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The rogue wave of the cubic NLS equation

The focusing nonlinear Schrédinger (NLS) equation

A
e+ e+ [Py =0

vix 1) = [1 T 1442+ 4R
It was discovered by H. Peregrine (1983) and was labeled as the rogue wave.

admits the exact solution
4(1 4 2it) } it
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Traveling periodic waves

The focusing nonlinear Schrédinger (NLS) equation

A
e+ e+ [Py =0

admits the periodic traveling and standing wave solutions, e.g. the dnoidal
and cnoidal waves:

Yan(X, 1) = dn(x; k)& K/2t - (x, £) = ken(x; k)e/K 1/t
where k € (0, 1) is elliptic modulus.
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1. Periodic waves and rogue waves

Rogue wave on background of periodic waves

J. Chen, D. Pelinovsky, Proceedings A 474 (2018) 20170814
J. Chen, D. Pelinovsky, R. White, Physica D 405 (2020) 132378

Amplitude

Space(x) 10 Time (t)

D.Pelinovsky (McMaster University) Periodic waves in discrete MKDV equation 4/36



1. Periodic waves and rogue waves

Other examples of integrable Hamiltonian systems

@ Modified Korteweg—de Vries equation
us + 6U2Ux + Upx =0

Dnoidal periodic waves are modulationally stable.
Cnoidal periodic waves are modulationally unstable.
J. Chen & D. Pelinovsky, Nonlinearity 31 (2018) 1955—-1980

@ Sine—Gordon equation
Ut — Uxx +sin(u) =0

Same conclusion.
D. Pelinovsky & R. White, Proceedings A 476 (2020) 20200490

@ Derivative NLS equation
it + Yxx + /(|1/)|21/1)x =0.

There exist modulationally stable periodic waves.
J. Chen, D. Pelinovsky, & J. Upsal, J. Nonlinear Science 31 (2021) 58
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1. Periodic waves and rogue waves

Rogue wave for the modified KdV equation

J. Chen & D. Pelinovsky, Journal of Nonlinear Science 29 (2019) 2797-2843
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2. Nonlinearization method with a single eigenvalue

Discrete modified KdV equation

It is considered to be the third-order flow in the Ablowitz—Ladik hierarchy:
Un= (1 + U3)(Uns1 — Un_1), neZ,
where u, = uy(t) is real.

In the continuum limit, long waves of small amplitudes can be modeled by
1
un(t) = eu(e(n+ 2t), gest),

satisfy the continuous the mKdV equation

U, = 6u2ug + Ugee,

where u = u(¢, 7) with £ := £(n+ 2t) and 7 := 13t, and ¢ is small parameter.
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2. Nonlinearization method with a single eigenvalue

Lax equations

DMKDV is a compatibility condition of the linear Lax system

B 1 A Un
Pnt1 = m —up, AT ©n
and

o= T2 =272 Aup+ A" up o
" “AUp—1 =AUy, =3 (XB=A73) )"

There exists another Lax system representation:

B A Un
Pntl = —u, AT “n

and

. T (2 =X"2) + upup_y AUp + A" Up_q
¥n= —AUp—1 — X\ up —3 (A2 = A7) + Unlp_ ¥n
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2. Nonlinearization method with a single eigenvalue

Nonlinearization method

If vn = (Pn, gn)T is a solution of Lax system for A = Ay,
then ¢ = (—qn, Pn)" is a solution for A = A7 .

Assume the relation between solutions of the DMKV and Lax systems:
Up=MpPE+A7'q8, nel.
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2. Nonlinearization method with a single eigenvalue

Nonlinearization method

If vn = (Pn, gn)T is a solution of Lax system for A = Ay,
then ¢ = (—qn, Pn)" is a solution for A = A7 .

Assume the relation between solutions of the DMKV and Lax systems:
Up=MpPE+A7'q8, nel.

