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1. Introduction - nonlinear waves

> Nonlinear waves ~ special solutions of some nonlinear PDE

> Steady traveling wave solutions

u(t,x) = U(x — ct)

periodic wave solitary wave/pulse front/kink

> Observed in nature, experiments, simulations
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Introduction - dynamical systems

Consider an initial value problem

Mt:f(uaax)v t>07
u(0) = up,

> (IVP) is locally well-posed in a suitable function space.

> TW with profile U(§), £ = x — ct exists from the steady equation
—c0:U = F(U, 0¢)
> The profile U is an equilibrium point in the moving frame
u; = cOgu + F(u, Of)

What happens to the perturbation w(z, &) := u(t,£) — U(€) as the
time increases from ¢ = 0 to t — +o00?
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2. Stability in finite-dimensional systems

Consider the ODE
du
— = t>0
dt f l/t), )
u(0) = uo,
where uy € R" and f(u) € C'(R", R") for local well-posedness.
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2. Stability in finite-dimensional systems

Consider the ODE

du
{ E:f(u)’ t>0,
u(0) = uo,

where uy € R" and f(u) € C'(R", R") for local well-posedness.

Equilibrium point u, is defined by f(u.) = 0.
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2. Stability in finite-dimensional systems

Consider the ODE

du

— = t>0

dt f(u)7 )

u(0) = uo,
where uy € R" and f(u) € C'(R", R") for local well-posedness.
Equilibrium point u, is defined by f(u.) = 0.
Expanding f at u, with the perturbation w(t) := u(t) — u, as

f(u) = flus +w) =f(ue) + Dif () w + R(w),
=0 —A

where A € M"*" is the linearized matrix and R(w) = ogn(w) is a
remainder term, yields two systems:

dw dw
— =Aw and — =Aw+R(w).
dt dt (w)
—_———
Linearized system Nonlinear system
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Linear stability

Linear stability is determined by eigenvalues of A = D, f (u,.):

asympt. stable unstable stable/unstable
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Linear stability

Linear stability is determined by eigenvalues of A = D, f (u,.):

asympt. stable unstable stable/unstable

Nonlinear stability is defined as

> Stable if Vug close to u., u(z) stays close to u, for all # > 0.
Ve>0,30 >0: Vuyg € Bs(us) = u(t) € Bo(ux), t>0.

> Asymptotically stable if it is stable and u(r) — u, ast — +o0.
> Unstable if for at least one u close to u., u(t) leaves a ball at u,.

Je > 0:V > 0,3ug € Bs(us) = u(t) ¢ B:(u,), for some 7 > 0.
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Linear stability

Linear stability is determined by eigenvalues of A = D, f (u,.):

asympt. stable unstable stable/unstable

Theorem 1

> IfRe(\j) < O for every \j € 0(A), then u, is nonlinearly
asymptotically stable.

> IfRe(\j) > O for at least one \j € o(A), then u, is nonlinearly
unstable.

The case with Re(\;) < 0 for every \; € o(A) is inconclusive from
the linearized system.
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Finite-dimensional Hamiltonian systems

This includes Hamiltonian systems defined in the canonical form as

dt

du_ JVH(u), t>0,
u(0) = up,

where J = —J* is invertible, H € C?>(R",R), and n is even.

> Since Jv - v = 0 for v € R”, the energy is conserved:
H(u(t)) = H(up), t>0.

> Equilibrium point u, is critical to the energy: VH(u,) = 0.
> The linearized system has a structure

dw
— =JL
dt "

where £ := H"(u,) is a self-adjoint (Hessian) matrix.
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Linear stability in Hamiltonian systems

Eigenvalues of /£ are symmetric
> about the real axis Im(\) = 0: both A, X are eigenvalues

> about the imaginary axis Re(\) = 0: both \, —\ are eigenvalues.
(JL)*=-L] = (JL)*=-J'JL)J

They appear in real or imaginary pairs or as complex quadruplets.

neutrally stable unstable unstable

Is u, nonlinearly stable if \; € iR for every \; € o(JL)?

D. Pelinovsky, McMaster University Stability of Nonlinear Waves 8/63



Nonlinear stability in Hamiltonian systems

Theorem 2 (Lyapunov’s Stability)

If there exists a Lyapunov function V. € C'(R",R) such that
(@) V(ux) =0and V(u) > 0 forall u € Be(us)\{us}

(0) V(@) = VV(lo)) £ (ul0) < 0for all u € B (us),

then u, is nonlinearly stable in d—'; = f(u).

)

uo
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Stability of isolated minima or maxima of H (u)

Theorem 3

If H(u) has an isolated local minimum or maximum at u., then u, is
nonlinearly stable.

Stability of u, relies only on £ = H” (u,), independently of J!
Morever, £ may have zero eigenvalues, as long as u, is isolated.

> If u, is a minimum of H(u), take V(u) := H(u) — H(u,)

0.
> If u, is a maximum of H(u), take V(u) := H(u,) — H(u) > 0.

A\VARAY

In either case,
—Hu(t)) =0
it (u(1))

and Lyapunov’s Stability Theorem applies.

What if u, is a saddle point of H(u)? Is it unstable?
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Nonlinear instability in Hamiltonian systems

Theorem 4 (Lyapunov’s Instability)

If there exists a Lyapunov function V. € C'(R",R) such that
(@) V(ux) =0and V(u) > 0forallu € By C Bo(us)\{u.}

) %V(u(t)) — V() - () > O forallu € By,

then u, is nonlinearly unstable in % = f(u).
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Nonlinear instability in Hamiltonian systems

Theorem 5 (Lyapunov’s Instability (reversed))

If there exists a Lyapunov function V. € C'(R",R) such that
(@) V(ux) =0and V(u) < O0forallu € B_ C B-(u)\{u.}

) %V(u(t)) — V() - F(u(®) < O forallu € B_,

then u, is nonlinearly unstable in % = f(u).
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Instability of saddle points of H(u)?
Lyapunov’s instability theorem is not applicable to saddle points since

d

S H(u(n) = 0.

