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Generalized NLS models
The classical NLS equation realizes a balance between nonlinearity and
dispersion for propagation of nonlinear dispersive waves.

i + oty + BlPep = 0. (NLS)

Taking into account higher-order nonlinearity and dispersion gives an
extended version of the NLS equation:

iy + 05¢xx + /8‘77&‘277/} + ’.alwxxx + a2¢xxxx
+ B P + iBa([9P)x + Y[1h]*p = 0. (gNLS)

Well-posedness of initial-value problem, stability of nonlinear waves, global
dynamics (scattering versus blowup in a finite time), ...
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NLS equation with regularized dispersion

The NLS with regularized dispersion was derived from Maxwell equations:

i(1 = p202)r + b + BP9 = 0. (rNLS)

M. Colin, D. Lannes SIMA 41 (2009) 708-732
D. Lannes, Proc. R. Soc. Edinburgh Ser A 141 (2011) 253-286

The dispersion relation is bounded as

B ak?
14 2k’

w(k) k € R,

similar to the BBM regularization for the KdV equation.

Well-posedness and stability of solitary waves was recently addressed in
P. Antonelli, J. Arbunich, and C. Sparber, SIMA 51 (2019), 110-130

J. Arbunich, C. Klein, and C. Sparber, ESAIM Math. Model. 53 (2019), 1477-1505
D.P. and M. Plum, Proc. AMS 152 (2024) 1217-1231

J. Albert and J. Arbunich, Stud. Appl. Math. (2024), early view.
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NLS models with intensity-dependent dispersion

The dispersion coefficient may depend on the wave intensity:

0 0.1 0.2 0.3 0.4 0.5
P/

FIG. 3. Graphs showing dispersion (times linewidth squared).
RT? as a function of P/T" with C/I'=0.25 for Chain A systems of
3,5, 7. and 9 states.

A.D. Greentree, D. Richards, J.A. Vaccaro, et al., Phys. Rev. A 67 (2003), 023818
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Two NLS equations with intensity-dependent dispersion

The NLS equation where the dispersion vanishes at a selected intensity:

ipe + a1 — [ )b + Bl = 0. (NLS-IDD-1)
C.Y. Lin, J.H. Chang, G. Kurizki, and R.K. Lee, Optics Letters 45 (2020) 1471-1474

R.M. Ross, P.G. Kevrekidis, and D.P., Quart. Appl. Math. 79 (2021) 641-665
D.P, R.M. Ross, and P.G. Kevrekidis, J. Phys. A: Math. Theor. 54 (2021) 445701

P.G. Kevrekidis, D.P, and R.M. Ross, arXiv:2408.11192 (2024)

The NLS equation where the dispersion diverges at a selected intensity:
e + o1 = [ ?) b + Ble*e = 0. (NLS-IDD-2)

D.P. and M. Plum, SIMA 56 (2024) 2521-2568
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Quasilinear NLS equation due to nonlocal Kerr effects

The two NLS-IDD models are variants of the nonlocal Kerr model:

i + athux + BP(Ke x [1]?) = 0,

with
K(k)=1-é*k* keR,

which yields the quasilinear NLS model

iV + b + BUIY1? + 7([1]?)sx = 0. (NLS-QL)

I. lliev and K. Kirchev, Differential Integral Equations 6 (1993) 685-703
W. Krolikowski and O. Bang, Phys. Rev. E 63 (2000) 016610
M. Colin, L. Jeanjean, and M. Squassina, Nonlinearity 23 (2010) 1353-1385

A. de Laire and E. Le Quiniou, arXiv:2311.08918 (2023)
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Solitary waves in NLS models

Bright soliton #(t, x) = etsech(x)  Dark soliton #(t, x) = e~ tanh(x)
of the focusing NLS equation of the defocusing NLS equation

i0p) + 024 + 2| % = 0 i0ph + 02 — 2|Y|*p = 0

satisfying |1(t,x)| — 0 as |x| — oo satisfying |¢(t, x)| — 1 as |x| = oo

)
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ll. Stability of the black soliton
in the NLS equation with the
regularized dispersion
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Reformulation of the regularized NLS equation

