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1. Introduction - nonlinear waves

. Nonlinear waves special solutions of some nonlinear PDE

. Steady traveling wave solutions

u(t, x) = U(x− ct)

. Observed in nature, experiments, simulations
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Introduction - dynamical systems

Consider an initial value problem{
ut = F(u, ∂x), t > 0,
u(0) = u0,

. (IVP) is locally well-posed in a suitable function space.

. TW with profile U(ξ), ξ = x− ct exists from the steady equation

−c∂ξU = F(U, ∂ξ)

. The profile U is an equilibrium point in the moving frame

ut = c∂ξu + F(u, ∂ξ)

What happens to the perturbation w(t, ξ) := u(t, ξ)−U(ξ) as the
time increases from t = 0 to t→ +∞?
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2. Stability in finite-dimensional systems

Consider the ODE { du
dt

= f (u), t > 0,

u(0) = u0,

where u0 ∈ Rn and f (u) ∈ C1(Rn,Rn) for local well-posedness.

Equilibrium point u∗ is defined by f (u∗) = 0.

Expanding f at u∗ with the perturbation w(t) := u(t)− u∗ as

f (u) = f (u∗ + w) = f (u∗)︸ ︷︷ ︸
=0

+ Duf (u∗)︸ ︷︷ ︸
=A

w + R(w),

where A ∈Mn×n is the linearized matrix and R(w) = oRn(w) is a
remainder term, yields two systems:

dw
dt

= Aw︸ ︷︷ ︸
Linearized system

and
dw
dt

= Aw + R(w)︸ ︷︷ ︸
Nonlinear system

.
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Linear stability

Linear stability is determined by eigenvalues of A = Duf (u∗):
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Linear stability

Linear stability is determined by eigenvalues of A = Duf (u∗):

Nonlinear stability is defined as

. Stable if ∀u0 close to u∗, u(t) stays close to u∗ for all t ≥ 0.

∀ε > 0, ∃δ > 0 : ∀u0 ∈ Bδ(u∗) ⇒ u(t) ∈ Bε(u∗), t ≥ 0.

. Asymptotically stable if it is stable and u(t)→ u∗ as t→ +∞.

. Unstable if for at least one u0 close to u∗, u(t) leaves a ball at u∗.

∃ε > 0 : ∀δ > 0,∃u0 ∈ Bδ(u∗)⇒ u(t) /∈ Bε(u∗), for some t > 0.
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Linear stability

Linear stability is determined by eigenvalues of A = Duf (u∗):

Theorem 1

. If Re(λj) < 0 for every λj ∈ σ(A), then u∗ is nonlinearly
asymptotically stable.

. If Re(λj) > 0 for at least one λj ∈ σ(A), then u∗ is nonlinearly
unstable.

The case with Re(λj) ≤ 0 for every λj ∈ σ(A) is inconclusive from
the linearized system.
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Finite-dimensional Hamiltonian systems

This includes Hamiltonian systems defined in the canonical form as{ du
dt

= J∇H(u), t > 0,

u(0) = u0,

where J = −J∗ is invertible, H ∈ C2(Rn,R), and n is even.

. Since Jv · v = 0 for v ∈ Rn, the energy is conserved:

H(u(t)) = H(u0), t ≥ 0.

. Equilibrium point u∗ is critical to the energy: ∇H(u∗) = 0.

. The linearized system has a structure

dw
dt

= JLw,

where L := H′′(u∗) is a self-adjoint (Hessian) matrix.
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Linear stability in Hamiltonian systems

Eigenvalues of JL are symmetric

. about the real axis Im(λ) = 0: both λ, λ̄ are eigenvalues

. about the imaginary axis Re(λ) = 0: both λ, −λ̄ are eigenvalues.

(JL)∗ = −LJ ⇒ (JL)∗ = −J−1(JL)J

They appear in real or imaginary pairs or as complex quadruplets.

neutrally stable unstable unstable

Is u∗ nonlinearly stable if λj ∈ iR for every λj ∈ σ(JL)?
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Nonlinear stability in Hamiltonian systems

Theorem 2 (Lyapunov’s Stability)

If there exists a Lyapunov function V ∈ C1(Rn,R) such that

(a) V(u∗) = 0 and V(u) > 0 for all u ∈ Bε(u∗)\{u∗}

(b)
d
dt

V(u(t)) = ∇V(u(t)) · f (u(t)) ≤ 0 for all u ∈ Bε(u∗),

then u∗ is nonlinearly stable in du
dt = f (u).
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Stability of isolated minima or maxima of H(u)

Theorem 3
If H(u) has an isolated local minimum or maximum at u∗, then u∗ is
nonlinearly stable.

Stability of u∗ relies only on L = H′′(u∗), independently of J!
Morever, L may have zero eigenvalues, as long as u∗ is isolated.

. If u∗ is a minimum of H(u), take V(u) := H(u)− H(u∗) ≥ 0.

. If u∗ is a maximum of H(u), take V(u) := H(u∗)− H(u) ≥ 0.

In either case,
d
dt

H(u(t)) = 0

and Lyapunov’s Stability Theorem applies.

What if u∗ is a saddle point of H(u)? Is it unstable?
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Nonlinear instability in Hamiltonian systems

Theorem 4 (Lyapunov’s Instability)

If there exists a Lyapunov function V ∈ C1(Rn,R) such that

(a) V(u∗) = 0 and V(u) > 0 for all u ∈ B+ ⊂ Bε(u∗)\{u∗}

(b)
d
dt

V(u(t)) = ∇V(u(t)) · f (u(t)) > 0 for all u ∈ B+,

then u∗ is nonlinearly unstable in du
dt = f (u).
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Nonlinear instability in Hamiltonian systems

Theorem 5 (Lyapunov’s Instability (reversed))

If there exists a Lyapunov function V ∈ C1(Rn,R) such that

(a) V(u∗) = 0 and V(u) < 0 for all u ∈ B− ⊂ Bε(u∗)\{u∗}

(b)
d
dt

V(u(t)) = ∇V(u(t)) · f (u(t)) < 0 for all u ∈ B−,

then u∗ is nonlinearly unstable in du
dt = f (u).
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Instability of saddle points of H(u)?

Lyapunov’s instability theorem is not applicable to saddle points since

d
dt

H(u(t)) = 0.

Saddle points in R2 are necessarily unstable, because the solution
curves on the phase plane do not intersect.

H(u, v) = 1
2 v2 − 1

2 u2 + 1
4 u4 H(u, v) = 1

2 v2 + 1
2 u2 − 1

4 u4
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Instability of saddle points of H(u)?

Lyapunov’s instability theorem is not applicable to saddle points since
d
dt

H(u(t)) = 0.