Saddle points in R? are necessarily unstable, because the solution
curves on the phase plane do not intersect.
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Instability of saddle points of H(u)?

Lyapunov’s instability theorem is not applicable to saddle points since

%H(u(t)) 0.

Saddle points in R" with n > 4 do not have to be unstable, e.g.

1 1
H(uy,vi,u2,v2) = = (uf +7) — = (3 + v3)

2 2
with o
" 0o 1 0 o] [&
dlvi| |-1 0 0 of 8%
dt |w| — |0 0 0 1] &
V) 0O 0 -1 0 gTz
generates
up = v,
Vi = —uy, g +up =0,
iy = —Vy, = { i) +uy = 0.
V2 = up,
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Krein theory for saddle points

Let \gp € o(JL) be an eigenvalue of algebraic multiplicity m and
{u;}; C R" be a basis of generalized eigenvectors. The matrix
K(\o) with elements

[K()\O)]lj = Lui - Uj, 1< l7] <m,

is called the Krein matrix associated with the eigenvalue ).

> If Re(\g) # 0, then K(\g) = 0.

> If Re(Ag) = 0 and Im(\g) # 0O, then K(\o) is Hermitian and
invertible with p, positive and n), negative eigenvalues such
that py, +ny, = m.

If m = 1 (simple eigenvalue), then K(\o) = Luy - u.

LILu; = NoLuy = ()\0 + j\o)ﬁul -u; = 0.
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Hamiltonian—Krein theorem

Theorem 6 (Sylvester’s inertial law)

Assume that L = H" (u,.) is invertible with p(L) positive and n(L)
negative eigenvalues such that p(L) + n(L) = n. Then,

p(ﬁ) = Nreal(-]£) + 2Ncomp(‘]£) +2 Z Po>
AEIRL

n(‘c) = Nreal(-][') + 2Ncomp(]£) + 2 Z l’l,)\07

MEIRL

where Nyey is the number of real positive eigenvalues and 2Ncomp Ls
the number of complex eigenvalues with positive real part.

> If either n(L£) = 0 or p(£) = 0, then \; € iR forall \; € o(JL).

> If n(£) and p(L) are odd, then Nyey(J£) > 1 and the saddle
point u, is linearly unstable.
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Example: a mechanical system

Consider a system of m particles with coordinates { g }1<x<n and

momenta {p } 1<k<m (n = 2m):

du 0 -1
R . R
where | |
H=5 Lip-p +5 L-q-q
2 N—— 2 N——

kinetic energy

Equations of motion are

dgq
A _r
dl er’

and the spectral problem is

Lip=Aq,

D. Pelinovsky, McMaster University
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Stability theorems

Consider the spectral stability problem:

Lip=Aq, —L_g=M\p, p,qcR"

1. If either £, or L_ is invertible, then the stability problem is
equivalent to the generalized eigenvalue problems:

Lip=(-N)LT'p, or L.g=(-N)Li'q.

2. Ifeither £ or £_ is positive, then z := —\? is real and the
number of negative eigenvalues of z (real positive eigenvalues of
A) is uniquely determined by the number of negative eigenvalues
of the other operator.
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Sharp Hamiltonian—Krein theorem

Assume invertibility of £4 and £_
Lip=(=X)LT'p, and L g=(-N)Li'q

3 Hamiltonian—Krein theorem follows by Sylvester inertial law:

n(Ly) = Nigy(JL) + Neomp(JL) + D 1y,
Ao €iR4

n(»c—) real(‘][’) +Ncomp(\]£ _|'_ Z n>\0’
)\OGZR+

where Nreal is related to py, positive and n), negative eigenvalues

of Krein matrix K(\g) associated with £ for A\g € R.

4 The theorem recovers the general result

n(Ly) +n(L-) = Nea(JL) + 2Neomp(JL) +2 > 1y,

Mo EiR
but also gives a sharper count of unstable eigenvalues.
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More examples

Here we illustrate all three possible cases for
1=n(Ly) =Ny (JL) + Neomp(JL) + > 1,
Ao EiR ¢

L=n(L_) = NL(JL) + Neomp(JL) + D 1y,

Ao EiR ¢

> For the previous example of H(p, q) = 1(p? — p3) + 3(¢? — 43)
we have g1 + g1 = 0 and ¢, + ¢2 —Ow1thn,\0 =1.

> For another example of H(p, q) = 1(p? — p3) — 1(47 — ¢3) we
haveql—ql—Oandqz—qz—OwnhN =N =1

real — *'rea

> For another example of H(p, q) = pip2 + 5 (q1 — g3) we have
G1+9@=0, G2—q1=0 = qi14+q =0,

with Neomp = 1.
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3. Towards the infinite-dimensional Hamiltonian systems

Consider a Hamiltonian dynamical system

du

— =JVH
o JVH u),
where

> H:X C ‘H — Ris a C? functional on a subset X of a Hilbert
space H with inner product (-, -) and the induced norm || - ||

> J: H — H is a bounded invertible operator with a bounded
inverse which is skew-adjoint:

(Ju,w)y = —(u,Jw) foru,w € H

The first variation of H is defined as

H —H d
(VH(u),w) = lim (e + ew) () = —H(utew) foru,w € X,
e—0 € de e=0

so that VH (u) € X*, where X* is dual to X with respect to H.
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Example: nonlinear wave equation

Consider the nonlinear wave equation on the infinite line x € R:

-tV =0 =4[ [0 1] [T,

where . .
H(u,v) = / ((ux)2 + V(u) + vz) dx
R \2 2
with V(0) = V/(0) = 0, and V”(0) # 0.
> Hilbert space for (u,v): H = L*(R) x L*(R)

> Energy space for (u,v): X = H'(R) x L*(R)
> Dual space of X w.r.t. H: X* = H-'(R) x L2(R).
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Initial-value problem

Consider the initial-value problem:

dt

du_ JVH(u), t>0,
u(0) =up € X,

We assume that the local well-posedness holds in the energy space
with the local solution

u € C([0,70),X) N C((0,79),X*)

for every uy € X and some 79 > 0.