We consider the regularized NLS equation

i(1 = p202) e + the — 2[00 P0 = 0.
where p # 0 is the regularizing parameter.
Standing wave solutions are of the normalized form

X

w(tﬂx) = e_2itu(t7€)a 5 = \/ﬁa

where u satisfies

i(1—628§)ut+u§§+2(1 —|uPu=0, €:= a

V1—2u2

The mapping i — € € R is monotonically increasing for u € (—L

3.3

b

D. Pelinovsky Stability of solitary waves November 4-8 2024 10 /39



Black soliton as a solution of the regularized NLS equation
Time-independent solutions of the regularized NLS equation
i(1— ezag)ut +uge +2(1 — [u]P)u=0

include the black soliton u(t,£) = ¢(§) := tanh(§).

Cauchy problem near the black soliton is well-posed in Sobolev spaces.
C. Gallo, Comm. PDEs 33 (2008) 729-771

P. Gérard, Ann. Inst. H. Poincaré 23 (2006) 765-779

Theorem

For every vo € H*(R) with s > 3, there exists the maximal existence time
70 € (0,00] and a unique solution in the form u = ¢ + v, where

©(&) = tanh(¢) and v € CY([0,70), H*(R)) such that v(0,-) = vp.
Moreover, for any T € (0,7g), the solution v € C*([0, 7], H5(R)) depends
Lipschitz continuously on the initial data vop € H*(R).
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Analysis of well-posedness

With the substitution u = ¢ + v, where ¢(&) = tanh(¢), the evolution
problem is

ve =i(1— 62852)_1F(v),
where

F(v) i= vee +2(1 — 2¢%)v — 2027 — 20(v? + 2|v[?) — 2|v[v

e Since H*, s > 1 is a Banach algebra, F(v) : H*(R) — H*"2(R) maps
any fixed ball B(vp) C H® into a bounded set in HS~2.

o (1- 62852)_1, ¢ # 0 is a bounded operator from HS~2 back to H®.
@ The rest goes from the contraction mapping principle for

v(t,) = vo + i/ot(l — ER)LF(v(t,-))dt .
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Stability of the black soliton via conserved quantities
The regularized NLS equation

i(1— 62852)Ut + uge +2(1 — [u]P)u=0

admits the following conserved quantities:
@ energy for u =@+ v with v € H*(R), s > 1

Ew) = [ [locP + (1~ o)) de
e momentum for u = ¢ + v with v € H5(R), s > 3
P(u) = "/R [(Gue — Teu) + €(Teuge — Teeug)] dE
@ mass for u = ¢ + v with v € HS(R) N L}(R), s > 1
M(o) = [ [@luel + 1o 1] de.

D. Pelinovsky Stability of solitary waves November 4-8 2024 13 /39



Mismatch of conserved quantities

For the black soliton of the cubic NLS equation (e = 0),
@  is a constrained minimizer of energy E for fixed momentum P.
@ Mass M plays no role in the stability analysis.

@ The energy expanded near ¢ provides control of the perturbation in
the weighted H'(R) space with the exponential weight.

P. Gravejat and D. Smets. Proc. London Math. Soc. 111 (2015), 305-353.
T. Gallay and D.E. Pelinovsky, J. Diff. Eqs. 258 (2015), 3639-3660
M. A. Alejo and A. J. Corcho, arXiv: 2003.09994 (2020)

Since P is only defined in H(R), s > 3, the orbital stability of black
solitons is open, with the exception of spatially odd perturbations (below).
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Spectral stability of the black soliton

Using perturbation u = ¢ + v with v := U + iV and linearizing, we get the
linear evolution equation:

(1-€0)Ue=L_V, (1-€0)Ve =—Ly U,

where L1 : Dom(L+) C L2(R) — L%(R) are the same as for the cubic NLS
equation:

Ly = —852 +6p° —2 = —5% + 4 — 6sech?(¢) > 0,
L= —852 +2¢% —2 = —852 — 2sech?(¢).
This yields the spectral stability problem
0 L ul a0y | U
Lo lv]e-m ]y

for (U, V) € HY(R) x HX(R) equipped with
(F.g). = /R [Fg+ P de, [l = Ve = |Flm.
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Threshold on the spectral stability/instability

Theorem

Let eg = (5/8)Y/*. The black soliton is spectrally stable for e € (0, eg] with
every A € iR and spectrally unstable for € € (eg, c0) with exactly one
Mo € C with Re(\g) > 0.

