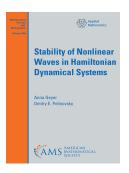
Stability of Nonlinear Waves in Hamiltonian Dynamical Systems

Anna Geyer (TU Delft, Netherlands) and Dmitry E. Pelinovsky (McMaster University, Canada)

> University of Alabama Birmingham (UAB) May 20, 2025

Outline of the book



- 1. Stability in finite-dimensional systems
- 2. Stability of solitary waves
- 3. Stability of periodic waves
- 4. Stability in integrable Hamiltonian systems
- 5. Stability of peaked waves
- 6. Stability of domain walls

1. Introduction - nonlinear waves

- Nonlinear waves → special solutions of some nonlinear PDE
- Steady traveling wave solutions

$$u(t,x) = U(x - ct)$$

periodic wave solitary wave/pulse front/kink

Observed in nature, experiments, simulations

Introduction - dynamical systems

Consider an initial value problem

$$\begin{cases} u_t = \mathcal{F}(u, \partial_x), & t > 0, \\ u(0) = u_0, \end{cases}$$

- ▷ (IVP) is locally well-posed in a suitable function space.
- \triangleright TW with profile $U(\xi)$, $\xi = x ct$ exists from the steady equation

$$-c\partial_{\xi}U = \mathcal{F}(U,\partial_{\xi})$$

 \triangleright The profile U is an equilibrium point in the moving frame

$$u_t = c\partial_{\xi}u + \mathcal{F}(u,\partial_{\xi})$$

What happens to the perturbation $w(t, \xi) := u(t, \xi) - U(\xi)$ as the time increases from t = 0 to $t \to +\infty$?

2. Stability in finite-dimensional systems

Consider the ODE

$$\begin{cases} \frac{du}{dt} = f(u), & t > 0, \\ u(0) = u_0, \end{cases}$$

where $u_0 \in \mathbb{R}^n$ and $f(u) \in C^1(\mathbb{R}^n, \mathbb{R}^n)$ for local well-posedness.

2. Stability in finite-dimensional systems

Consider the ODE

$$\begin{cases} \frac{du}{dt} = f(u), & t > 0, \\ u(0) = u_0, \end{cases}$$

where $u_0 \in \mathbb{R}^n$ and $f(u) \in C^1(\mathbb{R}^n, \mathbb{R}^n)$ for local well-posedness.

Equilibrium point u_* is defined by $f(u_*) = 0$.

2. Stability in finite-dimensional systems

Consider the ODE

$$\begin{cases} \frac{du}{dt} = f(u), & t > 0, \\ u(0) = u_0, \end{cases}$$

where $u_0 \in \mathbb{R}^n$ and $f(u) \in C^1(\mathbb{R}^n, \mathbb{R}^n)$ for local well-posedness.

Equilibrium point u_* is defined by $f(u_*) = 0$.

Expanding f at u_* with the perturbation $w(t) := u(t) - u_*$ as

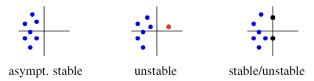
$$f(u) = f(u_* + w) = \underbrace{f(u_*)}_{=0} + \underbrace{D_u f(u_*)}_{=A} w + R(w),$$

where $A \in \mathbb{M}^{n \times n}$ is the linearized matrix and $R(w) = o_{\mathbb{R}^n}(w)$ is a remainder term, yields two systems:

$$\underbrace{\frac{dw}{dt} = Aw}_{\text{Linearized system}} \quad \text{and} \quad \underbrace{\frac{dw}{dt} = Aw + R(w)}_{\text{Nonlinear system}}.$$

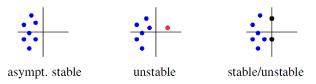
Linear stability

<u>Linear stability</u> is determined by eigenvalues of $A = D_u f(u_*)$:



Linear stability

Linear stability is determined by eigenvalues of $A = D_u f(u_*)$:



Nonlinear stability is defined as

▶ **Stable** if $\forall u_0$ close to u_* , u(t) stays close to u_* for all $t \ge 0$.

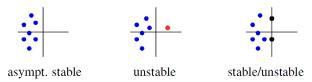
$$\forall \varepsilon > 0, \exists \delta > 0: \quad \forall u_0 \in B_{\delta}(u_*) \quad \Rightarrow \quad u(t) \in B_{\varepsilon}(u_*), \quad t \geq 0.$$

- ▶ **Asymptotically stable** if it is stable and $u(t) \rightarrow u_*$ as $t \rightarrow +\infty$.
- ▶ **Unstable** if for at least one u_0 close to u_* , u(t) leaves a ball at u_* .

$$\exists \varepsilon > 0 : \forall \delta > 0, \exists u_0 \in B_{\delta}(u_*) \Rightarrow u(t) \notin B_{\varepsilon}(u_*), \text{ for some } t > 0.$$

Linear stability

Linear stability is determined by eigenvalues of $A = D_u f(u_*)$:



Theorem 1

- ▷ If $Re(\lambda_j) < 0$ for every $\lambda_j \in \sigma(A)$, then u_* is nonlinearly asymptotically stable.
- ▶ If Re(λ_j) > 0 for at least one $\lambda_j \in \sigma(A)$, then u_* is nonlinearly unstable.

The case with $Re(\lambda_j) \le 0$ for every $\lambda_j \in \sigma(A)$ is inconclusive from the linearized system.

Finite-dimensional Hamiltonian systems

This includes Hamiltonian systems defined in the canonical form as

$$\begin{cases} \frac{du}{dt} = J\nabla H(u), & t > 0, \\ u(0) = u_0, \end{cases}$$

where $J = -J^*$ is invertible, $H \in C^2(\mathbb{R}^n, \mathbb{R})$, and n is even.

 \triangleright Since $Jv \cdot v = 0$ for $v \in \mathbb{R}^n$, the energy is conserved:

$$H(u(t)) = H(u_0), \quad t \ge 0.$$

- ▶ Equilibrium point u_* is critical to the energy: $\nabla H(u_*) = 0$.
- ▶ The linearized system has a structure

$$\frac{dw}{dt} = J\mathcal{L}w,$$

where $\mathcal{L} := H''(u_*)$ is a self-adjoint (Hessian) matrix.

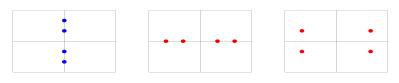
Linear stability in Hamiltonian systems

Eigenvalues of $J\mathcal{L}$ are symmetric

- \triangleright about the real axis $\operatorname{Im}(\lambda) = 0$: both λ , $\bar{\lambda}$ are eigenvalues
- \triangleright about the imaginary axis $Re(\lambda) = 0$: both λ , $-\bar{\lambda}$ are eigenvalues.

$$(JL)^* = -LJ \quad \Rightarrow \quad (JL)^* = -J^{-1}(JL)J$$

They appear in real or imaginary pairs or as complex quadruplets.



neutrally stable

unstable

unstable

Is u_* nonlinearly stable if $\lambda_j \in i\mathbb{R}$ for every $\lambda_j \in \sigma(J\mathcal{L})$?

Nonlinear stability in Hamiltonian systems

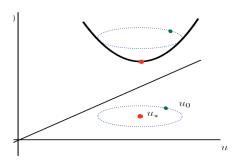
Theorem 2 (Lyapunov's Stability)

If there exists a Lyapunov function $V \in C^1(\mathbb{R}^n, \mathbb{R})$ *such that*

(a)
$$V(u_*) = 0$$
 and $V(u) > 0$ for all $u \in B_{\varepsilon}(u_*) \setminus \{u_*\}$

(b)
$$\frac{d}{dt}V(u(t)) = \nabla V(u(t)) \cdot f(u(t)) \le 0 \text{ for all } u \in B_{\varepsilon}(u_*),$$

then u_* is nonlinearly stable in $\frac{du}{dt} = f(u)$.



Stability of isolated minima or maxima of H(u)

Theorem 3

If H(u) has an isolated local minimum or maximum at u_* , then u_* is nonlinearly stable.

Stability of u_* relies only on $\mathcal{L} = H''(u_*)$, independently of J! Morever, \mathcal{L} may have zero eigenvalues, as long as u_* is isolated.

- ▷ If u_* is a minimum of H(u), take $V(u) := H(u) H(u_*) \ge 0$.
- \triangleright If u_* is a maximum of H(u), take $V(u) := H(u_*) H(u) \ge 0$.

In either case,

$$\frac{d}{dt}H(u(t)) = 0$$

and Lyapunov's Stability Theorem applies.

What if u_* is a saddle point of H(u)? Is it unstable?

Nonlinear instability in Hamiltonian systems

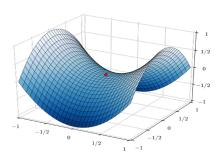
Theorem 4 (Lyapunov's Instability)

If there exists a Lyapunov function $V \in C^1(\mathbb{R}^n, \mathbb{R})$ *such that*

(a)
$$V(u_*) = 0$$
 and $V(u) > 0$ for all $u \in \mathcal{B}_+ \subset B_{\varepsilon}(u_*) \setminus \{u_*\}$

(b)
$$\frac{d}{dt}V(u(t)) = \nabla V(u(t)) \cdot f(u(t)) > 0 \text{ for all } u \in \mathcal{B}_+,$$

then u_* is nonlinearly unstable in $\frac{du}{dt} = f(u)$.



Nonlinear instability in Hamiltonian systems

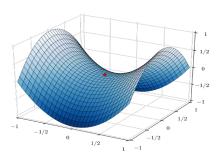
Theorem 5 (Lyapunov's Instability (reversed))

If there exists a Lyapunov function $V \in C^1(\mathbb{R}^n, \mathbb{R})$ *such that*

(a)
$$V(u_*) = 0$$
 and $V(u) < 0$ for all $u \in \mathcal{B}_- \subset B_{\varepsilon}(u_*) \setminus \{u_*\}$

(b)
$$\frac{d}{dt}V(u(t)) = \nabla V(u(t)) \cdot f(u(t)) < 0 \text{ for all } u \in \mathcal{B}_-,$$

then u_* is nonlinearly unstable in $\frac{du}{dt} = f(u)$.



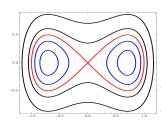
Instability of saddle points of H(u)?

Lyapunov's instability theorem is not applicable to saddle points since

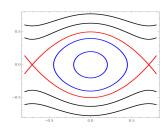
$$\frac{d}{dt}H(u(t)) = 0.$$

Saddle points in \mathbb{R}^2 are necessarily unstable, because the solution curves on the phase plane do not intersect.

$$H(u,v) = \frac{1}{2}v^2 - \frac{1}{2}u^2 + \frac{1}{4}u^4$$



$$H(u, v) = \frac{1}{2}v^2 + \frac{1}{2}u^2 - \frac{1}{4}u^4$$



Instability of saddle points of H(u)?