Then, ¢, = (pbn, gn)" satisfies the nonlinear symplectic map
( Pt ) _ 1 ( APn + (MPE + A7 192)an )
Gn-+1 \/1 (PR ATTgR)2 \ AT G — (PR + AT aR)pn
and the nonlinear Hamiltonian system
don, OH dgn oH

dt  9gq,’ dt  Opa’
with
1 _ 1 4 2y
H(pn, Gn) = 5 (X = AT%)Paan + 5 (M5 + A7 G) (AT P + M),
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2. Nonlinearization method with a single eigenvalue

Restrictions on the class of admissible solutions

In addition to
Up=Mpa+X'Gh,  nez,

one can easily prove the relation
U1 =\ 'P2+ MG,  nel.

Since Fi = 2H(Pn, Gn) = (A2 = A7 2)PnGn + (MP2 + Ay 1 G2) (A7 '3 + M1g2) is
independent of n € Z and t € R, we obtain

2_)\1Un*>\1_1un—1 2:)\1Un—1*>\1_1un Pnq :F1*Unun—1
" X—_\2 PEE v D VP
One can show that u, satisfies the stationary discrete equation
(1 + t3)(Ups1 + Un_1) = wlp, NEZ,
where w := A2 + A\;2 + 2F;. Connection to traveling solutions of DMKDV?!

D.Pelinovsky (McMaster University) Periodic waves in discrete MKDV equation 10/36



8. Traveling periodic waves of DMKDV

Integrability of the nonlinear Hamiltonian system

The Hamiltonian system for (pp, qn) is obtained from the Lax equations

W(pn+1 s Q41 )‘) U(ufh )‘1) - U(uﬂ, M ) W(Pn, an, >‘) =0

and
d
a W(pfh Qn, )\) = V(Una )‘1 ) W(pfh an, )‘) - W(pfh an, )‘) V(ufh >‘1 )7
where
1 XNpadn  Apgn (PR N
2 NN 2 )2 X — X2 2 )2
W(pna Qn» /\) =
g2 A2 1 )2 A2
Y 19 LM Pn 1y 1PnGn Ay PnGn
R D e v 2 XN 2 )2
satisfies

1 A2 F,
det Wipn. G- ) = =3+ e gy e —a)
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8. Traveling periodic waves of DMKDV

Algebraic polynomial for the traveling periodic waves

Due to the squared eigenfunction constraints, we also have

1 B )\2(,:1 — UnUn71) )‘()‘2u’7 — u"*1)
S RS e N F U T T I b
W(pn, gn, A) = B AN2Up_1 — up) 1 A2(Fy — UnUp—1) ’

(=202 -\3) 2 (2-23) (- )P

which gives
P())
det W(pn, Gn, A) = — J

(pn an ) 4()\2 - )\$)2()\2 _ /\172)2

where

P(N) := 2% — 20 + (2 4+ w? — 4F2)A* — 2w + 1.
Thus, A1 is selected from two quadruplets of P(\):

P(A) = (02 = A0 = AT2)(A% = ) (A% = A3%).
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8. Traveling periodic waves of DMKDV

Dnoidal periodic waves

These are solutions of the form

sn(a; k) 2sn(a; k) _ 2dn(a; k)

unp(t) = dn(an + ct; k),

where a € (0, K(k)) and k € (0, 1) are arbitrary parameters.

We can find explicitly
_ 4 \/7 (o; k)

and

1

Cn(a;k)\/ﬁ —sn(a; k)) (dn(a; k) — /1 — K2sn(a; k))7

Ao = cn(;;k)\/“ — sn(a; k)) <dn(a; K)+ v 1 — k2sn(«; k)),

satisfying 0 < Ay < A2 <1 <Ay < A7
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8. Traveling periodic waves of DMKDV

Lax spectrum for dnoidal waves

The spectrum is found numerically for « = K(k)/M with U, opm = Up:

