Persistence and stability of discrete vortices

Dmitry Pelinovsky

Department of Mathematics, McMaster University, Canada

1D:
$$i\dot{u}_n + \epsilon (u_{n+1} - 2u_n + u_{n-1}) + |u_n|^2 u_n = 0, \quad n \in \mathbb{Z}$$

2D:
$$i\dot{u}_{n,m} + \epsilon \Delta_{2d}u_{n,m} + |u_{n,m}|^2 u_{n,m} = 0, \quad (n,m) \in \mathbb{Z}^2$$

Joint work with P. Kevrekidis (University of Massachusetts at Amherst, USA)

Applied Mathematics Seminar, University of Toronto, April 4 2005

Experimental motivations

- ☐ Bose-Einstein condensates in optical lattices
- ☐ Light-induced photonic lattices
- ☐ Coupled optical waveguides

■ Persistence of localized solutions

- ☐ Implicit Function Theorem
- ☐ Lyapunov–Schmidt reductions

■ Stability of localized solutions

- ☐ Splitting of zero eigenvalues
- □ Negative index theory

Experimental pictures

• Discrete solitons

• Discrete vortices

Main Formalism

1D:
$$i\dot{u}_n + \epsilon (u_{n+1} - 2u_n + u_{n-1}) + |u_n|^2 u_n = 0, \quad n \in \mathbb{Z}$$

• Vector space $\Omega = L^2(\mathbb{Z}, \mathbb{C})$ for $\{u_n\}_{n \in \mathbb{Z}}$:

$$(\mathbf{u}, \mathbf{w})_{\Omega} = \sum_{n \in \mathbb{Z}} \bar{u}_n w_n, \qquad \|\mathbf{u}\|_{\Omega}^2 = \sum_{n \in \mathbb{Z}} |u_n|^2 < \infty.$$

• Hamiltonian formulation:

$$i\dot{u}_n = \frac{\partial H}{\partial \bar{u}_n}, \qquad H = \sum_{n \in \mathbb{Z}} \epsilon |u_{n+1} - u_n|^2 - \frac{1}{2} |u_n|^4$$

• Existence problem for time-periodic solutions

$$u_n(t) = \phi_n e^{i(\mu - 2\epsilon)t + i\theta_0}, \quad \mu \in \mathbb{R}, \quad \theta_0 \in \mathbb{R}$$

such that

$$(\mu - |\phi_n|^2)\phi_n = \epsilon (\phi_{n+1} + \phi_{n-1}).$$

• Existence problem for time-periodic solutions

$$u_n(t) = \phi_n e^{i(\mu - 2\epsilon)t + i\theta_0}, \quad \mu \in \mathbb{R}, \quad \theta_0 \in \mathbb{R}$$

such that

$$(\mu - |\phi_n|^2)\phi_n = \epsilon (\phi_{n+1} + \phi_{n-1}).$$

Stability problem for time-periodic solutions

$$u_n(t) = e^{i(1-2\epsilon)t + i\theta_0} \left(\phi_n + (u_n + iw_n)e^{\lambda t} + (\bar{u}_n + i\bar{w}_n)e^{\bar{\lambda}t} \right)$$

such that

$$(1 - 3\phi_n^2) u_n - \epsilon (u_{n+1} + u_{n-1}) = -\lambda w_n,$$

$$(1 - \phi_n^2) w_n - \epsilon (w_{n+1} + w_{n-1}) = \lambda u_n.$$

where $\lambda \in \mathbb{C}$ and $(\mathbf{u}, \mathbf{w}) \in \Omega \times \Omega$

$$(\mu - |\phi_n|^2)\phi_n = \epsilon (\phi_{n+1} + \phi_{n-1})$$

$$(\mu - |\phi_n|^2)\phi_n = \epsilon (\phi_{n+1} + \phi_{n-1})$$

• All localized solutions for $\epsilon \neq 0$ are real-valued: $\phi \in L^2(\mathbb{Z}, \mathbb{R})$

