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1. Overview of resonant normal forms

Resonant normal forms

In many infinite-dimensional Hamiltonian systems with spatial confinement,
The system can be written in canonical coordinates;
The resonant energy transfer can be isolated from the rest.

If the resonant energy transfer also involves infinitely many modes, this
reductive technique leads to the infinite-dimensional resonant normal form.

Hamiltonian systems with∞ degrees of freedom

⇓ ⇓ ⇓ ⇓ ⇓

Resonant normal with∞ canonical coordinates

Old examples include:
Weak turbulence of quasi-periodic water waves (V. Zakharov, 1968)
Bragg resonance in the 1D wave equation with a periodic potential
(G. Simpson, M. Weinstein, 2013).
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1. Overview of resonant normal forms

New example 1. Rotating Bose–Einstein condensates

The Gross–Pitaevskii equation with a harmonic potential in 2D:

i∂tψ = −∆ψ + |x |2ψ + |ψ|2ψ − iΩ∂θψ,

where x ∈ R2, θ is an angle in the polar coordinates, and Ω is the angular
frequency of rotation. The associated energy

E(ψ) =

∫ ∫
R2

[
|∇ψ|2 + |x |2|ψ|2 +

1
2
|ψ|4 − iΩψ∂θψ̄

]
dx .

Steadily rotating states are critical point of E subject to the fixed mass
Q(ψ) = ‖ψ‖2

L2 .

If Ω = 0, the ground state of E is sign-definite (Thomas–Fermi cloud).
When Ω increases, the ground state of E becomes a vortex of charge
one, a pair of two vortices of charge one, . . . , an Abrikosov lattice.
The case Ω = 2 is marginal (balance of trapping and centrifugal forces).
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1. Overview of resonant normal forms

Resonant normal form

General solution of the linear problem with Ω = 0:

ψ =
∑
n,m

αn,m χn,m(r)eimθe−iEnt

where χnm(r)eimθ is an eigenstate of the 2D quantum harmonic oscillator with
the energy En = n + 1 and angular momentum m ∈ {−n,−n + 2, ...,n − 2,n}.

The eigenstates with m = ±n are resonant:

Ψ(t , z) =
∞∑

n=0

αn(t)χn(z), χn(z) ∼ zne−
1
2 |z|

2
, z = x + iy ,

They satisfy the resonant normal form (labeled as Lowest Landau Level)

iΨ̇ = Π(|Ψ|2Ψ), Π(Ψ)(z ′) = e−
1
2 |z

′|2
∫
C

ez̄z′− 1
2 |z|

2
Ψ(z)dz.

Faou, Germain, & Hani (2016); Germain, Gerard, Thomann (2017).
Biasi, Bizon, Craps, & Evnin (2017)
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1. Overview of resonant normal forms

Vortices in BEC
Bifurcations of vortices can be
described when the condensate is
stirred above a certain critical
angular velocity,
Ψ̃(t , z) := eiµt Ψ(t ,eiΩtz).

There exists a 3-dimensional
invariant manifold for the
single-vortex configurations

Ψ(t , z) = (b(t)+a(t)z) ep(t)z e−
1
2 |z|

2

This solution represents
modulated precession of a vortex

Such vortices have been seen in
BEC experiments

-2 -1 0 1 2
-2

-1

0

1

2

Biasi-B-Craps-Evnin, 2017
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1. Overview of resonant normal forms

New example 2. Cubic Szegö equation

The unit circle S1 = {z ∈ C : |z| = 1} is parameterized by θ ∈ [0,2π].
Consider the Fourier series on S1:

u(θ) =
∑
n∈Z

αneinθ

and project it to the subspace L2
+ = {u ∈ L2(S1) : αn = 0, n < 0}.

L2
+ is a Hardy space of L2 functions which are extended to the unit disc as

holomorphic functions.

With the NLS-type evolution, the function

U(t , z) =
∞∑

n=0

αn(t)zn, z = x + iy ,

satisfies the resonant normal form (labeled as Cubic Szegö equation)

iU̇ = Π(|U|2U), Π

(∑
n∈Z

αneinθ

)
=
∞∑

n=0

αneinθ.

