert and J. Arbunich, Stud. Appl. Math. (2024), early view.
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NLS models with intensity-dependent dispersion

The dispersion coefficient may depend on the wave intensity:

A.D. Greentree, D. Richards, J.A. Vaccaro, et al., Phys. Rev. A 67 (2003), 023818
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Two NLS equations with intensity-dependent dispersion

The NLS equation where the dispersion vanishes at a selected intensity:

iψt + α(1− |ψ|2)ψxx + β|ψ|2ψ = 0. (NLS-IDD-1)

C.Y. Lin, J.H. Chang, G. Kurizki, and R.K. Lee, Optics Letters 45 (2020) 1471–1474
R.M. Ross, P.G. Kevrekidis, and D.P., Quart. Appl. Math. 79 (2021) 641-665
D.P, R.M. Ross, and P.G. Kevrekidis, J. Phys. A: Math. Theor. 54 (2021) 445701

P.G. Kevrekidis, D.P, and R.M. Ross, arXiv:2408.11192 (2024)

The NLS equation where the dispersion diverges at a selected intensity:

iψt + α(1− |ψ|2)−1ψxx + β|ψ|2ψ = 0. (NLS-IDD-2)

D.P. and M. Plum, SIMA 56 (2024) 2521-2568
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Quasilinear NLS equation due to nonlocal Kerr effects

The two NLS-IDD models are variants of the nonlocal Kerr model:

iψt + αψxx + βψ(Kε ∗ |ψ|2) = 0,

with
K̂ε(k) = 1− ε2k2, k ∈ R,

which yields the quasilinear NLS model

iψt + αψxx + βψ|ψ|2 + γψ(|ψ|2)xx = 0. (NLS-QL)

I. Iliev and K. Kirchev, Differential Integral Equations 6 (1993) 685–703
W. Krolikowski and O. Bang, Phys. Rev. E 63 (2000) 016610
M. Colin, L. Jeanjean, and M. Squassina, Nonlinearity 23 (2010) 1353–1385

A. de Laire and E. Le Quiniou, arXiv:2311.08918 (2023)
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Solitary waves in NLS models

Bright soliton ψ(t, x) = e itsech(x)
of the focusing NLS equation

i∂tψ + ∂2xψ + 2|ψ|2ψ = 0

satisfying |ψ(t, x)| → 0 as |x | → ∞

Dark soliton ψ(t, x) = e−2it tanh(x)
of the defocusing NLS equation

i∂tψ + ∂2xψ − 2|ψ|2ψ = 0

satisfying |ψ(t, x)| → 1 as |x | → ∞
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II. Stability of the black soliton
in the NLS equation with the

regularized dispersion
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Reformulation of the regularized NLS equation

We consider the regularized NLS equation

i(1− µ2∂2x )ψt + ψxx − 2|ψ|2ψ = 0.

where µ 6= 0 is the regularizing parameter.

Standing wave solutions are of the normalized form

ψ(t, x) = e−2itu(t, ξ), ξ =
x√

1− 2µ2
,

where u satisfies

i(1− ε2∂2ξ )ut + uξξ + 2(1− |u|2)u = 0, ε :=
µ√

1− 2µ2
.

The mapping µ→ ε ∈ R is monotonically increasing for µ ∈ (− 1√
2
, 1√

2
).

D. Pelinovsky Stability of solitary waves November 4-8 2024 10 / 39



Black soliton as a solution of the regularized NLS equation

Time-independent solutions of the regularized NLS equation

i(1− ε2∂2ξ )ut + uξξ + 2(1− |u|2)u = 0

include the black soliton u(t, ξ) = ϕ(ξ) := tanh(ξ).

