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The Gross—Pitaevsky equation:
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2u+ulfu, e<1

o Frequency of oscillations (adiabatic dynamics of dark solitons)

o Amplitude of oscillations (radiative effects of dark solitons)



o Collective coordinates (the Ehrenfest Theorem)
(1997: Reinhardt & Clark, Morgan et al.)

o Boundary-layer integrals (hydrodynamic formulation)
(2000: Busch & Anglin)

o Shallow-soliton theory (KdV formulation)
(2002: Huang et al.)

o Renormalized momentum (perturbation theory)
(2002-2004: Frantzeskakis et al.)

o Renormalized powers (perturbation theory)
(2003-2004 : Brazhnyi & Konotop, Konotop & Pitaevsky)

o Numerical simulations
(2003-2004 : Parker, Proukakis, et al.)



o The frequency of oscillations is independent of dark soliton amplitude.

o The amplitude of oscillations increases due to radiative losses.

Numerical simulations by N. Proukakis (2003)



e Definition of the ground state, the first excited
state, and the dark soliton

e Failure of the formal adiabatic theory
e Adiabatic theory with dynamical scaling techniques

e Radiation of dark solitons with the asymptotic multi-
scale expansions

e Comparison of asymptotic and numerical results

e Other ideas and prospects



o Separation of variables
Ups(x, 1) = Ue(az)e_i“etﬂ‘go,

where e € D C R, 0y € R, and (Ug, p¢) are found from

1
5U” — 27U — U + ulU = 0.
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o Separation of variables
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o Linear ground state

655'2
Ueexp< \/§> fe = pp(e) =

o Local bifurcation (by Lyapunov-Schmidt reduction)
n>pole): U(0)=0, lim U(z)=0.
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o There exists a smooth one-parameter family of U(x) for a fixed value
of € > 0, such that U(0) is increasing function of
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o Reformulation of the ODE for Q(x) = U?(x):
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o Reformulation of the ODE for Q(x) = U?(x):

20Q" — (Q')°

Qz) = p— ez’ + 302

o WKB asymptotic series
o
Q=" —X*+> FQuX), X=e,
k=1

which converges for |ex| < /it

o Normalization condition

2
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such that pe = 1 + O(€?).



o Separation of variables
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o Separation of variables
Uexe(T, 1) = Ue(:v)e_wetﬂeo,

where ue € D C R, 0y € R, and (Ug, p¢) are found from
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o Linear excited state
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o Local bifurcation (by Lyapunov-Schmidt reduction)
p>pi(e): U0)=0, lim U(x)=0,
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such that it exists for p > 1.



o Analytical representation for e = 0
ugs(x,t) = [ktanh(k(z — vt — sg)) + 0] il
where k = V1 — 92 < 1 and (s, f) € R,

o Boundary conditions for € = 0

ugel? =1 — kPsech?(k(z — vt — 5)) — 1 as |z| — o0



o Analytical representation for e = 0
ugs(x,t) = [ktanh(k(z — vt — sg)) + 0] il
where k = V1 — 92 < 1 and (s, f) € R,

o Boundary conditions for € = 0

ugel? =1 — kPsech?(k(z — vt — 5)) — 1 as |z| — o0

o When € # 0, the stationary solution persists only for v = 0 and
sp = 0, when ugy(x,t) = uexc(x,t) with zero boundary conditions as
|z| — oo. Dark soliton solutions with v # 0 and sy # 0 undertake
nonstationary dynamics in the parabolic trap.
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o The original GP equation
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“u+ ulfu, e< 1

o Transformation of the GP equation
u(z,t) = Ud(z)w(z, t)e He,

where (Us, ie) is the ground state pair with Ug(0) = 1

o Perturbed NLS equation (Frantzeskakis et al, 2002):
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where U2 = 1 — €22 + O(€?) for e|z| = O(1) and €|z| < 1.



o Formal perturbed NLS equation

1
1wt + §wxa; T (1 — ‘w’2>w = R<w> U_J),

where

62513

2,2

R(w,w) = €2°(1 — |w|*)w + Wy

1 —€



o Formal perturbed NLS equation
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o First-order balance for renormalized momentum
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where wy = wq(z — s) is the exact dark soliton for € = 0 and P(v) =
4k 1s the renormalized momentum.



o Formal perturbed NLS equation

1
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where
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o First-order balance for renormalized momentum
ds dv
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where wy = wy(z — s) is the exact dark soliton for € = 0 and P/(v) =
4k 1s the renormalized momentum.

o Formal computations give a wrong dynamical equation:
(3 —s%)(1 — 3°)
3(1 — s2)
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o Scaling of dark solitons for adiabatic dynamics
T = et, v=0o(T)=sT),
implies that wy = wo(x — s/€) = wq(n), such that
e20? = s>+ 2esn+ >, n=0(1).