Gerard, Grellier (2010, 2012, 2015)
D.Pelinovsky (McMaster University) Ground state of the conformal flow 7 / 34



1. Overview of resonant normal forms

Properties of the cubic Szegö equation

Cubic Szegö equation

iU̇ = Π(|U|2U), Π

(∑
n∈Z

αneinθ

)
=
∞∑

n=0

αneinθ.

Toy model for other more physically relevant resonant normal forms.
It has basic conserved quantities

Energy: E(u) = ‖u‖4
L4(S1)

Mass: Q(u) = ‖u‖2
L2(S1)

Momentum: M(u) = 〈−i∂θu,u〉L2(S1).

It admits a rich family of exact solutions:

U(t , z) =
a(t)z + b(t)

1− p(t)z
, U(t , z) =

N∏
j=1

z − p̄j (t)
1− pj (t)z

.

It admits a Lax pair and higher-order conserved quantities.
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2. Resonant normal form for conformal flow

Resonant normal flow for conformal flow on S3

Background geometry: the Einstein cylinderM = R× S3 with metric

g = −dt2 + dx2 + sin2x dω2, (t , x , ω) ∈ R× [0, π]× S2

This spacetime has constant scalar curvature R(g) = 6.

OnM we consider a real scalar field φ satisfying

�gφ− φ− φ3 = 0 .

We assume that φ = φ(t , x). Then, ν(t , x) = sin(x)φ(t , x) satisfies

νtt − νxx +
ν3

sin2 x
= 0

with Dirichlet boundary conditions ν(t ,0) = ν(t , π) = 0.

Linear eigenstates: en(x) ∼ sin(ωnx) with ωn = n + 1 (n = 0,1,2, ...)
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2. Resonant normal form for conformal flow

Time averaging

Expanding ν(t , x) =
∞∑

n=0
cn(t)en(x) we get

d2cn

dt2 + ω2
ncn = −

∑
jkl

Snjkl cjck cl , Sjkln =

∫ π

0

dx
sin2 x

en(x)ej (x)ek (x)el (x)

Using variation of constants

cn = βneiωnt + β̄ne−iωnt ,
dcn

dt
= iωn

(
βneiωnt − β̄ne−iωnt

)
we factor out fast oscillations

2iωn
dβn

dt
= −

∑
jkl

Snjkl cjck cl e−iωnt

Each term in the sum has a factor e−iΩt , where Ω = ωn ± ωj ± ωk ± ωl .
The terms with Ω = 0 correspond to resonant interactions.
Let τ = ε2t and βn(t) = εαn(τ). For ε→ 0 the non-resonant terms
∝ e−iΩτ/ε2

are highly oscillatory and therefore negligible.
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2. Resonant normal form for conformal flow

Resonant system

Keeping only the resonant terms (and rescaling), we obtain
(Bizon-Craps-Evnin-Hunik-Luyten-Maliborski, 2016)

i(n + 1)
dαn

dτ
=
∞∑
j=0

n+j∑
k=0

Snjk,n+j−k ᾱjαkαn+j−k ,

where Snjk,n+j−k = min{n, j , k ,n + j − k}+ 1.

This system (labeled as conformal flow) provides an accurate
approximation to the cubic wave equation on the timescale ∼ ε−2.

This is a Hamiltonian system

i(n + 1)
dαn

dτ
=

1
2
∂H
∂ᾱn

with

H =
∞∑

n=0

∞∑
j=0

n+j∑
k=0

Snjk,n+j−k ᾱnᾱjαkαn+j−k
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2. Resonant normal form for conformal flow

Properties of conformal flow

Symmetries

Scaling: αn(t)→ cαn(c2t), c ∈ R
Global phase shift: αn(t)→ eiθαn(t), θ ∈ R
Local phase shift: αn(t)→ einµαn(t), µ ∈ R