Lyapunov's instability theorem is not applicable to saddle points since

$$\frac{d}{dt}H(u(t)) = 0.$$

Saddle points in \mathbb{R}^n with $n \ge 4$ do not have to be unstable, e.g.

$$H(u_1, v_1, u_2, v_2) = \frac{1}{2}(u_1^2 + v_1^2) - \frac{1}{2}(u_2^2 + v_2^2)$$

with

$$\frac{d}{dt} \begin{bmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} \frac{\partial H}{\partial u_1} \\ \frac{\partial H}{\partial v_1} \\ \frac{\partial H}{\partial u_2} \\ \frac{\partial H}{\partial v_2} \end{bmatrix}$$

generates

$$\begin{cases} \dot{u}_1 = v_1, \\ \dot{v}_1 = -u_1, \\ \dot{u}_2 = -v_2, \\ \dot{v}_2 = u_2, \end{cases} \Rightarrow \begin{cases} \ddot{u}_1 + u_1 = 0, \\ \ddot{u}_2 + u_2 = 0. \end{cases}$$

Krein theory for saddle points

Let $\lambda_0 \in \sigma(J\mathcal{L})$ be an eigenvalue of algebraic multiplicity m and $\{u_j\}_{j=1}^m \subset \mathbb{R}^n$ be a basis of generalized eigenvectors. The matrix $K(\lambda_0)$ with elements

$$[K(\lambda_0)]_{ij} = \mathcal{L}u_i \cdot u_j, \quad 1 \le i, j \le m,$$

is called the Krein matrix associated with the eigenvalue λ_0 .

- $Frac{1}{1} \operatorname{Re}(\lambda_0) \neq 0, \text{ then } K(\lambda_0) = 0.$
- ▷ If Re(λ_0) = 0 and Im(λ_0) ≠ 0, then $K(\lambda_0)$ is Hermitian and invertible with p_{λ_0} positive and n_{λ_0} negative eigenvalues such that $p_{\lambda_0} + n_{\lambda_0} = m$.

If m = 1 (simple eigenvalue), then $K(\lambda_0) = \mathcal{L}u_1 \cdot u_1$.

$$\mathcal{L}J\mathcal{L}u_1 = \lambda_0\mathcal{L}u_1 \quad \Rightarrow \quad (\lambda_0 + \bar{\lambda}_0)\mathcal{L}u_1 \cdot u_1 = 0.$$

Hamiltonian-Krein theorem

Theorem 6 (Sylvester's inertial law)

Assume that $\mathcal{L} = H''(u_*)$ is invertible with $p(\mathcal{L})$ positive and $n(\mathcal{L})$ negative eigenvalues such that $p(\mathcal{L}) + n(\mathcal{L}) = n$. Then,

$$\begin{split} p(\mathcal{L}) &= N_{\text{real}}(J\mathcal{L}) + 2N_{\text{comp}}(J\mathcal{L}) + 2\sum_{\lambda_0 \in i\mathbb{R}_+} p_{\lambda_0}, \\ n(\mathcal{L}) &= N_{\text{real}}(J\mathcal{L}) + 2N_{\text{comp}}(J\mathcal{L}) + 2\sum_{\lambda_0 \in i\mathbb{R}_+} n_{\lambda_0}, \end{split}$$

where N_{real} is the number of real positive eigenvalues and $2N_{\text{comp}}$ is the number of complex eigenvalues with positive real part.

- ▷ If either $n(\mathcal{L}) = 0$ or $p(\mathcal{L}) = 0$, then $\lambda_j \in i\mathbb{R}$ for all $\lambda_j \in \sigma(J\mathcal{L})$.
- ▷ If $n(\mathcal{L})$ and $p(\mathcal{L})$ are odd, then $N_{\text{real}}(J\mathcal{L}) \ge 1$ and the saddle point u_* is linearly unstable.

Example: a mechanical system

Consider a system of m particles with coordinates $\{q_k\}_{1 \le k \le m}$ and momenta $\{p_k\}_{1 < k < m}$ (n = 2m):

$$\frac{du}{dt} = J \nabla H(u), \quad J = \begin{bmatrix} 0 & -I \\ I & 0 \end{bmatrix}, \quad u = \begin{bmatrix} p \\ q \end{bmatrix},$$

where

$$H = \frac{1}{2} \underbrace{\mathcal{L}_{+}p \cdot p}_{\text{kinetic energy}} + \frac{1}{2} \underbrace{\mathcal{L}_{-}q \cdot q}_{\text{potential energy}}$$

Equations of motion are

$$\frac{dq}{dt} = \mathcal{L}_+ p, \qquad \frac{dp}{dt} = -\mathcal{L}_- q$$

and the spectral problem is

$$\mathcal{L}_+ p = \lambda q, \qquad -\mathcal{L}_- q = \lambda p.$$

Stability theorems

Consider the spectral stability problem:

$$\mathcal{L}_+ p = \lambda q, \qquad -\mathcal{L}_- q = \lambda p, \quad p, q \in \mathbb{R}^m.$$

1. If either \mathcal{L}_+ or \mathcal{L}_- is invertible, then the stability problem is equivalent to the generalized eigenvalue problems:

$$\mathcal{L}_+ p = (-\lambda^2) \mathcal{L}_-^{-1} p$$
, or $\mathcal{L}_- q = (-\lambda^2) \mathcal{L}_+^{-1} q$.

2. If either \mathcal{L}_+ or \mathcal{L}_- is positive, then $z := -\lambda^2$ is real and the number of negative eigenvalues of z (real positive eigenvalues of λ) is uniquely determined by the number of negative eigenvalues of the other operator.

Sharp Hamiltonian-Krein theorem

Assume invertibility of \mathcal{L}_+ and \mathcal{L}_- in

$$\mathcal{L}_+ p = (-\lambda^2) \mathcal{L}_-^{-1} p$$
, and $\mathcal{L}_- q = (-\lambda^2) \mathcal{L}_+^{-1} q$.

3 Hamiltonian–Krein theorem follows by Sylvester inertial law:

$$egin{aligned} n(\mathcal{L}_+) &= N_{ ext{real}}^-(J\mathcal{L}) + N_{ ext{comp}}(J\mathcal{L}) + \sum_{\lambda_0 \in i\mathbb{R}_+} n_{\lambda_0}, \ n(\mathcal{L}_-) &= N_{ ext{real}}^+(J\mathcal{L}) + N_{ ext{comp}}(J\mathcal{L}) + \sum_{\lambda_0 \in i\mathbb{R}_+} n_{\lambda_0}, \end{aligned}$$

where N_{real}^{\pm} is related to p_{λ_0} positive and n_{λ_0} negative eigenvalues of Krein matrix $K(\lambda_0)$ associated with \mathcal{L}_+ for $\lambda_0 \in \mathbb{R}_+$.

4 The theorem recovers the general result

$$n(\mathcal{L}_+) + n(\mathcal{L}_-) = N_{\text{real}}(J\mathcal{L}) + 2N_{\text{comp}}(J\mathcal{L}) + 2\sum_{\lambda_0 \in i\mathbb{R}_+} n_{\lambda_0},$$
 but also gives a sharper count of unstable eigenvalues.

More examples

Here we illustrate all three possible cases for

$$\begin{split} 1 &= n(\mathcal{L}_+) = N_{\text{real}}^-(J\mathcal{L}) + N_{\text{comp}}(J\mathcal{L}) + \sum_{\lambda_0 \in i\mathbb{R}_+} n_{\lambda_0}, \\ 1 &= n(\mathcal{L}_-) = N_{\text{real}}^+(J\mathcal{L}) + N_{\text{comp}}(J\mathcal{L}) + \sum_{\lambda_0 \in i\mathbb{R}_+} n_{\lambda_0}. \end{split}$$

- ▷ For the previous example of $H(p,q) = \frac{1}{2}(p_1^2 p_2^2) + \frac{1}{2}(q_1^2 q_2^2)$ we have $\ddot{q}_1 + q_1 = 0$ and $\ddot{q}_2 + q_2 = 0$ with $n_{\lambda_0} = 1$.
- ⊳ For another example of $H(p,q) = \frac{1}{2}(p_1^2 p_2^2) \frac{1}{2}(q_1^2 q_2^2)$ we have $\ddot{q}_1 q_1 = 0$ and $\ddot{q}_2 q_2 = 0$ with $N_{\text{real}}^+ = N_{\text{real}}^- = 1$.
- ightharpoonup For another example of $H(p,q)=p_1p_2+\frac{1}{2}(q_1^2-q_2^2)$ we have

$$\ddot{q}_1 + q_2 = 0$$
, $\ddot{q}_2 - q_1 = 0$ \Rightarrow $\ddot{q}_1 + q_1 = 0$,

with $N_{\text{comp}} = 1$.

3. Towards the infinite-dimensional Hamiltonian systems

Consider a Hamiltonian dynamical system

$$\frac{du}{dt} = J\nabla H(u),$$

where

- $\triangleright H: X \subset \mathcal{H} \to \mathbb{R}$ is a C^2 functional on a subset X of a Hilbert space \mathcal{H} with inner product $\langle \cdot, \cdot \rangle$ and the induced norm $\| \cdot \|$
- $\triangleright J: \mathcal{H} \to \mathcal{H}$ is a bounded invertible operator with a bounded inverse which is skew-adjoint:

$$\langle Ju, w \rangle = -\langle u, Jw \rangle$$
 for $u, w \in \mathcal{H}$

The first variation of H is defined as

$$\langle \nabla H(u), w \rangle = \lim_{\epsilon \to 0} \frac{H(u + \epsilon w) - H(u)}{\epsilon} = \frac{d}{d\epsilon} H(u + \epsilon w) \Big|_{\epsilon = 0} \quad \text{for } u, w \in X,$$

so that $\nabla H(u) \in X^*$, where X^* is dual to X with respect to \mathcal{H} .

Example: nonlinear wave equation

Consider the nonlinear wave equation on the infinite line $x \in \mathbb{R}$:

$$u_{tt} - u_{xx} + V'(u) = 0 \quad \Rightarrow \frac{d}{dt} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} \nabla_u H(u, v) \\ \nabla_v H(u, v) \end{bmatrix},$$

where

$$H(u,v) = \int_{\mathbb{R}} \left(\frac{1}{2} (u_x)^2 + V(u) + \frac{1}{2} v^2 \right) dx$$

with
$$V(0) = V'(0) = 0$$
, and $V''(0) \neq 0$.

- ightharpoonup Hilbert space for (u, v): $\mathcal{H} = L^2(\mathbb{R}) \times L^2(\mathbb{R})$
- ▷ Energy space for (u, v): $X = H^1(\mathbb{R}) \times L^2(\mathbb{R})$
- ▷ Dual space of *X* w.r.t. \mathcal{H} : $X^* = H^{-1}(\mathbb{R}) \times L^2(\mathbb{R})$.