The perturbation theory fails since R(w,w) is not small.



o Scaling of dark solitons for adiabatic dynamics
T = et, v=0o(T)=sT),

implies that wy = wo(x — s/€) = wq(n), such that
21’ = §° + 2esn + €n°, n= O(1).

The perturbation theory fails since R(w,w) is not small.

o Let w = w(n,t) with n = x — s(T") /e and rewrite the perturbed NLS
equation in the form

1
Wt — ivwn + éwnn + UEQ(S)(l — ‘w|2)w — R(wa ’lD),
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o Let w = w(z,t) with z = nUc(s(T)) and let
$(T) = v(T) = v(T)Ue(s(T)),
such that the final perturbed NLS equation is

1
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o Let w = w(z,t) with z = nUc(s(T)) and let
$(T) = v(T) = v(T)Ue(s(T)),
such that the final perturbed NLS equation is

1
iwy + U (s) [—z’uwz + Wz + (1 — |w|2)w] + eRy(w,w) = O(€?),

where
Ry = Ul(s) [iyzwz + w, + 22(1 — \w[Q)w} .

o An asymptotic solution is sought in the form:
w(z,t) = {wo(z) + ewq(z,t) + O(GQ)} el

where w(z) = ktanh(kz) +iv, k = V1 — 12, and parameters 0(T)
and s(T") are independent.



o First-order linearization problem
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o Completeness of eigenfunctions of H (Chen et al, 1998)

where

o Continuous spectrum on A € iR
o Embedded kernel at A = 0 with

Hw() =0, H(iogwp) =0



o Orthogonality of R to W6(Z) produces the main equation for adiabatic
dynamics of a dark soliton:
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o Orthogonality of R to W6(Z) produces the main equation for adiabatic
dynamics of a dark soliton:

s+s=0.

o The first-order solution wj(z,t) is decomposed into eigenfunctions of
the continuous spectrum of H. By the stationary phase method, the
first-order solution wj(z,t) becomes stationary as t — oo:

q(T) 3vg(T) — 0(T)

U2(s) 25U2(s)

where (') is arbitrary parameter.

Wis = (1zwy — Oywy) + Oxwo + w1is(2,T),

o The stationary solution wis(z,T') grows linearly in z as |z| — oo.



o Matching conditions from z = O(1) to ex = 0(1):
lim we(z,T) = (1+ eW=(X, T)) €' OF(X, T),
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o Matching conditions from z = O(1) to ex = O(l):
lim we(z,T) = (1+ eW=(X, T)) €' OF(X, T),

2—1+00
where X = ex, T = €t, and
o

W= ,
X=s(T) OX | x=s(1)

are givern.

o Radiation problem outside the dark soliton:

o7, — (V2(X)0% ), =0,

where U2(X) = 1 — X? and




o Solution along the characteristics
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o Solution along the characteristics

+
dé+ + Oy
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where
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d_T+ = —§Ué(§+(T; 7)) (ORy+ — R-),

dR_ 1
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o Let us assume no radiation from the outer domain:
X>s(T): R-—=0 X <s(T): R+=0

The system of equations for the first-order correction is then closed.
The orthogonality of Ro to W’O(z) extends the main equation for dy-

namics of a dark soliton:
. €S 9
S+ s = + Of(e?).
24/ (1 — s2)3/1 — 52 — 42 (€
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Families of characteristics in the parabolic trap
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o The equilibrium point (0, 0) recovers the first excited state wexc(x).
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o Linearization near the equilibrium point:
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S+s= - +O(e?).

24/ (1 — 52)3y/1 — 52 — §2

o The equilibrium point (0, 0) recovers the first excited state wexc(x).

o Linearization near the equilibrium point:
€
s+s—55:0@%§)
corresponds to the harmonic oscillator with an amplification.

o Lyapunov function
1
shows that all trajectories are outgoing spirals:
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+0(e%) > 0.



o The main equation for dynamics of a dark soliton is valid in the case
of no incoming radiation, e.g.

1
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where
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o The main equation for dynamics of a dark soliton is valid in the case
of no incoming radiation, e.g.

1
iU = —5 Uz + Viex)u+ |ul?u, e<1,

where
o V(X) = X%+ O(X?) near X =0
oV(X)—0as |X| — o0

o In the case of a harmonic trap (V = X 2), the main equation is only
valid for the first half-period of oscillations. For longer times, the
radiative waves are expected to be in balance, so that oscillations of a
dark soliton are expected to be synchronized.



Position and energy of dark soliton in a double Gaussian trap.
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Top: parabolic trap. Bottom: parabolic trap and optical lattice






e Perturbation theory for complex eigenvalues of the
linearized problem in the presence of external po-
tentials

e Hermite function expansions for dynamics of dark
solitons in the parabolic potentials (normal forms)

e Modeling of PDE problems along characteristics
with incoming and outcoming radiation waves

e Derivation of the O(¢?) error bound for the main
equation describing dynamics of a dark soliton



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