The Hamiltonian is conserved in time: H(u(t,-)) = H(up), t € [0,70).
This follows formally (for sufficiently smooth solutions):

d du

() = (VH@u), —)

dt = (VH(u),JVH(u)) = 0.
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Critical points of H(u)

u, € X is a critical pointof H : X — R if VH(u,) = 0.

For the nonlinear wave equation

1 1
Uy — e + V' (u) =0, H(u,v) = / <2(ux)2 + V(u) + 2v2> dx,
R
(ux,0) is a critical point of H(u, v) if —u + V'(u,) = 0.

If V(u) = 1u*> — 1u*, then If V(u) = —3u® + Ju®, then

0@

D. Pelinovsky, McMaster University
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Stability of critical points

If H € C?(X,R), expansion of H about u, € X with the perturbation
w=u—u, € X yields

Htte +w) = H(y) + (VH(u,), w) —|—%<£w, W) + R(w),
=0

where £ := H"(u.) : X — X* is a self-adjoint linear operator in H

and R(w) = ox(w?) is the remainder term.

We assume that £ : dom(L£) C H — H is bounded from below.

> If u, is a minimizer of H(u), is it nonlinearly stable?
> If u, is a saddle point of H(u), is it nonlinearly unstable?

Difference from the finite-dimensional case in R":
> £ may not be bounded from above.
> ker(L) # {0} due to translational (and other) symmetries.
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Strict minimizers of energy H (u)

Theorem 7

Let u,, € X be a critical point of H(u) and there exists C > 0 such that
L := H"(u) satisfies

(Lw,w) > C|w|%, wEX.
then u, is nonlinearly stable:

Ve >0,30 >0: Vuy € Bs(us) = u(t) € Bo(uy), t>0.

The proof follows from:

H(uo) — H(u) = H(u(t,-)) —

H(us) = H{us (1)) — H()
= 2 (w1}, w(t, ) + ROw(z, ) >

Cliw(t, )% = Cre)lw(r, )%

N"_‘\/

H(ug) — H(us) < Cllug — i = ult,-) — wllg < % uo — w3
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Example: kinks in the nonlinear wave equation

Consider the Hamiltonian
1 1 1
Hu) = [ (G + 507+ 12
subject to (u,v) — (£1,0) as x — £00, e.g. u.(x) = tanh (%)

Perturbation (u, + w,v) isin (w,v) € X = H'(R) x L?(R) with

—02 4+ 3u2(x) — 1 o] m .

_y _
L=H"uv) = 0 1
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Sturm’s theory for the Schrodinger operator

‘We have
Lo : HX(R) € L*(R) — L*(R), with Lo = —8%+3u?(x) — 1.

(a) o(Lo) = 0,(Lo) Uoe(Ly) C Rsince Lo is self-adjoint in L?(R).
(b) 0.(Ly) = [2,00) since u,(x) — £1 at 00 exponentially fast.
(c) Eigenvaluesin o,(L) = {A1, A2,...} € (—00,2) are simple

(d) Eigenfunction for eigenvalue A\, has n — 1 simple zeros on R.
(e) A\ = 0 since LoOxuy = 0 and Oyus(x) > 0 forall x € R.

Hence Lo : H234(R) C L2,4(R) — L244(R) is strictly positive and
3C > 0 such that (Low, w) > C||w||%,, Yw € H3y,. This implies via
Girdiner’s inequality that

(Low,w) > Cllwllzn, Vw € Higq(R).

The kink is nonlinearly stable for (w,v) € Xoaa = Hly(R) x L2, (R).
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Saddle points of energy H(u)

Theorem 8

Let u,. € X be a critical point of H(u) and there exists wi,w_ € X
such that L := H" (u,.) satisfies

(Lwy,wy) >0 and (Lw_,w_) <O0.

If u,. is linearly unstable and VH(u, +w) = Lw + ox(w),
then u, is nonlinearly unstable:

Je>0: V56>0, FupeBs(us): u(to) ¢ Be(usx), 1o >0.
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Saddle points of energy H(u)

Theorem 8

Let u,. € X be a critical point of H(u) and there exists wi,w_ € X
such that L := H" (u,.) satisfies

(Lwy,wi) >0 and (Lw_,w_) <O.

If u,. is linearly unstable and VH(u, +w) = Lw + ox(w),
then u, is nonlinearly unstable:

Je>0: V56>0, FupeBs(us): u(to) ¢ Be(usx), 1o >0.

Linear instability implies nonlinear instability if the nonlinearity is
bounded in X like in R" and the (IVP) is well-posed in X.
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Saddle points of energy H(u)

Theorem 8

Let u,. € X be a critical point of H(u) and there exists wi,w_ € X
such that L := H" (u,.) satisfies

(Lwy,wy) >0 and (Lw_,w_) <O0.

If u,. is linearly unstable and VH(u, +w) = Lw + ox(w),
then u, is nonlinearly unstable:

Je>0: V56>0, FupeBs(us): u(to) ¢ Be(usx), 1o >0.
It follows from the Hamiltonian—Krein theorem,

n(‘C) = Nreal(-lﬁ) + 2NCOmp(J£) + 2 Z n>\0’

that u, is linearly unstable if n(£) is odd. Ao€iR
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Example: pulses in the nonlinear wave equation

Consider the Hamiltonian

1 1 1 1
H(u,v) = / ((u )2 -+ ot v2> dx
A2 2 4 2

subject to (u,v) — (0,0) as x — 400, e.g. u,(x) = v/2sech(x).