Cauchy problem near the black soliton is well-posed in Sobolev spaces.
C. Gallo, Comm. PDEs 33 (2008) 729–771

P. Gérard, Ann. Inst. H. Poincaré 23 (2006) 765–779

Theorem

For every v0 ∈ Hs(R) with s > 1
2 , there exists the maximal existence time

τ0 ∈ (0,∞] and a unique solution in the form u = ϕ+ v, where
ϕ(ξ) = tanh(ξ) and v ∈ C 1([0, τ0),Hs(R)) such that v(0, ·) = v0.
Moreover, for any τ ∈ (0, τ0), the solution v ∈ C 1([0, τ ],Hs(R)) depends
Lipschitz continuously on the initial data v0 ∈ Hs(R).
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Analysis of well-posedness

With the substitution u = ϕ+ v , where ϕ(ξ) = tanh(ξ), the evolution
problem is

vt = i(1− ε2∂2ξ )−1F (v),

where

F (v) := vξξ + 2(1− 2ϕ2)v − 2ϕ2v̄ − 2ϕ(v2 + 2|v |2)− 2|v |2v

Since Hs , s > 1
2 is a Banach algebra, F (v) : Hs(R)→ Hs−2(R) maps

any fixed ball B(v0) ⊂ Hs into a bounded set in Hs−2.

(1− ε2∂2ξ )−1, ε 6= 0 is a bounded operator from Hs−2 back to Hs .

The rest goes from the contraction mapping principle for

v(t, ·) = v0 + i

∫ t

0
(1− ε2∂2ξ )−1F (v(t ′, ·))dt ′.
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Stability of the black soliton via conserved quantities
The regularized NLS equation

i(1− ε2∂2ξ )ut + uξξ + 2(1− |u|2)u = 0

admits the following conserved quantities:

energy for u = ϕ+ v with v ∈ Hs(R), s ≥ 1

E (u) =

∫
R

[
|uξ|2 + (1− |u|2)2

]
dξ

momentum for u = ϕ+ v with v ∈ Hs(R), s > 3
2

P(u) = i

∫
R

[
(ūuξ − ūξu) + ε2(ūξuξξ − ūξξuξ)

]
dξ.

mass for u = ϕ+ v with v ∈ Hs(R) ∩ L1(R), s ≥ 1

M(u) =

∫
R

[
ε2|uξ|2 + |u|2 − 1

]
dξ,
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Mismatch of conserved quantities

For the black soliton of the cubic NLS equation (ε = 0),

ϕ is a constrained minimizer of energy E for fixed momentum P.

Mass M plays no role in the stability analysis.

The energy expanded near ϕ provides control of the perturbation in
the weighted H1(R) space with the exponential weight.

P. Gravejat and D. Smets. Proc. London Math. Soc. 111 (2015), 305–353.
T. Gallay and D.E. Pelinovsky, J. Diff. Eqs. 258 (2015), 3639–3660

M. A. Alejo and A. J. Corcho, arXiv: 2003.09994 (2020)

Since P is only defined in Hs(R), s > 3
2 , the orbital stability of black

solitons is open, with the exception of spatially odd perturbations (below).
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Spectral stability of the black soliton
Using perturbation u = ϕ+ v with v := U + iV and linearizing, we get the
linear evolution equation:

(1− ε2∂2ξ )Ut = L−V , (1− ε2∂2ξ )Vt = −L+U,

where L± : Dom(L±) ⊂ L2(R)→ L2(R) are the same as for the cubic NLS
equation:

L+ = −∂2ξ + 6ϕ2 − 2 = −∂2ξ + 4− 6sech2(ξ) ≥ 0,

L− = −∂2ξ + 2ϕ2 − 2 = −∂2ξ − 2sech2(ξ).

This yields the spectral stability problem[
0 L−
−L+ 0

] [
U
V

]
= λ(1− ε2∂2ξ )

[
U
V

]
for (U,V ) ∈ H1

ε (R)× H1
ε (R) equipped with

(f , g)ε :=

∫
R

[
f̄ g + ε2f̄ ′g ′

]
dξ, ‖f ‖ε =

√
(f , f )ε ' ‖f ‖H1 .
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Threshold on the spectral stability/instability

Theorem

Let ε0 = (5/8)1/4. The black soliton is spectrally stable for ε ∈ (0, ε0] with
every λ ∈ iR and spectrally unstable for ε ∈ (ε0,∞) with exactly one
λ0 ∈ C with Re(λ0) > 0.

