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Conventional dark solitons
Dark solitonsare localized solutions of nonlinear PDEs with
non-zero boundary conditions and non-zero phase shift.

Dark solitons innonlinear optics

iut = −1

2
uxx + f(|u|2)u,

wheref(s) is a smooth function withf ′(s) > 0.

Example:cubic NLS withf = |u|2 and dark solitons

u = e−it [k tanh(k(x− vt)) + iv] ,

wherek =
√

1 − v2 and|v| < 1. Whenv = 0, the solution
u = tanhx e−it is called theblack soliton.
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Recent results in mathematical literature
• Zhidkov (1992) - local existence of the Cauchy problem and

stability of kink solutions in the cubic NLS

• de Bouard (1995) - spectral and nonlinear instability of black
solitons with zero velocity and zero phase shift

• Lin (2002) - criterion for orbital stability and instability of dark
solitons for non-zero velocities

• Maris (2003) - bifurcations of dark solitons for non-zero
velocities in the delta-function potential

• Di Menza and Gallo (2006) - stability criterion for kinks with
zero velocity and non-zero phase shift
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New problems for dark solitons

Dark solitons inBose–Einstein condensates

iut = −1

2
uxx + f(|u|2)u+ ǫV (x)u,

whereǫ is small andV (x) : R 7→ R is a smooth, exponentially
decaying function such that

∃C > 0, κ > 0 : |V (x)| ≤ Ce−κ|x|, ∀x ∈ R

Example:symmetric external potentials

V1(x) = −sech2
(κx

2

)

, V2(x) = x2e−κ|x|, x ∈ R.

More general context: periodic and confining potentialsV (x).
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Numerical simulations

Questions:
Find approximations of the frequency of oscillations of a dark
soliton and study long-time changes in the amplitude of oscillations.
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Approaches to the solution at glance

iut = −1

2
uxx + f(|u|2)u+ ǫV (x)u,

• ǫ = 0 - existence and stability of dark solitons is known

• ǫ≪ 1 - persistence of solutions by using the method of
Lyapunov–Schmidt reductions

• ǫ≪ 1 - stability of solutions by using the methods of Evans
function and the theory of negative indices

• ǫ 6= 0 - long-time dynamics by using the Newton’s law of
motion and central manifold reductions
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Main results

1. A black solitonu = φ0(x− s)e−it with φ0 → ±1 asx→ ±∞
persistsfor smallǫ 6= 0 if M ′(s) = 0 andM ′′(s) 6= 0, where

M ′(s) =

∫

R

V ′(x)
[

1 − φ2
0(x− s)

]

dx.

2. If a black soliton is spectrallystablefor ǫ = 0, then it is
spectrallyunstablefor smallǫ 6= 0 with onereal positive
eigenvalue ifM ′′(s) < 0 andtwo complex-conjugate
eigenvalues ifM ′′(s) > 0.

3. If u(x, 0) is close toφǫ(x− s(0)), thenu(x, t) remains close to
φǫ(x− s(t))e−it, wheres(t) solves for0 < t < C/ǫ

µ0s̈− ǫλ0M
′′(s)ṡ+ ǫM ′(s) = O(ǫ2), λ0, µ0 > 0.
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Persistence of black solitons

Black soliton in the formu = φ(x)e−it satisfies the ODE

1

2
φ′′(x) +

[

1 − φ(x)2
]

φ(x) = ǫV (x)φ(x),

subject to the boundary conditionslimx→±∞ φ(x) = ±1.

If φ(x) = φ0(x− s) + ϕ(x, s), thenϕ is found from the
operator-valued equation

F (ϕ, s) = L+ϕ+N(ϕ, s) + ǫV (x) [φ0(x− s) + ϕ] = 0,

whereN : H1(R) 7→ H1(R) andL+ : H2(R) 7→ L2(R), such that

L+ = −1

2
∂2

x + 3φ2
0 − 1 = −1

2
∂2

x + 2 − 3sech2x.
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Lyapunov–Schmidt reductions
• The essential spectrum ofL+ is bounded from below by2,

Ker(L+) = {φ′(x)}, and other isolated eigenvalues are located
in (0, 2).