00

Perturbation (u, + w,v) isin (w,v) € X = H'(R) x L*(R) with

—02+1-3u(x) 0 w
—_ g _ x *
L=H"uv) = [ 0 1] on [v] .
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Sturm’s theory for the Schrodinger operator

‘We have
Lo:H*(R) C L*(R) — L2(R), with Lo=—0%+ 1 —3u?(x).

(a) 0(Lo) = a,(Lo) Ua(Lo) C R since Ly is self-adjoint in L?(R).
(b) o.(Ly) = [1,00) since u(x) — 0 at oo exponentially fast.

(c) Eigenvaluesin o,(L) = {A1, A\2,...} € (—o0, 1) are simple

(d) Eigenfunction for eigenvalue A\, has n — 1 simple zeros on R.

() A\ <0, Ay = 0since LoOus = 0 and Oyu,(x) has one zero on R.

The spectral stability problem

-1 0 g

yields A\w = v and —Nw = Low with \2 = —)\; > 0.
The pulse is nonlinearly unstable for (w,v) € X = H'(R) x L*(R).
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4. Towards to Hamiltonian systems with symmetries
> Hamiltonian systems are invariant under translations in time.
This symmetry is associated to the conservation of H(u).

> Other symmetries are common in physical systems such as
spatial translations and rotations, phase rotations, ... These
symmetries lead to the degeneracy of the kernel of £ = H" (u).

> Additional symmetries lead to additional conserved quantities.

> Additional conservative quantities may affect linear and
nonlinear stability of saddle points of H(u).
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Definition of a symmetry

Consider the symmetry transformation 7'(¢) : H — H for 6 € R with
the infinitesimal generator 7" : dom(7") C H — H defined by

T'u := lim M,
0—0 0
for every u € dom(7") for which the limit exists. Assume properties:
> group:
T(0) =1d, T(61 + 02) = T(61)T(02) = T(62)T(61) V61,05
> isometry:
(TO),T(0)g) = (f,8).Vf,8 € H.
> invariance: H(T (0)u) = H(u), Vu € X.
> commutativity: JT(0) = T(6)J.
(T'f,g) =—{f,T'g),Nf,g € dom(T") C H.

> skew-adjointness:
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An associated conserved quantity

Let T(6) : H — H, 0 € R be a symmetry of
du

~— =JVH
dt JV (M)’

such that if u(¢) is a solution, so is T(6)u(¢) for every 0 € R.

If u € X and J~'T'u € X*, then the quadratic functional
Q(u) : X — R is well-defined by

Ou) = %(J_IT’u,u>.

For every local solution u € C%(]0,79), X), the value of Q(u) is
conserved in time:

Q(u(t,-)) = Q(uo), 1€ 0,7).
Furthermore we have Q(T(0)u) = Q(u), T'u = JVQ(u), and
(VO(u),JVH(u)) = 0.
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Stationary states (traveling waves)

In application to the Hamiltonian system

du
— = H
” JVH(u),

the symmetry 7(0) : H — H, 6 € R allows us to consider stationary
states (traveling waves) in the form:

ut,) =Twt+0)u,, weQCR, 6HeR,
where the profile u,, is obtained from
wT'u, = JVH(u,)

Since T'u = JVQ(u) and J is invertible, we characterize the profile
u,, as a critical point of the augmented energy

Ay (u) == H(u) — wQ(u).
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Example: nonlinear Schrodinger equation

Consider the NLS equation on the infinite line x € R:

= vt Wit = 5[5 = [0 5] [ )]

where

H(.9) = [ (1l + W)
with H = L*(R,C), X = H'(R,C), and X* = H~!(R, C).
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Example: nonlinear Schrodinger equation

Consider the NLS equation on the infinite line x € R:

o 2 d iyl _ 10 —i VwH(w,JJ)]
= v Wl = 5[5 = ) ] Do)
where
zw&:@mhww%@
with H = L*(R,C), X = H'(R,C), and X* = H~'(R, C).

Phase rotation symmetry

o= 8] =) [4] e = ot

Spatial translation symmetry

o) |9 = [94T0)| = 7 [ = 0] = o) = m [ woria
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Stationary (TW) states in the NLS equation

Critical points of Ay, «, := H — w1 Q1 — w20 are found from
Euler—Lagrange equations

—U L W (T — w0 — iwy V' =0,
which coincides with the stationary (TW) states of the NLS equation

i =~ + WYY P(t,x) = e T (x + wot).

Due to the Galilean transformation
2

\IJ(X) = eiéWZX(P(x) = —(PI/+W/(‘¢|2)(I)—W¢ = 07 w = WH‘%,

we can obtain stationary states from a single symmetry with the
augmented energy A, = H — wQ with a single conservation Q = Q.

D. Pelinovsky, McMaster University Stability of Nonlinear Waves 37/63



Consequencies of the symmetry |

If u,, is a critical point of A, (#) = H(u) — wQ(u), then the kernel of
L, :=H"(u,) — wQ"(u,) contains T'u,, = JVQ(u,) (degeneracy).

To deal with the degeneracy due to symmetry, we can introduce the
concept of orbital stability:

We say that u,, is orbitally stable in X if Ve > 0,36 > 0:
lup — uy,||x < & implies

inf ||u(t,) — T(Q)uyllx <€, fort>0.
feR

Since X C ‘H with the inner
product (-, -), we can look for 6(7)
such that

(u(t, ) ~T(O(1)ut, T (B(1) 1) = O
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Consequencies of the symmetry 11

If u,, is a saddle point of A, (u) = H(u) — wQ(u), then it may still be
a minimizer of energy H(u) subject to fixed mass Q(u).