Remarks:

The essential spectrum has no spectral gap, e.g. σess := i [−ε−2, ε−2].

Isolated eigenvalues may exist on iR\σess and embedded eigenvalues
may exist inside σess, which we do not control.

The stability threshold ε0 ≈ 0.89 corresponds to µ0 ≈ 0.55 ∈
(

0, 1√
2

)
of the original model i(1− µ2∂2x )ψt + ψxx − 2|ψ|2ψ = 0.
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Analysis of spectral stability 1
We have

L+ = −∂2ξ + 4− 6sech2(ξ) ≥ 0

with L+ϕ
′ = 0 and a spectral gap. There is C > 0 such that

〈L+U,U〉 ≥ C‖U‖2ε , for every U ∈ H1(R) : (U, ϕ′)ε = 0.

Define a bounded operator for ε 6= 0:

L+ = (1− ε2∂2ξ )−1/2L+(1− ε2∂2ξ )−1/2 : L2(R)→ L2(R).

Then we have

(L+W ,W ) ≥ C‖W ‖2, for every W ∈ L2(R) : (W ,W0) = 0,

due to correspondence with U = (1− ε2∂2ξ )−1/2W , ‖U‖2ε = ‖W ‖2, and

(U, ϕ′)ε = (W ,W0), where W0 := (1− ε∂2ξ )1/2ϕ′.
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Analysis of spectral stability 2
Thus we have an invertible and strictly positive operator

T+ := L+|{W0}⊥ : L2(R)|{W0}⊥ 7→ L2(R)|{W0}⊥ .

For any eigenvalue λ0 6= 0, −L+U = λ0(1− ε2∂2ξ )V is rewritten as

L+(1− ε2∂2ξ )1/2U = −λ0(1− ε2∂2ξ )1/2V .

We have (V , ϕ′)ε = 0 due to momentum conservation and we can ensure
that (U, ϕ′)ε = 0 by adding ϕ′ to U ∈ H1(R). This yields uniquely

(1− ε2∂2ξ )1/2U = −λ0T −1+ (1− ε2∂2ξ )1/2V .

Substituting it to L−V = λ0(1− ε2∂2ξ )U yields

L−V = −λ20(1− ε2∂2ξ )1/2T −1+ (1− ε2∂2ξ )1/2V ,

where L− admits exactly one simple negative eigenvalue since L−ϕ = 0.
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Analysis of spectral stability 3

Since (1− ε2∂2ξ )1/2T −1+ (1− ε2∂2ξ )1/2 is strictly positive, we have λ20 ∈ R.
λ0 ∈ R\{0} exists if and only if

inf
V ∈ H1

ε(R)\{0}
(ϕ′, V )ε = 0

〈L−V ,V 〉
〈(1− ε2∂2ξ )1/2T −1+ (1− ε2∂2ξ )1/2V ,V 〉

< 0,

or equivalently, if and only if

−µ20 := inf
V ∈ H1

ε(R)\{0}
(ϕ′, V )ε = 0

〈L−V ,V 〉
‖V ‖2

< 0.

The stability criterion is the same as for the cubic NLS equation!
L. Di Menza and C. Gallo, Nonlinearity 20 (2007) 461–496
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Analysis of spectral stability 4

According to the stability criterion, −µ20 < 0 if and only if

(L−1− ϕ′, ϕ′)ε = (Vϕ, ϕ
′)ε = −1 +

8

5
ε4 > 0,

where Vϕ is the unique even and bounded solution of

L−Vϕ = (1− ε2∂2ξ )ϕ′

obtained explicitly as

Vϕ(ξ) = −1

2
(1 + 2ε2) +

3

2
ε2sech2(ξ).

Thus, −µ20 < 0 if ε4 > 5
8 (instability), whereas −µ20 = 0 if ε4 ≤ 5

8 .
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Orbital stability of the black soliton for odd perturbations
Recall the energy conservation

E (u) =

∫
R

[
|uξ|2 + (1− |u|2)2

]
dξ

and consider u = ϕ+ v with spatially odd v := U + iV ∈ H1(R). Then

E (ϕ+ U + iV )− E (ϕ) = (L+U,U) + (L−V ,V ) +O(‖U + iV ‖3H1).