Remarks:
o The essential spectrum has no spectral gap, e.g. Tess 1= i[—€2,¢72].

@ Isolated eigenvalues may exist on iR\oess and embedded eigenvalues
may exist inside gess, Which we do not control.

@ The stability threshold €y ~ 0.89 corresponds to g ~ 0.55 € (O, %)
of the original model i(1 — p202)); + hxx — 2|10|?h = 0.
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Analysis of spectral stability 1
We have

Ly = =% +4 — 6sech?(¢) > 0
with Ly ¢" = 0 and a spectral gap. There is C > 0 such that
(LLU,U) > C||U|?, for every Ue H'(R): (U,¢'). =0.
Define a bounded operator for € # 0:
Ly=(1-0H) 2L (1-3) V2 A(R) — LA(R).
Then we have
(L W, W) > C||W|?, for every W € L?(R): (W, W) =0,

due to correspondence with U = (1 — 62552)—1/2 W, ||U||£ _ ||W||2 and
(U,¢")e = (W, W), where Wp := (1 — 6852)1/%0/_
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Analysis of spectral stability 2

Thus we have an invertible and strictly positive operator

T, = £+]{W0}l : 1—2(]R)|{W0}L = L2(R)|{W0}L‘

For any eigenvalue A\g # 0, | =Ly U = A\o(1 — 628§)V is rewritten as

L4(1- R0 = —xo(1 - E32)2V.

We have (V,¢')e = 0 due to momentum conservation and we can ensure
that (U, ¢’). = 0 by adding ¢’ to U € H}(R). This yields uniquely

(1 - 02)Y2U = — T (1 — 2032 V.

Substituting it to | L_V = Xo(1 — €0Z) U | yields

LV =-NJ(1-R)2T 11— a3) 2V,

where L_ admits exactly one simple negative eigenvalue since L_¢ =0.
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Analysis of spectral stability 3

Since (1 — 6285)1/27-_'__1( 282)1/2 is strictly positive, we have A3 € R.
Ao € R\{0} exists if and only if

inf (L_V,V) <0

v ’_llnR _ 292\1/27— 282 1/2\/ Vv ’
e H@\o) ((1—e205)Y2T, - ) )
(¢',V)e =0
or equivalently, if and only if
2 R (L— Va V>
—ps = inf —— < 0.
Ho (VEH;Q\{O} 45

The stability criterion is the same as for the cubic NLS equation!
L. Di Menza and C. Gallo, Nonlinearity 20 (2007) 461-496
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Analysis of spectral stability 4

According to the stability criterion, —,u% < 0 if and only if

(LM @)e = (Vp, ) = =1+ ge >0,
where V,, is the unique even and bounded solution of
LV, = (- @)y
obtained explicitly as
V(&) = —%(1 +2¢?) + gezsechz(f).

Thus, —p3 < 0 if €* > 2 (instability), whereas —u3 = 0 if €*

OOIU'I
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Orbital stability of the black soliton for odd perturbations
Recall the energy conservation

Ew) = [ [lucP + (1~ uP))d
and consider u = ¢ + v with spatially odd v := U + iV € H(R). Then
E(p+ U+iV)—E(p) = (Ly U, U) + (L-V, V) + O(| U + iV|[}p).
No momentum conservation is needed since (L4 U, U) > C||U||2, and
(L_V,V)>0if U+ iV is spatially odd.