V1 + U3Pnst + A/ 1+ U,27_1pn—1 — (Un — Un=1)Qn = ZPn,
(Un — Up—1)pn+ V1 + U%Qn+1 + 4/ 1+ U§_1an1 = ZQn,

where z := XA+ A\~" and (px, g») is the eigenvector satisfying
ion

Pn = ,f),,(@)e , Gn= E]n(e)eiena Pn+2m = Pn,  Qn+2m = Qn,
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8. Traveling periodic waves of DMKDV

Cnoidal periodic waves

These are solutions of the form

ksn(a; k)

_2sn(a; k) ~ 2cn(a; k)
dn(a; k) N

= (k) o)’

cn(an + ct; k),

where « € (0, K(k)) and k € (0, 1) are arbitrary parameters.

We can find explicitly

F— +ik T e (a k)

n?(o; k)

and

/(1 = ksn(a; k) (en(as; k) + v — Kesn(a; k)

A= dn(a; k) ’

satisfying |\| <1 < [\]7".
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8. Traveling periodic waves of DMKDV

Lax spectrum for cnoidal waves
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4. Stability of traveling periodic waves

Continuous modified KdV equation

Let u(x, t) = ¢(x — ct) be a traveling periodic wave of the mKdV equation
ur + 6uPty + Uy = 0.
Let v be a perturbation of u satisfying the linearized mKdV equation

Ut + 6(1120))( + UXXX == O,

which is obtained from mKdV after substituting u + v to and neglecting v2, v°.

Separating variables v(x, t) = ro(x — ct)e™!, we obtain the spectral problem
Yo = O [~02 + ¢ — 6P| .

If u(x + L) = u(x) is periodic, then by Floquet theory, ro(x + L) = w(x)e’t,

where 6 € [—7/L,w/L].

If there exists v with Re(v) > 0 for some 0 € [—=/L, w/L], then the standing
periodic wave is spectrally unstable. It is modulationally unstable if the band
with Re(y) > O intersects v =0as ¢ — 0.
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4. Stability of traveling periodic waves

Relation to squared eigenfunctions

Recall the linear Lax system:
(A u
Px = —u =)\ ¥

B 4)3 + 22 4020 + 2Dy + 2uB + 1y
PEZ 1 4020+ 20, — 208 — 1y —4)\3 —2)\2 ®

and

If ¢ = (p,q)" is a solution of the Lax system, then v = p? — g2 is a solution of
the linearized mKdV equation. By the same Floquet theory, the solution of the
Lax system has the form

p(x, 1) = ¥(x — ct)e™,

where ¢ (x + L) = y(x)e2™L. The squared eigenfunctions > determines the
eigenfunction tv of the spectral stability problem with v = 2.
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4. Stability of traveling periodic waves

Relation to squared eigenfunctions

Theorem
Let \ belongs to the Lax spectrum of

([ XA u
Px = —u =\ P-

Then, Q = +£,/P()), where P()) is the characteristic polynomial for the
traveling periodic waves:

P()\) = 16)® — 8cA\* + (4d + ¢?)\ — b2

Consequently, N = 2Q = £2,/P(}).

The proof follows from separation of variables for ¢; = V(A u)e:

AN3 +2)\p% —cA — Q AN2¢ +2X\¢' +2¢4° + ¢ — co

—4)2¢ +2)\¢' — 2¢° — ¢ + co —4)3 —2)\p? +¢cA - Q =0
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4. Stability of traveling periodic waves

Stability of the dnoidal periodic waves

u(x,t) = dn(x — ct;k), c=2—K2, L=2K(K).

2 1
1 0.5
3 0 E 0
E E
1 -0.5
2 -1
-1 -0.5 0 0.5 1 -0.5 0 0.5
Re(\) Re(v)

Figure: Lax spectrum (left) and stability spectrum (right) for k = 0.9 obtained with

v =20 =+2,/P(\).
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4. Stability of traveling periodic waves

Instability of the cnoidal periodic waves

u(x,t) = ken(x — ct; k), c=2k?> -1, L=4K(k).