Conserved quantities

Q =
∞∑

n=0

(n + 1)|αn|2, E =
∞∑

n=0

(n + 1)2|αn|2

The Cauchy problem is locally (and therefore also globally) well-posed for
initial data in `2,1(Z) where H,Q,E are finite and conserved.
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2. Resonant normal form for conformal flow

Energy inequality

Energy

H =
∞∑

n=0

∞∑
j=0

n+j∑
k=0

Snjk,n+j−k ᾱnᾱjαkαn+j−k

Two mass quantities:

Q =
∞∑

n=0

(n + 1)|αn|2, E =
∞∑

n=0

(n + 1)2|αn|2

Theorem

For every α ∈ `2,1/2(N), it is true that H(α) ≤ Q(α)2. Moreover, H(α) = Q(α)2

if and only if αn = cpn for some c,p ∈ C with |p| < 1.

Local well-posedness holds in `2,s(N) for every s > 1/2.
Open: if local well-posedness holds in the critical space `2,1/2(N).
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3. Stationary states for conformal flow

Some definitions for stationary states

A solution of the conformal flow is called a stationary state if |α(t)| = |α(0)|.

A stationary state is called a standing wave if α(t) = Ae−iλt ,
where (An)n∈N are time-independent and λ is real.

The amplitudes of the standing wave satisfy

(n + 1)λAn =
∞∑
j=0

n+j∑
k=0

Sn,j,k,n+j−k ĀjAk An+j−k .

or, in the variational form:

λ
∂Q
∂Ān

=
1
2
∂H
∂Ān

,

as critical points of the action functional K (α) = 1
2 H(α)− λQ(α).

Standing waves are critical points of energy H for fixed mass Q.

Ground state is the global maximizer of H for fixed Q, since H(α) ≤ Q(α)2.
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3. Stationary states for conformal flow

The list of stationary states

Single-mode states:
αn(t) = cδnNe−i|c|2t ,

where N ∈ N is fixed and c ∈ C is arbitrary (due to scaling invariance).

Ground state family:

αn(t) = cpne−iλt , λ =
|c|2

(1− |p|2)2 ,

where c ∈ C is arbitrary and p ∈ C is another parameter with |p| < 1. It
bifurcates from the single-mode state with N = 0 as p → 0.

Twisted state family:

αn(t) = cpn−1((1− |p|2)n − 2|p|2)e−iλt , λ =
|c|2

(1− |p|2)2 ,

where c ∈ C is arbitrary and p ∈ C is another parameter with |p| < 1. It
bifurcates from the single-mode state with N = 1 as p → 0.
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3. Stationary states for conformal flow

Three-dimensional invariant manifold

The conformal flow can be closed at the three-parameter solution:

αn = (b(t)p(t) + a(t)n) p(t)n−1,

where a,b,p are functions of t .

The dynamics of the invariant manifold is described by the reduced
Hamiltonian system

da
dt

= f1(a,b,p),
db
dt

= f2(a,b,p),
dp
dt

= f3(a,b,p)

Three conserved quantities H, Q, and E are in involution, so that the reduced
system is completely integrable.

Both the ground-state and twisted-state families are critical points of the
reduced Hamiltonian system and they are stable in the time evolution.
Are they stable in the full resonant system?
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3. Stationary states for conformal flow

Main result: p = 0

Normalized ground state with λ = 1

An(p) = (1− p2)pn, p ∈ (0,1)

defines the ground state orbit

A(p) =

{(
eiθ+iµnAn(p)

)
n∈N

: (θ, µ) ∈ S1 × S1
}
.

As p → 0, the ground state An(0) reduces to the single-mode state δn0 and
the orbit A(0) becomes one-dimensional.