Saddle points in Rn with n ≥ 4 do not have to be unstable, e.g.

H(u1, v1, u2, v2) =
1
2

(u2
1 + v2

1)− 1
2

(u2
2 + v2

2)

with

d
dt


u1
v1
u2
v2

 =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0



∂H
∂u1
∂H
∂v1
∂H
∂u2
∂H
∂v2


generates 

u̇1 = v1,
v̇1 = −u1,
u̇2 = −v2,
v̇2 = u2,

⇒
{

ü1 + u1 = 0,
ü2 + u2 = 0.

D. Pelinovsky, McMaster University Stability of Nonlinear Waves 14 / 63



Krein theory for saddle points

Let λ0 ∈ σ(JL) be an eigenvalue of algebraic multiplicity m and
{uj}m

j=1 ⊂ Rn be a basis of generalized eigenvectors. The matrix
K(λ0) with elements

[K(λ0)]ij = Lui · uj, 1 ≤ i, j ≤ m,

is called the Krein matrix associated with the eigenvalue λ0.

. If Re(λ0) 6= 0, then K(λ0) = 0.

. If Re(λ0) = 0 and Im(λ0) 6= 0, then K(λ0) is Hermitian and
invertible with pλ0 positive and nλ0 negative eigenvalues such
that pλ0 + nλ0 = m.

If m = 1 (simple eigenvalue), then K(λ0) = Lu1 · u1.

LJLu1 = λ0Lu1 ⇒ (λ0 + λ̄0)Lu1 · u1 = 0.
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Hamiltonian–Krein theorem

Theorem 6 (Sylvester’s inertial law)

Assume that L = H′′(u∗) is invertible with p(L) positive and n(L)
negative eigenvalues such that p(L) + n(L) = n. Then,

p(L) = Nreal(JL) + 2Ncomp(JL) + 2
∑

λ0∈iR+

pλ0 ,

n(L) = Nreal(JL) + 2Ncomp(JL) + 2
∑

λ0∈iR+

nλ0 ,

where Nreal is the number of real positive eigenvalues and 2Ncomp is
the number of complex eigenvalues with positive real part.

. If either n(L) = 0 or p(L) = 0, then λj ∈ iR for all λj ∈ σ(JL).

. If n(L) and p(L) are odd, then Nreal(JL) ≥ 1 and the saddle
point u∗ is linearly unstable.
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Example: a mechanical system

Consider a system of m particles with coordinates {qk}1≤k≤m and
momenta {pk}1≤k≤m (n = 2m):

du
dt

= J∇H(u), J =

[
0 −I
I 0

]
, u =

[
p
q

]
,

where
H =

1
2
L+p · p︸ ︷︷ ︸

kinetic energy

+
1
2
L−q · q︸ ︷︷ ︸

potential energy

Equations of motion are

dq
dt

= L+p,
dp
dt

= −L−q

and the spectral problem is

L+p = λq, −L−q = λp.
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Stability theorems

Consider the spectral stability problem:

L+p = λq, −L−q = λp, p, q ∈ Rm.

1. If either L+ or L− is invertible, then the stability problem is
equivalent to the generalized eigenvalue problems:

L+p = (−λ2)L−1
− p, or L−q = (−λ2)L−1

+ q.

2. If either L+ or L− is positive, then z := −λ2 is real and the
number of negative eigenvalues of z (real positive eigenvalues of
λ) is uniquely determined by the number of negative eigenvalues
of the other operator.
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Sharp Hamiltonian–Krein theorem

Assume invertibility of L+ and L− in

L+p = (−λ2)L−1
− p, and L−q = (−λ2)L−1

+ q.

3 Hamiltonian–Krein theorem follows by Sylvester inertial law:

n(L+) = N−real(JL) + Ncomp(JL) +
∑

λ0∈iR+

nλ0 ,

n(L−) = N+
real(JL) + Ncomp(JL) +

∑
λ0∈iR+

nλ0 ,

where N±real is related to pλ0 positive and nλ0 negative eigenvalues
of Krein matrix K(λ0) associated with L+ for λ0 ∈ R+.

4 The theorem recovers the general result

n(L+) + n(L−) = Nreal(JL) + 2Ncomp(JL) + 2
∑

λ0∈iR+

nλ0 ,

but also gives a sharper count of unstable eigenvalues.
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More examples
Here we illustrate all three possible cases for

1 = n(L+) = N−real(JL) + Ncomp(JL) +
∑

λ0∈iR+

nλ0 ,

1 = n(L−) = N+
real(JL) + Ncomp(JL) +

∑
λ0∈iR+

nλ0 .

. For the previous example of H(p, q) = 1
2(p2

1 − p2
2) + 1

2(q2
1 − q2

2)
we have q̈1 + q1 = 0 and q̈2 + q2 = 0 with nλ0 = 1.

. For another example of H(p, q) = 1
2(p2

1 − p2
2)− 1

2(q2
1 − q2

2) we
have q̈1 − q1 = 0 and q̈2 − q2 = 0 with N+

real = N−real = 1.

. For another example of H(p, q) = p1p2 + 1
2(q2

1 − q2
2) we have

q̈1 + q2 = 0, q̈2 − q1 = 0 ⇒
....q 1 + q1 = 0,

with Ncomp = 1.
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3. Towards the infinite-dimensional Hamiltonian systems

Consider a Hamiltonian dynamical system

du
dt

= J∇H(u),

where

. H : X ⊂ H → R is a C2 functional on a subset X of a Hilbert
spaceH with inner product 〈·, ·〉 and the induced norm ‖ · ‖

. J : H → H is a bounded invertible operator with a bounded
inverse which is skew-adjoint:

〈Ju,w〉 = −〈u, Jw〉 for u,w ∈ H

The first variation of H is defined as

〈∇H(u),w〉 = lim
ε→0

H(u + εw)− H(u)

ε
=

d
dε

H(u+εw)
∣∣∣
ε=0

for u,w ∈ X,

so that∇H(u) ∈ X∗, where X∗ is dual to X with respect toH.
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Example: nonlinear wave equation

Consider the nonlinear wave equation on the infinite line x ∈ R:

utt − uxx + V ′(u) = 0 ⇒ d
dt

[
u
v

]
=

[
0 1
−1 0

] [
∇uH(u, v)
∇vH(u, v)

]
,

where

H(u, v) =

∫
R

(
1
2

(ux)
2 + V(u) +

1
2

v2
)

dx

with V(0) = V ′(0) = 0, and V ′′(0) 6= 0.

