# Periodic waves in discrete MKDV equation: modulational instability and rogue waves

Dmitry E. Pelinovsky

Department of Mathematics, McMaster University, Canada

http://dmpeli.math.mcmaster.ca

# The rogue wave of the cubic NLS equation

The focusing nonlinear Schrödinger (NLS) equation

$$i\psi_t + \frac{1}{2}\psi_{xx} + |\psi|^2\psi = 0$$

admits the exact solution

$$\psi(x,t) = \left[1 - \frac{4(1+2it)}{1+4x^2+4t^2}\right]e^{it}.$$

It was discovered by H. Peregrine (1983) and was labeled as the rogue wave.



# Traveling periodic waves

The focusing nonlinear Schrödinger (NLS) equation

$$i\psi_t + \frac{1}{2}\psi_{xx} + |\psi|^2\psi = 0$$

admits the periodic traveling and standing wave solutions, e.g. the dnoidal and cnoidal waves:

$$\psi_{\rm dn}(x,t) = {\rm dn}(x;k)e^{i(1-k^2/2)t}, \quad \psi_{\rm cn}(x,t) = k{\rm cn}(x;k)e^{i(k^2-1/2)t},$$

where  $k \in (0, 1)$  is elliptic modulus.





# Rogue wave on background of periodic waves

- J. Chen, D. Pelinovsky, Proceedings A 474 (2018) 20170814
- J. Chen, D. Pelinovsky, R. White, Physica D 405 (2020) 132378





# Other examples of integrable Hamiltonian systems

Modified Korteweg–de Vries equation

$$u_t + 6u^2u_x + u_{xxx} = 0$$

Dnoidal periodic waves are modulationally stable. Cnoidal periodic waves are modulationally unstable. J. Chen & D. Pelinovsky, Nonlinearity **31** (2018) 1955–1980

Sine–Gordon equation

$$u_{tt} - u_{xx} + \sin(u) = 0$$

Same conclusion.

D. Pelinovsky & R. White, Proceedings A 476 (2020) 20200490

Derivative NLS equation

$$i\psi_t + \psi_{xx} + i(|\psi|^2\psi)_x = 0.$$

There exist modulationally stable periodic waves.

J. Chen, D. Pelinovsky, & J. Upsal, J. Nonlinear Science **31** (2021) 58

# Rogue wave for the modified KdV equation

J. Chen & D. Pelinovsky, Journal of Nonlinear Science 29 (2019) 2797–2843





# Discrete modified KdV equation

It is considered to be the third-order flow in the Ablowitz-Ladik hierarchy:

$$\dot{u}_n = (1 + u_n^2)(u_{n+1} - u_{n-1}), \quad n \in \mathbb{Z},$$

where  $u_n = u_n(t)$  is real.

In the continuum limit, long waves of small amplitudes can be modeled by

$$u_n(t) = \varepsilon \mathfrak{u}(\varepsilon(n+2t), \frac{1}{3}\varepsilon^3 t),$$

satisfy the continuous the mKdV equation

$$\mathfrak{u}_{\tau}=6\mathfrak{u}^2\mathfrak{u}_{\xi}+\mathfrak{u}_{\xi\xi\xi},$$

where  $\mathfrak{u} = \mathfrak{u}(\xi, \tau)$  with  $\xi := \varepsilon(n+2t)$  and  $\tau := \frac{1}{3}\varepsilon^3 t$ , and  $\varepsilon$  is small parameter.

# Lax equations

DMKDV is a compatibility condition of the linear Lax system

$$\varphi_{n+1} = \frac{1}{\sqrt{1 + u_n^2}} \begin{pmatrix} \lambda & u_n \\ -u_n & \lambda^{-1} \end{pmatrix} \varphi_n$$

and

$$\dot{\varphi}_n = \begin{pmatrix} \frac{1}{2} \left( \lambda^2 - \lambda^{-2} \right) & \lambda u_n + \lambda^{-1} u_{n-1} \\ -\lambda u_{n-1} - \lambda^{-1} u_n & -\frac{1}{2} \left( \lambda^2 - \lambda^{-2} \right) \end{pmatrix} \varphi_n.$$