No momentum conservation is needed since (L+U,U) ≥ C‖U‖2H1 and
(L−V ,V ) ≥ 0 if U + iV is spatially odd.

The lack of coercivity for (L−V ,V ) is compensated in the exponentially
weighted space

H := {f ∈ H1
loc(R) : f ′ ∈ L2(R),

√
1− ϕ2f ∈ L2(R)},

subject to the only orthogonality condition (ϕ,V )H = 0 due to the orbit
{e−iθu}θ∈R/2πZ.

P. Gravejat and D. Smets. Proc. London Math. Soc. 111 (2015), 305–353.
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Numerical illustration

We numerically simulate evolution of the regularized NLS equation

i(1− ε2∂2ξ )ut + uξξ + 2(1− |u|2)u = 0

subject to the initial data:

u(0, ξ) = ϕ(ξ) + iV (0, ξ) = tanh(ξ) + ia sech2(ξ)

with a = 0.01.

A finite-difference (Crank–Nicholson) method has been employed.
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Numerical illustration
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Numerical illustration
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Numerical illustration
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III. Stability of the bright soliton
in the NLS equation with the
intensity-dependent dispersion
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NLS-IDD model
We consider the NLS equation with intensity-dependent dispersion

iψt + (1− |ψ|2)ψxx + γ|ψ|2ψ = 0.

It admits the following conserved quantities:

energy for ψ ∈ H1(R)

E (ψ) =

∫
R

(|ψx |2 + γ|ψ|2)dx .

mass for ψ ∈ H1(R) with small ‖ψ‖L∞ ≤ C < 1:

Q(ψ) = −
∫
R

log |1− |ψ|2|dx

momentum for ψ ∈ H1(R) such that ψ 6= 0.

Local solutions exist in H∞(R).
M. Poppenberg, Nonlinear Anal. 45 (2001) 723
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Bright solitons
These are the standing wave solutions of the form ψ(x , t) = e iωtϕω(x) in

iψt + (1− |ψ|2)ψxx + γ|ψ|2ψ = 0,

where ϕω is a solution of

d2ϕ

dx2
=

(ω − γϕ2)

1− ϕ2
ϕ = −dV

dϕ
,

which is integrable as

1

2
(ϕ′)2 + V (ϕ) = C , V (ϕ) :=

ω − γ
2

log |1− ϕ2| − γ

2
ϕ2.

Solitary waves with ϕω(x)→ 0 as |x | → ∞ exist if and only if ω > 0.
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Bright solitons
These are the standing wave solutions of the form ψ(x , t) = e iωtϕω(x) in

iψt + (1− |ψ|2)ψxx + γ|ψ|2ψ = 0,

where ϕω is a solution of

d2ϕ

dx2
=

(ω − γϕ2)

1− ϕ2
ϕ = −dV

dϕ
,

which is integrable as

1

2
(ϕ′)2 + V (ϕ) = C , V (ϕ) :=

ω − γ
2

log |1− ϕ2| − γ

2
ϕ2.

Solitary waves with ϕω(x)→ 0 as |x | → ∞ exist if and only if ω > 0.

Theorem

Fix γ > 0. There exists a smooth soliton with ϕω ∈ H∞(R) if and only if
ω ∈ (0, γ). Moreover, the family {ϕω}ω∈(0,γ) is also smooth in ω.