$$\bar{\phi}_n \phi_{n+1} - \phi_n \bar{\phi}_{n+1} = \text{const } n \in \mathbb{Z}$$

$$\frac{\phi_{n+1}}{\overline{\phi}_{n+1}} = \frac{\phi_n}{\overline{\phi}_n} : \qquad 2\arg(\phi_{n+1}) = 2\arg(\phi_n) = \operatorname{mod}(2\pi)$$

$$(\mu - |\phi_n|^2)\phi_n = \epsilon (\phi_{n+1} + \phi_{n-1})$$

• All localized solutions for $\epsilon \neq 0$ are real-valued: $\phi \in L^2(\mathbb{Z}, \mathbb{R})$

$$\bar{\phi}_n \phi_{n+1} - \phi_n \bar{\phi}_{n+1} = \text{const } n \in \mathbb{Z}$$

$$\frac{\phi_{n+1}}{\overline{\phi}_{n+1}} = \frac{\phi_n}{\overline{\phi}_n}: \qquad 2\arg(\phi_{n+1}) = 2\arg(\phi_n) = \operatorname{mod}(2\pi)$$

• There exists a transformation from $\epsilon < 0$ to $\epsilon > 0$

$$\phi_n \mapsto (-1)^n \phi_n, \qquad \epsilon \mapsto -\epsilon$$

$$(\mu - |\phi_n|^2)\phi_n = \epsilon (\phi_{n+1} + \phi_{n-1})$$

• There exists a spectral band for $|\mu| \leq 2\epsilon$:

$$\phi_n = e^{ikn}: \quad \mu = \mu(k) = 2\epsilon \cos k, \qquad k \in \mathbb{R}$$

$$(\mu - |\phi_n|^2)\phi_n = \epsilon (\phi_{n+1} + \phi_{n-1})$$

• There exists a spectral band for $|\mu| \leq 2\epsilon$:

$$\phi_n = e^{ikn}: \quad \mu = \mu(k) = 2\epsilon \cos k, \qquad k \in \mathbb{R}$$

• Localized solutions do not exist for $\mu < -2\epsilon < 0$:

$$-(|\mu| - 2\epsilon) \sum_{n \in \mathbb{Z}} \phi_n^2 - \sum_{n \in \mathbb{Z}} \phi_n^4 = \epsilon \sum_{n \in \mathbb{Z}} (\phi_{n+1} + \phi_n)^2$$

$$(\mu - |\phi_n|^2)\phi_n = \epsilon (\phi_{n+1} + \phi_{n-1})$$

• There exists a spectral band for $|\mu| \leq 2\epsilon$:

$$\phi_n = e^{ikn}: \quad \mu = \mu(k) = 2\epsilon \cos k, \qquad k \in \mathbb{R}$$

• Localized solutions do not exist for $\mu < -2\epsilon < 0$:

$$-(|\mu| - 2\epsilon) \sum_{n \in \mathbb{Z}} \phi_n^2 - \sum_{n \in \mathbb{Z}} \phi_n^4 = \epsilon \sum_{n \in \mathbb{Z}} (\phi_{n+1} + \phi_n)^2$$

• Scaling transformation for localized solutions with $\mu > 2\epsilon > 0$:

$$\phi_n = \sqrt{\mu}\hat{\phi}_n, \qquad \epsilon = \mu\hat{\epsilon}$$

$$(1 - \phi_n^2)\phi_n = \epsilon (\phi_{n+1} + \phi_{n-1})$$

• There exists an analytic function $\phi(\epsilon)$ for $0 < \epsilon < \epsilon_0$:

$$\lim_{\epsilon \to 0} \phi_n = \begin{cases} \pm 1, & n \in S, \\ 0, & n \in \mathbb{Z} \backslash S, \end{cases} \quad \dim(S) < \infty$$

$$\lim_{|n| \to \infty} e^{\kappa |n|} |\phi_n| = \phi_{\infty}, \qquad \kappa > 0, \quad \phi_{\infty} > 0.$$