There exists another Lax system representation:

$$\varphi_{n+1} = \begin{pmatrix} \lambda & u_n \\ -u_n & \lambda^{-1} \end{pmatrix} \varphi_n$$

and

$$\dot{\varphi}_{n} = \begin{pmatrix} \frac{1}{2} \left(\lambda^{2} - \lambda^{-2}\right) + u_{n}u_{n-1} & \lambda u_{n} + \lambda^{-1}u_{n-1} \\ -\lambda u_{n-1} - \lambda^{-1}u_{n} & -\frac{1}{2} \left(\lambda^{2} - \lambda^{-2}\right) + u_{n}u_{n-1} \end{pmatrix} \varphi_{n}.$$

## Nonlinearization method

If  $\varphi_n = (p_n, q_n)^T$  is a solution of Lax system for  $\lambda = \lambda_1$ , then  $\varphi_n = (-q_n, p_n)^T$  is a solution for  $\lambda = \lambda_1^{-1}$ .

Assume the relation between solutions of the DMKV and Lax systems:

$$u_n = \lambda_1 p_n^2 + \lambda_1^{-1} q_n^2, \qquad n \in \mathbb{Z}.$$

Then,  $\varphi_n = (p_n, q_n)^T$  satisfies the nonlinear symplectic map

$$\begin{pmatrix} p_{n+1} \\ q_{n+1} \end{pmatrix} = \frac{1}{\sqrt{1 + (\lambda_1 p_n^2 + \lambda_1^{-1} q_n^2)^2}} \begin{pmatrix} \lambda_1 p_n + (\lambda_1 p_n^2 + \lambda_1^{-1} q_n^2) q_n \\ \lambda_1^{-1} q_n - (\lambda_1 p_n^2 + \lambda_1^{-1} q_n^2) p_n \end{pmatrix}$$

and the nonlinear Hamiltonian system

$$\frac{dp_n}{dt} = \frac{\partial H}{\partial q_n}, \quad \frac{dq_n}{dt} = -\frac{\partial H}{\partial p_n},$$

with

$$H(p_n,q_n)=\frac{1}{2}(\lambda_1^2-\lambda_1^{-2})p_nq_n+\frac{1}{2}(\lambda_1p_n^2+\lambda_1^{-1}q_n^2)(\lambda_1^{-1}p_n^2+\lambda_1q_n^2).$$

## Nonlinearization method

If  $\varphi_n = (p_n, q_n)^T$  is a solution of Lax system for  $\lambda = \lambda_1$ , then  $\varphi_n = (-q_n, p_n)^T$  is a solution for  $\lambda = \lambda_1^{-1}$ .

Assume the relation between solutions of the DMKV and Lax systems:

$$u_n = \lambda_1 p_n^2 + \lambda_1^{-1} q_n^2, \qquad n \in \mathbb{Z}.$$

Then,  $\varphi_n = (p_n, q_n)^T$  satisfies the nonlinear symplectic map

$$\begin{pmatrix} p_{n+1} \\ q_{n+1} \end{pmatrix} = \frac{1}{\sqrt{1 + (\lambda_1 p_n^2 + \lambda_1^{-1} q_n^2)^2}} \begin{pmatrix} \lambda_1 p_n + (\lambda_1 p_n^2 + \lambda_1^{-1} q_n^2) q_n \\ \lambda_1^{-1} q_n - (\lambda_1 p_n^2 + \lambda_1^{-1} q_n^2) p_n \end{pmatrix}$$

and the nonlinear Hamiltonian system

$$\frac{dp_n}{dt} = \frac{\partial H}{\partial q_n}, \quad \frac{dq_n}{dt} = -\frac{\partial H}{\partial p_n},$$

with

$$H(p_n,q_n) = \frac{1}{2}(\lambda_1^2 - \lambda_1^{-2})p_nq_n + \frac{1}{2}(\lambda_1p_n^2 + \lambda_1^{-1}q_n^2)(\lambda_1^{-1}p_n^2 + \lambda_1q_n^2).$$