. Hilbert space for (u, v): H = L2(R)× L2(R)

. Energy space for (u, v): X = H1(R)× L2(R)

. Dual space of X w.r.t. H: X∗ = H−1(R)× L2(R).
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Initial-value problem

Consider the initial-value problem:{ du
dt

= J∇H(u), t > 0,

u(0) = u0 ∈ X,

We assume that the local well-posedness holds in the energy space
with the local solution

u ∈ C0([0, τ0),X) ∩ C1((0, τ0),X∗)

for every u0 ∈ X and some τ0 > 0.

The Hamiltonian is conserved in time: H(u(t, ·)) = H(u0), t ∈ [0, τ0).
This follows formally (for sufficiently smooth solutions):

d
dt

H(u(t, ·)) = 〈∇H(u),
du
dt
〉 = 〈∇H(u), J∇H(u)〉 = 0.
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Critical points of H(u)

u∗ ∈ X is a critical point of H : X → R if ∇H(u∗) = 0.

For the nonlinear wave equation

utt − uxx + V ′(u) = 0, H(u, v) =

∫
R

(
1
2

(ux)
2 + V(u) +

1
2

v2
)

dx,

(u∗, 0) is a critical point of H(u, v) if −u′′∗ + V ′(u∗) = 0.

If V(u) = 1
2 u2 − 1

4 u4, then If V(u) = −1
2 u2 + 1

4 u4, then
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Stability of critical points

If H ∈ C2(X,R), expansion of H about u∗ ∈ X with the perturbation
w = u− u∗ ∈ X yields

H(u∗ + w) = H(u∗) + 〈∇H(u∗),w〉︸ ︷︷ ︸
=0

+
1
2
〈Lw,w〉+ R(w),

where L := H′′(u∗) : X → X∗ is a self-adjoint linear operator inH
and R(w) = oX(w2) is the remainder term.

We assume that L : dom(L) ⊂ H → H is bounded from below.

. If u∗ is a minimizer of H(u), is it nonlinearly stable?

. If u∗ is a saddle point of H(u), is it nonlinearly unstable?

Difference from the finite-dimensional case in Rn:
. L may not be bounded from above.
. ker(L) 6= {0} due to translational (and other) symmetries.
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Strict minimizers of energy H(u)

Theorem 7
Let u∗ ∈ X be a critical point of H(u) and there exists C > 0 such that
L := H′′(u∗) satisfies

〈Lw,w〉 ≥ C‖w‖2
X, w ∈ X.

then u∗ is nonlinearly stable:

∀ε > 0,∃δ > 0 : ∀u0 ∈ Bδ(u∗) ⇒ u(t) ∈ Bε(u∗), t ≥ 0.

The proof follows from:

H(u0)− H(u∗) = H(u(t, ·))− H(u∗) = H(u∗ + w(t, ·))− H(u∗)

=
1
2
〈Lw(t, ·),w(t, ·)〉+ R(w(t, ·)) ≥ 1

2
C‖w(t, ·)‖2

X − CR(ε)‖w(t, ·)‖2
X.

H(u0)− H(u∗) ≤ C̃‖u0 − u∗‖2
X ⇒ ‖u(t, ·)− u∗‖2

X ≤ 4C̃
C ‖u0 − u∗‖2

X .
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Example: kinks in the nonlinear wave equation

Consider the Hamiltonian

H(u, v) =

∫
R

(
1
2

(ux)
2 +

1
4

(1− u2)2 +
1
2

v2
)

dx

subject to (u, v)→ (±1, 0) as x→ ±∞, e.g. u∗(x) = tanh
(

x√
2

)
.

Perturbation (u∗ + w, v) is in (w, v) ∈ X = H1(R)× L2(R) with

L = H′′(u, v) =

[
−∂2

x + 3u2
∗(x)− 1 0

0 1

]
on

[
w
v

]
.
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Sturm’s theory for the Schrödinger operator

We have

L0 : H2(R) ⊂ L2(R)→ L2(R), with L0 = −∂2
x + 3u2

∗(x)− 1.

(a) σ(L0) = σp(L0) ∪ σc(L0) ⊂ R since L0 is self-adjoint in L2(R).
(b) σc(L0) = [2,∞) since u∗(x)→ ±1 at ±∞ exponentially fast.
(c) Eigenvalues in σp(L) = {λ1, λ2, . . . } ∈ (−∞, 2) are simple
(d) Eigenfunction for eigenvalue λn has n− 1 simple zeros on R.
(e) λ1 = 0 since L0∂xu∗ = 0 and ∂xu∗(x) > 0 for all x ∈ R.

Hence L0 : H2
odd(R) ⊂ L2

odd(R)→ L2
odd(R) is strictly positive and

∃C > 0 such that 〈L0w,w〉 ≥ C‖w‖2
L2 , ∀w ∈ H2

odd. This implies via
Gärdiner’s inequality that

〈L0w,w〉 ≥ C‖w‖2
H1 , ∀w ∈ H1

odd(R).

The kink is nonlinearly stable for (w, v) ∈ Xodd = H1
odd(R)× L2

odd(R).
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Saddle points of energy H(u)

Theorem 8
Let u∗ ∈ X be a critical point of H(u) and there exists w+,w− ∈ X
such that L := H′′(u∗) satisfies

〈Lw+,w+〉 > 0 and 〈Lw−,w−〉 < 0.

If u∗ is linearly unstable and∇H(u∗ + w) = Lw + oX(w),
then u∗ is nonlinearly unstable:

∃ε > 0 : ∀δ > 0, ∃u0 ∈ Bδ(u∗) : u(t0) /∈ Bε(u∗), t0 > 0.
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Saddle points of energy H(u)

Theorem 8
Let u∗ ∈ X be a critical point of H(u) and there exists w+,w− ∈ X
such that L := H′′(u∗) satisfies

〈Lw+,w+〉 > 0 and 〈Lw−,w−〉 < 0.

If u∗ is linearly unstable and∇H(u∗ + w) = Lw + oX(w),
then u∗ is nonlinearly unstable:

∃ε > 0 : ∀δ > 0, ∃u0 ∈ Bδ(u∗) : u(t0) /∈ Bε(u∗), t0 > 0.

Linear instability implies nonlinear instability if the nonlinearity is
bounded in X like in Rn and the (IVP) is well-posed in X.
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Saddle points of energy H(u)

Theorem 8
Let u∗ ∈ X be a critical point of H(u) and there exists w+,w− ∈ X
such that L := H′′(u∗) satisfies

〈Lw+,w+〉 > 0 and 〈Lw−,w−〉 < 0.

If u∗ is linearly unstable and∇H(u∗ + w) = Lw + oX(w),
then u∗ is nonlinearly unstable:

∃ε > 0 : ∀δ > 0, ∃u0 ∈ Bδ(u∗) : u(t0) /∈ Bε(u∗), t0 > 0.