- MacKay, Aubry (1994): inverse function theorem
- Hennig, Tsironis (1999): bounds on ϵ_0
- Bergamin, Bountis (2000): symbolic dynamics for invertible maps
- Alfimov, Konotop (2004): complete classification of localized modes

Families of discrete solitons

• Fundamental and two-node modes

Families of discrete solitons

• Fundamental and two-node modes

• Three-node modes

Stability problem in one dimension

$$(1 - 3\phi_n^2) u_n - \epsilon (u_{n+1} + u_{n-1}) = -\lambda w_n,$$

$$(1 - \phi_n^2) w_n - \epsilon (w_{n+1} + w_{n-1}) = \lambda u_n.$$

• Matrix-vector form for $(\mathbf{u}, \mathbf{w}) \in L^2(\mathbb{Z}, \mathbb{C}^2)$

$$\mathcal{L}_{+}\mathbf{u} = -\lambda\mathbf{w}, \qquad \mathcal{L}_{-}\mathbf{w} = \lambda\mathbf{u},$$

• Hamiltonian form for $\psi = (\mathbf{u}, \mathbf{w})$:

$$\mathcal{J}\mathcal{H}\psi = \lambda\psi, \qquad \mathcal{J} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \mathcal{H} = \begin{pmatrix} \mathcal{L}_{+} & 0 \\ 0 & \mathcal{L}_{-} \end{pmatrix}.$$

Splitting of zero eigenvalues

Eigenvalues of \mathcal{H} at $\epsilon = 0$:

$$\circ \gamma = -2$$
 of multiplicity N

$$\circ \gamma = 0$$
 of multiplicity N

$$\circ \gamma = +1$$
 of multiplicity ∞

Eigenvalues of \mathcal{JH} at $\epsilon = 0$:

$$\circ \lambda = +i$$
 of multiplicity ∞

$$\circ \lambda = -i$$
 of multiplicity ∞

Splitting of zero eigenvalues

Eigenvalues of \mathcal{JH} at $\epsilon = 0$: Eigenvalues of \mathcal{H} at $\epsilon = 0$:

$$\circ \gamma = -2$$
 of multiplicity N

$$\circ \gamma = 0$$
 of multiplicity N

$$\circ \gamma = +1$$
 of multiplicity ∞ $\circ \lambda = -i$ of multiplicity ∞

•
$$\gamma = 0$$
 of multiplicity N • $\lambda = +i$ of multiplicity ∞

Lemma: Let γ_i be small eigenvalues of \mathcal{H} as $\epsilon \to 0$. There exists N pairs of small eigenvalues λ_i and $-\lambda_i$ of \mathcal{JH} :

$$\lim_{\epsilon \to 0} \gamma_j = 0, \qquad \lim_{\epsilon \to 0} \frac{\lambda_j^2}{\gamma_j} = 2, \qquad 1 \le j \le N.$$

Splitting of zero eigenvalues

Eigenvalues of \mathcal{H} at $\epsilon = 0$: Eigenvalues of \mathcal{JH} at $\epsilon = 0$:

- $\circ \gamma = -2$ of multiplicity N
- $\circ \gamma = 0$ of multiplicity N
- $\circ \gamma = +1$ of multiplicity ∞ $\circ \lambda = -i$ of multiplicity ∞
- $\circ \lambda = +i$ of multiplicity ∞

Lemma: Let γ_j be small eigenvalues of \mathcal{H} as $\epsilon \to 0$. There exists Npairs of small eigenvalues λ_i and $-\lambda_i$ of \mathcal{JH} :

$$\lim_{\epsilon \to 0} \gamma_j = 0, \qquad \lim_{\epsilon \to 0} \frac{\lambda_j^2}{\gamma_j} = 2, \qquad 1 \le j \le N.$$

Corollary:

When $\gamma_i > 0$, there exists one unstable EV $\lambda_i > 0$.