• Let ϕ ∈ H1(R), such that(φ′
0, ϕ) = 0 and

G(s) = ǫ (φ′
0, V (x)(φ0 + ϕ)) + (φ′

0, N(ϕ, s))

=
ǫ

2
M ′(s) + G̃(s) = 0.

• By the Implicit Function Theorem,‖ϕ‖H1 = O(ǫ) subject to
G(s) = 0. If M ′(s0) = 0 andM ′′(s0) 6= 0, the root ofG(s) = 0
persists ass = s0 + O(ǫ).
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Applications

• If V (−x) = V (x), thenM ′(0) = 0 and the black soliton with
s = 0 persists forǫ 6= 0.

• Additional rootss = ±s0 may exist ifsign(M(0)M ′′(0)) = 1
sinceM(s) → 0 ass→ ∞.
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Stability of black solitons

Linearization at a black solitonφ0(x)e
−it is defined by

u = e−it
[

φ0(x) + (u(x) + iw(x))eλt + (ū(x) + iw̄(x))eλ̄t
]

Spectral stability problem:

L+u = −λw, L−w = λu,

where

L+ = −1

2
∂2

x + 2 − 3sech2x,

L− = −1

2
∂2

x − sech2x.
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Spectra ofL± in L2(R)

Continuous spectraσc:

σc(L+) ≥ 2 > 0, σc(L−) ≥ 0, L−φ0 = 0

Kernel and negative eigenvalues:
• L+φ

′
0 = 0 ⇒ L+ has no negative eigenvalues

• L− has exactly one negative eigenvalue

Define the constrained space

Xc =
{

w ∈ L2(R) : (φ′
0, w) = 0

}

OperatorL− has no negative eigenvalues inXc if P ′
r|v=0 > 0 and

exactly one negative eigenvalue ifP ′
r|v=0 < 0, where

P ′
r|v=0 = (φ′

0, ψ0), ψ0 = L−1
− φ′

0 ∈ L∞(R).
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ConstrainedL2-space

Consider the spectral problem for|λ| 6= 0:

L+u = −λw, L−w = λu,

If w ∈ Xc, then the stability problem is equivalent to the
generalized eigenvalue problem

L−w = γL−1
+ w, γ = −λ2, w ∈ Xc.

• If P ′
r|v=0 > 0, thenγ = (w,L−w)

(w,L
−1

+
w)

≥ 0, such thatλ ∈ iR.

• If P ′
r|v=0 < 0, then there exists exactly onew ∈ Xc such that

γ < 0 with λ ∈ R+.

Dark solitons in external potentials – p. 13/27



Pontryagin Invariant Subspace Theorem

Definition 1: LetH be a Hilbert space equipped with the inner
product(·, ·) and the sesquilinear form[·, ·]. The Hilbert spaceH is
called the Pontryagin space (denoted asΠκ) if it can be decomposed
into the sumH .

= Πκ = Π+ ⊕ Π−, which is orthogonal with respect
to [·, ·], whereκ = dim(Π−) <∞.

Definition 2: We say thatΠ is a non-positive subspace ofΠκ if
[x, x] ≤ 0 ∀x ∈ Π. We say that the non-positive subspaceΠ has the
maximal dimensionκ if any subspace ofΠκ of dimension higher
thanκ is not a non-positive subspace ofΠκ.

Theorem: Let T be a self-adjoint bounded operator inΠκ, such that
[T ·, ·] = [·, T ·]. There exists aT -invariant non-positive subspace of
Πκ of the maximal dimensionκ.
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Application of the Pontryagin Theorem

Reference: L. Pontryagin, Izv. Acad. Nauk SSSR8, 243-280
(1944); M. Chugunova and D.P., preprint (2006)

• Let operatorsL± haven± negative eigenvalues, empty kernels
in L2(R), while σc(L+) > 0 andσc(L−) ≥ 0.

• Let embedded eigenvalues of the spectral problem
L+u = −λw, L−w = λu be algebraically simple.

• Then, the spectral problem has exactlyNc complex

eigenvalues,N±
i imaginary eigenvalues andN±

r real

eigenvalues with(w,L−1
+ w) ≥ 0 and(w,L−1

+ w) ≤ 0, such that

N−
r +N−

i +Nc = n+, N+
r +N−

i +Nc = n−.