Since Q(u,, +w) =
O(us) + (VO(us), w) + O(|Iwll3).
we can use

(u(t,-)=T(0(1))ue, T(0(1)) VO(us)) = 0

We say that u,, is a strict constrained minimizer of energy if

C, > 0: <EWW, W> > CwHWH)Z(, Yw € X{JVQ(uw),VQ(uw)}J-‘
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Strict constrained minimizers of energy

Theorem 9
Let u,, € X be a critical point of A, (u) = H(u) — wQ(u). Assume
> the spectral gap condition

36>0: (=6,0)No(L,)={0}.

> the non-degeneracy condition

ker(Ly) = span(JVQ(uy)) with JVQ(u,) € X C H.

> the robust norm condition
If lu — uy|lx < e0o < 1, then

0 € R:  |ju— T(0)uyl||x = inf ||u — T(0)uy|x-
0ER

If uy, is a constrained minimizer of H(u), then u,, is orbitally stable.
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Constrained saddle points of energy

Theorem 10

Let u,, € X be a critical point of A, (u) such that there exist
Wi, W— € X(jvo(u,),VO(u,)} - Such that L, satisfies

(Lowy,wy) >0 and (L,w_,w_) <O.

If uy, is linearly unstable and V A, (u, + w) = L,w + ox(w),
then uy, is nonlinearly orbitally unstable:

Je>0: Vo >0, Jug € Bs(uy,) : u(ty) ¢ B-(T(0)uy,),V0 € R, 1o > 0.
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Constrained saddle points of energy

Theorem 10

Let u,, € X be a critical point of A, (u) such that there exist
Wi, W_ € X{JVQ(uw),VQ(MW)}L such that L, satisfies

(Lowy,wy) >0 and (L,w_,w_) <O0.

If uy, is linearly unstable and V A, (u, + w) = L,w + ox(w),
then uy, is nonlinearly orbitally unstable:

Je>0: Vo >0, Jug € Bs(uy,) : u(ty) ¢ B-(T(0)uy,),V0 € R, 1o > 0.

Linear instability implies nonlinear instability if the nonlinearity is
bounded in X like in R" and the (IVP) is well-posed in X. Constraint
of fixed mass Q(u) does not help to stabilize the saddle point.
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Constrained saddle points of energy

Theorem 10

Let u,, € X be a critical point of A, (u) such that there exist
Wi, W— € X(jvo(u,),VO(u,)} - Such that L, satisfies

(Lowy,wy) >0 and (L,w_,w_) <O.

If uy, is linearly unstable and V A, (u, + w) = L,w + ox(w),
then uy, is nonlinearly orbitally unstable:

Je>0: Vo >0, Jug € Bs(uy,) : u(ty) ¢ B-(T(0)uy,),V0 € R, 1o > 0.

It follows from the Hamiltonian—Krein theorem,

(Lol rvown) voun ) = Nea (VL) + 2Neomp(JL) +2 Y ny,
Ao EIR L

that u,, is linearly unstable if n(£w|{JVQ(uw)’vQ(uw)}L) is odd.
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Constrained minimizers of energy

The goal is to show that
3C, >0: (Low,w)>Colwl|}, VYwe X{vo(u.), Vo))t

even if £, has negative eigenvalues in H.
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Constrained minimizers of energy

The goal is to show that
3C, >0: (Low,w)>Colwl|}, VYwe X{vo(u.), Vo))t

even if £, has negative eigenvalues in H.

Theorem 11

Assume the spectral gap and non-degeneracy conditions. Then, u,, is
a constrained minimizer of H(u) if either

> o(Ly,) > 0or

> L, has one simple negative eigenvalue and %Q(uw) < 0.

u,, is a constrained saddle point of H(u) if either
> L, has one simple negative eigenvalue and %Q(uw) > 0or

> L, has two or more negative eigenvalues.

[Vakhitov-Kolokolov, Bona-Souganidis-Strauss, Weinstein, Shatah-Strauss, ... ]
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Spectrum of £, under constrains

We are looking for

L
Ao = inf LWZW
WEX 000 vous - W]

L omn) = 2060 VO() — 2w IV O()
weX, (v,u) ER? HWH2 7

or, equivalently, at the lowest eigenvalue A of
(,Cw - )\I)W = VVQ(MU_,) + ;LJVQ(MW), w e X{JVQ(uw),VQ(uw)}Jﬂ

where (v, 1) € R? are Lagrange multipliers.
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Spectrum of £, under constrains
We are looking for

L
Ao = inf LWZW
WEX 000 vous - W]

L omn) = 2060 VO() — 2w IV O()
weX, (v,u) ER? HWH2 7

or, equivalently, at the lowest eigenvalue A of
(,Cw - )\I)W = VVQ(MU_,) + ;LJVQ(MW), w e X{JVQ(uw),VQ(uw)}Jﬂ

where (v, 1) € R? are Lagrange multipliers.
Since

(VO(u,),JVO(u,)) = 0,

we have 11||JVQ(u,)||> = 0, so that ;1 = 0. Furthermore, the
constraint (w, JVQ(u,)) = 0 is satisfied for every A # 0.
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Spectrum of £, under constrains
Hence, we are looking at the lowest eigenvalue A in (—oo, 0) of
([w — )\I)W = Z/VQ(MUJ), w e X{VQ(uu)}J-'

> Either A € o(L,,) with w € Xy, )+ and v =0 or
> A ¢ o(Ly,) and

F(A) = (Lo — A)7'VO(u,), VO(u,)) = 0,

with v # 0.

