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Conventional dark solitons

Dark solitonsare localized solutions of nonlinear PDEs with
non-zero boundary conditions and non-zero phase shift.

Dark solitons innonlinear optics

, 1
iy = = tae + f(Jul*)u,

wheref(s) is a smooth function witlf’(s) > 0.
cubic NLS with f = |u|* and dark solitons
u = e " [ktanh(k(x — vt)) + iv],

wherek = /1 — v? and|v| < 1. Whenv = 0, the solution
v = tanh z e~ is called theblack soliton



Recent results in mathematical literature

* Zhidkov (1992) - local existence of the Cauchy problem and
stablility of kink solutions in the cubic NLS

* de Bouard (1995) - spectral and nonlinear instability otkla
solitons with zero velocity and zero phase shift

* Lin (2002) - criterion for orbital stability and instabmitof dark
solitons for non-zero velocities

* Maris (2003) - bifurcations of dark solitons for non-zero
velocities in the delta-function potential

* Di Menza and Gallo (2006) - stability criterion for kinks Wit
zero velocity and non-zero phase shift



New problems for dark solitons

Dark solitons inBose—Einstein condensates

1
Uy = — 5 Uz + f(|u]®)u + eV (z)u,

wheree is small and/ (z) : R — R is a smooth, exponentially
decaying function such that

3C >0, k>0: |V(z) <Ce ™l vzeR

symmetric external potentials

Vi(z) = —sech? (/12_:1:) , Va(z) = z2e "4, r € R.

More general context: periodic and confining potential(s:).



Numerical simulations

Find approximations of the frequency of oscillations of skda
soliton and study long-time changes in the amplitude ofliedicins.



Approaches to the solution at glance

1
Uy = — 5 Uz + f(|u]®)u + €V (z)u,

* ¢ = (0 - existence and stability of dark solitons is known

* ¢ < 1 - persistence of solutions by using the method of
Lyapunov—Schmidt reductions

* ¢ < 1 - stability of solutions by using the methods of Evans
function and the theory of negative indices

* ¢ # 0 - long-time dynamics by using the Newton’s law of
motion and central manifold reductions



Main results

1. A black solitonu = ¢o(xz — s)e " with ¢y — +1 asz — +oo
for smalle # 0 if M'(s) = 0andM"(s) # 0, where

M'(s) = /RV’(x) 11— ¢g(z — s)] dz.

2. If a black soliton is spectrally fore =0, then itis
spectrally for smalle = 0 with onereal positive
eigenvalue ifM"(s) < 0 andtwo complex-conjugate
eigenvalues if\/”(s) > 0.

3. If u(x,0) is close top.(z — s(0)), thenu(x, t) remains close to
b (x — s(t))e ™, wheres(t) solves for) < ¢t < C'/¢

o8 — exgM"(8)s + eM'(s) = O(e), Ao, o > 0.



Persistence of black solitons

Black soliton in the formu = ¢(z)e* satisfies the ODE

L(e) + [1 = 6(a)?] 62) = V(@)oo

subject to the boundary conditiotisn, .., ¢(x) = +1.

If p(2) = do(x — s) + p(x, s), theny is found from the
operator-valued equation

F(p,s) = Lip+ N(p,s) + eV(z) [go(z — s) + ¢] =0,

whereN : H'(R) — H*(R) andL. : H*(R) — L*(R), such that

1 1
L, = —§8§ + 3¢5 — 1 = —502 + 2 — 3sech’z.



Lyapunov—-Schmidt reductions

* The essential spectrum af, is bounded from below by,
Ker(Ly) = {¢'(x)}, and other isolated eigenvalues are locatec
in (0,2).

* Letyp € H'(R), such that ¢, ¢) = 0 and

G(s) = €(¢g, V(z)(¢0 + ¢)) + (95, N (e, ))

= %M’(S) + G(s) =0.

* By the Implicit Function Theorem|y|| 71 = O(€) subject to
G(s)=0.If M'(sg) =0andM”(sy) # 0, the root ofG(s) = 0
persists as = sy + O(e).



Applications

* If V(—z) =V(x), thenM’(0) = 0 and the black soliton with
s = ( persists for =~ 0.

* Additional rootss = +sy, may exist ifsign(M (0)M"(0)) = 1
sinceM (s) — 0 ass — oc.




Stability of black solitons

Linearization at a black soliton,(z)e~* is defined by

= it {gbo(x) + (u(z) + sw(z))e™ + (a(z) + iw(x))ekt}

Spectral stability problem:
Liu=—)\w, L_w = A\u,

where

1

L, = —5(92 + 2 — 3sech’z,
L 2

L. = —§8$ — sech”x.



Spectra of L, in L*(R)

Continuous spectra, .

0o(Ly)>2>0,  0.(L)>0, L_gy=0

Kernel and negative eigenvalues:
* L.¢; = 0= L, has no negative eigenvalues
* L_ has exactly one negative eigenvalue

Define the constrained space
Xe={weLl*R): (¢pw)=0}

OperatorL_ has no negative eigenvaluesin if P’|,—, > 0 and
exactly one negative eigenvaluefif|,—, < 0, where

P7/=|v:O — (¢67¢0>7 Yo = L:1¢6 = LOO(R>



Constrained L*-space

Consider the spectral problem fpy| # 0:

Liu = —)\w, L_w = \u,

If w € X, then the stability problem is equivalent to the
generalized eigenvalue problem

o If P’
o If P’

L_w = vLjrlw, v=-\, weX..

v—0 > 0, theny = ((;U’LLE?) > (), such that\ € :R.