## Restrictions on the class of admissible solutions

In addition to

$$u_n = \lambda_1 p_n^2 + \lambda_1^{-1} q_n^2, \qquad n \in \mathbb{Z},$$

one can easily prove the relation

$$u_{n-1} = \lambda_1^{-1} p_n^2 + \lambda_1 q_n^2, \qquad n \in \mathbb{Z}.$$

Since  $F_1 = 2H(p_n, q_n) = (\lambda_1^2 - \lambda_1^{-2})p_nq_n + (\lambda_1p_n^2 + \lambda_1^{-1}q_n^2)(\lambda_1^{-1}p_n^2 + \lambda_1q_n^2)$  is independent of  $n \in \mathbb{Z}$  and  $t \in \mathbb{R}$ , we obtain

$$p_n^2 = \frac{\lambda_1 u_n - \lambda_1^{-1} u_{n-1}}{\lambda_1^2 - \lambda_1^{-2}}, \quad q_n^2 = \frac{\lambda_1 u_{n-1} - \lambda_1^{-1} u_n}{\lambda_1^2 - \lambda_1^{-2}}, \quad p_n q_n = \frac{F_1 - u_n u_{n-1}}{\lambda_1^2 - \lambda_1^{-2}}.$$

One can show that  $u_n$  satisfies the stationary discrete equation

$$(1 + u_n^2)(u_{n+1} + u_{n-1}) = \omega u_n, \quad n \in \mathbb{Z},$$

where  $\omega := \lambda_1^2 + \lambda_1^{-2} + 2F_1$ . Connection to traveling solutions of DMKDV?!

# Integrability of the nonlinear Hamiltonian system

The Hamiltonian system for  $(p_n, q_n)$  is obtained from the Lax equations

$$W(p_{n+1},q_{n+1},\lambda)U(u_n,\lambda_1)-U(u_n,\lambda_1)W(p_n,q_n,\lambda)=0$$

and

$$\frac{d}{dt}W(p_n,q_n,\lambda) = V(u_n,\lambda_1)W(p_n,q_n,\lambda) - W(p_n,q_n,\lambda)V(u_n,\lambda_1),$$

where

$$W(p_n, q_n, \lambda) = \begin{pmatrix} \frac{1}{2} - \frac{\lambda_1^2 p_n q_n}{\lambda^2 - \lambda_1^2} + \frac{\lambda_1^{-2} p_n q_n}{\lambda^2 - \lambda_1^{-2}} & \lambda \left( \frac{\lambda_1 p_n^2}{\lambda^2 - \lambda_1^2} + \frac{\lambda_1^{-1} q_n^2}{\lambda^2 - \lambda_1^{-2}} \right) \\ -\lambda \left( \frac{\lambda_1 q_n^2}{\lambda^2 - \lambda_1^2} + \frac{\lambda_1^{-1} p_n^2}{\lambda^2 - \lambda_1^{-2}} \right) & -\frac{1}{2} + \frac{\lambda_1^2 p_n q_n}{\lambda^2 - \lambda_1^2} - \frac{\lambda_1^{-2} p_n q_n}{\lambda^2 - \lambda_1^{-2}} \end{pmatrix}$$

satisfies

$$\det W(p_n,q_n,\lambda) = -\frac{1}{4} + \frac{\lambda^2 F_1}{(\lambda^2 - \lambda_1^2)(\lambda^2 - \lambda_1^{-2})}.$$

# Algebraic polynomial for the traveling periodic waves

Due to the squared eigenfunction constraints, we also have

$$W(p_n,q_n,\lambda) = \left( \begin{array}{ccc} \frac{1}{2} - \frac{\lambda^2(F_1 - u_n u_{n-1})}{(\lambda^2 - \lambda_1^2)(\lambda^2 - \lambda_1^{-2})} & \frac{\lambda(\lambda^2 u_n - u_{n-1})}{(\lambda^2 - \lambda_1^2)(\lambda^2 - \lambda_1^{-2})} \\ - \frac{\lambda(\lambda^2 u_{n-1} - u_n)}{(\lambda^2 - \lambda_1^2)(\lambda^2 - \lambda_1^{-2})} & -\frac{1}{2} + \frac{\lambda^2(F_1 - u_n u_{n-1})}{(\lambda^2 - \lambda_1^2)(\lambda^2 - \lambda_1^{-2})} \end{array} \right),$$

which gives

$$\det W(p_n, q_n, \lambda) = -\frac{P(\lambda)}{4(\lambda^2 - \lambda_1^2)^2(\lambda^2 - \lambda_1^{-2})^2},$$

where

$$P(\lambda) := \lambda^8 - 2\omega\lambda^6 + (2 + \omega^2 - 4F_1^2)\lambda^4 - 2\omega\lambda^2 + 1.$$