The lack of coercivity for (L_V/, V) is compensated in the exponentially
weighted space

H = {f € HL (R): f' € [3(R), /1-2f € [2(R)},
subject to the only orthogonality condition (cp, V)3 = 0 due to the orbit
{e_leu}GER/QTFZ'
P. Gravejat and D. Smets. Proc. London Math. Soc. 111 (2015), 305=353.
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Numerical illustration

We numerically simulate evolution of the regularized NLS equation
i(1— ezag)ut +uge +2(1 — [u]P)u=0
subject to the initial data:

u(0,€) = (&) + iV(0, &) = tanh(€) + ia sech?(¢)
with a = 0.01.

A finite-difference (Crank—Nicholson) method has been employed.
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Numerical illustration
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Numerical illustration
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Numerical illustration
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[Il. Stability of the bright soliton
in the NLS equation with the
intensity-dependent dispersion
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NLS-IDD model

We consider the NLS equation with intensity-dependent dispersion

i + (1 — |9 )xx + 71|20 = 0.

It admits the following conserved quantities:
e energy for ¢ € H(R)

EW) = [ (16 +21uP)ax
R
@ mass for 1 € H1(R) with small ||¢]|;« < C < 1:
=— [ log|1—|¢]?|d
Q) =~ [ log 1~ v/
e momentum for ¢» € H*(R) such that 1 # 0.

Local solutions exist in H*(R).
M. Poppenberg, Nonlinear Anal. 45 (2001) 723
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Bright solitons

These are the standing wave solutions of the form w(x, t) = e, (x) in

e + (1 - |w|2)7/)xx + 7|¢|2¢ =0,
where ¢, is a solution of

P (w-1¢?)  dV

dx2 1 —? v do’

which is integrable as

1 W .
S+ V() =C V(p) =" logl—¢* — ¢

Solitary waves with ¢, (x) — 0 as |x| — oo exist if and only if w > 0.
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Bright solitons

These are the standing wave solutions of the form w(x, t) = e, (x) in

e+ (1= [P ) + 7017 = 0,
where ¢, is a solution of

o (w=19¥7) dv

dx2 1 —? v do’

which is integrable as

1 w— 0

SE V() =C, V(p) =" log[l —¢*| — 5
Solitary waves with ¢, (x) — 0 as |x| — oo exist if and only if w > 0.
Theorem

Fix -y > 0. There exists a smooth soliton with ¢, € H*(R) if and only if
w € (0,7). Moreover, the family {¢w }ue(0,) is also smooth in w.
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Bright solitons

The phase portrait for w € (0, ) takes the form (y = 1):

o
L
o
2]
o
o
2]

15
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Bright solitons

The soliton profile ¢, € H>*(R) is shown here:

1.00 |

—10 -5 o] 5 10

X

For w — 0, the profile ¢, is approximated by the sech-soliton.
For w = v, the profile is peaked as y,—(x) = eVl
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Bright solitons

Nonsmooth (cusped) solitons exist formally for w € (v, 00):

Existence and stability of cusped solitons for v =0 and w > 0 in
R.M. Ross, P.G. Kevrekidis, and D.P., Quart. Appl. Math. 79 (2021) 641-665

D.P, R.M. Ross, and P.G. Kevrekidis, J. Phys. A: Math. Theor. 54 (2021) 445701
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Stability of the bright soliton via conserved quantities

Theorem

Let ¢, € H*(R) be the spatial profile for w € (0,v). Then, it is a local
nondegenerate (up to two symmetries) minimizer of the augmented energy
Ay = E + wQ subject to fixed mass Q in H'(R) if and only if the
mapping w — Q(p,,) is monotonically increasing.

P.G. Kevrekidis, D.P, and R.M. Ross, arXiv:2408.11192 (2024)
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Stability of the bright soliton via conserved quantities

Theorem

Let ¢, € H*(R) be the spatial profile for w € (0,v). Then, it is a local
nondegenerate (up to two symmetries) minimizer of the augmented energy
Ay = E + wQ subject to fixed mass Q in H'(R) if and only if the
mapping w — Q(p,,) is monotonically increasing.