1
0.6
0.5
0.3
s+ vt
Z <
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—— e
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Re()) Re(v)

Figure: Lax spectrum (left) and stability spectrum (right) for the cnoidal wave with
k = 0.8 obtained with v = 2Q = +2,/P(\).
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4. Stability of traveling periodic waves

Instability of the cnoidal periodic waves

u(x,t) = ken(x — ct; k), c=2k?> -1, L=4K(k).

1 0.2
05 0.1
Z <
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05 -0.1
1 -0.2
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Re()) Re(v)

Figure: Lax spectrum (left) and stability spectrum (right) for the cnoidal wave with
k = 0.92 obtained with v = 2Q = £2,/P()).
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D.Pelinovsky (McMaster University) Periodic waves in discrete MKDV equation



4. Stability of traveling periodic waves

Discrete modified KdV equation

Let un(t) = ¢(an+ ct) be a traveling periodic wave of the dsicrete mKdV
equation
Up = (1+ U3)(Uns1 — Up—1), NEZ.

Let {va(t)}nez be a perturbation of {v,(t)},cz satisfying the linearized mKdV
equation

Vo= (14 t3)(Vos1 — Vo1) + 2Un(Uny1 — Up_1)Vp, nNEZ.

We still have the squared eigenfunction relation:
Vo = APh — A" G5 + 2UnPnGh,

where o, = (Pn, gn)" is a solution of the linear Lax system.
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4. Stability of traveling periodic waves

Relation to squared eigenfunctions

Thus, {¢n(t)}nez is a solution of the linear Lax system:

R A Un
Pnt1 = m “u, -1 ©n
and
= % ()\2 - )‘_2) Aup + A1 Un_1
$n = —NUp_1 — X" 1up _% (/\2 _ )\_2) ¥n,
with the obvious decomposition since u,(f) = ¢(an + ct):
en(t) = (an + ct)e™.

However, the explicit relation between Q and P(\) is missing!

P(\) := A8 — 20)® + (2 + w? — 4F2)\* — 2w\Z + 1.
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4. Stability of traveling periodic waves

Stability of the dnoidal periodic waves

up(t) = EEEZ gdn(an+ ct, k), c= chnn((;kk)),

where o € (0, K(k)) and k € (0, 1) are arbitrary parameters.
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Figure: Lax spectrum (left) and stability spectrum (right) for k = 0.7 obtained
numerically.
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5. Algebraic solitons and rogue waves on the periodic wave background

1-fold Darboux transformation

We can use eigenvalues found in the nonlinearization method to define a new
solution to the discrete mKdV equation:

W PR X (1 =2)Pnan
n — n
A2p2 + g2 M(A2P2 + g2)

where ¢, = (pPn, gn)7 is a solution of Lax equations with A\ = ).
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5. Algebraic solitons and rogue waves on the periodic wave background

Trivial new solution

“ v )
Qpn+1 m _Un )\—1 Son

(=X A+ AU
on= —AUp—1 =21, 7% ()\2 _ );2) n-

and

If on = (Pn, qn)T is obtained from u, = A\ P2 + )q‘q,% and \¢ is a root of P()\),
then new solution i, is a half-period translation of the dnoidal wave:

U, =—F; U,.T1
oysn(a; k) V1 — k2
cn(a; k) dn(&; k)
orsn(a; K)
- cn(a; k)
= —oqUn(t + ¢ TK(K)).

dn(§ + K(k); k)
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5. Algebraic solitons and rogue waves on the periodic wave background

Nontrivial new solution

The second, linearly independent solution can be found in the form:

N an Pn
= 9 - >, +

Pn = Pnbn 02+ g Qn = Qnbn 2t

where
M+ ATP(E - F)
9n+1 —an = >
(Un + Un—1)(Un + Uns1)(1 + UR)

and

(M +HAT2(WR + uE - 2F)
(Un + Un_1)2 '

n=

If un(t) = ¢(an + ct) is the traveling wave with periodic ¢, then
0n(t) = an+ bt + x(an + ct) with periodic x and uniquely computed
parameters a and b.
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5. Algebraic solitons and rogue waves on the periodic wave background