Thus,  $\lambda_1$  is selected from two quadruplets of  $P(\lambda)$ :

$$P(\lambda) = (\lambda^2 - \lambda_1^2)(\lambda^2 - \lambda_1^{-2})(\lambda^2 - \lambda_2^2)(\lambda^2 - \lambda_2^{-2}).$$



# Dnoidal periodic waves

These are solutions of the form

$$u_n(t) = \frac{\operatorname{sn}(\alpha; k)}{\operatorname{cn}(\alpha; k)} \operatorname{dn}(\alpha n + ct; k), \quad c = \frac{2\operatorname{sn}(\alpha; k)}{\operatorname{cn}(\alpha; k)}, \quad \omega = \frac{2\operatorname{dn}(\alpha; k)}{\operatorname{cn}^2(\alpha; k)},$$

where  $\alpha \in (0, K(k))$  and  $k \in (0, 1)$  are arbitrary parameters.

We can find explicitly

$$F_1 = \pm \sqrt{1 - k^2} \frac{\operatorname{sn}^2(\alpha; k)}{\operatorname{cn}^2(\alpha; k)},$$

and

$$\begin{split} \lambda_1 &= \frac{1}{\mathrm{cn}(\alpha;k)} \sqrt{(1-\mathrm{sn}(\alpha;k)) \left( \mathrm{dn}(\alpha;k) - \sqrt{1-k^2} \mathrm{sn}(\alpha;k) \right)}, \\ \lambda_2 &= \frac{1}{\mathrm{cn}(\alpha;k)} \sqrt{(1-\mathrm{sn}(\alpha;k)) \left( \mathrm{dn}(\alpha;k) + \sqrt{1-k^2} \mathrm{sn}(\alpha;k) \right)}, \end{split}$$

satisfying  $0 < \lambda_1 < \lambda_2 < 1 < \lambda_2^{-1} < \lambda_1^{-1}$ .

# Lax spectrum for dnoidal waves





The spectrum is found numerically for  $\alpha = K(k)/M$  with  $u_{n+2M} = u_n$ :

$$\begin{cases} \sqrt{1+u_n^2}p_{n+1}+\sqrt{1+u_{n-1}^2}p_{n-1}-(u_n-u_{n-1})q_n=zp_n,\\ (u_n-u_{n-1})p_n+\sqrt{1+u_n^2}q_{n+1}+\sqrt{1+u_{n-1}^2}q_{n-1}=zq_n, \end{cases}$$

where  $z := \lambda + \lambda^{-1}$  and  $(p_n, q_n)$  is the eigenvector satisfying

$$p_n=\hat{p}_n(\theta)e^{i\theta n},\quad q_n=\hat{q}_n(\theta)e^{i\theta n},\quad p_{n+2M}=p_n,\quad q_{n+2M}=q_n,$$

# Cnoidal periodic waves

These are solutions of the form

$$u_n(t) = \frac{k \operatorname{sn}(\alpha; k)}{\operatorname{dn}(\alpha; k)} \operatorname{cn}(\alpha n + ct; k), \quad c = \frac{2 \operatorname{sn}(\alpha; k)}{\operatorname{dn}(\alpha; k)}, \quad \omega = \frac{2 \operatorname{cn}(\alpha; k)}{\operatorname{dn}^2(\alpha; k)},$$

where  $\alpha \in (0, K(k))$  and  $k \in (0, 1)$  are arbitrary parameters.

We can find explicitly

$$F_1 = \pm ik\sqrt{1 - k^2} \frac{\operatorname{sn}^2(\alpha; k)}{\operatorname{dn}^2(\alpha; k)}$$

and

$$\lambda_1 = \frac{\sqrt{(1 - k \operatorname{sn}(\alpha; k))(\operatorname{cn}(\alpha; k) + i\sqrt{1 - k^2}\operatorname{sn}(\alpha; k))}}{\operatorname{dn}(\alpha; k)},$$

satisfying  $|\lambda_1| < 1 < |\lambda_1|^{-1}$ .