Initial-value problem

Consider the initial-value problem:

$$\begin{cases} \frac{du}{dt} = J\nabla H(u), & t > 0, \\ u(0) = u_0 \in X, \end{cases}$$

We assume that the local well-posedness holds in the energy space with the local solution

$$u \in C^0([0, \tau_0), X) \cap C^1((0, \tau_0), X^*)$$

for every $u_0 \in X$ and some $\tau_0 > 0$.

The Hamiltonian is conserved in time: $H(u(t,\cdot)) = H(u_0)$, $t \in [0,\tau_0)$. This follows formally (for sufficiently smooth solutions):

$$\frac{d}{dt}H(u(t,\cdot)) = \langle \nabla H(u), \frac{du}{dt} \rangle = \langle \nabla H(u), J \nabla H(u) \rangle = 0.$$

Critical points of H(u)

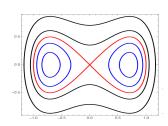
 $u_* \in X$ is a critical point of $H: X \to \mathbb{R}$ if $\nabla H(u_*) = 0$.

For the nonlinear wave equation

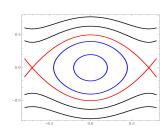
$$u_{tt} - u_{xx} + V'(u) = 0, \quad H(u, v) = \int_{\mathbb{R}} \left(\frac{1}{2}(u_x)^2 + V(u) + \frac{1}{2}v^2\right) dx,$$

 $(u_*,0)$ is a critical point of H(u,v) if $-u_*''+V'(u_*)=0$.

If
$$V(u) = \frac{1}{2}u^2 - \frac{1}{4}u^4$$
, then



If
$$V(u) = -\frac{1}{2}u^2 + \frac{1}{4}u^4$$
, then



Stability of critical points

If $H \in C^2(X, \mathbb{R})$, expansion of H about $u_* \in X$ with the perturbation $w = u - u_* \in X$ yields

$$H(u_* + w) = H(u_*) + \underbrace{\langle \nabla H(u_*), w \rangle}_{=0} + \frac{1}{2} \langle \mathcal{L}w, w \rangle + R(w),$$

where $\mathcal{L} := H''(u_*) : X \to X^*$ is a self-adjoint linear operator in \mathcal{H} and $R(w) = o_X(w^2)$ is the remainder term.

We assume that $\mathcal{L}: dom(\mathcal{L}) \subset \mathcal{H} \to \mathcal{H}$ is bounded from below.

- \triangleright If u_* is a minimizer of H(u), is it nonlinearly stable?
- \triangleright If u_* is a saddle point of H(u), is it nonlinearly unstable?

Difference from the finite-dimensional case in \mathbb{R}^n :

- $\triangleright \mathcal{L}$ may not be bounded from above.
- $\triangleright \ker(\mathcal{L}) \neq \{0\}$ due to translational (and other) symmetries.

Strict minimizers of energy H(u)

Theorem 7

Let $u_* \in X$ be a critical point of H(u) and there exists C > 0 such that $\mathcal{L} := H''(u_*)$ satisfies

$$\langle \mathcal{L}w, w \rangle \ge C \|w\|_X^2, \quad w \in X.$$

then u_* is nonlinearly stable:

$$\forall \varepsilon > 0, \exists \delta > 0: \quad \forall u_0 \in B_{\delta}(u_*) \quad \Rightarrow \quad u(t) \in B_{\varepsilon}(u_*), \quad t \geq 0.$$

The proof follows from:

$$\begin{split} &H(u_0) - H(u_*) = H(u(t,\cdot)) - H(u_*) = H(u_* + w(t,\cdot)) - H(u_*) \\ &= \frac{1}{2} \langle \mathcal{L}w(t,\cdot), w(t,\cdot) \rangle + R(w(t,\cdot)) \ge \frac{1}{2} C \|w(t,\cdot)\|_X^2 - C_R(\varepsilon) \|w(t,\cdot)\|_X^2. \end{split}$$

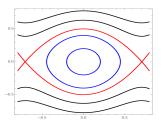
$$H(u_0) - H(u_*) \le \tilde{C} \|u_0 - u_*\|_X^2 \Rightarrow \|u(t, \cdot) - u_*\|_X^2 \le \frac{4\tilde{C}}{C} \|u_0 - u_*\|_X^2.$$

Example: kinks in the nonlinear wave equation

Consider the Hamiltonian

$$H(u,v) = \int_{\mathbb{R}} \left(\frac{1}{2} (u_x)^2 + \frac{1}{4} (1 - u^2)^2 + \frac{1}{2} v^2 \right) dx$$

subject to $(u, v) \to (\pm 1, 0)$ as $x \to \pm \infty$, e.g. $u_*(x) = \tanh\left(\frac{x}{\sqrt{2}}\right)$.



Perturbation $(u_* + w, v)$ is in $(w, v) \in X = H^1(\mathbb{R}) \times L^2(\mathbb{R})$ with

$$\mathcal{L} = H''(u, v) = \begin{bmatrix} -\partial_x^2 + 3u_*^2(x) - 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \text{on} \quad \begin{bmatrix} w \\ v \end{bmatrix}.$$

Sturm's theory for the Schrödinger operator

We have

$$\mathcal{L}_0: H^2(\mathbb{R}) \subset L^2(\mathbb{R}) \to L^2(\mathbb{R}), \quad \text{with} \quad \mathcal{L}_0 = -\partial_x^2 + 3u_*^2(x) - 1.$$

- (a) $\sigma(\mathcal{L}_0) = \sigma_p(\mathcal{L}_0) \cup \sigma_c(\mathcal{L}_0) \subset \mathbb{R}$ since \mathcal{L}_0 is self-adjoint in $L^2(\mathbb{R})$.
- (b) $\sigma_c(\mathcal{L}_0) = [2, \infty)$ since $u_*(x) \to \pm 1$ at $\pm \infty$ exponentially fast.
- (c) Eigenvalues in $\sigma_p(L) = \{\lambda_1, \lambda_2, \dots\} \in (-\infty, 2)$ are simple
- (d) Eigenfunction for eigenvalue λ_n has n-1 simple zeros on \mathbb{R} .
- (e) $\lambda_1 = 0$ since $\mathcal{L}_0 \partial_x u_* = 0$ and $\partial_x u_*(x) > 0$ for all $x \in \mathbb{R}$.

Hence $\mathcal{L}_0: H^2_{\mathrm{odd}}(\mathbb{R}) \subset L^2_{\mathrm{odd}}(\mathbb{R}) \to L^2_{\mathrm{odd}}(\mathbb{R})$ is strictly positive and $\exists C>0$ such that $\langle \mathcal{L}_0 w, w \rangle \geq C \|w\|_{L^2}^2, \forall w \in H^2_{\mathrm{odd}}$. This implies via Gärdiner's inequality that

$$\langle \mathcal{L}_0 w, w \rangle \ge C \|w\|_{H^1}^2, \quad \forall w \in H^1_{\text{odd}}(\mathbb{R}).$$

The kink is nonlinearly stable for $(w, v) \in X_{\text{odd}} = H^1_{\text{odd}}(\mathbb{R}) \times L^2_{\text{odd}}(\mathbb{R})$.

Saddle points of energy H(u)

Theorem 8

Let $u_* \in X$ be a critical point of H(u) and there exists $w_+, w_- \in X$ such that $\mathcal{L} := H''(u_*)$ satisfies

$$\langle \mathcal{L}w_+, w_+ \rangle > 0$$
 and $\langle \mathcal{L}w_-, w_- \rangle < 0$.

If u_* is linearly unstable and $\nabla H(u_* + w) = \mathcal{L}w + o_X(w)$, then u_* is nonlinearly unstable:

$$\exists \varepsilon > 0: \quad \forall \delta > 0, \quad \exists u_0 \in B_{\delta}(u_*): \quad u(t_0) \notin B_{\varepsilon}(u_*), \quad t_0 > 0.$$

Saddle points of energy H(u)

Theorem 8

Let $u_* \in X$ be a critical point of H(u) and there exists $w_+, w_- \in X$ such that $\mathcal{L} := H''(u_*)$ satisfies

$$\langle \mathcal{L}w_+, w_+ \rangle > 0$$
 and $\langle \mathcal{L}w_-, w_- \rangle < 0$.

If u_* is linearly unstable and $\nabla H(u_* + w) = \mathcal{L}w + o_X(w)$, then u_* is nonlinearly unstable:

$$\exists \varepsilon > 0: \quad \forall \delta > 0, \quad \exists u_0 \in B_{\delta}(u_*): \quad u(t_0) \notin B_{\varepsilon}(u_*), \quad t_0 > 0.$$

Linear instability implies nonlinear instability if the nonlinearity is bounded in X like in \mathbb{R}^n and the (IVP) is well-posed in X.

Saddle points of energy H(u)

Theorem 8

Let $u_* \in X$ be a critical point of H(u) and there exists $w_+, w_- \in X$ such that $\mathcal{L} := H''(u_*)$ satisfies

$$\langle \mathcal{L}w_+, w_+ \rangle > 0$$
 and $\langle \mathcal{L}w_-, w_- \rangle < 0$.

If u_* is linearly unstable and $\nabla H(u_* + w) = \mathcal{L}w + o_X(w)$, then u_* is nonlinearly unstable:

$$\exists \varepsilon > 0: \quad \forall \delta > 0, \quad \exists u_0 \in B_{\delta}(u_*): \quad u(t_0) \notin B_{\varepsilon}(u_*), \quad t_0 > 0.$$

It follows from the Hamiltonian-Krein theorem,

$$n(\mathcal{L}) = N_{\text{real}}(J\mathcal{L}) + 2N_{\text{comp}}(J\mathcal{L}) + 2\sum_{\lambda_0 \in i\mathbb{R}_+} n_{\lambda_0},$$

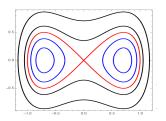
that u_* is linearly unstable if $n(\mathcal{L})$ is odd.

Example: pulses in the nonlinear wave equation

Consider the Hamiltonian

$$H(u,v) = \int_{\mathbb{R}} \left(\frac{1}{2} (u_x)^2 - \frac{1}{2} u^2 + \frac{1}{4} u^4 + \frac{1}{2} v^2 \right) dx$$

subject to $(u, v) \to (0, 0)$ as $x \to \pm \infty$, e.g. $u_*(x) = \sqrt{2} \operatorname{sech}(x)$.