P.G. Kevrekidis, D.P, and R.M. Ross, arXiv:2408.11192 (2024)

Remark:

This result yields spectral stability of bright solitons. It does not imply the
orbital stability along the orbit {¢,(- — &)e”}¢ ger because the local
well-posedness holds in H>°(R) but perturbations are controlled in H(R).
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Stability of the bright soliton via conserved quantities

Theorem

Let ¢, € H*(R) be the spatial profile for w € (0,v). Then, it is a local
nondegenerate (up to two symmetries) minimizer of the augmented energy
Ay = E + wQ subject to fixed mass Q in H'(R) if and only if the
mapping w — Q(p,,) is monotonically increasing.

P.G. Kevrekidis, D.P, and R.M. Ross, arXiv:2408.11192 (2024)

Remark:

We show numerically that there exist wy,ws satisfying 0 < w1 < wy < 7y
such that the mapping w — Q(p,,) is monotonically increasing if

w € (0,w1) U (w2,7) and monotonically decreasing if w € (w1,w2). The
former is energetically stable and the latter is energetically unstable.
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Analysis of energetic stability 1
Recall the conserved quantities

EW) = [ (s +alwP)ax, Q) =~ [ logt~ [wPld.
The Hamiltonian structure of the NLS equation is non-standard:

SE—7Q)  HE-1Q) _ o AP
% 57 VT I-P

with the gauge symmetry due to

i8t¢ = (1 - W’z)

0Q 0Q Y
= 1 — 2 - - = .
Hence ¥(x, t) = et is defined by a critical point of
Ay = E + (w—v)Q with

B I(E —~vQ) 0Q
0-a-le) (HED 120,
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Analysis of energetic stability 2
Expansion of A, at ¢, yields
No(pw + u+iv) = No(pw) = (Spu,u) 2 + (S—v,v) 2 + O||lu + iv][F),

where

2
o 2 W=
S,._—8X+1_—‘2“20,

w

w + 20,020, — 302

S+ = —8)2(‘1‘ 1—§02
w

e Since S_p, =0and ¢, >0, S_ : H*(R) C L?(R) — L?(R) is
positive with a simple zero eigenvalue.

@ Since §;0xp, = 0 and Ok, has a simpe zero on R,
Sy H?(R) C L2(R) — L2(R) has a simple negative and a simple
zero eigenvalue.
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Analysis of energetic stability 3

The criterion that S, |f, y1 is positive with a simple zero eigenvalue, where

Lo 9Q  pw
v 0Pu 1_9031

This is true if and only if
1
<S_:1Vwa Vw>L2 - _<aw§0w7 Vw>L2 — _anQ(QOw) < 07

where even 0, is uniquely defined from

0@

S+3wg0w = —V, = —@

The stability criterion is a monotone increasing of w — Q(yy)-
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A twist for the spectral stability argument

The energetic stability implies that the linear spectral problem
0 S\ [u u
(5 %) ()=()
admits no eigenvalues A € C\{/iR} with (u,v) € H*(R) x H?(R).

However, the correct spectral stability problem is

0 (1-¢2)S-\ (v _ N
—(1-¢2)S 0 v) T \v
defined in the weighted Hilbert space H x H, H := L?(R, (1 — ¢2)~ ! dx).
The same count of eigenvalues and the same spectral stability results

applies to (1 — ¢2)Y/2S_(1 — 2)/? by Sylvester's inertia law theorem
since (1 — ¢2)Y/? is bounded and invertible for smooth solitons.
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Numerical explorations

A bubble of instability is detected for w € (w1, w2), where
0<wi <wy <.

2
o~ 1
~<
0 __
-1
02 0.4 0.6 0.8 1.0
25 \—/
2.0
Qs
1.0
05
02 0.4 06 0.8 1.0

w

Figure: Top: Squared eigenvalue A2 and the map w — Q(y,,). The dashed
vertical lines are drawn at wy and w».
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Numerical explorations
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Numerical explorations

Numerically detected transitions from the unstable branch:
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Numerical explorations
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Numerical explorations

Transition By — B>
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IV. Stability of the black soliton
in the NLS equation with the
intensity-dependent dispersion
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Another NLS-IDD model

We consider the NLS model with increasing intensity-dependent dispersion:

i(1 = [9)t + b = 0.