D. Pelinovsky Stability of solitary waves November 4-8 2024 25 / 39



Bright solitons

The phase portrait for ω ∈ (0, γ) takes the form (γ = 1):
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Bright solitons

The soliton profile ϕω ∈ H∞(R) is shown here:
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For ω → 0, the profile ϕω is approximated by the sech-soliton.
For ω = γ, the profile is peaked as ϕω=γ(x) = e−

√
γ|x |.
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Bright solitons

Nonsmooth (cusped) solitons exist formally for ω ∈ (γ,∞):
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Existence and stability of cusped solitons for γ = 0 and ω > 0 in
R.M. Ross, P.G. Kevrekidis, and D.P., Quart. Appl. Math. 79 (2021) 641-665

D.P, R.M. Ross, and P.G. Kevrekidis, J. Phys. A: Math. Theor. 54 (2021) 445701
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Stability of the bright soliton via conserved quantities

Theorem

Let ϕω ∈ H∞(R) be the spatial profile for ω ∈ (0, γ). Then, it is a local
nondegenerate (up to two symmetries) minimizer of the augmented energy
Λω := E + ωQ subject to fixed mass Q in H1(R) if and only if the
mapping ω 7→ Q(ϕω) is monotonically increasing.

P.G. Kevrekidis, D.P, and R.M. Ross, arXiv:2408.11192 (2024)
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Stability of the bright soliton via conserved quantities

Theorem

Let ϕω ∈ H∞(R) be the spatial profile for ω ∈ (0, γ). Then, it is a local
nondegenerate (up to two symmetries) minimizer of the augmented energy
Λω := E + ωQ subject to fixed mass Q in H1(R) if and only if the
mapping ω 7→ Q(ϕω) is monotonically increasing.

P.G. Kevrekidis, D.P, and R.M. Ross, arXiv:2408.11192 (2024)

Remark:
This result yields spectral stability of bright solitons. It does not imply the
orbital stability along the orbit {ϕω(· − ξ)e iθ}ξ,θ∈R because the local
well-posedness holds in H∞(R) but perturbations are controlled in H1(R).
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Stability of the bright soliton via conserved quantities

Theorem

Let ϕω ∈ H∞(R) be the spatial profile for ω ∈ (0, γ). Then, it is a local
nondegenerate (up to two symmetries) minimizer of the augmented energy
Λω := E + ωQ subject to fixed mass Q in H1(R) if and only if the
mapping ω 7→ Q(ϕω) is monotonically increasing.

P.G. Kevrekidis, D.P, and R.M. Ross, arXiv:2408.11192 (2024)

Remark:
We show numerically that there exist ω1, ω2 satisfying 0 < ω1 < ω2 < γ
such that the mapping ω 7→ Q(ϕω) is monotonically increasing if
ω ∈ (0, ω1) ∪ (ω2, γ) and monotonically decreasing if ω ∈ (ω1, ω2). The
former is energetically stable and the latter is energetically unstable.
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Analysis of energetic stability 1
Recall the conserved quantities

E (ψ) =

∫
R

(|ψx |2 + γ|ψ|2)dx , Q(ψ) = −
∫
R

log |1− |ψ|2|dx .

The Hamiltonian structure of the NLS equation is non-standard:

i∂tψ = (1− |ψ|2)
δ(E − γQ)

δψ̄
,

δ(E − γQ)

δψ̄
= −∂2xψ −

γ|ψ|2ψ
1− |ψ|2

with the gauge symmetry due to

ψ = (1− |ψ|2)
δQ

δψ̄
,

δQ

δψ̄
=

ψ

1− |ψ|2
.

Hence ψ(x , t) = e iωtϕω is defined by a critical point of
Λω := E + (ω − γ)Q with

0 = (1− |ϕ|2)

(
δ(E − γQ)

δϕ̄
+ ω

δQ

δϕ̄

)
.
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Analysis of energetic stability 2

Expansion of Λω at ϕω yields

Λω(ϕω + u + iv)− Λω(ϕω) = 〈S+u, u〉L2 + 〈S−v , v〉L2 +O(‖u + iv‖3H1),

where

S− := −∂2x +
ω − ϕ2

ω

1− ϕ2
ω

≥ 0,

S+ := −∂2x +
ω + 2ϕω∂

2
xϕω − 3ϕ2

ω

1− ϕ2
ω

.

Since S−ϕω = 0 and ϕω > 0, S− : H2(R) ⊂ L2(R)→ L2(R) is
positive with a simple zero eigenvalue.