Perturbation $(u_* + w, v)$ is in $(w, v) \in X = H^1(\mathbb{R}) \times L^2(\mathbb{R})$ with

$$\mathcal{L} = H''(u, v) = \begin{bmatrix} -\partial_x^2 + 1 - 3u_*^2(x) & 0 \\ 0 & 1 \end{bmatrix} \quad \text{on} \quad \begin{bmatrix} w \\ v \end{bmatrix}.$$

Sturm's theory for the Schrödinger operator

We have

$$\mathcal{L}_0: H^2(\mathbb{R}) \subset L^2(\mathbb{R}) \to L^2(\mathbb{R}), \quad \text{with} \quad \mathcal{L}_0 = -\partial_x^2 + 1 - 3u_*^2(x).$$

- (a) $\sigma(\mathcal{L}_0) = \sigma_p(\mathcal{L}_0) \cup \sigma_c(\mathcal{L}_0) \subset \mathbb{R}$ since \mathcal{L}_0 is self-adjoint in $L^2(\mathbb{R})$.
- (b) $\sigma_c(\mathcal{L}_0) = [1, \infty)$ since $u_*(x) \to 0$ at $\pm \infty$ exponentially fast.
- (c) Eigenvalues in $\sigma_p(L) = \{\lambda_1, \lambda_2, \dots\} \in (-\infty, 1)$ are simple
- (d) Eigenfunction for eigenvalue λ_n has n-1 simple zeros on \mathbb{R} .
- (e) $\lambda_1 < 0$, $\lambda_2 = 0$ since $\mathcal{L}_0 \partial_x u_* = 0$ and $\partial_x u_*(x)$ has one zero on \mathbb{R} .

The spectral stability problem

$$\lambda \begin{bmatrix} w \\ v \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} -\partial_x^2 + 1 - 3u_*^2(x) & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} w \\ v \end{bmatrix}$$

yields $\lambda w = v$ and $-\lambda^2 w = \mathcal{L}_0 w$ with $\lambda^2 = -\lambda_1 > 0$. The pulse is nonlinearly unstable for $(w, v) \in X = H^1(\mathbb{R}) \times L^2(\mathbb{R})$.

4. Towards to Hamiltonian systems with symmetries

- \triangleright Hamiltonian systems are invariant under translations in time. This symmetry is associated to the conservation of H(u).
- Dother symmetries are common in physical systems such as spatial translations and rotations, phase rotations, ... These symmetries lead to the degeneracy of the kernel of $\mathcal{L} = H''(u_*)$.
- ▶ Additional symmetries lead to additional conserved quantities.
- \triangleright Additional conservative quantities may affect linear and nonlinear stability of saddle points of H(u).

Definition of a symmetry

Consider the symmetry transformation $T(\theta): \mathcal{H} \to \mathcal{H}$ for $\theta \in \mathbb{R}$ with the infinitesimal generator $T': \text{dom}(T') \subset \mathcal{H} \to \mathcal{H}$ defined by

$$T'u := \lim_{\theta \to 0} \frac{T(\theta)u - u}{\theta},$$

for every $u \in \text{dom}(T')$ for which the limit exists. Assume properties:

▷ group:

$$T(0) = \text{Id}, T(\theta_1 + \theta_2) = T(\theta_1)T(\theta_2) = T(\theta_2)T(\theta_1) \quad \forall \theta_1, \theta_2.$$

▷ isometry:

$$\langle T(\theta)f, T(\theta)g \rangle = \langle f, g \rangle, \forall f, g \in \mathcal{H}.$$

- \triangleright invariance: $H(T(\theta)u) = H(u), \forall u \in X$.
- \triangleright commutativity: $JT(\theta) = T(\theta)J$.
- \triangleright skew-adjointness: $\langle T'f, g \rangle = -\langle f, T'g \rangle, \forall f, g \in \text{dom}(T') \subset \mathcal{H}.$

An associated conserved quantity

Let $T(\theta): \mathcal{H} \to \mathcal{H}, \theta \in \mathbb{R}$ be a symmetry of

$$\frac{du}{dt} = J\nabla H(u),$$

such that if u(t) is a solution, so is $T(\theta)u(t)$ for every $\theta \in \mathbb{R}$.

If $u \in X$ and $J^{-1}T'u \in X^*$, then the quadratic functional $Q(u): X \to \mathbb{R}$ is well-defined by

$$Q(u) := \frac{1}{2} \langle J^{-1} T' u, u \rangle.$$

For every local solution $u \in C^0([0, \tau_0), X)$, the value of Q(u) is conserved in time:

$$Q(u(t,\cdot)) = Q(u_0), \quad t \in [0,\tau_0).$$

Furthermore we have $Q(T(\theta)u) = Q(u)$, $T'u = J\nabla Q(u)$, and

$$\langle \nabla Q(u), J \nabla H(u) \rangle = 0.$$

Stationary states (traveling waves)

In application to the Hamiltonian system

$$\frac{du}{dt} = J\nabla H(u),$$

the symmetry $T(\theta): \mathcal{H} \to \mathcal{H}$, $\theta \in \mathbb{R}$ allows us to consider stationary states (traveling waves) in the form:

$$u(t,\cdot) = T(\omega t + \theta)u_{\omega}, \quad \omega \in \Omega \subset \mathbb{R}, \quad \theta \in \mathbb{R},$$

where the profile u_{ω} is obtained from

$$\omega T' u_{\omega} = J \nabla H(u_{\omega})$$

Since $T'u = J\nabla Q(u)$ and J is invertible, we characterize the profile u_{ω} as a critical point of the *augmented energy*

$$\Lambda_{\omega}(u) := H(u) - \omega Q(u).$$

Example: nonlinear Schrödinger equation

Consider the NLS equation on the infinite line $x \in \mathbb{R}$:

$$i\psi_t = -\psi_{xx} + W'(|\psi|^2)\psi \Rightarrow \frac{d}{dt} \begin{bmatrix} \psi \\ \bar{\psi} \end{bmatrix} = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \begin{bmatrix} \nabla_{\psi} H(\psi, \bar{\psi}) \\ \nabla_{\bar{\psi}} H(\psi, \bar{\psi}) \end{bmatrix},$$

where

$$H(\psi, \bar{\psi}) = \int_{\mathbb{R}} \left(|\psi_x|^2 + W(|\psi|^2) \right) dx,$$

with $\mathcal{H} = L^2(\mathbb{R}, \mathbb{C})$, $X = H^1(\mathbb{R}, \mathbb{C})$, and $X^* = H^{-1}(\mathbb{R}, \mathbb{C})$.

Example: nonlinear Schrödinger equation

Consider the NLS equation on the infinite line $x \in \mathbb{R}$:

$$i\psi_t = -\psi_{xx} + W'(|\psi|^2)\psi \Rightarrow \frac{d}{dt} \begin{bmatrix} \psi \\ \bar{\psi} \end{bmatrix} = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \begin{bmatrix} \nabla_{\psi} H(\psi, \bar{\psi}) \\ \nabla_{\bar{\psi}} H(\psi, \bar{\psi}) \end{bmatrix},$$

where

$$H(\psi, \bar{\psi}) = \int_{\mathbb{R}} \left(|\psi_x|^2 + W(|\psi|^2) \right) dx,$$

with
$$\mathcal{H} = L^2(\mathbb{R}, \mathbb{C})$$
, $X = H^1(\mathbb{R}, \mathbb{C})$, and $X^* = H^{-1}(\mathbb{R}, \mathbb{C})$.

Phase rotation symmetry

$$T_1(\theta) \begin{bmatrix} \psi \\ \bar{\psi} \end{bmatrix} = \begin{bmatrix} e^{-i\theta} \psi \\ e^{i\theta} \bar{\psi} \end{bmatrix} \Rightarrow T_1' \begin{bmatrix} \psi \\ \bar{\psi} \end{bmatrix} = \begin{bmatrix} -i\psi \\ i\bar{\psi} \end{bmatrix} \Rightarrow Q_1(\psi) = \int_{\mathbb{R}} |\psi|^2 dx.$$

Spatial translation symmetry

$$T_2(heta) egin{bmatrix} \psi \ ar{\psi} \end{bmatrix} = egin{bmatrix} \psi(\cdot + heta) \ ar{\psi}(\cdot + heta) \end{bmatrix} \Rightarrow T_2' egin{bmatrix} \psi \ ar{\psi} \end{bmatrix} = egin{bmatrix} \partial_x \psi \ \partial_x ar{\psi} \end{bmatrix} \Rightarrow Q_2(\psi) = \operatorname{Im} \int_{\mathbb{R}} \psi \partial_x ar{\psi} dx.$$

Stationary (TW) states in the NLS equation

Critical points of $\Lambda_{\omega_1,\omega_2}:=H-\omega_1Q_1-\omega_2Q_2$ are found from Euler–Lagrange equations

$$-\Psi'' + W'(|\Psi|^2)\Psi - \omega_1 \Psi - i\omega_2 \Psi' = 0,$$

which coincides with the stationary (TW) states of the NLS equation

$$i\psi_t = -\psi_{xx} + W'(|\psi|^2)\psi$$
 $\psi(t,x) = e^{-i\omega_1 t} \Psi(x + \omega_2 t).$

Due to the Galilean transformation

$$\Psi(x) = e^{-\frac{i}{2}\omega_2 x} \Phi(x) \quad \Rightarrow \quad -\Phi'' + W'(|\Phi|^2) \Phi - \omega \Phi = 0, \quad \omega = \omega_1 + \frac{\omega_2^2}{4},$$

we can obtain stationary states from a single symmetry with the augmented energy $\Lambda_{\omega} = H - \omega Q$ with a single conservation $Q \equiv Q_1$.

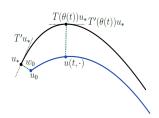
Consequencies of the symmetry I

If u_{ω} is a critical point of $\Lambda_{\omega}(u) = H(u) - \omega Q(u)$, then the kernel of $\mathcal{L}_{\omega} := H''(u_{\omega}) - \omega Q''(u_{\omega})$ contains $T'u_{\omega} = J\nabla Q(u_{\omega})$ (degeneracy).

To deal with the degeneracy due to symmetry, we can introduce the concept of orbital stability:

We say that u_{ω} is *orbitally stable in X* if $\forall \epsilon > 0$, $\exists \delta > 0$: $\|u_0 - u_{\omega}\|_X < \delta$ implies

$$\inf_{\theta\in\mathbb{R}}\|u(t,\cdot)-T(\theta)u_{\omega}\|_{X}<\epsilon,\quad \text{ for } t>0.$$

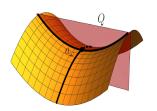


Since $X \subset \mathcal{H}$ with the inner product $\langle \cdot, \cdot \rangle$, we can look for $\theta(t)$ such that

$$\langle u(t,\cdot)-T(\theta(t))u_{\omega},T'(\theta(t))u_{\omega}\rangle=0$$

Consequencies of the symmetry II

If u_{ω} is a saddle point of $\Lambda_{\omega}(u) = H(u) - \omega Q(u)$, then it may still be a minimizer of energy H(u) subject to fixed mass Q(u).