When $\gamma_i < 0$, there exists one pair $\lambda_i \in i\mathbb{R}$ with negative Krein signature:

$$(\boldsymbol{\psi}, \mathcal{H}\boldsymbol{\psi}) = (\mathbf{u}, \mathcal{L}_{+}\mathbf{u}) + (\mathbf{w}, \mathcal{L}_{-}\mathbf{w}) = 2(\mathbf{w}, \mathcal{L}_{-}\mathbf{w}) < 0.$$

Count of small eigenvalues of \mathcal{H}

Lemma: Let n_0 be the number of sign-differences in the vector $\boldsymbol{\phi}$ at $\epsilon = 0$. There exists n_0 negative eigenvalues γ_j and $N - n_0 - 1$ positive eigenvalues γ_j for any $\epsilon \neq 0$.

Count of small eigenvalues of \mathcal{H}

Lemma: Let n_0 be the number of sign-differences in the vector $\boldsymbol{\phi}$ at $\epsilon = 0$. There exists n_0 negative eigenvalues γ_j and $N - n_0 - 1$ positive eigenvalues γ_j for any $\epsilon \neq 0$.

• By discrete Sturm Theorem, $\#_{<0}(\mathcal{L}_{-}) = n_0$, since $\mathcal{L}_{-}\phi = \mathbf{0}$.

• By theory of difference equations, dim $(\mathcal{L}_{-}) = 1$ for any $\epsilon \neq 0$, since $\mathcal{L}_{-}\mathbf{w} = \mathbf{0}$, $\mathbf{w} = c_1 \boldsymbol{\phi} + c_2 \mathbf{w}_2$.

• By our analysis, the number of sign-differences in the vector $\boldsymbol{\phi}$ is continuous at $\epsilon = 0$.

Count of unstable eigenvalues of \mathcal{JH}

$$N_{\text{real}} = N - 1 - n_0, \qquad N_{\text{imag}}^- = n_0, \qquad N_{\text{comp}} = 0$$

Theorem: The only stable N-pulse discrete soliton near $\epsilon = 0$ is the soliton with an alternating sequence of up and down pulses.

- Weinstein (1999): stability of discrete soliton with N=1
- Kapitula, Kevrekidis, Malomed (2001): instabilities of twisted modes and other multi-pulse solitons
- o Morgante, Johansson, Kopidakis, Aubry (2002): numerical analysis of instabilities of multi-pulse solitons with N>1
- Sandstede, Jones, Alexander (1997): analysis of the orbit-flip bifurcation and multi-pulse homoclinic orbits

Numerical analysis of discrete solitons

• Page mode

Numerical analysis of discrete solitons

Page mode

• Twisted mode

• Three-node modes

Remarks on related results

• Negative Index Theorem

$$N_{\text{real}} + 2N_{\text{imag}}^- + 2N_{\text{comp}} = N + n_0 - 1 = n(\mathcal{H}) - 1$$

- O Kapitula, Kevrekidis, Sandstede (2004): Grillakis' Diagonalization
- o Pelinovsky (2005): Sylvester' Inertia Law

Remarks on related results

• Negative Index Theorem

$$N_{\text{real}} + 2N_{\text{imag}}^- + 2N_{\text{comp}} = N + n_0 - 1 = n(\mathcal{H}) - 1$$

- O Kapitula, Kevrekidis, Sandstede (2004): Grillakis' Diagonalization
- Pelinovsky (2005): Sylvester' Inertia Law
- Perturbation Theory

$$\mathcal{M}\mathbf{c} = \gamma\mathbf{c}, \qquad \mathbf{c} \in \mathbb{R}^N, \qquad \mathcal{M} = \mathcal{H} \bigg|_{\ker(H^{(0)})}$$

where

$$\mathcal{M} = \begin{pmatrix} a_1 & -a_1 & 0 & \dots & 0 \\ -a_1 & a_1 + a_2 & -a_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 0 & 0 & 0 & \dots & a_{N-1} \end{pmatrix}$$

and $a_i = \pm 1$ depending on the sign-difference in ϕ .