+—o0 < 0, then there exists exactly onec X, such that

v<Owith A € R,.



Pontryagin Invariant Subspace Theoren

Definition 1: LetH be a Hilbert space equipped with the inner
product(-, -) and the sesquilinear form -]. The Hilbert spacé{ is
called the Pontryagin space (denotedla%if it can be decomposed
Into the sunt+ = II,, = 11 ¢ I1_, which is orthogonal with respect
to |-, -], wherex = dim(Il_) < oc.

Definition 2: We say thall is a non-positive subspace 4f. if

z, x| < 0Vz € Il. We say that the non-positive subspataas the
maximal dimensiom if any subspace dfl,, of dimension higher
thank is not a non-positive subspaceldf.

Theorem: LetT" be a self-adjoint bounded operatorin, such that
T-,-] = |-, T-]. There exists §-invariant non-positive subspace of
[1,. of the maximal dimension.



Application of the Pontryagin Theorem

Reference: L. Pontryagin, Izv. Acad. Nauk SS3R243-280
(1944); M. Chugunova and D.P., preprint (2006)

* Let operatord.. haven. negative eigenvalues, empty kernels
in L?(R), while o.(L,) > 0 ando.(L_) > 0.

* Let embedded eigenvalues of the spectral problem
L.u = —Xw, L_w = \u be algebraically simple.

* Then, the spectral problem has exadtlycomplex
eigenvaluesN:* imaginary eigenvalues andl* real
eigenvalues withfw, L 'w) > 0 and(w, L 'w) < 0, such that

N, +N; + N, =n,, NI+ N +N.=n_.

°* If n, =0andn_ =1, thenN =1 (whenP/|,—, < 0) and the
soliton is spectrallyinstable



Dark soliton in a potential

Linearized operators are

Loo= —50+ F(62) — flao) +26F(62) + eV (w)
L= 50+ 1) — flan) + V()
In particular,

(6%, L+%) = —5M"(s0) + O(€)

e If M"(s9) > 0,thenn, =1andn_ = 1, such that either
N.+ N, =1orNf=N_—=1.

° If M"(sy) <0,thenn, =0andn_ =1, such thatV." = 1 and
the kink is spectrallyinstable



Fundamental solutions

Recall that
Liu= - w, L_w=>\u

Define four fundamental solutions

wherex with Rexy > 0 are given by

2 2 )\2
i =20 (1£4[1- ).

wherex? # k2 (\ £ +c2) ands_ #£ 0 (\ #£ 0).




Evans function

The Evansfunction £()\) is a4-by-4 determinant of the four
fundamental solutions. Its zero f8f(\) > 0 coincide with
eigenvalues\ with the account of their algebraic multiplicities.

Example: f(q) = g and¢y = tanh x, such that

4k3 K3 (KL — K2)?

P = G v 2 2P

such thatF'(\) = 8\*(1 + O())) near) = 0.

Lemma: The Evans function is analytic function ef ande near
k_ =0 (A =0)ande = 0.



Characteristic equation

Expansion neak = 0 ande = 0:
E(\e) = A (oz)\Q + Be + @A + Bre + O, A2, 62))
wherea # 0 due to

Lygg(x) =0, L_wi=¢y(z), L-¢o=0

and( = 0 due toM"(sq) # 0.
Explicit computation neak = 0 ande = 0:

A
Red >0: M+ EM”(SO) (1 — 5) = O(e).
If M"(sq) <0, thereis asmallrook € R,

If M"(sy) > 0, there are two small roots withe\ > 0 and
Im\ #£ 0.



Example: V; = —sech” (&)

Only one solution persists wittyy, = 0 andM"(0) > 0

1
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Example: V5 = z2e"1®

For x < 3.21, three solutions persist withy = 0 (M"(0) > 0) and
sop = ts, (M"(s,) < 0). Fork > 3.21, only one solution persists
with s = 0 andM”(0) < 0

-1 e o T 02 ; 0 lr .01 _T—D.DE




Nonlinear dynamics of instability

Newton’s particle equation

o8 — egM"(8)s + eM'(s) = O(e?), Ao, fo > 0.

Real instability forl;(z), k < 3.21 andsy = s, # 0
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Nonlinear dynamics of Instabllity

Complex instability for,(z), x < 3.21 andsy = 0
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Nonlinear dynamics of Instabllity

Real instability forVs(z), x > 3.21 andsy = 0




Conclusion

Persistence of dark solitons is studied for non-zero boynda
conditions and decaying potentials

Stability of dark solitons is studied for linearized proflg
without spectral gaps

Numerical modeling suggests an adequate approximatidmeof t
nonlinear dynamics by the Newton’s particle equation

Extension of this work is needed for bounded (periodic) and
unbounded (parabolic) potentidly ).
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