Algebraic soliton propagating on the dnoidal wave

The new solution is now nontrivial:

o BREXER (1= XDl
A2H2 ~oHn A1 (\2H2 ~2
1pn+Qn 1( 1pn+Qn)

Figure: The solution surface (left: sideview, right: topview) for A1.
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5. Algebraic solitons and rogue waves on the periodic wave background

Algebraic soliton propagating on the dnoidal wave

The new solution is now nontrivial:

o _PBEXNE (1= M)beds
A2H2 ~oHn A1 (\2H2 ~2
1pn+Qn 1( 1pn+qn)

Figure: The solution surface (left: sideview, right: topview) for Xs.
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5. Algebraic solitons and rogue waves on the periodic wave background

2-fold Darboux transformation

The 2-fold transformation uses two eigenvalues \1 and \o:

g Tn, 1n
AT MAA,

where

T = A5(G3n + \aP30) (PTn + A305,) + X5 (aF, + Nip%,) (03, + A5G3,)
— 2MN5(0F, + A570) (5, + A505,) — 2P1nGnP2nGan i1 A2(A] — 1)(A5 — 1),
Tn= (A = A3)(AN2A3 — 1)[M(AE — 1)P2nGen(afn + NiDE,)
— X2(A = 1)pingin(g3, + A5p3,)],
An = (XFN5 — 1)2(NI5 1 G3n + A3P3n05n) + (AT — A3)2(AFA3PTap3, + 9FnGBn)
— 2P1nQ1nP2nGen M A2(AT — 1)(A3 — 1).

D.Pelinovsky (McMaster University) Periodic waves in discrete MKDV equation 31/36



5. Algebraic solitons and rogue waves on the periodic wave background

Two algebraic solitons on the dnoidal wave

T

-100 200 ©

Figure: The solution surface (left: sideview, right: topview) for eigenvalues A1 and .
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5. Algebraic solitons and rogue waves on the periodic wave background

Similar new solutions for the cnoidal wave

For the cnoidal wave, the new solution after 2-fold transformation is real
valued if A = \y. However, p2 + g2 is not sign-definite and the representation

A Gn Pn
Pn=Pnbn— ==, Gn=qnbn+
TP R+ gf TR+
cannot be used.
15 15-
1 1
0.5 05-
0 0 ? [
-05 -05 -
-15 -15
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5. Algebraic solitons and rogue waves on the periodic wave background

Another representation

The second, linearly independent solution can be found in the form:

Pn = Pnb ! Gn = Qnbn + X
Pn = Pnbn 500 n = Qnbtn T
where
(\F =A%)
9n+1 - 9n = >
2(1 + Un)(F1 — UnUn,1)(F1 — Unp41 Un)
and

(A2 = AT%)Puntn-

0‘ =
5 (F1 — Unup—1)?

If up(t) = ¢(an + ct) is the traveling wave with periodic ¢, then
0n(t) = an+ bt + x(an + ct) with periodic x and uniquely computed
parameters a and b.
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5. Algebraic solitons and rogue waves on the periodic wave background

Rogue wave on the cnoidal wave

Figure: The solution surface for eigenvalues A\ and Az = As.
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6. Summary
Summary

@ Traveling periodic waves are recovered from the nonlinearization method
based on the constraint u, = \p2 + A; 'g2 with \; being a root of P()\).

@ Dnoidal waves are spectrally (modulationally) stable, whereas cnoidal
waves are spectrally (modulationally) unstable.

@ Only two distinct algebraic solitons exist on the background of dnoidal
waves. A rogue wave exists on the background of cnoidal waves.

@ Two open questions include

@ relation between (14 u2)(Uni1 + Un_1) = wup and i = (1 + u2)(Uns1 — Un_1)
@ connection between P()) and the stability spectrum Q.

Many thanks for your attention!
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