Theorem

For every small ε > 0, there is δ > 0 such that for every initial data
α(0) ∈ `2,1(N) with ‖α(0)− A(0)‖`2,1 ≤ δ, the corresponding unique solution
α(t) ∈ C(R, `2,1) of the conformal flow satisfies for all t

dist`2,1 (α(t),A(0)) ≤ ε.
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3. Stationary states for conformal flow

Main result: p ∈ (0,1)

Theorem

For every p0 ∈ (0,1) and every small ε > 0, there is δ > 0 such that for every
initial data α(0) ∈ `2,1(N) satisfying ‖α(0)− A(p0)‖`2,1 ≤ δ, the corresponding
unique solution α(t) ∈ C(R+, `

2,1) of the conformal flow satisfies for all t

dist`2,1/2 (α(t)−A(p(t))) ≤ ε,

and
dist`2,1 (α(t)−A(p(t))) . ε+ (p0 − p(t))1/2

for some continuous function p(t) ∈ [0,p0].

(i) the distance between the solution and the ground state orbit is bounded
in the norm `2,1/2;

(ii) the parameter p(t) may drift in time towards smaller values compensated
by the increasing `2,1 distance between the solution and the orbit.

Open: if the drift towards A(0) can actually occur.
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4. Spectral stability of the ground state

Be wise and linearize

The standing wave α = A is a critical point of the action functional

K (α) =
1
2

H(α)− λQ(α).

If α = A + a + ib with real a,b, then

K (A + a + ib)− K (A) = 〈L+a,a〉+ 〈L−b,b〉+O(‖a‖3 + ‖b‖3),

where

(L±a)n =
∞∑
j=0

n+j∑
k=0

Snjk,n+j−k
[
2AjAn+j−k ak ± Ak An+j−k aj

]
− (n + 1)λan.

The linearized evolution system is

M
da
dt

= L−b, M
db
dt

= −L+a,

where M = diag(1,2, ...).
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4. Spectral stability of the ground state

Linear operators for the ground state

Taking the normalized ground state with λ = 1

An(p) = (1− p2)pn, p ∈ (0,1)

yields

(L±a)n =
∞∑
j=0

[B±(p)]njaj − (n + 1)an,

where B±(p) : `2(N)→ `2(N) are bounded operators:

[B±(p)]nj = 2p|n−j| − 2p2+n+j ± (1− p2)2(j + 1)(n + 1)pn+j .

Lemma

For every p ∈ [0,1), [L+(p),L−(p)] = 0 and [M−1L+(p),M−1L−(p)] = 0.
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4. Spectral stability of the ground state

Linear operators for the ground state

Operators L±(p) : `2,1(N)→ `2(N) are:

(L±a)n =
∞∑
j=0

[B±(p)]njaj − (n + 1)an,

where B±(p) : `2(N)→ `2(N) are bounded operators. Operators
L±(p) : `2,1(N)→ `2(N) commute and have a common basis of eigenvectors.

Lemma

For every p ∈ [0,1),
σ(L−) = {. . . ,−3,−2,−1,0,0},

and
σ(L+) = {. . . ,−3,−2,−1,0, λ∗(p)} ,

where λ∗(p) = 2(1 + p2)/(1− p2) > 0.

L−(p)A(p) = 0 and L−(p)MA(p) = 0
L+(p)A′(p) = 0 and L+(p)MA(p) = λ∗(p)MA(p).
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4. Spectral stability of the ground state

Spectral stability of the ground state

Spectral stability problem:[
0 L−(p)

−L+(p) 0

] [
a
b

]
= Λ

[
M 0
0 M

] [
a
b

]
.

Bounded operators M−1L±(p) : `2(N)→ `2(N) commute and have a common
basis of eigenvectors.

Lemma

For every p ∈ [0,1), eigenvalues are purely imaginary Λm = ±iΩm with

Ω0 = Ω1 = 0, Ωm =
m − 1
m + 1

, m ≥ 2.

Geometric kernel is three-dimensional.
One generalized eigenvector exists L+(p)A(p) = 2MA(p).
All eigenvalues are simple except for the double zero eigenvalue related
to the phase symmetry αn(t)→ eiθαn(t), θ ∈ R.