$$(1 - |\phi_{n,m}|^2)\phi_{n,m} = \epsilon \left(\phi_{n+1,m} + \phi_{n-1,m} + \phi_{n,m+1} + \phi_{n,m-1}\right)$$

Limiting solution:

$$\epsilon = 0:$$
 $\phi_{n,m}^{(0)} = \begin{cases} e^{i\theta_{n,m}}, & (n,m) \in S, \\ 0, & (n,m) \in \mathbb{Z}^2 \backslash S, \end{cases}$

Examples of a square discrete contour S

$$(1 - |\phi_{n,m}|^2)\phi_{n,m} = \epsilon \left(\phi_{n+1,m} + \phi_{n-1,m} + \phi_{n,m+1} + \phi_{n,m-1}\right)$$

Limiting solution:

$$\epsilon = 0$$
: $\phi_{n,m}^{(0)} = \begin{cases} e^{i\theta_{n,m}}, & (n,m) \in S, \\ 0, & (n,m) \in \mathbb{Z}^2 \backslash S, \end{cases}$

Examples of a square discrete contour S

What phase configurations $\theta_{n,m}$ can be continued for $\epsilon \neq 0$?

Lyapunov-Schmidt reductions

Proposition: Let $N = \dim(S)$ and \mathcal{T} be the torus on $[0, 2\pi]^N$. There exists a vector-valued function $\mathbf{g} : \mathcal{T} \mapsto \mathbb{R}^N$, such that the limiting solution is continued to $\epsilon \neq 0$ if and only if $\boldsymbol{\theta} \in \mathcal{T}$ is a root of $\mathbf{g}(\boldsymbol{\theta}, \epsilon) = \mathbf{0}$.

Lyapunov-Schmidt reductions

Proposition: Let $N = \dim(S)$ and \mathcal{T} be the torus on $[0, 2\pi]^N$. There exists a vector-valued function $\mathbf{g} : \mathcal{T} \mapsto \mathbb{R}^N$, such that the limiting solution is continued to $\epsilon \neq 0$ if and only if $\boldsymbol{\theta} \in \mathcal{T}$ is a root of $\mathbf{g}(\boldsymbol{\theta}, \epsilon) = \mathbf{0}$.

• The Jacobian of the nonlinear system:

$$\mathcal{H} = \begin{pmatrix} 1 - 2|\phi_{n,m}|^2 & -\phi_{n,m}^2 \\ -\bar{\phi}_{n,m}^2 & 1 - 2|\phi_{n,m}|^2 \end{pmatrix} - \epsilon \delta_{\pm 1,\pm 1} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

 $\circ \mathcal{H}$ is a self-adjoint Fredholm operator of index zero:

$$\dim(\ker(\mathcal{H}^{(0)}) = N$$

$$\mathbf{g}(\boldsymbol{\theta}, \epsilon) = \sum_{k=1}^{\infty} \epsilon^k \mathbf{g}^{(k)}(\boldsymbol{\theta})$$

$$\mathbf{g}(\boldsymbol{\theta}, \epsilon) = \sum_{k=1}^{\infty} \epsilon^k \mathbf{g}^{(k)}(\boldsymbol{\theta})$$

• Gauge symmetry:

$$\mathbf{g}(\boldsymbol{\theta}_*, \epsilon) = \mathbf{0} \quad \mapsto \quad \mathbf{g}(\boldsymbol{\theta}_* + \theta_0 \mathbf{p}_0, \epsilon) = \mathbf{0},$$

where $\mathbf{p}_0 = (1, 1, ..., 1)$.

$$\mathbf{g}(\boldsymbol{\theta}, \epsilon) = \sum_{k=1}^{\infty} \epsilon^k \mathbf{g}^{(k)}(\boldsymbol{\theta})$$

• Gauge symmetry:

$$\mathbf{g}(\boldsymbol{\theta}_*, \epsilon) = \mathbf{0} \quad \mapsto \quad \mathbf{g}(\boldsymbol{\theta}_* + \theta_0 \mathbf{p}_0, \epsilon) = \mathbf{0},$$

where $\mathbf{p}_0 = (1, 1, ..., 1)$.