Since S+∂xϕω = 0 and ∂xϕω has a simpe zero on R,
S+ : H2(R) ⊂ L2(R)→ L2(R) has a simple negative and a simple
zero eigenvalue.
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Analysis of energetic stability 3

The criterion that S+|{vω}⊥ is positive with a simple zero eigenvalue, where

vω :=
δQ

δϕ̄ω
=

ϕω
1− ϕ2

ω

.

This is true if and only if

〈S−1+ vω, vω〉L2 = −〈∂ωϕω, vω〉L2 = −1

2
∂ωQ(ϕω) < 0,

where even ∂ωϕω is uniquely defined from

S+∂ωϕω = −vω = − δQ

δϕ̄ω
.

The stability criterion is a monotone increasing of ω 7→ Q(ϕω).
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A twist for the spectral stability argument

The energetic stability implies that the linear spectral problem(
0 S−
−S+ 0

)(
u
v

)
= λ

(
u
v

)
admits no eigenvalues λ ∈ C\{iR} with (u, v) ∈ H2(R)× H2(R).

However, the correct spectral stability problem is(
0 (1− ϕ2

ω)S−
−(1− ϕ2

ω)S+ 0

)(
u
v

)
= λ

(
u
v

)
defined in the weighted Hilbert space H×H, H := L2(R, (1− ϕ2

ω)−1 dx).

The same count of eigenvalues and the same spectral stability results
applies to (1− ϕ2

ω)1/2S−(1− ϕ2
ω)1/2 by Sylvester’s inertia law theorem

since (1− ϕ2
ω)1/2 is bounded and invertible for smooth solitons.
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Numerical explorations

A bubble of instability is detected for ω ∈ (ω1, ω2), where
0 < ω1 < ω2 < γ.
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Figure: Top: Squared eigenvalue λ2 and the map ω 7→ Q(ϕω). The dashed
vertical lines are drawn at ω1 and ω2.
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Numerical explorations

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

D. Pelinovsky Stability of solitary waves November 4-8 2024 31 / 39



Numerical explorations

Numerically detected transitions from the unstable branch:
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Numerical explorations

Transition B0 → B1
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Numerical explorations

Transition B0 → B2
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IV. Stability of the black soliton
in the NLS equation with the
intensity-dependent dispersion

D. Pelinovsky Stability of solitary waves November 4-8 2024 32 / 39



Another NLS-IDD model

We consider the NLS model with increasing intensity-dependent dispersion:

i(1− |ψ|2)ψt + ψxx = 0.

A standing wave transformation ψ(t, x) = u(t, x)e2it recovers the
defocusing NLS equation

i(1− |u|2)ut + uxx + 2(1− |u|2)u = 0,

which admit the black soliton in the form u(x) = tanh(x).

Dark solitons u(t, x) = Uc(x − 2ct) are found from

U ′′c − 2ic(1− |Uc |2)U ′c + 2(1− |Uc |2)Uc = 0,

for any c ∈ R.
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Time evolution
Solutions are to be considered in the set F ,

F := {f ∈ L∞(R) : |f (x)| < 1, x ∈ R, |f (x)| → 1 as |x | → ∞} .

Dark solitons exist with Uc ∈ F .

Conjecture: the set F is invariant under the time evolution of the
NLS-IDD for solutions satisfying u(t, ·)− Uc ∈ H∞(R), t ∈ [0, τ0).
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Time evolution
Solutions are to be considered in the set F ,

F := {f ∈ L∞(R) : |f (x)| < 1, x ∈ R, |f (x)| → 1 as |x | → ∞} .

Dark solitons exist with Uc ∈ F .

NLS-IDD admits conserved mass and energy

M(ψ) =

∫
(1− |ψ|2)2dx , E (ψ) =

∫
|ψx |2dx

as well as momentum

P(ψ) =
1

2i

∫
(1− |ψ|2)2

|ψ|2
(ψ̄ψx − ψ̄xψ)dx .