D.Pelinovsky (McMaster University) Ground state of the conformal flow 22 / 34



5. Orbital stability of the ground state

Orbital stability for p = 0

Single-mode state with λ = 1

An(0) = δn0

defines the single-mode state orbit

A(0) =

{(
eiθδn0

)
n∈N

: θ ∈ S1
}
.

Theorem
For every small ε > 0, there is δ > 0 such that for every initial data
α(0) ∈ `2,1(N) with ‖α(0)− A(0)‖`2,1 ≤ δ, the corresponding unique solution
α(t) ∈ C(R, `2,1) of the conformal flow satisfies for all t

dist`2,1 (α(t),A(0)) ≤ ε.
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5. Orbital stability of the ground state

Decomposition near the single-mode state orbit

Lemma

There exist δ0 > 0 such that for every α ∈ `2 satisfying

δ := inf
θ∈S
‖α− eiθA(0)‖`2 ≤ δ0,

there exists a unique choice of real-valued numbers (c, θ) and real-valued
sequences a,b ∈ `2 in the orthogonal decomposition

αn = eiθ (cAn(0) + an + ibn) ,

subject to the orthogonality conditions

〈MA(0),a〉 = 〈MA(0),b〉 = 0,

satisfying the estimate
|c − 1|+ ‖a + ib‖`2 . δ.
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5. Orbital stability of the ground state

Control of the decomposition as the time evolves

Lemma

Assume that initial data α(0) ∈ `2,1(N) satisfy

‖α(0)− A(0)‖h1 ≤ δ

for some sufficiently small δ > 0. Then, the corresponding unique global
solution α(t) ∈ C(R, `2,1) of the conformal flow can be represented by the
decomposition

αn(t) = eiθ(t) (c(t)An(0) + an(t) + ibn(t)) , 〈MA(0),a(t)〉 = 〈MA(0),b(t)〉 = 0,

satisfying for all t

|c(t)− 1| . δ, ‖a(t) + ib(t)‖`2,1 . δ1/2.

In other words, for all t

inf
θ∈S
‖α(t)− eiθA(0)‖`2 ≤ ε
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5. Orbital stability of the ground state

The proof with the use of conserved quantities

The decomposition

αn(t) = eiθ(t) (c(t)An(0) + an(t) + ibn(t)) ,

with 〈MA(0),a(t)〉 = 〈MA(0),b(t)〉 = 0 holds at least for small t .

Since An(0) = δn0, the orthogonality conditions yield a0 = b0 = 0.

Expansions of the two mass conserved quantities

Q(α(0)) = Q(α(t)) = c(t)2 +
∞∑

n=1

(n + 1)(a2
n + b2

n) ,

E(α(0)) = E(α(t)) = c(t)2 +
∞∑

n=1

(n + 1)2(a2
n + b2

n) .

yields the bound
∞∑

n=1

n(n + 1)(a2
n + b2

n) = E(α(0))− 1−Q(α(0)) + 1 . δ,

Continuation in t yields the decomposition and the bounds for all t .
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5. Orbital stability of the ground state

Orbital stability for p ∈ (0,1)

Normalized ground state with λ = 1

An(p) = (1− p2)pn, p ∈ (0,1)

defines the ground state orbit

A(p) =

{(
eiθ+iµnAn(p)

)
n∈N

: (θ, µ) ∈ S1 × S1
}
.

Theorem

For every p0 ∈ (0,1) and every small ε > 0, there is δ > 0 such that for every
initial data α(0) ∈ `2,1(N) satisfying ‖α(0)− A(p0)‖`2,1 ≤ δ, the corresponding
unique solution α(t) ∈ C(R+, `

2,1) of the conformal flow satisfies for all t

dist`2,1/2 (α(t)−A(p(t))) ≤ ε,

and
dist`2,1 (α(t)−A(p(t))) . ε+ (p0 − p(t))1/2

for some continuous function p(t) ∈ [0,p0].
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5. Orbital stability of the ground state

Coercivity of the energy in `2,1/2(N)

Symplectically orthogonal subspace of `2(N):

[Xc(p)]⊥ :=
{

a ∈ `2(N) : 〈MA(p),a〉 = 〈MA′(p),a〉 = 0
}
.