It follows from the Hamiltonian–Krein theorem,

n(L) = Nreal(JL) + 2Ncomp(JL) + 2
∑

λ0∈iR+

nλ0 ,

that u∗ is linearly unstable if n(L) is odd.
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Example: pulses in the nonlinear wave equation

Consider the Hamiltonian

H(u, v) =

∫
R

(
1
2

(ux)
2 − 1

2
u2 +

1
4

u4 +
1
2

v2
)

dx

subject to (u, v)→ (0, 0) as x→ ±∞, e.g. u∗(x) =
√

2sech(x).

Perturbation (u∗ + w, v) is in (w, v) ∈ X = H1(R)× L2(R) with

L = H′′(u, v) =

[
−∂2

x + 1− 3u2
∗(x) 0

0 1

]
on

[
w
v

]
.
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Sturm’s theory for the Schrödinger operator

We have

L0 : H2(R) ⊂ L2(R)→ L2(R), with L0 = −∂2
x + 1− 3u2

∗(x).

(a) σ(L0) = σp(L0) ∪ σc(L0) ⊂ R since L0 is self-adjoint in L2(R).
(b) σc(L0) = [1,∞) since u∗(x)→ 0 at ±∞ exponentially fast.
(c) Eigenvalues in σp(L) = {λ1, λ2, . . . } ∈ (−∞, 1) are simple
(d) Eigenfunction for eigenvalue λn has n− 1 simple zeros on R.
(e) λ1 < 0, λ2 = 0 since L0∂xu∗ = 0 and ∂xu∗(x) has one zero on R.

The spectral stability problem

λ

[
w
v

]
=

[
0 1
−1 0

] [
−∂2

x + 1− 3u2
∗(x) 0

0 1

] [
w
v

]
yields λw = v and −λ2w = L0w with λ2 = −λ1 > 0.
The pulse is nonlinearly unstable for (w, v) ∈ X = H1(R)× L2(R).
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4. Towards to Hamiltonian systems with symmetries

. Hamiltonian systems are invariant under translations in time.
This symmetry is associated to the conservation of H(u).

. Other symmetries are common in physical systems such as
spatial translations and rotations, phase rotations, ... These
symmetries lead to the degeneracy of the kernel of L = H′′(u∗).

. Additional symmetries lead to additional conserved quantities.

. Additional conservative quantities may affect linear and
nonlinear stability of saddle points of H(u).
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Definition of a symmetry

Consider the symmetry transformation T(θ) : H → H for θ ∈ R with
the infinitesimal generator T ′ : dom(T ′) ⊂ H → H defined by

T ′u := lim
θ→0

T(θ)u− u
θ

,

for every u ∈ dom(T ′) for which the limit exists. Assume properties:

. group:

T(0) = Id, T(θ1 + θ2) = T(θ1)T(θ2) = T(θ2)T(θ1) ∀θ1, θ2.

. isometry:

〈T(θ)f ,T(θ)g〉 = 〈f , g〉, ∀f , g ∈ H.

. invariance: H(T(θ)u) = H(u), ∀u ∈ X.

. commutativity: JT(θ) = T(θ)J.

. skew-adjointness: 〈T ′f , g〉 = −〈f ,T ′g〉, ∀f , g ∈ dom(T ′) ⊂ H.
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An associated conserved quantity

Let T(θ) : H → H, θ ∈ R be a symmetry of

du
dt

= J∇H(u),

such that if u(t) is a solution, so is T(θ)u(t) for every θ ∈ R.

If u ∈ X and J−1T ′u ∈ X∗, then the quadratic functional
Q(u) : X → R is well-defined by

Q(u) :=
1
2
〈J−1T ′u, u〉.

For every local solution u ∈ C0([0, τ0),X), the value of Q(u) is
conserved in time:

Q(u(t, ·)) = Q(u0), t ∈ [0, τ0).

Furthermore we have Q(T(θ)u) = Q(u), T ′u = J∇Q(u), and

〈∇Q(u), J∇H(u)〉 = 0.
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Stationary states (traveling waves)

In application to the Hamiltonian system

du
dt

= J∇H(u),

the symmetry T(θ) : H → H, θ ∈ R allows us to consider stationary
states (traveling waves) in the form:

u(t, ·) = T(ωt + θ)uω, ω ∈ Ω ⊂ R, θ ∈ R,

where the profile uω is obtained from

ωT ′uω = J∇H(uω)

Since T ′u = J∇Q(u) and J is invertible, we characterize the profile
uω as a critical point of the augmented energy

Λω(u) := H(u)− ωQ(u).
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Example: nonlinear Schrödinger equation

Consider the NLS equation on the infinite line x ∈ R:

iψt = −ψxx + W ′(|ψ|2)ψ ⇒ d
dt

[
ψ
ψ̄

]
=

[
0 −i
i 0

] [
∇ψH(ψ, ψ̄)
∇ψ̄H(ψ, ψ̄)

]
,

where
H(ψ, ψ̄) =

∫
R

(
|ψx|2 + W(|ψ|2)

)
dx,

withH = L2(R,C), X = H1(R,C), and X∗ = H−1(R,C).

Phase rotation symmetry

T1(θ)

[
ψ
ψ̄

]
=

[
e−iθψ
eiθψ̄

]
⇒ T ′1

[
ψ
ψ̄

]
=

[
−iψ
iψ̄

]
⇒ Q1(ψ) =

∫
R
|ψ|2dx.

Spatial translation symmetry

T2(θ)

[
ψ
ψ̄

]
=

[
ψ(·+ θ)
ψ̄(·+ θ)

]
⇒ T ′2

[
ψ
ψ̄

]
=

[
∂xψ
∂xψ̄

]
⇒ Q2(ψ) = Im

∫
R
ψ∂xψ̄dx.
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Stationary (TW) states in the NLS equation

Critical points of Λω1,ω2 := H − ω1Q1 − ω2Q2 are found from
Euler–Lagrange equations

−Ψ′′ + W ′(|Ψ|2)Ψ− ω1Ψ− iω2Ψ′ = 0,

which coincides with the stationary (TW) states of the NLS equation

iψt = −ψxx + W ′(|ψ|2)ψ ψ(t, x) = e−iω1tΨ(x + ω2t).

Due to the Galilean transformation

Ψ(x) = e−
i
2ω2xΦ(x) ⇒ −Φ′′+W ′(|Φ|2)Φ−ωΦ = 0, ω = ω1+

ω2
2

4
,

we can obtain stationary states from a single symmetry with the
augmented energy Λω = H − ωQ with a single conservation Q ≡ Q1.
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Consequencies of the symmetry I

If uω is a critical point of Λω(u) = H(u)− ωQ(u), then the kernel of
Lω := H′′(uω)− ωQ′′(uω) contains T ′uω = J∇Q(uω) (degeneracy).