• Let $\boldsymbol{\theta}_*$ be the root of $\mathbf{g}^{(1)}(\boldsymbol{\theta}) = \mathbf{0}$ and $\mathcal{M}_1 = \mathcal{D}\mathbf{g}^{(1)}(\boldsymbol{\theta}_*)$. If dim(ker(\mathcal{M}_1)) = 1, there exists a unique analytic continuation of the limiting solution for $\epsilon \neq 0$.

$$\mathbf{g}(\boldsymbol{\theta}, \epsilon) = \sum_{k=1}^{\infty} \epsilon^k \mathbf{g}^{(k)}(\boldsymbol{\theta})$$

• Gauge symmetry:

$$\mathbf{g}(\boldsymbol{\theta}_*, \epsilon) = \mathbf{0} \quad \mapsto \quad \mathbf{g}(\boldsymbol{\theta}_* + \theta_0 \mathbf{p}_0, \epsilon) = \mathbf{0},$$

where $\mathbf{p}_0 = (1, 1, ..., 1)$.

- Let $\boldsymbol{\theta}_*$ be the root of $\mathbf{g}^{(1)}(\boldsymbol{\theta}) = \mathbf{0}$ and $\mathcal{M}_1 = \mathcal{D}\mathbf{g}^{(1)}(\boldsymbol{\theta}_*)$. If dim(ker(\mathcal{M}_1)) = 1, there exists a unique analytic continuation of the limiting solution for $\epsilon \neq 0$.
- Let θ_* be a (1+d)-parameter solution of $\mathbf{g}^{(1)}(\boldsymbol{\theta}) = \mathbf{0}$. The limiting solution can not be continued to $\epsilon \neq 0$ if $\mathbf{g}^{(2)}(\boldsymbol{\theta}_*)$ is not orthogonal to $\ker(\mathcal{M}_1)$.

First-order reductions: classification of solutions

$$\mathbf{g}_{j}^{(1)}(\boldsymbol{\theta}) = \sin(\theta_{j} - \theta_{j+1}) + \sin(\theta_{j} - \theta_{j-1}) = 0, \quad 1 \le j \le 4M$$

First-order reductions: classification of solutions

$$\mathbf{g}_{j}^{(1)}(\boldsymbol{\theta}) = \sin(\theta_{j} - \theta_{j+1}) + \sin(\theta_{j} - \theta_{j-1}) = 0, \quad 1 \le j \le 4M$$

o (1) Discrete solitons

$$\theta_j = \{0, \pi\}, \qquad 1 \le j \le 4M$$

 \circ (2) Symmetric vortices of charge L

$$\theta_j = \frac{\pi L(j-1)}{2M}, \qquad 1 \le j \le 4M,$$

 \circ (3) One-parameter asymmetric vortices of charge L=M

$$\theta_{j+1} - \theta_j = \left\{ \begin{array}{c} \theta \\ \pi - \theta \end{array} \right\} \mod(2\pi), \qquad 1 \le j \le 4M,$$

First-order reductions: persistence of solutions

$$\mathcal{M}_{1} = \begin{pmatrix} a_{1} + a_{2} & -a_{2} & 0 & \dots & a_{1} \\ -a_{2} & a_{2} + a_{3} & -a_{3} & \dots & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots \\ -a_{1} & 0 & 0 & \dots & a_{N-1} + a_{N} \end{pmatrix}, \quad a_{j} = \cos(\theta_{j+1} - \theta_{j})$$