Lemma
There exists C > 0 such that

−〈L±(p)a,a〉 & ‖a‖2
`2,1/2

for every a ∈ `2,1/2(N) ∩ [Xc(p)]⊥.
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5. Orbital stability of the ground state

Decomposition near the ground state orbit

Lemma

For every p0 ∈ (0,1), there exists δ0 > 0 such that for every α ∈ `2(N)
satisfying

δ := inf
θ,µ∈S

‖α− ei(θ+µ+µ·)A(p0)‖`2 ≤ δ0,

there exists a unique choice for real-valued numbers (c,p, θ, µ) and
real-valued sequences a,b ∈ `2 in the orthogonal decomposition

αn = ei(θ+µ+µn) (cAn(p) + an + ibn) ,

subject to the orthogonality conditions

〈MA(p),a〉 = 〈MA′(p),a〉 = 〈MA(p),b〉 = 〈MA′(p),b〉 = 0, (1)

satisfying the estimate

|c − 1|+ |p − p0|+ ‖a + ib‖`2 . δ.
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5. Orbital stability of the ground state

Control of the decomposition as the time evolves

Lemma

Assume that the initial data α(0) ∈ `2,1(N) satisfy

‖α(0)− A(p0)‖`2,1 ≤ δ,

for some p0 ∈ [0,1) and a sufficiently small δ > 0. Then, the corresponding
unique global solution α(t) ∈ C(R+, `

2,1) of the conformal flow can be
represented by the decomposition

αn(t) = ei(θ(t)+(n+1)µ(t)) (c(t)An(p(t)) + an(t) + ibn(t)) ,

a,b ∈ [Xc(p)]⊥ satisfying for all t

|c(t)− 1|+ ‖a(t) + ib(t)‖`2,1/2 . δ.

The proof is based on the Lyapunov function

∆(c) := c2 (Q(α)− 1)− 1
2

(H(α)− 1) .
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5. Orbital stability of the ground state

Control of the drift of p(t) as the time evolves

Lemma
Under the same assumptions,

p(t) . p0 + δ, ‖a(t) + ib(t)‖`2,1 . δ1/2 + |p0 − p(t)|1/2.

The proof is based on the additional mass conservation:

E(α(t)) = c(t)2 1 + p(t)2

1− p(t)2 + ‖a(t) + ib(t)‖2
`2,1 ,

which yields

2(p(t)2 − p2
0)

(1− p(t)2)(1− p2
0)

+ ‖a(t) + ib(t)‖2
`2,1 . δ,
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6. Conclusion

Twisted state ?

Twisted state family

An(p) = (1− p2)((1− p2)n − 2p2)pn−1, λ = 1,

bifurcates from An(0) = δn1.

Linearized operators L+(p) and L−(p) also commute.

Spectral stability also holds.

Coercivity is lost as L+(p) has two positive eigenvalues and L−(p) has
one positive eigenvalue in addition to the triple zero eigenvalue.

Nonlinear stability is opened.
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6. Conclusion

Twisted state for the cubic Szegő flow

For cubic Szegő equation

p(τ) = − i√
1 + ε2/4

sin(ωτ) e−
1
2 iε2τ

with ω = ε
√

1 + ε2/4.

Thus, |p(τn)| ∼ 1− ε2/8 for a
sequence of times τn = (2n+1)π

2ω .
Gérard-Grellier daisy

This instability provided a hint for the existence of unbounded orbits
(Gérard-Grellier, 2015)
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6. Conclusion

Conclusion

We considered a novel resonant normal form, which describes conformal
flow on S3.

We obtained a nice commutativity formula for linearized operators L+(p)
and L−(p).
Open: is this a coincidence or a sign of integrability?

We obtained orbital stability results for the ground state family near the
single-mode state.
Open: is there an actual drift towards the single-mode state along the
ground state family?

Spectral stability also hold for other (twisted) states, e.g. An = δnN .
Open: are they stable in the nonlinear dynamics?
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