Since
$$Q(u_{\omega} + w) = Q(u_{\omega}) + \langle \nabla Q(u_{\omega}), w \rangle + \mathcal{O}(\|w\|_X^2)$$
, we can use

$$\langle u(t,\cdot) - T(\theta(t))u_{\omega}, T(\theta(t))\nabla Q(u_{\omega})\rangle = 0$$

We say that u_{ω} is a strict constrained minimizer of energy if

$$\exists C_{\omega} > 0: \quad \langle \mathcal{L}_{\omega} w, w \rangle \geq C_{\omega} \|w\|_{X}^{2}, \quad \forall w \in X_{\{J \nabla Q(u_{\omega}), \nabla Q(u_{\omega})\}^{\perp}}.$$

Strict constrained minimizers of energy

Theorem 9

Let $u_{\omega} \in X$ be a critical point of $\Lambda_{\omega}(u) = H(u) - \omega Q(u)$. Assume

▶ the spectral gap condition

$$\exists \delta > 0 : \quad (-\delta, \delta) \cap \sigma(\mathcal{L}_{\omega}) = \{0\}.$$

- ▶ the non-degeneracy condition $\ker(\mathcal{L}_{\omega}) = \operatorname{span}(J\nabla Q(u_{\omega}))$ with $J\nabla Q(u_{\omega}) \in X \subset \mathcal{H}$.
- by the robust norm condition If $||u - u_{\omega}||_X < \epsilon_0 \ll 1$, then

$$\exists \theta_0 \in \mathbb{R} : \quad \|u - T(\theta_0)u_\omega\|_X = \inf_{\theta \in \mathbb{R}} \|u - T(\theta)u_\omega\|_X.$$

If u_{ω} is a constrained minimizer of H(u), then u_{ω} is orbitally stable.

Constrained saddle points of energy

Theorem 10

Let $u_{\omega} \in X$ be a critical point of $\Lambda_{\omega}(u)$ such that there exist $w_+, w_- \in X_{\{J \nabla Q(u_{\omega}), \nabla Q(u_{\omega})\}^{\perp}}$ such that \mathcal{L}_{ω} satisfies

$$\langle \mathcal{L}_{\omega} w_+, w_+ \rangle > 0$$
 and $\langle \mathcal{L}_{\omega} w_-, w_- \rangle < 0$.

If u_{ω} is linearly unstable and $\nabla \Lambda_{\omega}(u_{\omega} + w) = \mathcal{L}_{\omega}w + o_X(w)$, then u_{ω} is nonlinearly orbitally unstable:

$$\exists \varepsilon > 0: \ \forall \delta > 0, \ \exists u_0 \in B_{\delta}(u_{\omega}): u(t_0) \notin B_{\varepsilon}(T(\theta)u_{\omega}), \forall \theta \in \mathbb{R}, \ t_0 > 0.$$

Constrained saddle points of energy

Theorem 10

Let $u_{\omega} \in X$ be a critical point of $\Lambda_{\omega}(u)$ such that there exist $w_+, w_- \in X_{\{J \nabla Q(u_{\omega}), \nabla Q(u_{\omega})\}^{\perp}}$ such that \mathcal{L}_{ω} satisfies

$$\langle \mathcal{L}_{\omega} w_+, w_+ \rangle > 0$$
 and $\langle \mathcal{L}_{\omega} w_-, w_- \rangle < 0$.

If u_{ω} is linearly unstable and $\nabla \Lambda_{\omega}(u_{\omega} + w) = \mathcal{L}_{\omega}w + o_X(w)$, then u_{ω} is nonlinearly orbitally unstable:

$$\exists \varepsilon > 0: \ \forall \delta > 0, \ \exists u_0 \in B_\delta(u_\omega): u(t_0) \notin B_\varepsilon(T(\theta)u_\omega), \forall \theta \in \mathbb{R}, \ t_0 > 0.$$

Linear instability implies nonlinear instability if the nonlinearity is bounded in X like in \mathbb{R}^n and the (IVP) is well-posed in X. Constraint of fixed mass Q(u) does not help to stabilize the saddle point.

Constrained saddle points of energy

Theorem 10

Let $u_{\omega} \in X$ be a critical point of $\Lambda_{\omega}(u)$ such that there exist $w_+, w_- \in X_{\{J \nabla Q(u_{\omega}), \nabla Q(u_{\omega})\}^{\perp}}$ such that \mathcal{L}_{ω} satisfies

$$\langle \mathcal{L}_{\omega} w_+, w_+ \rangle > 0$$
 and $\langle \mathcal{L}_{\omega} w_-, w_- \rangle < 0$.

If u_{ω} is linearly unstable and $\nabla \Lambda_{\omega}(u_{\omega} + w) = \mathcal{L}_{\omega}w + o_X(w)$, then u_{ω} is nonlinearly orbitally unstable:

$$\exists \varepsilon > 0: \ \forall \delta > 0, \ \exists u_0 \in B_\delta(u_\omega): u(t_0) \notin B_\varepsilon(T(\theta)u_\omega), \forall \theta \in \mathbb{R}, \ t_0 > 0.$$

It follows from the Hamiltonian-Krein theorem,

$$n(\mathcal{L}_{\omega}|_{\{J\nabla Q(u_{\omega}),\nabla Q(u_{\omega})\}^{\perp}}) = N_{\text{real}}(J\mathcal{L}) + 2N_{\text{comp}}(J\mathcal{L}) + 2\sum_{\lambda_0 \in i\mathbb{R}_{+}} n_{\lambda_0},$$

that u_{ω} is linearly unstable if $n(\mathcal{L}_{\omega}|_{\{J\nabla Q(u_{\omega}), \nabla Q(u_{\omega})\}^{\perp}})$ is odd.

Constrained minimizers of energy

The goal is to show that

$$\exists C_{\omega} > 0: \quad \langle \mathcal{L}_{\omega} w, w \rangle \geq C_{\omega} \|w\|_{X}^{2}, \quad \forall w \in X_{\{J \nabla Q(u_{\omega}), \nabla Q(u_{\omega})\}^{\perp}},$$
 even if \mathcal{L}_{ω} has negative eigenvalues in \mathcal{H} .

Constrained minimizers of energy

The goal is to show that

$$\exists C_{\omega} > 0: \quad \langle \mathcal{L}_{\omega} w, w \rangle \geq C_{\omega} \|w\|_{X}^{2}, \quad \forall w \in X_{\{J \nabla Q(u_{\omega}), \nabla Q(u_{\omega})\}^{\perp}},$$

even if \mathcal{L}_{ω} has negative eigenvalues in \mathcal{H} .

Theorem 11

Assume the spectral gap and non-degeneracy conditions. Then, u_{ω} is a constrained minimizer of H(u) if either

- $\triangleright \ \sigma(\mathcal{L}_{\omega}) \geq 0 \ or$
- ho \mathcal{L}_{ω} has one simple negative eigenvalue and $rac{d}{d\omega}Q(u_{\omega}) < 0$.

 u_{ω} is a constrained saddle point of H(u) if either

- ho \mathcal{L}_{ω} has one simple negative eigenvalue and $rac{d}{d\omega}Q(u_{\omega})>0$ or
- $\triangleright \mathcal{L}_{\omega}$ has two or more negative eigenvalues.

[Vakhitov-Kolokolov, Bona-Souganidis-Strauss, Weinstein, Shatah-Strauss, ...]

We are looking for

$$\begin{split} \lambda_0 &= \inf_{w \in X_{\{J \nabla Q(u_{\omega}), \nabla Q(u_{\omega})\}^{\perp}}} \frac{\langle \mathcal{L}_{\omega} w, w \rangle}{\|w\|^2} \\ &= \inf_{w \in X, (\nu, \mu) \in \mathbb{R}^2} \frac{\langle \mathcal{L}_{\omega} w, w \rangle - 2\nu \langle w, \nabla Q(u_{\omega}) \rangle - 2\mu \langle w, J \nabla Q(u_{\omega}) \rangle}{\|w\|^2}, \end{split}$$

or, equivalently, at the lowest eigenvalue λ of

$$(\mathcal{L}_{\omega} - \lambda I)w = \nu \nabla Q(u_{\omega}) + \mu J \nabla Q(u_{\omega}), \quad w \in X_{\{J \nabla Q(u_{\omega}), \nabla Q(u_{\omega})\}^{\perp}},$$

where $(\nu, \mu) \in \mathbb{R}^2$ are Lagrange multipliers.

We are looking for

$$\begin{split} \lambda_0 &= \inf_{w \in X_{\{J \nabla Q(u_{\omega}), \nabla Q(u_{\omega})\}^{\perp}}} \frac{\langle \mathcal{L}_{\omega} w, w \rangle}{\|w\|^2} \\ &= \inf_{w \in X, (\nu, \mu) \in \mathbb{R}^2} \frac{\langle \mathcal{L}_{\omega} w, w \rangle - 2\nu \langle w, \nabla Q(u_{\omega}) \rangle - 2\mu \langle w, J \nabla Q(u_{\omega}) \rangle}{\|w\|^2}, \end{split}$$

or, equivalently, at the lowest eigenvalue λ of

$$(\mathcal{L}_{\omega} - \lambda I)w = \nu \nabla Q(u_{\omega}) + \mu J \nabla Q(u_{\omega}), \quad w \in X_{\{J \nabla Q(u_{\omega}), \nabla Q(u_{\omega})\}^{\perp}},$$

where $(\nu, \mu) \in \mathbb{R}^2$ are Lagrange multipliers. Since

$$\langle \nabla Q(u_{\omega}), J \nabla Q(u_{\omega}) \rangle = 0,$$

we have $\mu ||J\nabla Q(u_{\omega})||^2 = 0$, so that $\mu = 0$. Furthermore, the constraint $\langle w, J\nabla Q(u_{\omega}) \rangle = 0$ is satisfied for every $\lambda \neq 0$.

Hence, we are looking at the lowest eigenvalue λ in $(-\infty, 0)$ of

$$(\mathcal{L}_{\omega} - \lambda I)w = \nu \nabla Q(u_{\omega}), \quad w \in X_{\{\nabla Q(u_{\omega})\}^{\perp}}.$$

- \triangleright Either $\lambda \in \sigma(\mathcal{L}_{\omega})$ with $w \in X_{\{\nabla Q(u_{\omega})\}^{\perp}}$ and $\nu = 0$ or
- $\triangleright \lambda \notin \sigma(\mathcal{L}_{\omega})$ and

$$F(\lambda) = \langle (\mathcal{L}_{\omega} - \lambda I)^{-1} \nabla Q(u_{\omega}), \nabla Q(u_{\omega}) \rangle = 0,$$

with $\nu \neq 0$.

The first case is included in the study of properties of $F(\lambda)$ for $\lambda \in (-\infty, 0)$.