First-order reductions: persistence of solutions

$$\mathcal{M}_{1} = \begin{pmatrix} a_{1} + a_{2} & -a_{2} & 0 & \dots & a_{1} \\ -a_{2} & a_{2} + a_{3} & -a_{3} & \dots & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots \\ -a_{1} & 0 & 0 & \dots & a_{N-1} + a_{N} \end{pmatrix}, \quad a_{j} = \cos(\theta_{j+1} - \theta_{j})$$

 $\circ \mathcal{M}_1$ has a simple zero eigenvalue if all $a_j \neq 0$ and

$$\left(\prod_{i=1}^{N} a_i\right) \left(\sum_{i=1}^{N} \frac{1}{a_i}\right) \neq 0.$$

Family (1) persists for $\epsilon \neq 0$

First-order reductions: persistence of solutions

$$\mathcal{M}_{1} = \begin{pmatrix} a_{1} + a_{2} & -a_{2} & 0 & \dots & a_{1} \\ -a_{2} & a_{2} + a_{3} & -a_{3} & \dots & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots \\ -a_{1} & 0 & 0 & \dots & a_{N-1} + a_{N} \end{pmatrix}, \quad a_{j} = \cos(\theta_{j+1} - \theta_{j})$$

 $\circ \mathcal{M}_1$ has a simple zero eigenvalue if all $a_i \neq 0$ and

$$\left(\prod_{i=1}^{N} a_i\right) \left(\sum_{i=1}^{N} \frac{1}{a_i}\right) \neq 0.$$

Family (1) persists for $\epsilon \neq 0$

• If all $a_j = a = \cos(\frac{\pi L}{2M})$, eigenvalues of \mathcal{M}_1 are:

$$\lambda_n = 4a\sin^2\frac{\pi n}{4M}, \qquad 1 \le n \le 4M$$

Family (2) persists for $\epsilon \neq 0$ and $L \neq M$

Second-order reductions: termination of solutions

- If all $a_j = \pm a = \cos \theta$, there are 2M 1 negative eigenvalues of \mathcal{M}_1 , 2 zero eigenvalues and 2M 1 positive eigenvalues of \mathcal{M}_1 .
- Persistence of family (3) depends on $\mathbf{g}^{(2)}(\boldsymbol{\theta})$

$$\mathbf{g}_{j}^{(2)} = \frac{1}{2}\sin(\theta_{j+1} - \theta_{j})\left[\cos(\theta_{j} - \theta_{j+1}) + \cos(\theta_{j+2} - \theta_{j+1})\right] + \frac{1}{2}\sin(\theta_{j-1} - \theta_{j})\left[\cos(\theta_{j} - \theta_{j-1}) + \cos(\theta_{j-2} - \theta_{j-1})\right]$$

- If $\ker(\mathcal{M}_1) = \{\mathbf{p}_0, \mathbf{p}_1\}$, then $(\mathbf{g}^{(2)}, \mathbf{p}_1) \neq 0$.
- Family (3) terminates except for one super-symmetric configuration:

$$\theta_1 = 0, \quad \theta_2 = \theta, \qquad \theta_3 = \pi, \quad \theta_4 = \pi + \theta,$$

Higher-order reductions: termination of super-symmetric fam

- Symbolic software algorithm is used on a squared domain of N_0 -by- N_0 lattice nodes, where $N_0 = 2K + 2M + 1$, and K is the order of the Lyapunov-Schmidt reductions.
- Super-symmetric family (3) has $\mathbf{g}^{(k)}(\boldsymbol{\theta}) = 0$ for k = 1, 2, 3, 4, 5 but $\mathbf{g}^{(6)}(\boldsymbol{\theta}) \neq 0$, unless $\theta_{j+1} \theta_j = \frac{\pi}{2}$.
- Moreover, $(\mathbf{g}^{(6)}, \mathbf{p}_1) \neq 0$.
- All asymmetric vortices (3) terminate
- All symmetric vortices (2) persist.