Their conservation is proven for smooth solutions in F satisfying
ψ(t, x) = e iθ±(1 +O(e−α±|x |)) as x → ±∞.
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Linearization and spectral stability of the black soliton
Using the decomposition ψ(t, x) = e−2it [ϕ(x) + u(t, x) + iv(t, x)], where
ϕ(x) = tanh(x) and u + iv is the perturbation, we obtain the linearized
equations of motion

(1− ϕ2)ut = L−v , (1− ϕ2)vt = −L+u,

where L+ = −∂2x + 4− 6sech2(x) and L− = −∂2x − 2sech2(x) are the same
as in the NLS equation.
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Linearization and spectral stability of the black soliton
Using the decomposition ψ(t, x) = e−2it [ϕ(x) + u(t, x) + iv(t, x)], where
ϕ(x) = tanh(x) and u + iv is the perturbation, we obtain the linearized
equations of motion

(1− ϕ2)ut = L−v , (1− ϕ2)vt = −L+u,

where L+ = −∂2x + 4− 6sech2(x) and L− = −∂2x − 2sech2(x) are the same
as in the NLS equation.

The spectral problem

L−v = λ(1− ϕ2)u, L+u = −λ(1− ϕ2)v

is defined in the Hilbert space H with the inner product

(f , g)H :=

∫
(1− ϕ2)f̄ gdx =

∫
sech2(x)f̄ (x)g(x)dx .
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Linearization and spectral stability of the black soliton
The spectral problem

L−v = λ(1− ϕ2)u, L+u = −λ(1− ϕ2)v

is defined in the Hilbert space H with the inner product

(f , g)H :=

∫
(1− ϕ2)f̄ gdx =

∫
sech2(x)f̄ (x)g(x)dx .

Theorem

The spectrum of L+ in H consists of simple eigenvalues
µn = n(n + 5), n ≥ 0.

The spectrum of L− in H consists of simple eigenvalues
νn = n(n + 1)− 2, n ≥ 0.

The spectrum of the stability problem in H×H consists of pairs of
isolated eigenvalues {±iω1,±iω2, · · · } and zero eigenvalue.
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Energetic stability of the black soliton
Expanding the energy functional

Λ(ψ) :=

∫
[|ψx |2 + (1− |ψ|2)2]dx

at the black soliton ϕ(x) = tanh(x) yields

Λ(ψ = ϕ+ u + iv)− Λ(ϕ) = Q+(u) + Q−(v) + R(u, v),

where Q+(u) = (L+u, u)L2 , Q−(v) = (L−v , v)L2 , and

R(u, v) =

∫
[(2ϕu + u2 + v2)2 − 4ϕ2u2]dx
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Energetic stability of the black soliton
Expanding the energy functional

Λ(ψ) :=

∫
[|ψx |2 + (1− |ψ|2)2]dx

at the black soliton ϕ(x) = tanh(x) yields

Λ(ψ = ϕ+ u + iv)− Λ(ϕ) = Q+(u) + Q−(v) + R(u, v),

where Q+(u) = (L+u, u)L2 , Q−(v) = (L−v , v)L2 , and

R(u, v) =

∫
[(2ϕu + u2 + v2)2 − 4ϕ2u2]dx

Black soliton is energetically stable w.r.t. perturbations in H1 if

Λ(ψ)− Λ(ϕ) ≥ C (‖u‖2H1 + ‖v‖2H1)− C (‖u‖3H1 + ‖v‖3H1).
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Energetic stability of the black soliton
Expanding the energy functional

Λ(ψ) :=

∫
[|ψx |2 + (1− |ψ|2)2]dx

at the black soliton ϕ(x) = tanh(x) yields

Λ(ψ = ϕ+ u + iv)− Λ(ϕ) = Q+(u) + Q−(v) + R(u, v),

where Q+(u) = (L+u, u)L2 , Q−(v) = (L−v , v)L2 , and

R(u, v) =

∫
[(2ϕu + u2 + v2)2 − 4ϕ2u2]dx

However, two obstacles arise due to nonzero boundary conditions

L− = −∂2x − 2sech2(x) is not coercive in H1(R)

R(u, v) is not cubic if (u, v) /∈ H1(R).
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Energetic stability of the black soliton
For the cubic NLS, these issues were handled in [Gravejat–Smets, 2015] by
using the revised decomposition