Properties of $F(\lambda)$ given by $F(\lambda) = \langle (\mathcal{L}_{\omega} - \lambda I)^{-1} \nabla Q(u_{\omega}), \nabla Q(u_{\omega}) \rangle$.

- 1. F is analytic for $\lambda \notin \sigma(\mathcal{L}_{\omega})$ and may have infinite jump discontinuity at $\lambda \in \sigma(\mathcal{L}_{\omega})$.
- 2. $F(\lambda) \to 0^+$ as $\lambda \to -\infty$ since

$$|F(\lambda)| \leq |\lambda - \lambda_{\min}|^{-1} \|\nabla Q(u_{\omega})\|^2, \quad \lambda < \lambda_{\min} = \inf \sigma(\mathcal{L}_{\omega}).$$

- 3. $F'(\lambda) > 0$ since $F'(\lambda) = \|(\mathcal{L}_{\omega} \lambda I)^{-1} \nabla Q(u_{\omega})\|^2$.
- 4. If $\lambda_0 \in \sigma(\mathcal{L}_{\omega})$ (simple) with $w_0 \in X$, then

$$F(\lambda) = \frac{|\langle w_0, \nabla Q(u_\omega) \rangle|^2}{\lambda_0 - \lambda} + \tilde{F}(\lambda),$$

with analytic \tilde{F} across $\lambda = \lambda_0$.

5. *F* is analytic at $\lambda = 0$ as $w_0 = J\nabla Q(u_\omega)$: $\langle w_0, \nabla Q(u_\omega) \rangle = 0$.

Finally, we compute the slope criterion

$$\lim_{\lambda \to 0} F(\lambda) = \langle \mathcal{L}_{\omega}^{-1} \nabla Q(u_{\omega}), \nabla Q(u_{\omega}) \rangle = \langle \partial_{\omega} u_{\omega}, \nabla Q(u_{\omega}) \rangle = \frac{d}{d\omega} Q(u_{\omega}).$$

Here we have used C^1 smoothness of $\Omega \ni \omega \to u_\omega \in X$ and

$$\mathcal{L}_{\omega}\partial_{\omega}u_{\omega}=\nabla Q(u_{\omega}),$$

obtained from
$$\nabla \Lambda_{\omega}(u_{\omega}) = \nabla H(u_{\omega}) - \omega \nabla Q(u_{\omega}) = 0$$
.

 C^1 -smoothness $\Omega \ni \omega \to u_\omega \in X$ holds under the spectral gap and non-degeneracy conditions.

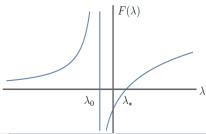
Finally, we compute the slope criterion

$$\lim_{\lambda \to 0} F(\lambda) = \langle \mathcal{L}_{\omega}^{-1} \nabla Q(u_{\omega}), \nabla Q(u_{\omega}) \rangle = \langle \partial_{\omega} u_{\omega}, \nabla Q(u_{\omega}) \rangle = \frac{d}{d\omega} Q(u_{\omega}).$$

If \mathcal{L}_{ω} has one simple negative eigenvalue and

$$\frac{d}{d\omega}Q(u_{\omega})<0$$

then



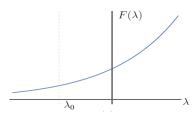
Finally, we compute the slope criterion

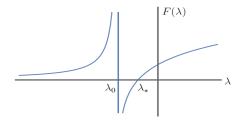
$$\lim_{\lambda \to 0} F(\lambda) = \langle \mathcal{L}_{\omega}^{-1} \nabla Q(u_{\omega}), \nabla Q(u_{\omega}) \rangle = \langle \partial_{\omega} u_{\omega}, \nabla Q(u_{\omega}) \rangle = \frac{d}{d\omega} Q(u_{\omega}).$$

If \mathcal{L}_{ω} has one simple negative eigenvalue and

$$\frac{d}{d\omega}Q(u_{\omega}) > 0$$

41. . ..

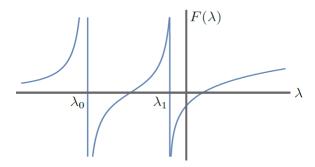




Finally, we compute the slope criterion

$$\lim_{\lambda \to 0} F(\lambda) = \langle \mathcal{L}_{\omega}^{-1} \nabla Q(u_{\omega}), \nabla Q(u_{\omega}) \rangle = \langle \partial_{\omega} u_{\omega}, \nabla Q(u_{\omega}) \rangle = \frac{d}{d\omega} Q(u_{\omega}).$$

If \mathcal{L}_{ω} has two (or more) negative eigenvalues, then



Example: solitons in the nonlinear Schrödinger equation

Recall the NLS equation

$$i\psi_t = -\psi_{xx} + W'(|\psi|^2)\psi, \quad W'(0) = 0,$$

with $\psi(t, x) = e^{-i\omega t}\Phi(x)$ from

$$-\Phi'' + W'(|\Phi|^2)\Phi - \omega\Phi = 0.$$

If $\Phi(x) \to 0$ as $|x| \to \infty$ (only if $\omega < 0$), then $\Phi \in \mathbb{R}$ up to the phase rotation. Perturbation $\psi - \Phi = u + iv$ is defined for $(u,v) \in X = H^1(\mathbb{R}) \times H^1(\mathbb{R})$ with

$$\mathcal{L}_{\omega} = \begin{bmatrix} -\partial_x^2 + W'(\Phi^2) + 2\Phi^2 W''(\Phi^2) - \omega & 0\\ 0 & -\partial_x^2 + W'(\Phi^2) - \omega \end{bmatrix}$$

acting on (u, v).

Sturm's theory for the Schrödinger operators

We have

$$\mathcal{L}_+: H^2(\mathbb{R}) \subset L^2(\mathbb{R}) \to L^2(\mathbb{R}),$$

with

$$\mathcal{L}_{+} = -\partial_{x}^{2} + W'(\Phi^{2}) + 2\Phi^{2}W''(\Phi^{2}) - \omega, \quad \omega < 0.$$

- (a) $\sigma(\mathcal{L}_+) = \sigma_p(\mathcal{L}_+) \cup \sigma_c(\mathcal{L}_+) \subset \mathbb{R}$ since \mathcal{L}_+ is self-adjoint in $L^2(\mathbb{R})$.
- (b) $\sigma_c(\mathcal{L}_+) = [|\omega|, \infty)$ since $\Phi(x) \to 0$ at $\pm \infty$ exponentially fast.
- (c) Eigenvalues in $\sigma_p(L_+)=\{\lambda_1,\lambda_2,\dots\}\in(-\infty,|\omega|)$ are simple
- (d) Eigenfunction for eigenvalue λ_n has n-1 simple zeros on \mathbb{R} .
- (e) $\lambda_1 < 0$, $\lambda_2 = 0$ since $\mathcal{L}_+ \partial_x \Phi = 0$ and $\partial_x \Phi$ has one zero on \mathbb{R} .

Sturm's theory for the Schrödinger operators

We have

$$\mathcal{L}_{-}: H^{2}(\mathbb{R}) \subset L^{2}(\mathbb{R}) \to L^{2}(\mathbb{R}),$$

with

$$\mathcal{L}_{-} = -\partial_{x}^{2} + W'(\Phi^{2}) - \omega, \quad \omega < 0$$

- (a) $\sigma(\mathcal{L}_{-}) = \sigma_p(\mathcal{L}_{-}) \cup \sigma_c(\mathcal{L}_{-}) \subset \mathbb{R}$ since \mathcal{L}_{-} is self-adjoint in $L^2(\mathbb{R})$.
- (b) $\sigma_c(\mathcal{L}_-) = [|\omega|, \infty)$ since $\Phi(x) \to 0$ at $\pm \infty$ exponentially fast.
- (c) Eigenvalues in $\sigma_p(L_-) = \{\lambda_1, \lambda_2, \dots\} \in (-\infty, |\omega|)$ are simple
- (d) Eigenfunction for eigenvalue λ_n has n-1 simple zeros on \mathbb{R} .
- (e) $\lambda_1 = 0$ since $\mathcal{L}_{-}\Phi = 0$ and $\Phi(x) > 0$ for all $x \in \mathbb{R}$.

Sturm's theory for the Schrödinger operators

Hence Φ is a saddle point of energy

$$H(\psi) = \int_{\mathbb{R}} \left(|\psi_x|^2 + W(|\psi|^2) \right) dx.$$

The phase rotation symmetry gives conserved mass

$$Q(\psi) = \int_{\mathbb{R}} |\psi|^2 dx.$$

If $\frac{d}{d\omega} \|\Phi\|^2 < 0$, then Φ is orbitally stable with respect to

$$\inf_{(\theta,\xi)\in\mathbb{R}^2} \|\psi(t,\cdot) - e^{-i\theta} \Phi(\cdot + \xi)\|_{H^1(\mathbb{R},\mathbb{C})}.$$

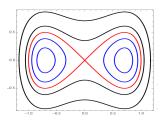
If $\frac{d}{d\omega} \|\Phi\|^2 > 0$, then Φ is orbitally unstable.

Example: pulses in the nonlinear wave equation

Consider the Hamiltonian

$$H(u,v) = \int_{\mathbb{R}} \left(\frac{1}{2} (u_x)^2 - \frac{1}{2} u^2 + \frac{1}{4} u^4 + \frac{1}{2} v^2 \right) dx$$

subject to $(u, v) \to (0, 0)$ as $x \to \pm \infty$, e.g. $u_*(x) = \sqrt{2} \operatorname{sech}(x)$.



Perturbation $(u_* + w, v)$ is in $(w, v) \in X = H^1(\mathbb{R}) \times L^2(\mathbb{R})$ with

$$\mathcal{L} = H''(u, v) = \begin{bmatrix} -\partial_x^2 + 1 - 3u_*^2(x) & 0 \\ 0 & 1 \end{bmatrix} \quad \text{on} \quad \begin{bmatrix} w \\ v \end{bmatrix}.$$

Example: pulses in the nonlinear wave equation

Recall that $\mathcal{L}_0 = -\partial_x^2 + 1 - 3u_*^2$ has a simple negative eigenvalue, and hence $(u_*, 0)$ is a saddle point of energy.

The spatial translation symmetry gives the conserved momentum

$$Q(u,v) = \frac{1}{2} \int_{\mathbb{R}} (vu_x - v_x u) dx$$

Q: Is it possible for $(u_*, 0)$ to be a constrained minimizer of energy?

Example: pulses in the nonlinear wave equation

Recall that $\mathcal{L}_0 = -\partial_x^2 + 1 - 3u_*^2$ has a simple negative eigenvalue, and hence $(u_*, 0)$ is a saddle point of energy.