To deal with the degeneracy due to symmetry, we can introduce the
concept of orbital stability:

We say that uω is orbitally stable in X if ∀ε > 0, ∃δ > 0 :
‖u0 − uω‖X < δ implies

inf
θ∈R
‖u(t, ·)− T(θ)uω‖X < ε, for t > 0.

Since X ⊂ H with the inner
product 〈·, ·〉, we can look for θ(t)
such that

〈u(t, ·)−T(θ(t))uω,T ′(θ(t))uω〉 = 0
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Consequencies of the symmetry II

If uω is a saddle point of Λω(u) = H(u)− ωQ(u), then it may still be
a minimizer of energy H(u) subject to fixed mass Q(u).

Since Q(uω + w) =
Q(uω) + 〈∇Q(uω),w〉+O(‖w‖2

X),
we can use

〈u(t, ·)−T(θ(t))uω,T(θ(t))∇Q(uω)〉 = 0

We say that uω is a strict constrained minimizer of energy if

∃Cω > 0 : 〈Lωw,w〉 ≥ Cω‖w‖2
X, ∀w ∈ X{J∇Q(uω),∇Q(uω)}⊥ .
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Strict constrained minimizers of energy

Theorem 9
Let uω ∈ X be a critical point of Λω(u) = H(u)− ωQ(u). Assume

. the spectral gap condition

∃δ > 0 : (−δ, δ) ∩ σ(Lω) = {0}.

. the non-degeneracy condition
ker(Lω) = span(J∇Q(uω)) with J∇Q(uω) ∈ X ⊂ H.

. the robust norm condition
If ‖u− uω‖X < ε0 � 1, then

∃θ0 ∈ R : ‖u− T(θ0)uω‖X = inf
θ∈R
‖u− T(θ)uω‖X.

If uω is a constrained minimizer of H(u), then uω is orbitally stable.
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Constrained saddle points of energy

Theorem 10
Let uω ∈ X be a critical point of Λω(u) such that there exist
w+,w− ∈ X{J∇Q(uω),∇Q(uω)}⊥ such that Lω satisfies

〈Lωw+,w+〉 > 0 and 〈Lωw−,w−〉 < 0.

If uω is linearly unstable and∇Λω(uω + w) = Lωw + oX(w),
then uω is nonlinearly orbitally unstable:

∃ε > 0 : ∀δ > 0, ∃u0 ∈ Bδ(uω) : u(t0) /∈ Bε(T(θ)uω),∀θ ∈ R, t0 > 0.
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∃ε > 0 : ∀δ > 0, ∃u0 ∈ Bδ(uω) : u(t0) /∈ Bε(T(θ)uω),∀θ ∈ R, t0 > 0.

Linear instability implies nonlinear instability if the nonlinearity is
bounded in X like in Rn and the (IVP) is well-posed in X. Constraint
of fixed mass Q(u) does not help to stabilize the saddle point.

D. Pelinovsky, McMaster University Stability of Nonlinear Waves 41 / 63



Constrained saddle points of energy

Theorem 10
Let uω ∈ X be a critical point of Λω(u) such that there exist
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〈Lωw+,w+〉 > 0 and 〈Lωw−,w−〉 < 0.

If uω is linearly unstable and∇Λω(uω + w) = Lωw + oX(w),
then uω is nonlinearly orbitally unstable:

∃ε > 0 : ∀δ > 0, ∃u0 ∈ Bδ(uω) : u(t0) /∈ Bε(T(θ)uω),∀θ ∈ R, t0 > 0.

It follows from the Hamiltonian–Krein theorem,

n(Lω|{J∇Q(uω),∇Q(uω)}⊥) = Nreal(JL) + 2Ncomp(JL) + 2
∑

λ0∈iR+

nλ0 ,

that uω is linearly unstable if n(Lω|{J∇Q(uω),∇Q(uω)}⊥) is odd.
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Constrained minimizers of energy

The goal is to show that

∃Cω > 0 : 〈Lωw,w〉 ≥ Cω‖w‖2
X, ∀w ∈ X{J∇Q(uω),∇Q(uω)}⊥ ,

even if Lω has negative eigenvalues inH.

Theorem 11
Assume the spectral gap and non-degeneracy conditions. Then, uω is
a constrained minimizer of H(u) if either

. σ(Lω) ≥ 0 or

. Lω has one simple negative eigenvalue and d
dωQ(uω) < 0.

uω is a constrained saddle point of H(u) if either

. Lω has one simple negative eigenvalue and d
dωQ(uω) > 0 or

. Lω has two or more negative eigenvalues.

[Vakhitov-Kolokolov, Bona-Souganidis-Strauss, Weinstein, Shatah-Strauss, . . . ]
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Spectrum of Lω under constrains

We are looking for

λ0 = inf
w∈X{J∇Q(uω),∇Q(uω)}⊥

〈Lωw,w〉
‖w‖2

= inf
w∈X,(ν,µ)∈R2

〈Lωw,w〉 − 2ν〈w,∇Q(uω)〉 − 2µ〈w, J∇Q(uω)〉
‖w‖2 ,

or, equivalently, at the lowest eigenvalue λ of

(Lω − λI)w = ν∇Q(uω) + µJ∇Q(uω), w ∈ X{J∇Q(uω),∇Q(uω)}⊥ ,

where (ν, µ) ∈ R2 are Lagrange multipliers.
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or, equivalently, at the lowest eigenvalue λ of

(Lω − λI)w = ν∇Q(uω) + µJ∇Q(uω), w ∈ X{J∇Q(uω),∇Q(uω)}⊥ ,

where (ν, µ) ∈ R2 are Lagrange multipliers.
Since

〈∇Q(uω), J∇Q(uω)〉 = 0,

we have µ‖J∇Q(uω)‖2 = 0, so that µ = 0. Furthermore, the
constraint 〈w, J∇Q(uω)〉 = 0 is satisfied for every λ 6= 0.
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Spectrum of Lω under constrains

Hence, we are looking at the lowest eigenvalue λ in (−∞, 0) of

(Lω − λI)w = ν∇Q(uω), w ∈ X{∇Q(uω)}⊥ .

. Either λ ∈ σ(Lω) with w ∈ X{∇Q(uω)}⊥ and ν = 0 or

. λ /∈ σ(Lω) and

F(λ) = 〈(Lω − λI)−1∇Q(uω),∇Q(uω)〉 = 0,

with ν 6= 0.