• If n+ = 0 andn− = 1, thenN+
r = 1 (whenP ′

r|v=0 < 0) and the
soliton is spectrallyunstable.

Dark solitons in external potentials – p. 15/27



Dark soliton in a potential

Linearized operators are

L+ = −1

2
∂2

x + f(φ2
ǫ) − f(q0) + 2φ2

ǫf
′(φ2

ǫ) + ǫV (x),

L− = −1

2
∂2

x + f(φ2
ǫ) − f(q0) + ǫV (x).

In particular,

(φ′
0, L+φ

′
0) = − ǫ

2
M ′′(s0) + O(ǫ2)

• If M ′′(s0) > 0, thenn+ = 1 andn− = 1, such that either
Nc +N−

i = 1 orN+
r = N−

r = 1.

• If M ′′(s0) < 0, thenn+ = 0 andn− = 1, such thatN+
r = 1 and

the kink is spectrallyunstable.
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Fundamental solutions
Recall that

L+u = −λw, L−w = λu

Define four fundamental solutions
(

u±

w±

)

→
(

κ±

−κ∓

)

eκ±x as x→ −∞,

(

ũ±

w̃±

)

→
(

κ±

−κ∓

)

e−κ±x as x→ +∞,

whereκ± with Reκ± > 0 are given by

κ2
± = 2c2

(

1 ±
√

1 − λ2

c4

)

.

whereκ2
+ 6= κ2

− (λ 6= ±c2) andκ− 6= 0 (λ 6= 0).
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Evans function

TheEvans functionE(λ) is a4-by-4 determinant of the four
fundamental solutions. Its zero forRe(λ) > 0 coincide with
eigenvaluesλ with the account of their algebraic multiplicities.

Example: f(q) = q andφ0 = tanhx, such that

E(λ) =
4κ3

+κ
3
−(κ2

+ − κ2
−)2

(κ+ + 2)2(κ− + 2)2
,

such thatE(λ) = 8λ3(1 + O(λ)) nearλ = 0.

Lemma: The Evans function is analytic function ofκ− andǫ near
κ− = 0 (λ = 0) andǫ = 0.
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Characteristic equation

Expansion nearλ = 0 andǫ = 0:

E(λ, ǫ) = λ
(

αλ2 + βǫ + α̃λ3 + β̃λǫ+ O(λ4, λ2ǫ, ǫ2)
)

whereα 6= 0 due to

L+φ
′
0(x) = 0, L−w1 = φ′

0(x), L−φ0 = 0

andβ = 0 due toM ′′(s0) 6= 0.
Explicit computation nearλ = 0 andǫ = 0:

Reλ > 0 : λ2 +
ǫ

4
M ′′(s0)

(

1 − λ

2

)

= O(ǫ2).

If M ′′(s0) < 0, there is a small rootλ ∈ R+

If M ′′(s0) > 0, there are two small roots withReλ > 0 and
Imλ 6= 0.
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Example: V1 = −sech2
(

κx
2

)

Only one solution persists withs0 = 0 andM ′′(0) > 0
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Example: V2 = x2e−κ|x|

Forκ < 3.21, three solutions persist withs0 = 0 (M ′′(0) > 0) and
s0 = ±s∗ (M ′′(s∗) < 0). Forκ > 3.21, only one solution persists
with s0 = 0 andM ′′(0) < 0
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Nonlinear dynamics of instability

Newton’s particle equation

µ0s̈− ǫλ0M
′′(s)ṡ+ ǫM ′(s) = O(ǫ2), λ0, µ0 > 0.

Real instability forV2(x), κ < 3.21 ands0 = s∗ 6= 0
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Nonlinear dynamics of instability

Complex instability forV2(x), κ < 3.21 ands0 = 0
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Nonlinear dynamics of instability

Real instability forV2(x), κ > 3.21 ands0 = 0
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Conclusion
• Persistence of dark solitons is studied for non-zero boundary

conditions and decaying potentials

• Stability of dark solitons is studied for linearized problems
without spectral gaps

• Numerical modeling suggests an adequate approximation of the
nonlinear dynamics by the Newton’s particle equation

• Extension of this work is needed for bounded (periodic) and
unbounded (parabolic) potentialsV (x).
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