The spatial translation symmetry gives the conserved momentum

$$Q(u,v) = \frac{1}{2} \int_{\mathbb{R}} (vu_x - v_x u) dx$$

Q: Is it possible for $(u_*, 0)$ to be a constrained minimizer of energy?

Let us check: $(u_{\omega}, \omega \partial_x u_{\omega})$ is a critical point of $\Lambda_{\omega} = H - \omega Q$, which is a traveling wave solution $u(t,x) = u_{\omega}(x + \omega t)$. Since it satisfies $-(1 - \omega^2)u_{\omega}'' - u_{\omega} + u_{\omega}^3 = 0$, it is given by

$$u_{\omega}(x) = u_*\left(\frac{x}{\sqrt{1-\omega^2}}\right), \quad \omega \in (-1,1).$$

Then $Q(u_{\omega}, \omega \partial_x u_{\omega}) = \frac{\omega}{\sqrt{1-\omega^2}} \|\partial_x u_*\|^2$ and $\frac{d}{d\omega} Q(u_{\omega}, \omega \partial_x u_{\omega}) > 0$. A: $(u_*, 0)$ is a constrained saddle point of energy.

Sharp Hamiltonian-Krein theorem for the NLS equation

Recall the pair of Schrödinger operators for $\omega < 0$:

$$\mathcal{L}_{+} = -\partial_{x}^{2} + W'(\Phi^{2}) + 2\Phi^{2}W''(\Phi^{2}) + |\omega|,$$

$$\mathcal{L}_{-} = -\partial_{x}^{2} + W'(\Phi^{2}) + |\omega|.$$

Due to the Hamiltonian structure, the spectral stability problem is

$$\mathcal{L}_+ p = \lambda q, \qquad -\mathcal{L}_- q = \lambda p, \qquad p, q \in H^2(\mathbb{R})$$

similar to the example of a mechanical system.

If $\ker(\mathcal{L}_+) = \operatorname{span}(\partial_x \Phi)$ and $\ker(\mathcal{L}_-) = \operatorname{span}(\Phi)$, then the eigenfunction $(p,q) \in H^2(\mathbb{R}) \times H^2(\mathbb{R})$ for $\lambda \neq 0$ satisfies

$$\langle \Phi, p \rangle = 0, \qquad \langle \partial_x \Phi, q \rangle = 0.$$

This yields the generalized eigenvalue problem

$$q = -\lambda (\mathcal{L}_{-|\{\Phi\}^{\perp}})^{-1} p \quad \Rightarrow \mathcal{L}_{+|\{\Phi\}^{\perp}} p = -\lambda^{2} (\mathcal{L}_{-|\{\Phi\}^{\perp}})^{-1} p.$$

Sharp Hamiltonian-Krein theorem for the NLS equation

Hamiltonian-Krein theorem is now read as

$$egin{aligned} n(\mathcal{L}_{+}|_{\{\Phi\}^{\perp}}) &= N_{ ext{real}}^{-}(J\mathcal{L}) + N_{ ext{comp}}(J\mathcal{L}) + \sum_{\lambda_{0} \in i\mathbb{R}_{+}} n_{\lambda_{0}}, \\ n(\mathcal{L}_{-}|_{\{\Phi\}^{\perp}}) &= N_{ ext{real}}^{+}(J\mathcal{L}) + N_{ ext{comp}}(J\mathcal{L}) + \sum_{\lambda_{0} \in i\mathbb{R}_{+}} n_{\lambda_{0}}, \end{aligned}$$

where N_{real}^{\pm} is related to p_{λ_0} positive and n_{λ_0} negative eigenvalues of Krein matrix $K(\lambda_0)$ associated with $\mathcal{L}_+|_{\{\Phi\}^{\perp}}$ for $\lambda_0 \in \mathbb{R}_+$.

▶ The sum yields Grillakis–Shatah–Strauss' 90 theorem:

$$n(\mathcal{L}_+|_{\{\Phi\}^\perp}) + n(\mathcal{L}_-) = N_{\text{real}}(J\mathcal{L}) + 2N_{\text{comp}}(J\mathcal{L}) + 2\sum_{\lambda_0 \in i\mathbb{R}_+} n_{\lambda_0}.$$

▶ The difference yields Grillakis'90 or Jones'88 theorems:

$$n(\mathcal{L}_{+}|_{\{\Phi\}^{\perp}}) - n(\mathcal{L}_{-}) = N_{\text{real}}^{-}(J\mathcal{L}) - N_{\text{real}}^{-}(J\mathcal{L}).$$

Strict constrained minimizers of energy

Let us give the proof of the orbital stability result for a strict constrained minimizer of energy.

Theorem 12

Let $u_{\omega} \in X$ be a critical point of $\Lambda_{\omega}(u) = H(u) - \omega Q(u)$. Assume

▶ the spectral gap condition

$$\exists \delta > 0 : (-\delta, \delta) \cap \sigma(\mathcal{L}_{\omega}) = \{0\}.$$

- *the non-degeneracy condition* $\ker(\mathcal{L}_{\omega}) = \operatorname{span}(J\nabla Q(u_{\omega}))$ *with* $J\nabla Q(u_{\omega}) \in X \subset \mathcal{H}$.
- ho the robust norm condition If $||u u_{\omega}||_X < \epsilon_0 \ll 1$, then

$$\exists \theta_0 \in \mathbb{R}: \quad \|u - T(\theta_0)u_\omega\|_X = \inf_{\theta \in \mathbb{R}} \|u - T(\theta)u_\omega\|_X.$$

If u_{ω} is a constrained minimizer of H(u), then u_{ω} is orbitally stable.

Proof of orbital stability of constrained minimizers I

Decomposition:

 $\exists \epsilon_0 > 0$ and unique functions $(\theta, \omega, w) \in \mathbb{R} \times \Omega \times X$ near $(\theta_0, \omega_0, 0)$ such that all $u \in X$ satisfying

$$\epsilon := \|u - T(\theta_0)u_{\omega_0}\|_X = \inf_{\theta \in \mathbb{R}} \|u - T(\theta)u_{\omega_0}\|_X < \epsilon_0$$

can be written as

$$u = T(\theta)(u_{\omega} + w)$$
 with $\langle w, J\nabla Q(u_{\omega}) \rangle = 0, \langle w, \nabla Q(u_{\omega}) \rangle = 0$

Proof: Define the function $f : \mathbb{R} \times \Omega \times X \to \mathbb{R}^2$,

$$f(\theta,\omega,u) := \left[\begin{array}{c} \langle u - T(\theta)u_{\omega}, T'(\theta)u_{\omega} \rangle \\ \langle u - T(\theta)u_{\omega}, T(\theta)\nabla Q(u_{\omega}) \rangle \end{array} \right], \quad \theta \in \mathbb{R}, \quad \omega \in \Omega \subset \mathbb{R},$$

so that $f(\theta, \omega, u) = 0$ if and only if u can be represented as in the box.

Proof of orbital stability of constrained minimizers I

Let $\theta_0 \in \mathbb{R}$ be the argument in the infimum. By Cauchy–Schwarz inequality, we have $|f(\theta_0, \omega_0, u)| \leq C_0 \epsilon$ and the Jacobian of f is

$$D_{(\theta,\omega)}f(\theta,\omega,u) = - \begin{bmatrix} ||T'u_{\omega}||^2 & \langle \partial_{\omega}u_{\omega}, T'u_{\omega} \rangle \\ \langle T'u_{\omega}, \nabla Q(u_{\omega}) \rangle & \langle \partial_{\omega}u_{\omega}, \nabla Q(u_{\omega}) \rangle \end{bmatrix}$$

$$+ \left[\begin{array}{cc} \langle u - T(\theta) u_{\omega}, T''(\theta) u_{\omega} \rangle & \langle u - T(\theta) u_{\omega}, T'(\theta) \partial_{\omega} u_{\omega} \rangle \\ \langle u - T(\theta) u_{\omega}, T'(\theta) \delta Q(u_{\omega}) \rangle & \langle u - T(\theta) u_{\omega}, T(\theta) \partial_{\omega} \delta Q(u_{\omega}) \rangle \end{array} \right],$$

Since $\langle T'u_{\omega}, \nabla Q(u_{\omega}) \rangle = \langle J\nabla Q(u_{\omega}), \nabla Q(u_{\omega}) \rangle = 0$ and $\langle \partial_{\omega} u_{\omega}, \nabla Q(u_{\omega}) \rangle = \frac{d}{d\omega} Q(u_{\omega}) \neq 0$, the Jacobian is invertible if ϵ_0 is small enough.

By the inverse function theorem, $f(\theta, \omega, u) = 0$ has a unique solution for $(\theta, \omega) \in \mathbb{R} \times \Omega$ satisfying

$$|\theta - \theta_0| + |\omega - \omega_0| \le C_0 \epsilon$$

and the decomposition is justified.

Proof of orbital stability of constrained minimizers II

Control of the error in time:

By LWP: $||u_0 - u_\omega|| < \delta \Rightarrow \inf_{\theta \in \mathbb{R}} ||u(t, \cdot) - T(\theta)u_\omega||_X < \epsilon$ for $t \in [0, \tau_0)$ for some $\tau_0 > 0$. So $u(t, \cdot)$ an be decomposed as in the box.

Define

$$V(t) := H(u(t,\cdot)) - H(u_{\omega_0}) - \omega(t) \left[Q(u(t,\cdot)) - Q(u_{\omega_0}) \right]$$

and

$$\Delta(\omega(t)) := H(u_{\omega(t)}) - H(u_{\omega_0}) - \omega(t) \left[Q(u_{\omega(t)}) - Q(u_{\omega_0}) \right].$$

Expand $\Lambda_{\omega(t)}(u)$ near $u_{\omega(t)}$ and subtract $H(u_{\omega_0}) - \omega(t)Q(u_{\omega_0})$ from both sides:

$$V(t) = \Delta(\omega(t)) + \frac{1}{2} \langle \mathcal{L}_{\omega(t)} w(t, \cdot), w(t, \cdot) \rangle + R_{\Lambda}(w(t, \cdot)).$$

Proof of orbital stability of constrained minimizers II

The mapping $\omega \mapsto \Delta(\omega)$ is C^1 , so we differentiate it in ω and obtain

$$\Delta'(\omega) = Q(u_{\omega_0}) - Q(u_{\omega}).$$

Hence, $\Delta(\omega_0) = \Delta'(\omega_0) = 0$ and $\Delta''(\omega_0) = -\frac{d}{d\omega}Q(u_\omega)|_{\omega=\omega_0} > 0$, so $\Delta(\omega)$ is quadratic near ω_0 .

Together with the lower bound on \mathcal{L}_{ω} we obtain that $\exists C_{-} > 0$

$$V(t) \ge C_{-}|\omega(t) - \omega_{0}|^{2} + C_{-}||w(t, \cdot)||_{X}^{2}$$

as long as $|\omega(t) - \omega_0|$ and $||w(t, \cdot)||_X$ are small.