The first case is included in the study of properties of F(λ) for
λ ∈ (−∞, 0).
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Spectrum of Lω under constrains

Properties of F(λ) given by F(λ) = 〈(Lω − λI)−1∇Q(uω),∇Q(uω)〉.

1. F is analytic for λ /∈ σ(Lω) and may have infinite jump
discontinuity at λ ∈ σ(Lω).

2. F(λ)→ 0+ as λ→ −∞ since

|F(λ)| ≤ |λ− λmin|−1‖∇Q(uω)‖2, λ < λmin = inf σ(Lω).

3. F′(λ) > 0 since F′(λ) = ‖(Lω − λI)−1∇Q(uω)‖2.

4. If λ0 ∈ σ(Lω) (simple) with w0 ∈ X, then

F(λ) =
|〈w0,∇Q(uω)〉|2

λ0 − λ
+ F̃(λ),

with analytic F̃ across λ = λ0.

5. F is analytic at λ = 0 as w0 = J∇Q(uω): 〈w0,∇Q(uω)〉 = 0.
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Spectrum of Lω under constrains

Finally, we compute the slope criterion

lim
λ→0

F(λ) = 〈L−1
ω ∇Q(uω),∇Q(uω)〉 = 〈∂ωuω,∇Q(uω)〉 =

d
dω

Q(uω).

Here we have used C1 smoothness of Ω 3 ω → uω ∈ X and

Lω∂ωuω = ∇Q(uω),

obtained from ∇Λω(uω) = ∇H(uω)− ω∇Q(uω) = 0.

C1-smoothness Ω 3 ω → uω ∈ X holds under the spectral gap and
non-degeneracy conditions.
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Spectrum of Lω under constrains

Finally, we compute the slope criterion

lim
λ→0

F(λ) = 〈L−1
ω ∇Q(uω),∇Q(uω)〉 = 〈∂ωuω,∇Q(uω)〉 =

d
dω

Q(uω).

If Lω has two (or more) negative eigenvalues, then
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Example: solitons in the nonlinear Schrödinger equation

Recall the NLS equation

iψt = −ψxx + W ′(|ψ|2)ψ, W ′(0) = 0,

with ψ(t, x) = e−iωtΦ(x) from

−Φ′′ + W ′(|Φ|2)Φ− ωΦ = 0.

If Φ(x)→ 0 as |x| → ∞ (only if ω < 0), then Φ ∈ R up to the phase
rotation. Perturbation ψ − Φ = u + iv is defined for
(u, v) ∈ X = H1(R)× H1(R) with

Lω =

[
−∂2

x + W ′(Φ2) + 2Φ2W ′′(Φ2)− ω 0
0 −∂2

x + W ′(Φ2)− ω

]
acting on (u, v).
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Sturm’s theory for the Schrödinger operators

We have
L+ : H2(R) ⊂ L2(R)→ L2(R),

with

L+ = −∂2
x + W ′(Φ2) + 2Φ2W ′′(Φ2)− ω, ω < 0.

(a) σ(L+) = σp(L+) ∪ σc(L+) ⊂ R since L+ is self-adjoint in
L2(R).

(b) σc(L+) = [|ω|,∞) since Φ(x)→ 0 at ±∞ exponentially fast.

(c) Eigenvalues in σp(L+) = {λ1, λ2, . . . } ∈ (−∞, |ω|) are simple

(d) Eigenfunction for eigenvalue λn has n− 1 simple zeros on R.

(e) λ1 < 0, λ2 = 0 since L+∂xΦ = 0 and ∂xΦ has one zero on R.
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Sturm’s theory for the Schrödinger operators

We have
L− : H2(R) ⊂ L2(R)→ L2(R),

with
L− = −∂2

x + W ′(Φ2)− ω, ω < 0

(a) σ(L−) = σp(L−) ∪ σc(L−) ⊂ R since L− is self-adjoint in
L2(R).

(b) σc(L−) = [|ω|,∞) since Φ(x)→ 0 at ±∞ exponentially fast.

(c) Eigenvalues in σp(L−) = {λ1, λ2, . . . } ∈ (−∞, |ω|) are simple

(d) Eigenfunction for eigenvalue λn has n− 1 simple zeros on R.

(e) λ1 = 0 since L−Φ = 0 and Φ(x) > 0 for all x ∈ R.
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Sturm’s theory for the Schrödinger operators

Hence Φ is a saddle point of energy

H(ψ) =

∫
R

(
|ψx|2 + W(|ψ|2)

)
dx.

The phase rotation symmetry gives conserved mass

Q(ψ) =

∫
R
|ψ|2dx.

If d
dω‖Φ‖

2 < 0, then Φ is orbitally stable with respect to

inf
(θ,ξ)∈R2

‖ψ(t, ·)− e−iθΦ(·+ ξ)‖H1(R,C).

If d
dω‖Φ‖

2 > 0, then Φ is orbitally unstable.
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Example: pulses in the nonlinear wave equation

Consider the Hamiltonian

H(u, v) =

∫
R

(
1
2

(ux)
2 − 1

2
u2 +

1
4

u4 +
1
2

v2
)

dx

subject to (u, v)→ (0, 0) as x→ ±∞, e.g. u∗(x) =
√

2sech(x).

Perturbation (u∗ + w, v) is in (w, v) ∈ X = H1(R)× L2(R) with

L = H′′(u, v) =

[
−∂2

x + 1− 3u2
∗(x) 0

0 1

]
on

[
w
v

]
.
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Example: pulses in the nonlinear wave equation

Recall that L0 = −∂2
x + 1− 3u2

∗ has a simple negative eigenvalue,
and hence (u∗, 0) is a saddle point of energy.

The spatial translation symmetry gives the conserved momentum

Q(u, v) =
1
2

∫
R

(vux − vxu)dx

Q: Is it possible for (u∗, 0) to be a constrained minimizer of energy?

Let us check: (uω, ω∂xuω) is a critical point of Λω = H − ωQ, which
is a traveling wave solution u(t, x) = uω(x + ωt). Since it satisfies
−(1− ω2)u′′ω − uω + u3

ω = 0, it is given by

uω(x) = u∗

(
x√

1− ω2

)
, ω ∈ (−1, 1).

Then Q(uω, ω∂xuω) = ω√
1−ω2 ‖∂xu∗‖2 and d

dωQ(uω, ω∂xuω) > 0.
A: (u∗, 0) is a constrained saddle point of energy.
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is a traveling wave solution u(t, x) = uω(x + ωt). Since it satisfies
−(1− ω2)u′′ω − uω + u3

ω = 0, it is given by

uω(x) = u∗

(
x√

1− ω2

)
, ω ∈ (−1, 1).