A standing wave transformation 1(t, x) = u(t, x)e>" recovers the
defocusing NLS equation

i(1 = |uP)ur + th +2(1 — |u]?)u =0,
which admit the black soliton in the form u(x) = tanh(x).
Dark solitons u(t,x) = Uc(x — 2ct) are found from

U2 = 2ie(1 — |Ue2) UL +2(1 — U2 U = 0,

for any c € R.
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Time evolution
Solutions are to be considered in the set F,

F={fel®R): |[f(x)|<1l, xeR, |[f(x)|—1 as |x| > oo}.

Dark solitons exist with U, € F.

Conjecture: the set F is invariant under the time evolution of the
NLS-IDD for solutions satisfying u(t,-) — U € H*(R), t € [0, 70).
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Time evolution
Solutions are to be considered in the set F,

F:={fel®R): |f(x) <1l xeR, |f(x)|—=1 as |x| — oco}.
Dark solitons exist with U. € F.

NLS-IDD admits conserved mass and energy

M) = [ 10PPax, E@) = [ lusPax
as well as momentum

_ 2y2 _
P) = 5; [ Fa i~ o

Their conservation is proven for smooth solutions in F satisfying
Y(t,x) = e+ (1 + O(e=+)) as x — Fo0.
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Linearization and spectral stability of the black soliton
Using the decomposition v(t, x) = e~2[p(x) + u(t, x) + iv(t, x)], where
©(x) = tanh(x) and u + iv is the perturbation, we obtain the linearized
equations of motion

(1_(P2)Ut: L—V7 (1_(P2)Vt: _L_’_LI7

where L, = —02 + 4 — 6sech?(x) and L_ = —92 — 2sech?(x) are the same
as in the NLS equation.
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Linearization and spectral stability of the black soliton
Using the decomposition v(t, x) = e~2[p(x) + u(t, x) + iv(t, x)], where
©(x) = tanh(x) and u + iv is the perturbation, we obtain the linearized
equations of motion

(1_()02)ut: L—V7 (1_(,02)‘/{': _L+U,

where L, = —02 + 4 — 6sech?(x) and L_ = —92 — 2sech?(x) are the same
as in the NLS equation.

The spectral problem
Lv=X1-—¢Hu, Liu=-\1-¢?)v

is defined in the Hilbert space H with the inner product

(f,8)y = /(1 — p?)fgdx = /sech2(x)f(x)g(x)dx.
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Linearization and spectral stability of the black soliton
The spectral problem

Lv=X1-—¢Du, Liu=-\1-¢?)v

is defined in the Hilbert space H with the inner product

(f.g)n = /(1 — p?)fgdx = /sech2(x)f:(x)g(x)dx.

Theorem

@ The spectrum of L in H consists of simple eigenvalues
pn = n(n+5), n>0.

@ The spectrum of L_ in H consists of simple eigenvalues
vpn=n(n+1)—2,n>0.

@ The spectrum of the stability problem in H x H consists of pairs of
isolated eigenvalues {+iw;, tiw,, -} and zero eigenvalue.
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Energetic stability of the black soliton
Expanding the energy functional

Aw) = [l1f? + (1= o)l
at the black soliton ¢(x) = tanh(x) yields
N =@+ u+iv) = MNp) = Q(u) + Q—(v) + R(u, v),

where Q4 (u) = (Lyu,u);2, Q—(v) = (L-v, V)2, and

R(u,v) = /[(2<pu + u? + v?)? — 40?0 dx
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Energetic stability of the black soliton
Expanding the energy functional

Aw) = [l1f? + (1= o)l
at the black soliton ¢(x) = tanh(x) yields
N =@+ u+iv) = MNp) = Q(u) + Q—(v) + R(u, v),

where Q4 (u) = (Lyu,u);2, Q—(v) = (L-v, V)2, and
R(u,v) = /[(2<pu + u? + v?)? — 40?0 dx

Black soliton is energetically stable w.r.t. perturbations in H! if

A) = M) = C(llullin + IvIE) = Cllullfn + 1vIEe).
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Energetic stability of the black soliton
Expanding the energy functional

Aw) = [0 + (1~ [0 ox
at the black soliton ¢(x) = tanh(x) yields
AW = ¢+ 0+ iv) = A(g) = Q4() + Q_(v) + R(u,v),
where Q(u) = (Lyu, u) 2, Q—(v) = (L_v,v),2, and

R(u,v) = /[(2<pu + u? + v?)? — 40?0 dx

However, two obstacles arise due to nonzero boundary conditions
o L = —92 — 2sech?(x) is not coercive in H'(R)
o R(u,v) is not cubic if (u,v) ¢ H(R).