Due to conservation of H(u) and Q(u), we have

$$V(t) = H(u_0) - H(u_{\omega_0}) - \omega(t) [Q(u_0) - Q(u_{\omega_0})]$$

= $V(0) - [\omega(t) - \omega_0] [Q(u_0) - Q(u_{\omega_0})],$

where

$$|V(0)| \le C_0 \delta^2$$
, $|Q(u_0) - Q(u_{\omega_0})| \le 2C_0 \delta$.

Proof of orbital stability of constrained minimizers II

The two bounds give with the Young's inequality

$$C_{+}\delta^{2} \geq C_{-}|\omega(t) - \omega_{0} - C_{0}\delta|^{2} + C_{-}||w(t,\cdot)||_{X}^{2}$$

which yields

$$|\omega(t) - \omega_0| + ||w(t, \cdot)||_X \le C\delta, \quad t \in [0, \tau_0).$$

The triangle inequality and C^1 smoothness of $\omega \mapsto u_\omega$ yields for $\delta < \epsilon/C$:

$$\begin{split} \inf_{\theta \in \mathbb{R}} \| u(t, \cdot) - T(\theta) u_{\omega_0} \|_{X} &\leq \| u(t, \cdot) - T(\theta(t)) u_{\omega_0} \|_{X} \\ &\leq \| u_{\omega(t)} - u_{\omega_0} \|_{X} + \| u(t, \cdot) - T(\theta(t)) u_{\omega(t)} \|_{X} \\ &\leq C |\omega(t) - \omega_0| + \| w(t, \cdot) \| \leq C \delta < \epsilon, \end{split}$$

which is the orbital stability of u_{ω_0} .

5. Concluding remarks

The method of stability can be extended to constrained minimizers of energy with several constraints. This includes

▶ traveling solitary waves with several parameters:

$$i\psi_t = -\psi_{xx} + W'(|\psi|^2)\psi$$
 $\psi(t,x) = e^{-i\omega t}\Psi(x+ct).$

▶ traveling periodic waves with several parameters:

$$u_t + 2uu_x + u_{xxx} = 0$$
, $u(t, x) = U(x + ct)$, $U'' + U^2 + cU = b$.

▶ integrable Hamiltonian systems with commuting flows.

Integrable Hamiltonian systems

We say that the Hamiltonian system

$$\frac{du}{dt} = J\nabla H(u), \quad H(u): X \subset \mathcal{H} \to \mathbb{R}, \quad J: \mathcal{H} \to \mathcal{H}$$

is integrable if there exists a recursion operator $R:\mathcal{H}\to\mathcal{H}$ and another energy $\tilde{H}(u):\tilde{X}\subset\mathcal{H}$ such that

$$JR = R^*J, \quad \nabla H(u) = R\nabla \tilde{H}(u).$$

This implies that

$$\frac{du}{dt} = \tilde{J}\nabla \tilde{H}(u), \quad \tilde{H}(u): \tilde{X} \subset \mathcal{H} \to \mathbb{R}, \quad \tilde{J}: \mathcal{H} \to \mathcal{H}$$

with
$$\tilde{J} = JR$$
. If $J^* = -J$, then $\tilde{J}^* = (JR)^* = -R^*J = -JR = -\tilde{J}$.

If H(u) is conserved in t, so is $\tilde{H}(u)$ since

$$\langle J\nabla H(u), \nabla \tilde{H}(u)\rangle = \langle \tilde{J}\nabla \tilde{H}(u), \nabla \tilde{H}(u)\rangle = 0.$$

A hierarchy of integrable Hamiltonian systems

We can then introduce a sequence of Hamiltonians $\{H_k(u)\}_{k\in\mathbb{N}}$ with $H_k(u): X_k \subset \mathcal{H} \to \mathbb{R}$ such that

$$R\nabla H_k(u) = \nabla H_{k+1}(u),$$

and

$$\frac{du}{dt_k} = J\nabla H_k(u),$$

such that

$$\langle J\nabla H_k(u), \nabla H_m(u)\rangle = 0, \quad \forall k, m \in \mathbb{N}.$$

A hierarchy of integrable Hamiltonian systems

We can then introduce a sequence of Hamiltonians $\{H_k(u)\}_{k\in\mathbb{N}}$ with $H_k(u): X_k \subset \mathcal{H} \to \mathbb{R}$ such that

$$R\nabla H_k(u) = \nabla H_{k+1}(u),$$

and

$$\frac{du}{dt_k} = J\nabla H_k(u),$$

such that

$$\langle J\nabla H_k(u), \nabla H_m(u)\rangle = 0, \quad \forall k, m \in \mathbb{N}.$$

- ⊳ For a particular PDE with fixed $k \in \mathbb{N}$, all Hamiltonians $\{H_m(u)\}_{m\in\mathbb{N}}$ are formally conserved.
- ▶ Traveling waves (multi-solitons, breathers) are critical points of

$$\Lambda_{\omega_1,\ldots,\omega_k}(u) = H_{k+1}(u) - \sum_{m=1}^{\infty} \omega_m H_m(u).$$

Example: the NLS hierarchy

$$J=i\begin{bmatrix}0 & -1\\1 & 0\end{bmatrix}, \quad R=i\begin{bmatrix}\partial_x+2\bar{u}\partial_x^{-1}u & -2\bar{u}\partial_x^{-1}\bar{u}\\2u\partial_x^{-1}u & -\partial_x-2u\partial_x^{-1}\bar{u}\end{bmatrix}$$

satisfying $JR = R^*J$. Then, $R\nabla H_k(u) = \nabla H_{k+1}(u)$ generates

$$\begin{split} H_0(u,\bar{u}) &= \int |u|^2 dx, \\ H_1(u,\bar{u}) &= \frac{i}{2} \int (u\bar{u}_x - \bar{u}u_x) dx, \\ H_2(u,\bar{u}) &= \int (|u_x|^2 - |u|^4) dx, \\ H_3(u,\bar{u}) &= \frac{i}{2} \int (u_x \bar{u}_{xx} - \bar{u}_x u_{xx} - 3|u|^2 (u\bar{u}_x - \bar{u}u_x)) dx, \\ H_4(u,\bar{u}) &= \int (|u_{xx}|^2 - 6|u|^2 |u_x|^2 - (u\bar{u}_x + \bar{u}u_x)^2 + 2|u|^6) dx. \end{split}$$

Note that H_0 is defined in $\mathcal{H} = L^2(\mathbb{R}, \mathbb{C})$, H_2 is defined in $X = H^1(\mathbb{R}, \mathbb{C})$, and H_4 is defined in $\tilde{X} = H^2(\mathbb{R}, \mathbb{C})$.

Example: traveling solitary wave in the NLS equation

The NLS equation appears for $t = t_2$:

$$\frac{d}{dt} \begin{bmatrix} u \\ \bar{u} \end{bmatrix} = i \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \nabla_u H_2(u, \bar{u}) \\ \nabla_{\bar{u}} H_2(u, \bar{u}) \end{bmatrix}$$

Traveling solitary waves with two parameters:

$$iu_t + u_{xx} + 2|u|^2 u = 0,$$
 $u(t,x) = e^{-i\omega t}U(x - ct)$

satisfy

$$U'' + 2|U|^2U - icU' + \omega U = 0, \quad \Lambda_{\omega,c} = H_2 - cH_1 - \omega H_0$$

U is a constrained minimizer of energy H_2 in $X = H^1(\mathbb{R}, \mathbb{C})$ for fixed H_1, H_0 . Simultaneously, U is a constrained minimizer of H_4 in $\tilde{X} = H^2(\mathbb{R}, \mathbb{C})$ for fixed H_3, H_2 from $\tilde{\Lambda}_{\omega,c} = H_4 - cH_3 - \omega H_2$:

$$\nabla \tilde{\Lambda}_{\omega,c}(u,\bar{u}) = R^2 \nabla \Lambda_{\omega,c}(u,\bar{u}) = 0.$$

Striking example: the nonlinear Dirac equation

The massive Thirring model in laboratory coordinates

$$\begin{cases} i(u_t + u_x) + v = |v|^2 u, \\ i(v_t - v_x) + u = |u|^2 v, \end{cases}$$

Conservation of mass, momentum and energy:

$$Q = \int_{\mathbb{R}} (|u|^2 + |v|^2) dx,$$

$$P = \frac{i}{2} \int_{\mathbb{R}} (u\bar{u}_x - u_x\bar{u} + v\bar{v}_x - v_x\bar{v}) dx,$$

$$H = \frac{i}{2} \int_{\mathbb{R}} (u\bar{u}_x - u_x\bar{u} - v\bar{v}_x + v_x\bar{v}) dx + \int_{\mathbb{R}} (-v\bar{u} - u\bar{v} + 2|u|^2|v|^2) dx,$$

and the higher-order energy (due to integrability):

$$R = \int_{\mathbb{R}} \left[|u_x|^2 + |v_x|^2 - \frac{i}{2} (u_x \overline{u} - \overline{u}_x u) (|u|^2 + 2|v|^2) - (u\overline{v} + \overline{u}v) (|u|^2 + |v|^2) + 2|u|^2 |v|^2 (|u|^2 + |v|^2) \right] dx$$

Example: solitary waves in the nonlinear Dirac equation

Solitary waves are given by

$$\mathbf{u}(x,t) = \mathbf{U}_{\omega}(x)e^{i\omega t}, \quad \mathbf{U}_{\omega}(x) = \sin\gamma \begin{bmatrix} \mathrm{sech}\left(x \, \sin\gamma + \frac{\mathrm{i}\gamma}{2}\right) \\ \mathrm{sech}\left(x \, \sin\gamma - \frac{\mathrm{i}\gamma}{2}\right) \end{bmatrix}.$$

where $\omega := \cos \gamma \in (-1, 1)$.

First derivative test: \mathbf{U}_{ω} is a critical point of $H + \omega Q$ and a critical point of $\Lambda_{\omega} := R + (1 - \omega^2)Q$.

Second derivative test: \mathbf{U}_{ω} is a strict minimizer of R in $H^1(\mathbb{R}, \mathbb{C}^2)$ for fixed Q and P. Hence, it is orbitally stable in $H^1(\mathbb{R}, \mathbb{C}^2)$

[D.P.-Y. Shimabukuro, 2014]

Further directions

- Orbital and asymptotic stability of multi-solitons and breathers in integrable systems
- Spectral and orbital stability of periodic waves in integrable systems
- Casimir integrals for non-invertible J and their roles in the orbital stability analysis
- ▶ Waves of the peaked (singular) profiles and failure of "conditional" orbital stability
- Solitary waves with nonzero boundary conditions and failure of coercivity.
- ▶ Degeneracy of the second variation and the role of bifurcations.