Then Q(uω, ω∂xuω) = ω√
1−ω2 ‖∂xu∗‖2 and d

dωQ(uω, ω∂xuω) > 0.
A: (u∗, 0) is a constrained saddle point of energy.
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Sharp Hamiltonian–Krein theorem for the NLS equation

Recall the pair of Schrödinger operators for ω < 0:

L+ = −∂2
x + W ′(Φ2) + 2Φ2W ′′(Φ2) + |ω|,

L− = −∂2
x + W ′(Φ2) + |ω|.

Due to the Hamiltonian structure, the spectral stability problem is

L+p = λq, −L−q = λp, p, q ∈ H2(R)

similar to the example of a mechanical system.

If ker(L+) = span(∂xΦ) and ker(L−) = span(Φ), then the
eigenfunction (p, q) ∈ H2(R)× H2(R) for λ 6= 0 satisfies

〈Φ, p〉 = 0, 〈∂xΦ, q〉 = 0.

This yields the generalized eigenvalue problem

q = −λ(L−|{Φ}⊥)−1p ⇒ L+|{Φ}⊥p = −λ2(L−|{Φ}⊥)−1p.
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Sharp Hamiltonian–Krein theorem for the NLS equation

Hamiltonian–Krein theorem is now read as

n(L+|{Φ}⊥) = N−real(JL) + Ncomp(JL) +
∑

λ0∈iR+

nλ0 ,

n(L−|{Φ}⊥) = N+
real(JL) + Ncomp(JL) +

∑
λ0∈iR+

nλ0 ,

where N±real is related to pλ0 positive and nλ0 negative eigenvalues of
Krein matrix K(λ0) associated with L+|{Φ}⊥ for λ0 ∈ R+.

. The sum yields Grillakis–Shatah–Strauss’ 90 theorem:

n(L+|{Φ}⊥) + n(L−) = Nreal(JL) + 2Ncomp(JL) + 2
∑

λ0∈iR+

nλ0 .

. The difference yields Grillakis’90 or Jones’88 theorems:

n(L+|{Φ}⊥)− n(L−) = N−real(JL)− N−real(JL).
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Strict constrained minimizers of energy

Let us give the proof of the orbital stability result for a strict
constrained minimizer of energy.

Theorem 12
Let uω ∈ X be a critical point of Λω(u) = H(u)− ωQ(u). Assume

. the spectral gap condition

∃δ > 0 : (−δ, δ) ∩ σ(Lω) = {0}.

. the non-degeneracy condition
ker(Lω) = span(J∇Q(uω)) with J∇Q(uω) ∈ X ⊂ H.

. the robust norm condition
If ‖u− uω‖X < ε0 � 1, then

∃θ0 ∈ R : ‖u− T(θ0)uω‖X = inf
θ∈R
‖u− T(θ)uω‖X.

If uω is a constrained minimizer of H(u), then uω is orbitally stable.
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Proof of orbital stability of constrained minimizers I

Decomposition:

∃ε0 > 0 and unique functions (θ, ω,w) ∈ R× Ω× X near (θ0, ω0, 0)
such that all u ∈ X satisfying

ε := ‖u− T(θ0)uω0‖X = inf
θ∈R
‖u− T(θ)uω0‖X < ε0

can be written as

u = T(θ)(uω + w) with 〈w, J∇Q(uω)〉 = 0, 〈w,∇Q(uω)〉 = 0

Proof: Define the function f : R× Ω× X → R2,

f (θ, ω, u) :=

[
〈u− T(θ)uω,T ′(θ)uω〉

〈u− T(θ)uω,T(θ)∇Q(uω)〉

]
, θ ∈ R, ω ∈ Ω ⊂ R,

so that f (θ, ω, u) = 0 if and only if u can be represented as in the box.
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Proof of orbital stability of constrained minimizers I

Let θ0 ∈ R be the argument in the infimum. By Cauchy–Schwarz
inequality, we have |f (θ0, ω0, u)| ≤ C0ε and the Jacobian of f is

D(θ,ω)f (θ, ω, u) = −
[

‖T ′uω‖2 〈∂ωuω,T ′uω〉
〈T ′uω,∇Q(uω)〉 〈∂ωuω,∇Q(uω)〉

]

+

[
〈u− T(θ)uω,T ′′(θ)uω〉 〈u− T(θ)uω,T ′(θ)∂ωuω〉
〈u− T(θ)uω,T ′(θ)δQ(uω)〉 〈u− T(θ)uω,T(θ)∂ωδQ(uω)〉

]
,

Since 〈T ′uω,∇Q(uω)〉 = 〈J∇Q(uω),∇Q(uω)〉 = 0 and
〈∂ωuω,∇Q(uω)〉 = d

dωQ(uω) 6= 0, the Jacobian is invertible if ε0 is
small enough.

By the inverse function theorem, f (θ, ω, u) = 0 has a unique solution
for (θ, ω) ∈ R× Ω satisfying

|θ − θ0|+ |ω − ω0| ≤ C0ε

and the decomposition is justified.
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Proof of orbital stability of constrained minimizers II

Control of the error in time:

By LWP: ‖u0 − uω‖ < δ⇒ inf
θ∈R
‖u(t, ·)− T(θ)uω‖X < ε for

t ∈ [0, τ0) for some τ0 > 0. So u(t, ·) an be decomposed as in the box.

Define

V(t) := H(u(t, ·))− H(uω0)− ω(t) [Q(u(t, ·))− Q(uω0)]

and

∆(ω(t)) := H(uω(t))− H(uω0)− ω(t)
[
Q(uω(t))− Q(uω0)

]
.

Expand Λω(t)(u) near uω(t) and subtract H(uω0)− ω(t)Q(uω0) from
both sides:

V(t) = ∆(ω(t)) +
1
2
〈Lω(t)w(t, ·),w(t, ·)〉+ RΛ(w(t, ·)).
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Proof of orbital stability of constrained minimizers II

The mapping ω 7→ ∆(ω) is C1, so we differentiate it in ω and obtain

∆′(ω) = Q(uω0)− Q(uω).

Hence, ∆(ω0) = ∆′(ω0) = 0 and ∆′′(ω0) = − d
dωQ(uω)|ω=ω0 > 0, so

∆(ω) is quadratic near ω0.

Together with the lower bound on Lω we obtain that ∃C− > 0

V(t) ≥ C−|ω(t)− ω0|2 + C−‖w(t, ·)‖2
X

as long as |ω(t)− ω0| and ‖w(t, ·)‖X are small.