The first case is included in the study of properties of F(\) for
A € (—00,0).
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Spectrum of £, under constrains

Properties of F(\) given by F()\) = (L, — AI)~'VQ(uy,), VO(uy)).

1. Fis analytic for A ¢ o(L,,) and may have infinite jump
discontinuity at A € o(L,).

2. F(\) — 0% as A — —oc since
IFOV] < A = Aminl HIVOuL)|2, A < Amin = inf o(Ly,).

3. F'(\) > 0since F'(\) = ||[(L, — M)~V O(u,) %
4. If N\p € o(L,,) (simple) with wy € X, then

w u N -

FA) =

with analytic F across A = .
5. Fis analytic at A = 0 as wo = JVQO(u,): (wo, VQO(u)) = 0.
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Spectrum of £, under constrains

Finally, we compute the slope criterion

. _ d

lim F(A) = (£;,'VO(uy), VO(uy)) = (Out, VO(u)) = ——0(us)-
A—0 dw

Here we have used C' smoothness of Q 3 w — u,, € X and

L,0uuy, = vQ(”w)v

obtained from VA, (u,) = VH (u,) — wVQ(u,) = 0.

C'-smoothness Q > w — u,, € X holds under the spectral gap and
non-degeneracy conditions.
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Spectrum of £, under constrains

Finally, we compute the slope criterion

lim F(\) = (£,'VO(uy,), VO(y)) = (Outte, VO(ut)) =

A—0

If £, has one simple negative eigenvalue and

d

then

F(\)

Ao

D. Pelinovsky, McMaster University
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Spectrum of £, under constrains

Finally, we compute the slope criterion

lim F(\) = (£,'VO(uy,), VO(y)) = (Outte, VO(ut)) =

A—0

If £, has one simple negative eigenvalue and

F(N)

)\0 - ;I

D. Pelinovsky, McMaster University
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Spectrum of £, under constrains

Finally, we compute the slope criterion

lim F(Y) = (£5'V0(,). VO(w) = (0utte. VO()) = - 0(u).

If £,, has two (or more) negative eigenvalues, then

F(A)
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Example: solitons in the nonlinear Schrodinger equation

Recall the NLS equation
ity = —the + W (W9, W(0) =0,
with 9 (t, x) = e~ “'®(x) from

—" + W(|2*)® — wd = 0.

If ®(x) — 0 as |x| — oo (only if w < 0), then & € R up to the phase
rotation. Perturbation vy — ® = u + iv is defined for
(u,v) € X = H'(R) x H'(R) with

—0% + W/ (®?) +-20*W"(9?) — w 0
Ly = 2 (&2
0 —0; + W(®°) —w

acting on (u, v).
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Sturm’s theory for the Schrodinger operators

‘We have
Ly :H*(R) C *(R) — L*(R),

with

Ly =—0*+ W (D) 4+ 20*W' () —w, w<O.

(@) o(Ly) =0,(L4) Uoe(Ly) C Rsince L is self-adjoint in
L*(R).

(b) 0.(L4) = [|w|, o) since ®(x) — 0 at 00 exponentially fast.

(c) Eigenvaluesin o,(Ly) = {A1, A2,...} € (—00, |w]|) are simple

(d) Eigenfunction for eigenvalue A\, has n — 1 simple zeros on R.

(e) A\ <0, A, =0since £;9,P = 0 and 0,P has one zero on R.
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Sturm’s theory for the Schrodinger operators

We have
L_:H*R) C L*(R) — L*(R),
with
L =-4+W(D)—w, w<0

(@) o(L-) =0,(L_)Uo.(L_) C Rsince L_ is self-adjoint in
L*(R).

(b) o.(L-) = [|w|, 00) since ®(x) — 0 at o0 exponentially fast.

(c) Eigenvaluesin o,(L_) = {\j, \2,...} € (—0o0, |w]|) are simple

(d) Eigenfunction for eigenvalue A\, has n — 1 simple zeros on R.

(e) A\ =0since L_® = 0and ®(x) > 0 forall x € R.
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Sturm’s theory for the Schrodinger operators

Hence @ is a saddle point of energy

H(W:/R(WHZ—FW(WF))dx.

The phase rotation symmetry gives conserved mass

0() = /R [ 2.

If L||®[|> < 0, then @ is orbitally stable with respect to

inf t,) —e 0o(. .
(07}51)1€R2||1/1(, ) —e "2+ mwre)

If L||®||> > 0, then @ is orbitally unstable.
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Example: pulses in the nonlinear wave equation

Consider the Hamiltonian

1 1 1 1
H(u,v) = / ((u )2 -+ ot v2> dx
A2 2 4 2

subject to (u,v) — (0,0) as x — 400, e.g. u,(x) = v/2sech(x).

00

Perturbation (u, + w,v) isin (w,v) € X = H'(R) x L*(R) with

—02+1-3u(x) 0 w
—_ g _ x *
L=H"uv) = [ 0 1] on [v] .
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Example: pulses in the nonlinear wave equation

Recall that £y = —0? + 1 — 3u? has a simple negative eigenvalue,
and hence (u,,0) is a saddle point of energy.

The spatial translation symmetry gives the conserved momentum

O(u,v) = ;/R(vux — vyu)dx

Q: Is it possible for (u,,0) to be a constrained minimizer of energy?
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Example: pulses in the nonlinear wave equation

Recall that £y = —0? + 1 — 3u? has a simple negative eigenvalue,
and hence (u,,0) is a saddle point of energy.

The spatial translation symmetry gives the conserved momentum
1
O(u,v) = /(vux — vyu)dx
2 Jr

Q: Is it possible for (u,,0) to be a constrained minimizer of energy?