# Lax spectrum for cnoidal waves





# Continuous modified KdV equation

Let  $u(x, t) = \phi(x - ct)$  be a traveling periodic wave of the mKdV equation

$$\mathfrak{u}_t + 6\mathfrak{u}^2\mathfrak{u}_x + \mathfrak{u}_{xxx} = 0.$$

Let v be a perturbation of u satisfying the linearized mKdV equation

$$\mathfrak{v}_t + 6(\mathfrak{u}^2\mathfrak{v})_x + \mathfrak{v}_{xxx} = 0,$$

which is obtained from mKdV after substituting  $\mathfrak{u}+\mathfrak{v}$  to and neglecting  $\mathfrak{v}^2,\,\mathfrak{v}^3.$ 

Separating variables  $v(x, t) = v(x - ct)e^{\gamma t}$ , we obtain the spectral problem

$$\gamma \mathfrak{w} = \partial_{x} \left[ -\partial_{x}^{2} + c - 6\mathfrak{u}^{2} \right] \mathfrak{w}.$$

If  $\mathfrak{u}(x+L) = \mathfrak{u}(x)$  is periodic, then by Floquet theory,  $\mathfrak{w}(x+L) = \mathfrak{w}(x)e^{i\theta L}$ , where  $\theta \in [-\pi/L, \pi/L]$ .

If there exists  $\gamma$  with  $\operatorname{Re}(\gamma) > 0$  for some  $\theta \in [-\pi/L, \pi/L]$ , then the standing periodic wave is spectrally unstable. It is modulationally unstable if the band with  $\operatorname{Re}(\gamma) > 0$  intersects  $\gamma = 0$  as  $\theta \to 0$ .

# Relation to squared eigenfunctions

Recall the linear Lax system:

$$\varphi_{\mathsf{X}} = \left( \begin{array}{cc} \lambda & \mathfrak{u} \\ -\mathfrak{u} & -\lambda \end{array} \right) \varphi$$

and

$$\varphi_t = \begin{pmatrix} 4\lambda^3 + 2\lambda \mathfrak{u}^2 & 4\lambda^2 \mathfrak{u} + 2\lambda \mathfrak{u}_x + 2\mathfrak{u}^3 + \mathfrak{u}_{xx} \\ -4\lambda^2 \mathfrak{u} + 2\lambda \mathfrak{u}_x - 2\mathfrak{u}^3 - \mathfrak{u}_{xx} & -4\lambda^3 - 2\lambda \mathfrak{u}^2 \end{pmatrix} \varphi.$$

If  $\varphi=(p,q)^T$  is a solution of the Lax system, then  $\mathfrak{v}=p^2-q^2$  is a solution of the linearized mKdV equation. By the same Floquet theory, the solution of the Lax system has the form

$$\varphi(\mathbf{x},t)=\psi(\mathbf{x}-\mathbf{c}t)\mathbf{e}^{\Omega t},$$

where  $\psi(x+L)=\psi(x)e^{\frac{1}{2}i\theta L}$ . The squared eigenfunctions  $\psi$  determines the eigenfunction  $\mathfrak w$  of the spectral stability problem with  $\gamma=2\Omega$ .

# Relation to squared eigenfunctions

#### **Theorem**

Let  $\lambda$  belongs to the Lax spectrum of

$$\varphi_{\mathsf{X}} = \left( \begin{array}{cc} \lambda & \mathfrak{u} \\ -\mathfrak{u} & -\lambda \end{array} \right) \varphi.$$

Then,  $\Omega = \pm \sqrt{P(\lambda)}$ , where  $P(\lambda)$  is the characteristic polynomial for the traveling periodic waves:

$$P(\lambda) = 16\lambda^6 - 8c\lambda^4 + (4d + c^2)\lambda^2 - b^2.$$

Consequently,  $\Lambda = 2\Omega = \pm 2\sqrt{P(\lambda)}$ .

The proof follows from separation of variables for  $\varphi_t = V(\lambda, \mathfrak{u})\varphi$ :

$$\left|\begin{array}{cc} 4\lambda^3+2\lambda\phi^2-c\lambda-\Omega & 4\lambda^2\phi+2\lambda\phi'+2\phi^3+\phi''-c\phi \\ -4\lambda^2\phi+2\lambda\phi'-2\phi^3-\phi''+c\phi & -4\lambda^3-2\lambda\phi^2+c\lambda-\Omega \end{array}\right|=0.$$

# Stability of the dnoidal periodic waves

$$u(x, t) = dn(x - ct; k), \quad c = 2 - k^2, \quad L = 2K(k).$$



Figure: Lax spectrum (left) and stability spectrum (right) for k=0.9 obtained with  $\gamma=2\Omega=\pm2\sqrt{P(\lambda)}$ .