Stability of solutions in Lyapunov-Schmidt reductions

 \circ First-order splitting of zero eigenvalues of \mathcal{H} :

$$\mathcal{M}_1\mathbf{c} = \gamma\mathbf{c}$$

 \circ First-order splitting of zero eigenvalues of \mathcal{JH} :

$$\mathcal{M}_1 \mathbf{c} = \frac{\lambda^2}{2} \mathbf{c}$$

Stability of solutions in Lyapunov-Schmidt reductions

 \circ First-order splitting of zero eigenvalues of \mathcal{H} :

$$\mathcal{M}_1\mathbf{c} = \gamma\mathbf{c}$$

 \circ First-order splitting of zero eigenvalues of \mathcal{JH} :

$$\mathcal{M}_1 \mathbf{c} = \frac{\lambda^2}{2} \mathbf{c}$$

 \circ Second-order splitting of zero eigenvalues of \mathcal{H} :

$$\mathcal{M}_1 = 0, \qquad \mathcal{M}_2 \mathbf{c} = \gamma \mathbf{c}$$

 \circ Second-order splitting of zero eigenvalues of \mathcal{JH} :

$$\mathcal{M}_1 = 0, \qquad \mathcal{M}_2 \mathbf{c} = \frac{\lambda^2}{2} \mathbf{c} + \lambda \mathcal{L}_2 \mathbf{c}$$

Stability of solutions in Lyapunov-Schmidt reductions

 \circ First-order splitting of zero eigenvalues of \mathcal{H} :

$$\mathcal{M}_1\mathbf{c} = \gamma\mathbf{c}$$

 \circ First-order splitting of zero eigenvalues of \mathcal{JH} :

$$\mathcal{M}_1 \mathbf{c} = \frac{\lambda^2}{2} \mathbf{c}$$

 \circ Second-order splitting of zero eigenvalues of \mathcal{H} :

$$\mathcal{M}_1 = 0, \qquad \mathcal{M}_2 \mathbf{c} = \gamma \mathbf{c}$$

 \circ Second-order splitting of zero eigenvalues of \mathcal{JH} :

$$\mathcal{M}_1 = 0, \qquad \mathcal{M}_2 \mathbf{c} = \frac{\lambda^2}{2} \mathbf{c} + \lambda \mathcal{L}_2 \mathbf{c}$$

• Six-order splitting: symbolic software algorithm

Numerical analysis: symmetric vortex with L=M=1

Numerical analysis: symmetric vortex with L=1 and M=2

Numerical analysis: symmetric vortex with L=M=2

Numerical analysis: symmetric vortex with L=3 and M=2

Summary:

- Systematic classification of discrete vortices
- Rigorous study of their existence and stability
- Predictions of stable and unstable localized modes

contour S_M	vortex of charge L	linearized energy H	stable and unstable eig
M = 1	symmetric $L=1$	n(H) = 5, p(H) = 2	$N_{\rm r} = 0, N_{\rm i}^+ = 1, N_{\rm i}^- =$
M=2	symmetric $L = 1$	n(H) = 8, p(H) = 7	$N_{\rm r} = 1, N_{\rm i}^+ = 0, N_{\rm i}^- =$
M=2	symmetric $L=2$	n(H) = 10, p(H) = 5	$N_{\rm r} = 1, N_{\rm i}^+ = 2, N_{\rm i}^- =$
M=2	symmetric $L=3$	n(H) = 15, p(H) = 0	$N_{\rm r} = 0, N_{\rm i}^+ = 0, N_{\rm i}^- =$
M=2	asymmetric $L=1$	n(H) = 9, p(H) = 6	$N_{\rm r} = 6, N_{\rm i}^+ = 0, N_{\rm i}^- =$
M=2	asymmetric $L=3$	n(H) = 14, p(H) = 1	$N_{\rm r} = 1, N_{\rm i}^+ = 0, N_{\rm i}^- =$