Let us check: (u,,,wdyu,) is a critical point of A,, = H — wQ, which
is a traveling wave solution u(t, x) = u,,(x + wt). Since it satisfies
—(1 —w?)u” —u, +u, =0, itis given by

X
wX) =y | —= |, e(—1,1).
= (), we L
Then Q(uy,, woyu,,) = ﬁ][@xu*ﬂz and -L O(uy, wdyu,) > 0.

A: (uy,0) is a constrained saddle point of energy.
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Sharp Hamiltonian—Krein theorem for the NLS equation

Recall the pair of Schrédinger operators for w < 0:
Ly =02+ W(D?) +202W"(D?) + |,
L_ =02+ W(D?) + .
Due to the Hamiltonian structure, the spectral stability problem is
Lip=2Xg, —L.g=DX, pgecHR)
similar to the example of a mechanical system.

If ker(£4) = span(0,®) and ker(L£_) = span(®), then the
eigenfunction (p, q) € H*(R) x H*(R) for A # 0 satisfies

(©,p) =0,  (O:®,q) =0.
This yields the generalized eigenvalue problem
g=-ML_|@y)"'p = Lilayr = N (L |@yL) " 'p.

D. Pelinovsky, McMaster University Stability of Nonlinear Waves 48 /63



Sharp Hamiltonian—Krein theorem for the NLS equation

Hamiltonian—Krein theorem is now read as
I’l(ﬁ_‘_’{q)}L) = real(‘]‘c> +Ncomp JE Z l’l)\o,
)\()ElR+

n(ﬁ_’{q’}L) - redl(‘][’) +Nc0mp J»C Z Ny,
)\OGIR+

where Nrfal is related to py, positive and n), negative eigenvalues of
Krein matrix K (Ao) associated with £ |gy1 for Ag € R

> The sum yields Grillakis—Shatah—Strauss’ 90 theorem:

n(Lylgye) +n(L) = Nre(JL) + 2Neomp(JL) +2 Y .
Ao€iR 1

> The difference yields Grillakis’90 or Jones’88 theorems:
n(£+|{<1>}l) - I’l(,C ) redl(‘][’) real(‘]‘c)
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Strict constrained minimizers of energy

Let us give the proof of the orbital stability result for a strict
constrained minimizer of energy.

Theorem 12

Let u,, € X be a critical point of A,,(u) = H(u) — wQ(u). Assume

> the spectral gap condition
36>0: (=6,0)No(L,)={0}.

> the non-degeneracy condition

ker(L,) = span(JVQ(uy)) with JVQ(u,) € X C H.
> the robust norm condition

If lu — uy|lx < e0o < 1, then

300 e R:  ||u—T(0o)uyllx = 91161]12 lu—T(0)uy,|x.

If uy, is a constrained minimizer of H(u), then u,, is orbitally stable.
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Proof of orbital stability of constrained minimizers I

Decomposition:

Jdep > 0 and unique functions (6, w,w) € R x Q x X near (6p, wo, 0)
such that all u € X satisfying

€ = [lu = T(00)uwyllx = inf [lu = T(0)uwrlx < eo

can be written as

u=T(0) (s +w) with (w,JVQ(u,)) =0, (w, VO(u,)) = 0|

Proof: Define the function f : R x  x X — R2,

(u—T(O)uy,, T'(0)uy,)

u—T(0)uy, T(0)VO(uy)) |’ beR, weQCR,

f(07w7u) = |: <
so that f (0, w, u) = 0 if and only if u can be represented as in the box.
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Proof of orbital stability of constrained minimizers I

Let g € R be the argument in the infimum. By Cauchy—Schwarz
inequality, we have |f (0o, wo, u)| < Coe and the Jacobian of f is
17w (Outtes, T'th) }

Dowf O w0 ) == iy T0()) (Buite, VO(u,))

N (u—T(O)uy,, T"(0)uy) (u—T(O)uy,, T'(0)0,u,) } ’

(u—T(Ouy,, T'(0)00(uy,)) (u—T(0)uy, T(0)0,00(uy,))
Since (T"u,,, VO(uy)) = (JVQO(u,), VO(u,)) = 0 and

(Outte, VO(usy)) = 2L O(u,,) # 0, the Jacobian is invertible if € is
small enough.

By the inverse function theorem, f(6,w, u) = 0 has a unique solution
for (A, w) € R x Q satistying
|0 — 00| + |w _U.)O| < Coe

and the decomposition is justified.
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Proof of orbital stability of constrained minimizers II

Control of the error in time:

By LWP: |jup — uy,|| < 0 = énﬂg ||lu(t,-) — T(0)uy||x < € for
€
t € [0, 79) for some 79 > 0. So u(t, -) an be decomposed as in the box.

Define

Afw(1)) = Huy)) — H(uwy) — w(1) [Qun) — Quu)] -
Expand A, () near u,;y and subtract H (u,,) — w(t)Q(uy,) from
both sides:

V(1) = A@(0) + 5 {Lawt, ) wlt, ) + Ra(w(s, )
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Proof of orbital stability of constrained minimizers II

The mapping w — A(w) is C!, so we differentiate it in w and obtain
A(w) = Qluuy) — Q).

Hence, A(wo) = A’(wp) = 0and A" (wo) = — L O(uey)|w=w, > 0, 50
A(w) is quadratic near wy.

Together with the lower bound on £, we obtain that 3C_ > 0
V(1) 2 C_|w(r) — wol* + C-|lw(r,-)lIx

as long as |w(#) — wo| and ||w(t,-)||x are small.