Λ(ψ = ϕ+ u + iv)− Λ(ϕ) = Q−(u) + Q−(v) + ‖η‖2L2

where Q−(v) = (L−v , v)L2 and η := |ψ|2 − ϕ2 = 2ϕu + u2 + v2. The
distance for perturbations in Banach space X was chosen to be

DX (ψ1, ψ2) :=
√
‖ψ′1 − ψ′2‖2L2 + ‖|ψ1|2 − |ψ2|2‖2L2 + ‖ψ1 − ψ2‖2H.
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For the cubic NLS, these issues were handled in [Gravejat–Smets, 2015] by
using the revised decomposition

Λ(ψ = ϕ+ u + iv)− Λ(ϕ) = Q−(u) + Q−(v) + ‖η‖2L2

where Q−(v) = (L−v , v)L2 and η := |ψ|2 − ϕ2 = 2ϕu + u2 + v2. The
distance for perturbations in Banach space X was chosen to be

DX (ψ1, ψ2) :=
√
‖ψ′1 − ψ′2‖2L2 + ‖|ψ1|2 − |ψ2|2‖2L2 + ‖ψ1 − ψ2‖2H.

For the NLS–IDD, we have several advantages:

H appears naturally in the time evolution

Q−(u) and Q−(v) are coercive in H if
I u ∈ H satisfies orthogonality (ϕ′, u)H = (ϕ, u)H = 0
I v ∈ H satisfies orthogonality (ϕ′, v)H = (ϕ, v)H = 0
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Energetic stability of the black soliton
For the cubic NLS, these issues were handled in [Gravejat–Smets, 2015] by
using the revised decomposition

Λ(ψ = ϕ+ u + iv)− Λ(ϕ) = Q−(u) + Q−(v) + ‖η‖2L2

where Q−(v) = (L−v , v)L2 and η := |ψ|2 − ϕ2 = 2ϕu + u2 + v2. The
distance for perturbations in Banach space X was chosen to be

DX (ψ1, ψ2) :=
√
‖ψ′1 − ψ′2‖2L2 + ‖|ψ1|2 − |ψ2|2‖2L2 + ‖ψ1 − ψ2‖2H.

For the four orthogonality conditions, we use the decomposition

ψ(t, x) = e iθ(t)
[
Uc(t),ω(t)(x + ζ(t)) + u(t, x + ζ(t)) + iv(t, x + ζ(t))

]
,

where the additional parameter ω is due to the scaling invariance
ψ(t, x) 7→ ψ(ω2t, ωx) of the NLS equation i(1− |ψ|2)ψt + ψxx = 0.
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Energetic stability of the black soliton
For the cubic NLS, these issues were handled in [Gravejat–Smets, 2015] by
using the revised decomposition

Λ(ψ = ϕ+ u + iv)− Λ(ϕ) = Q−(u) + Q−(v) + ‖η‖2L2

where Q−(v) = (L−v , v)L2 and η := |ψ|2 − ϕ2 = 2ϕu + u2 + v2. The
distance for perturbations in Banach space X was chosen to be

DX (ψ1, ψ2) :=
√
‖ψ′1 − ψ′2‖2L2 + ‖|ψ1|2 − |ψ2|2‖2L2 + ‖ψ1 − ψ2‖2H.

Theorem

Assume that the initial-value problem is well-posed in F ⊂ X with the
distance DX . Then, the values of M(ψ), E (ψ), and P(ψ) are conserved in
the time evolution and the black soliton is orbitally stable in X .

D. Pelinovsky Stability of solitary waves November 4-8 2024 37 / 39



V. Conclusion
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Conclusion

We have considered new variations of the cubic NLS model with a
regularized dispersion and the intensity-dependent dispersion.

We have spectral and energetic stability of the bright and black
solitons, which present twisted versions of the stability problem for
the cubic NLS equation.

The NLS model with the regularized dispersion is well-posed in the
energy space but the energy space does not coincide with the
momentum space.

The NLS models with the intensity-dependent dispersion presents
challenges in the existence of time-dependent solutions in the energy
space, where solitons are energetically stable.
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