Due to conservation of H(u) and Q(u), we have

V(t) = H(u0)− H(uω0)− ω(t) [Q(u0)− Q(uω0)]

= V(0)− [ω(t)− ω0] [Q(u0)− Q(uω0)] ,

where
|V(0)| ≤ C0δ

2, |Q(u0)− Q(uω0)| ≤ 2C0δ.
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Proof of orbital stability of constrained minimizers II

The two bounds give with the Young’s inequality

C+δ
2 ≥ C−|ω(t)− ω0 − C0δ|2 + C−‖w(t, ·)‖2

X

which yields

|ω(t)− ω0|+ ‖w(t, ·)‖X ≤ Cδ, t ∈ [0, τ0).

The triangle inequality and C1 smoothness of ω 7→ uω yields for
δ < ε/C:

inf
θ∈R
‖u(t, ·)− T(θ)uω0‖X ≤ ‖u(t, ·)− T(θ(t))uω0‖X

≤ ‖uω(t) − uω0‖X + ‖u(t, ·)− T(θ(t))uω(t)‖X

≤ C|ω(t)− ω0|+ ‖w(t, ·)‖ ≤ Cδ < ε,

which is the orbital stability of uω0 .
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5. Concluding remarks

The method of stability can be extended to constrained minimizers of
energy with several constraints. This includes

. traveling solitary waves with several parameters:

iψt = −ψxx + W ′(|ψ|2)ψ ψ(t, x) = e−iωtΨ(x + ct).

. traveling periodic waves with several parameters:

ut +2uux +uxxx = 0, u(t, x) = U(x+ct), U′′+U2 +cU = b.

. integrable Hamiltonian systems with commuting flows.
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Integrable Hamiltonian systems

We say that the Hamiltonian system

du
dt

= J∇H(u), H(u) : X ⊂ H → R, J : H → H

is integrable if there exists a recursion operator R : H → H and
another energy H̃(u) : X̃ ⊂ H such that

JR = R∗J, ∇H(u) = R∇H̃(u).

This implies that

du
dt

= J̃∇H̃(u), H̃(u) : X̃ ⊂ H → R, J̃ : H → H

with J̃ = JR. If J∗ = −J, then J̃∗ = (JR)∗ = −R∗J = −JR = −J̃.

If H(u) is conserved in t, so is H̃(u) since

〈J∇H(u),∇H̃(u)〉 = 〈J̃∇H̃(u),∇H̃(u)〉 = 0.
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A hierarchy of integrable Hamiltonian systems

We can then introduce a sequence of Hamiltonians {Hk(u)}k∈N with
Hk(u) : Xk ⊂ H → R such that

R∇Hk(u) = ∇Hk+1(u),

and
du
dtk

= J∇Hk(u),

such that
〈J∇Hk(u),∇Hm(u)〉 = 0, ∀k,m ∈ N.

. For a particular PDE with fixed k ∈ N, all Hamiltonians
{Hm(u)}m∈N are formally conserved.

. Traveling waves (multi-solitons, breathers) are critical points of

Λω1,...,ωk(u) = Hk+1(u)−
k∑

m=1

ωmHm(u).
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Example: the NLS hierarchy

J = i
[

0 −1
1 0

]
, R = i

[
∂x + 2ū∂−1

x u −2ū∂−1
x ū

2u∂−1
x u −∂x − 2u∂−1

x ū

]
satisfying JR = R∗J. Then, R∇Hk(u) = ∇Hk+1(u) generates

H0(u, ū) =

∫
|u|2dx,

H1(u, ū) =
i
2

∫
(uūx − ūux)dx,

H2(u, ū) =

∫
(|ux|2 − |u|4)dx,

H3(u, ū) =
i
2

∫
(uxūxx − ūxuxx − 3|u|2(uūx − ūux))dx,

H4(u, ū) =

∫
(|uxx|2 − 6|u|2|ux|2 − (uūx + ūux)

2 + 2|u|6)dx.

Note that H0 is defined inH = L2(R,C), H2 is defined in
X = H1(R,C), and H4 is defined in X̃ = H2(R,C).
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Example: traveling solitary wave in the NLS equation

The NLS equation appears for t = t2:

d
dt

[
u
ū

]
= i
[

0 −1
1 0

] [
∇uH2(u, ū)
∇ūH2(u, ū)

]
Traveling solitary waves with two parameters:

iut + uxx + 2|u|2u = 0, u(t, x) = e−iωtU(x− ct)

satisfy

U′′ + 2|U|2U − icU′ + ωU = 0, Λω,c = H2 − cH1 − ωH0

U is a constrained minimizer of energy H2 in X = H1(R,C) for fixed
H1, H0. Simultaneously, U is a constrained minimizer of H4 in
X̃ = H2(R,C) for fixed H3, H2 from Λ̃ω,c = H4 − cH3 − ωH2:

∇Λ̃ω,c(u, ū) = R2∇Λω,c(u, ū) = 0.
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Striking example: the nonlinear Dirac equation

The massive Thirring model in laboratory coordinates{
i(ut + ux) + v = |v|2u,
i(vt − vx) + u = |u|2v,

Conservation of mass, momentum and energy:

Q =

∫
R

(
|u|2 + |v|2

)
dx,

P =
i
2

∫
R

(uūx − uxū + vv̄x − vxv̄) dx,

H =
i
2

∫
R

(uūx − uxū− vv̄x + vxv̄) dx +

∫
R

(
−vū− uv̄ + 2|u|2|v|2

)
dx,

and the higher-order energy (due to integrability):

R =

∫
R

[
|ux|2 + |vx|2 −

i
2

(uxu− uxu)(|u|2 + 2|v|2)

−(uv + uv)(|u|2 + |v|2) + 2|u|2|v|2(|u|2 + |v|2)
]

dx
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Example: solitary waves in the nonlinear Dirac equation

Solitary waves are given by

u(x, t) = Uω(x)eiωt, Uω(x) = sin γ

sech
(

x sin γ + iγ
2

)
sech

(
x sin γ − iγ

2

) .
where ω := cos γ ∈ (−1, 1).

First derivative test: Uω is a critical point of H + ωQ and a critical
point of Λω := R + (1− ω2)Q.

Second derivative test: Uω is a strict minimizer of R in H1(R,C2) for
fixed Q and P. Hence, it is orbitally stable in H1(R,C2)
[D.P.–Y. Shimabukuro, 2014]
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Further directions

. Orbital and asymptotic stability of multi-solitons and breathers
in integrable systems

. Spectral and orbital stability of periodic waves in integrable
systems

. Casimir integrals for non-invertible J and their roles in the
orbital stability analysis

. Waves of the peaked (singular) profiles and failure of
“conditional" orbital stability

. Solitary waves with nonzero boundary conditions and failure of
coercivity.

. Degeneracy of the second variation and the role of bifurcations.
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