Due to conservation of H(u) and Q(u), we have

V(1) = H(uo) — H(uw,) — w(t) [Q(uo) — Ouesy)]
= V(0) — [w(t) — wo] [Q(uo) — Ouw,)],
where
IV(0)] < Cod®,  |Q(uo) — Quwy)| < 2Co0.
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Proof of orbital stability of constrained minimizers II
The two bounds give with the Young’s inequality
C16* > C_|w() —wo — Cod|* + C_||w(z, )|l
which yields

jw(#) = wol + [[w(z,-)[x < €3, 1€ [0,70).

The triangle inequality and C' smoothness of w > u,, yields for
d<e/C:

52{{ Ju(t,-) = T(Q)“onX < lu(t,-) — T(e(t))”onX

< Huw(t) - uonX + Hu(tv ) - T(G(t))uw(t)HX
< Clw(r) = wol +[lw(r, )]l < €6 <e,
which is the orbital stability of u,,.

D. Pelinovsky, McMaster University Stability of Nonlinear Waves 55/63



5. Concluding remarks

The method of stability can be extended to constrained minimizers of
energy with several constraints. This includes

> traveling solitary waves with several parameters:

iy = —the + W (|10[})2p V(t,x) = e W (x + ct).

> traveling periodic waves with several parameters:

w4 2w+ = 0, u(t,x) = U(x+ct), U"+U?+cU =b.

> integrable Hamiltonian systems with commuting flows.
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Integrable Hamiltonian systems

We say that the Hamiltonian system

%:JVH(u), Hu):XCH—-R, J:H—-H

is integrable if there exists a recursion operator R : H — H and
another energy H(u) : X C H such that

JR=R"J, VH(u)=RVH(u).
This implies that

EZJVFNI(M), Hu): XCH—-R, J:H—-H

with J = JR. If J* = —J, then J* = (JR)* = —R*J = —JR = —J.
If H(u) is conserved in 7, so is H (u) since
(JVH(u),VH(u)) = (JVH(u), VH(u)) = 0.
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A hierarchy of integrable Hamiltonian systems

We can then introduce a sequence of Hamiltonians {Hy (u) }ren with

Hi(u) : X C H — R such that
RVH(u) = VHii1(u),

and 4
A JVH),

dty

such that
Vk,m € N.

(JVHy(u),VHy(u)) =0,
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A hierarchy of integrable Hamiltonian systems

We can then introduce a sequence of Hamiltonians {Hy (u) }ren with

Hi(u) : X C H — R such that
RVHk(M) = VHk+1(u),

and 4
A JVH),

dty

such that
Vk,m € N.

(JVHy(u),VHy(u)) =0,

> For a particular PDE with fixed k£ € N, all Hamiltonians
{H(u) }men are formally conserved.

> Traveling waves (multi-solitons, breathelgs) are critical points of

Ay, (1) = Hyyy (u) — Zmem(u).
m=1
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Example: the NLS hierarchy
S0 1 _ [0+ 200w 2007 A
1 o’ i lu —0, — 2ud;
satisfying JR = R*J. Then, RVH;(u) = VHy(u) generates

Ho(u, ) = / uPds,
i

Hi(u,u) = 3 /(uﬁx — Uy )dx,

Ha () = / (el — uf*)d,

L o o
Hs(u,u) = 3 /(uxuxx — Gty — 3|u|* (uity — fuy))dx,

Hy(u,u) = /(|um|2 — 6|ul?|u|* — (uity + auae)® + 2|ul®)dx.
Note that Hy is defined in H = L*(R, C), H, is defined in
X = H'(R, C), and Hy is defined in X = H*(R, C).
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Example: traveling solitary wave in the NLS equation

The NLS equation appears for t = f;:
d H _, [0 _1] [qug(u, u)]
dr |u 1 0| |VaHy(u, )
Traveling solitary waves with two parameters:
ity + e + 2Jul*u = 0, u(t,x) = e “'U(x — ct)
satisfy

U' +2|/UPU —icU' +wU =0, Ay.=Hy, —cHy —wHy

U is a constrained minimizer of energy H, in X = H'(R, C) for fixed
Hy, Hy. Simultaneously, U is a constrained minimizer of Hy in
X = H?*(R, C) for fixed H3, H, from Ay = Hy — cH3 — wH>:

VAue(u,it) = RV A, (u, @) = 0.
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Striking example: the nonlinear Dirac equation

The massive Thirring model in laboratory coordinates

i(u +uy) +v = |v|u,
i(v; — ve) +u = |u?v,

Conservation of mass, momentum and energy:
0= / (Juf? + [v]?) d,
R

P= / (utty — uxtt + vy — vyv) dx,
2 Jr

H= ;/ (Uil — uxll — V0y + v,V) dx + / (—vit — uv + 2|u*|v|?) dx,
R R
and the higher-order energy (due to integrability):

i
R:/ [\uxy% [oal® = 5 (et — Te) (Ju* + 2[v]?)
R

— (v + ) ([ + V) + 20l P(Juf? + [v])] dx
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Example: solitary waves in the nonlinear Dirac equation

Solitary waves are given by

. sech | x sin~y + 177
u(x,t) = U, (x)e™", U, (x) = sinvy .
sech (x siny — 3

where w := cosy € (—1,1).

First derivative test: U, is a critical point of H 4+ wQ and a critical
point of A, := R+ (1 — w?)Q.

Second derivative test: Uy, is a strict minimizer of R in H' (R, C?) for
fixed Q and P. Hence, it is orbitally stable in H' (R, C?)
[D.P-Y. Shimabukuro, 2014]
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Further directions
> Orbital and asymptotic stability of multi-solitons and breathers
in integrable systems

> Spectral and orbital stability of periodic waves in integrable
systems

> Casimir integrals for non-invertible J and their roles in the
orbital stability analysis

> Waves of the peaked (singular) profiles and failure of
“conditional” orbital stability

> Solitary waves with nonzero boundary conditions and failure of
coercivity.

> Degeneracy of the second variation and the role of bifurcations.
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