# Instability of the cnoidal periodic waves

$$u(x, t) = k cn(x - ct; k), \quad c = 2k^2 - 1, \quad L = 4K(k).$$



Figure: Lax spectrum (left) and stability spectrum (right) for the cnoidal wave with k=0.8 obtained with  $\gamma=2\Omega=\pm2\sqrt{P(\lambda)}$ .

# Instability of the cnoidal periodic waves

$$u(x, t) = k \operatorname{cn}(x - ct; k), \quad c = 2k^2 - 1, \quad L = 4K(k).$$



Figure: Lax spectrum (left) and stability spectrum (right) for the cnoidal wave with k=0.92 obtained with  $\gamma=2\Omega=\pm2\sqrt{P(\lambda)}$ .



# Discrete modified KdV equation

Let  $u_n(t) = \phi(\alpha n + ct)$  be a traveling periodic wave of the dsicrete mKdV equation

$$\dot{u}_n = (1 + u_n^2)(u_{n+1} - u_{n-1}), \quad n \in \mathbb{Z}.$$

Let  $\{v_n(t)\}_{n\in\mathbb{Z}}$  be a perturbation of  $\{v_n(t)\}_{n\in\mathbb{Z}}$  satisfying the linearized mKdV equation

$$\dot{v}_n = (1+u_n^2)(v_{n+1}-v_{n-1}) + 2u_n(u_{n+1}-u_{n-1})v_n, \quad n \in \mathbb{Z}.$$

We still have the squared eigenfunction relation:

$$v_n = \lambda p_n^2 - \lambda^{-1} q_n^2 + 2u_n p_n q_n,$$

where  $\varphi_n = (p_n, q_n)^T$  is a solution of the linear Lax system.

# Relation to squared eigenfunctions

Thus,  $\{\varphi_n(t)\}_{n\in\mathbb{Z}}$  is a solution of the linear Lax system:

$$\varphi_{n+1} = \frac{1}{\sqrt{1 + u_n^2}} \begin{pmatrix} \lambda & u_n \\ -u_n & \lambda^{-1} \end{pmatrix} \varphi_n$$

and

$$\dot{\varphi}_{n} = \begin{pmatrix} \frac{1}{2} \left( \lambda^{2} - \lambda^{-2} \right) & \lambda u_{n} + \lambda^{-1} u_{n-1} \\ -\lambda u_{n-1} - \lambda^{-1} u_{n} & -\frac{1}{2} \left( \lambda^{2} - \lambda^{-2} \right) \end{pmatrix} \varphi_{n},$$

with the obvious decomposition since  $u_n(t) = \phi(\alpha n + ct)$ :

$$\varphi_n(t) = \psi(\alpha n + ct)e^{\Omega t}.$$

However, the explicit relation between  $\Omega$  and  $P(\lambda)$  is missing!

$$P(\lambda) := \lambda^8 - 2\omega\lambda^6 + (2 + \omega^2 - 4F_1^2)\lambda^4 - 2\omega\lambda^2 + 1.$$

# Stability of the dnoidal periodic waves

$$u_n(t) = \frac{\operatorname{sn}(\alpha; k)}{\operatorname{cn}(\alpha; k)}\operatorname{dn}(\alpha n + ct; k), \quad c = \frac{2\operatorname{sn}(\alpha; k)}{\operatorname{cn}(\alpha; k)},$$

where  $\alpha \in (0, K(k))$  and  $k \in (0, 1)$  are arbitrary parameters.



Figure: Lax spectrum (left) and stability spectrum (right) for k = 0.7 obtained numerically.

#### 1-fold Darboux transformation

We can use eigenvalues found in the nonlinearization method to define a new solution to the discrete mKdV equation:

$$\hat{u}_n = -\frac{p_n^2 + \lambda_1^2 q_n^2}{\lambda_1^2 p_n^2 + q_n^2} u_n + \frac{(1 - \lambda_1^4) p_n q_n}{\lambda_1 (\lambda_1^2 p_n^2 + q_n^2)}$$

where  $\varphi_n = (p_n, q_n)^T$  is a solution of Lax equations with  $\lambda = \lambda_1$ .