D. Pelinovsky Stability of solitary waves November 4-8 2024 36/39



Energetic stability of the black soliton
For the cubic NLS, these issues were handled in [Gravejat—-Smets, 2015] by
using the revised decomposition

N = ¢+ u+iv) = Np) = Q-(u) + Q-(v) + [Inlf2

where Q_(v) = (L_v,v);2 and 1 := |¢|? — p? = 2pu + u? + v2. The
distance for perturbations in Banach space X was chosen to be

Dx(¢1,12) := \/Wi — U5l% + In? = (2 PI12: + [l — 2l
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Energetic stability of the black soliton
For the cubic NLS, these issues were handled in [Gravejat—-Smets, 2015] by
using the revised decomposition

N = ¢+ u+iv) = Np) = Q-(u) + Q-(v) + [Inlf2

where Q_(v) = (L_v,v);2 and 1 := |¢|? — p? = 2pu + u? + v2. The
distance for perturbations in Banach space X was chosen to be

Dx(¢1,12) = \/Wi — U5l% + In? = (2 PI12: + [l — 2l

For the NLS—IDD, we have several advantages:
@ H appears naturally in the time evolution
e Q_(u) and Q_(v) are coercive in H if

» u € H satisfies orthogonality (@', u)y = (p,u)y =0
» v € H satisfies orthogonality (¢’,v)x = (¢, v)x =0
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Energetic stability of the black soliton
For the cubic NLS, these issues were handled in [Gravejat—-Smets, 2015] by
using the revised decomposition

N = ¢+ u+iv) = Np) = Q-(u) + Q-(v) + [Inlf2

where Q_(v) = (L_v,v);2 and 1 := |¢|? — p? = 2pu + u? + v2. The
distance for perturbations in Banach space X was chosen to be

Dx(¢1,12) := \/Hw& = 3l 7o + w2 = (22113, + llvn — v2ll3-
For the four orthogonality conditions, we use the decomposition

(%) = €9 [Ugey iy (x + C(8)) + u(t, x + () + iv(t, x +((1)]

where the additional parameter w is due to the scaling invariance
Y(t, x) — P(w?t,wx) of the NLS equation i(1 — [¢|?)1): + 1hxx = 0.
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Energetic stability of the black soliton
For the cubic NLS, these issues were handled in [Gravejat—-Smets, 2015] by
using the revised decomposition

N = ¢+ u+iv) = Np) = Q-(u) + Q-(v) + [Inlf2

where Q_(v) = (L_v,v);2 and 1 := |¢|? — p? = 2pu + u? + v2. The
distance for perturbations in Banach space X was chosen to be

Dx(¢1,12) = \/Wi — U5l% + In? = (2 PI12: + [l — 2l

Theorem

Assume that the initial-value problem is well-posed in F C X with the
distance Dx. Then, the values of M(1)), E(¢), and P(v) are conserved in
the time evolution and the black soliton is orbitally stable in X.
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V. Conclusion

o = = £ DA
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Conclusion

@ We have considered new variations of the cubic NLS model with a
regularized dispersion and the intensity-dependent dispersion.

@ We have spectral and energetic stability of the bright and black
solitons, which present twisted versions of the stability problem for
the cubic NLS equation.

@ The NLS model with the regularized dispersion is well-posed in the
energy space but the energy space does not coincide with the
momentum space.

@ The NLS models with the intensity-dependent dispersion presents
challenges in the existence of time-dependent solutions in the energy
space, where solitons are energetically stable.

MANY THANKS FOR YOUR ATTENTION!
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