## Trivial new solution

$$\varphi_{n+1} = \frac{1}{\sqrt{1 + u_n^2}} \begin{pmatrix} \lambda & u_n \\ -u_n & \lambda^{-1} \end{pmatrix} \varphi_n$$

and

$$\dot{\varphi}_n = \begin{pmatrix} \frac{1}{2} \left( \lambda^2 - \lambda^{-2} \right) & \lambda u_n + \lambda^{-1} u_{n-1} \\ -\lambda u_{n-1} - \lambda^{-1} u_n & -\frac{1}{2} \left( \lambda^2 - \lambda^{-2} \right) \end{pmatrix} \varphi_n.$$

If  $\varphi_n = (p_n, q_n)^T$  is obtained from  $u_n = \lambda_1 p_n^2 + \lambda_1^{-1} q_n^2$  and  $\lambda_1$  is a root of  $P(\lambda)$ , then new solution  $\hat{u}_n$  is a half-period translation of the dnoidal wave:

$$\begin{split} \hat{u}_n &= -F_1 u_n^{-1} \\ &= -\frac{\sigma_1 \mathrm{sn}(\alpha; k)}{\mathrm{cn}(\alpha; k)} \frac{\sqrt{1 - k^2}}{\mathrm{dn}(\xi; k)} \\ &= -\frac{\sigma_1 \mathrm{sn}(\alpha; k)}{\mathrm{cn}(\alpha; k)} \mathrm{dn}(\xi + K(k); k) \\ &= -\sigma_1 u_n (t + c^{-1} K(k)). \end{split}$$

## Nontrivial new solution

The second, linearly independent solution can be found in the form:

$$\hat{p}_n = p_n \theta_n - \frac{q_n}{p_n^2 + q_n^2}, \quad \hat{q}_n = q_n \theta_n + \frac{p_n}{p_n^2 + q_n^2},$$

where

$$\theta_{n+1} - \theta_n = \frac{(\lambda_1 + \lambda_1^{-1})^2 (u_n^2 - F_1)}{(u_n + u_{n-1})(u_n + u_{n+1})(1 + u_n^2)}$$

and

$$\dot{\theta}_n = \frac{(\lambda_1 + \lambda_1^{-1})^2 (u_n^2 + u_{n-1}^2 - 2F_1)}{(u_n + u_{n-1})^2}.$$

If  $u_n(t) = \phi(\alpha n + ct)$  is the traveling wave with periodic  $\phi$ , then  $\theta_n(t) = an + bt + \chi(\alpha n + ct)$  with periodic  $\chi$  and uniquely computed parameters a and b.

# Algebraic soliton propagating on the dnoidal wave

The new solution is now nontrivial:

$$\hat{u}_{n} = -\frac{\hat{p}_{n}^{2} + \lambda_{1}^{2}\hat{q}_{n}^{2}}{\lambda_{1}^{2}\hat{p}_{n}^{2} + \hat{q}_{n}^{2}}u_{n} + \frac{(1 - \lambda_{1}^{4})\hat{p}_{n}\hat{q}_{n}}{\lambda_{1}(\lambda_{1}^{2}\hat{p}_{n}^{2} + \hat{q}_{n}^{2})}$$



Figure: The solution surface (left: sideview, right: topview) for  $\lambda_1$ .

## Algebraic soliton propagating on the dnoidal wave

The new solution is now nontrivial:

$$\hat{u}_{n} = -\frac{\hat{p}_{n}^{2} + \lambda_{1}^{2}\hat{q}_{n}^{2}}{\lambda_{1}^{2}\hat{p}_{n}^{2} + \hat{q}_{n}^{2}}u_{n} + \frac{(1 - \lambda_{1}^{4})\hat{p}_{n}\hat{q}_{n}}{\lambda_{1}(\lambda_{1}^{2}\hat{p}_{n}^{2} + \hat{q}_{n}^{2})}$$





Figure: The solution surface (left: sideview, right: topview) for  $\lambda_2$ .

## 2-fold Darboux transformation

The 2-fold transformation uses two eigenvalues  $\lambda_1$  and  $\lambda_2$ :

$$\hat{u}_n = \frac{\Upsilon_n}{\Delta_n} u_n - \frac{\Sigma_n}{\lambda_1 \lambda_2 \Delta_n},$$

where

$$\begin{split} \Upsilon_n &= \lambda_2^2 (q_{2n}^2 + \lambda_2^2 p_{2n}^2) (p_{1n}^2 + \lambda_1^6 q_{1n}^2) + \lambda_1^2 (q_{1n}^2 + \lambda_1^2 p_{1n}^2) (p_{2n}^2 + \lambda_2^6 q_{2n}^2) \\ &- 2\lambda_1^2 \lambda_2^2 (p_{1n}^2 + \lambda_1^2 q_{1n}^2) (p_{2n}^2 + \lambda_2^2 q_{2n}^2) - 2p_{1n}q_{1n}p_{2n}q_{2n}\lambda_1\lambda_2(\lambda_1^4 - 1)(\lambda_2^4 - 1), \\ \Sigma_n &= (\lambda_1^2 - \lambda_2^2)(\lambda_1^2 \lambda_2^2 - 1)[\lambda_1(\lambda_2^4 - 1)p_{2n}q_{2n}(q_{1n}^2 + \lambda_1^2 p_{1n}^2) \\ &- \lambda_2(\lambda_1^4 - 1)p_{1n}q_{1n}(q_{2n}^2 + \lambda_2^2 p_{2n}^2)], \\ \Delta_n &= (\lambda_1^2 \lambda_2^2 - 1)^2(\lambda_1^2 p_{1n}^2 q_{2n}^2 + \lambda_2^2 p_{2n}^2 q_{1n}^2) + (\lambda_1^2 - \lambda_2^2)^2(\lambda_1^2 \lambda_2^2 p_{1n}^2 p_{2n}^2 + q_{1n}^2 q_{2n}^2) \\ &- 2p_{1n}q_{1n}p_{2n}q_{2n}\lambda_1\lambda_2(\lambda_1^4 - 1)(\lambda_2^4 - 1). \end{split}$$

# Two algebraic solitons on the dnoidal wave



Figure: The solution surface (left: sideview, right: topview) for eigenvalues  $\lambda_1$  and  $\lambda_2$ .

#### Similar new solutions for the cnoidal wave

For the cnoidal wave, the new solution after 2-fold transformation is real valued if  $\lambda_2 = \bar{\lambda}_1$ . However,  $p_n^2 + q_n^2$  is not sign-definite and the representation

$$\hat{p}_n = p_n \theta_n - rac{q_n}{p_n^2 + q_n^2}, \quad \hat{q}_n = q_n \theta_n + rac{p_n}{p_n^2 + q_n^2}$$

cannot be used.



# Another representation

The second, linearly independent solution can be found in the form:

$$\hat{p}_n = p_n \theta_n - \frac{1}{2q_n}, \quad \hat{q}_n = q_n \theta_n + \frac{1}{2p_n},$$

where

$$\theta_{n+1} - \theta_n = \frac{(\lambda_1^2 - \lambda_1^{-2})^2 u_n^2}{2(1 + u_n^2)(F_1 - u_n u_{n-1})(F_1 - u_{n+1} u_n)}$$

and

$$\dot{\theta}_n = \frac{(\lambda_1^2 - \lambda_1^{-2})^2 u_n u_{n-1}}{(F_1 - u_n u_{n-1})^2},$$

If  $u_n(t) = \phi(\alpha n + ct)$  is the traveling wave with periodic  $\phi$ , then  $\theta_n(t) = an + bt + \chi(\alpha n + ct)$  with periodic  $\chi$  and uniquely computed parameters a and b.

# Rogue wave on the cnoidal wave



Figure: The solution surface for eigenvalues  $\lambda_1$  and  $\lambda_2 = \bar{\lambda}_1$ .

# Summary

- Traveling periodic waves are recovered from the nonlinearization method based on the constraint  $u_n = \lambda_1 p_n^2 + \lambda_1^{-1} q_n^2$  with  $\lambda_1$  being a root of  $P(\lambda)$ .
- Dnoidal waves are spectrally (modulationally) stable, whereas cnoidal waves are spectrally (modulationally) unstable.
- Only two distinct algebraic solitons exist on the background of dnoidal waves. A rogue wave exists on the background of cnoidal waves.
- Two open questions include
  - orelation between  $(1 + u_n^2)(u_{n+1} + u_{n-1}) = \omega u_n$  and  $\dot{u}_n = (1 + u_n^2)(u_{n+1} u_{n-1})$
  - **2** connection between  $P(\lambda)$  and the stability spectrum  $\Omega$ .

#### Many thanks for your attention!

