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Introduction

Asymptotic approximations of the lattice dynamics are obtained by
using reduction of lattice differential equations to evolution equations.

I Small-amplitude uni-directional long travelling waves of the
Fermi–Pasta–Ulam lattice are reduced to the KdV equation.

G. Schneider–C.E. Wayne (2000); D. Bambusi–A. Ponno (2006).

I Small-amplitude envelopes of discrete breathers of the
Klein–Gordon lattice are reduced to the discrete NLS equation.

G. James (2003); D.P.–T.Penati–S.Paleari (2015)

Main question: Can these reductions be useful to obtain existence
and stability of coherent states (travelling solitons and discrete
breathers) in lattice differential equations?



The FPU chain
xn−2z xn−1z xnz xn+1z xn+2z

Newton’s equations define the FPU (Fermi-Pasta-Ulam) lattice:

d2xn

dt2 = V ′(xn+1− xn)−V ′(xn− xn−1), n ∈ Z,

where xn is the displacement of the nth particle from an equilibrium
and V (u) is the interaction potential defined in un = xn+1− xn.

Let us consider the example of a slightly unharmonic potential:

V (u) =
1
2

u2 +
ε2

p + 1
up+1,

where ε is a small parameter and p ≥ 2 is an integer.



Formal derivation of the KdV equation

Consider the FPU lattice for relative displacements un := xn+1− xn,

d2un

dt2 − (∆u)n = ε
2(∆up)n, n ∈ Z,

where (∆u)n = un+1−2un + un−1.

Using the asymptotic multi-scale expansion

un(t) = W (ε(n− t),ε3t) + error terms,

we derive the generalized KdV equation at the order O(ε4)

2∂τW +
1
12

∂
3
ξ
W + ∂ξW p = 0.

There exists a positive solitary wave for every p ≥ 2.



Justification of the KdV approximation

Theorem 1 (Schneider-Wayne, 2000; E.Dumas–D.P., 2014)
Let W ∈ C([−τ0,τ0],Hs(R)) be a solution to the KdV equation for
some integer s ≥ 6 and some τ0 > 0. There exist positive constants ε0

and C0 s.t. for all ε ∈ (0,ε0), when initial data uini,ε ∈ l2(R) are given
s.t.

‖uini,ε−W (ε·,0)‖l2 ≤ ε
3/2,

the unique solution uε to the FPU lattice belongs to
C1([−τ0ε−3,τ0ε−3], l2(Z)) and satisfies

‖uε(t)−W (ε(·− t),ε3t)‖l2 ≤ C0ε
3/2, t ∈

[
−τ0ε

−3,τ0ε
−3] .

Remarks:
I The proof relies on the energy method and Gronwall inequality.

I The result suggests correlation between stability of KdV and FPU
travelling waves.



Approximate nonlinear stability of FPU solitons

Theorem 2 (E.Dumas–D.P., 2014)
For every τ0 > 0, there exist positive constants ε0, δ0 and C0 s.t. for all
ε ∈ (0,ε0), when initial data uini,ε ∈ l2(R) satisfy
δ := ‖uini,ε−utrav,ε(0)‖l2 ≤ δ0, then the unique solution uε to the FPU
lattice belongs to C1([−τ0ε−3,τ0ε−3], l2(Z)) and satisfies

‖uε(t)−utrav,ε(t)‖l2 ≤ C0δ, t ∈
[
−τ0ε

−3,τ0ε
−3] .

Remarks:
I The proof relies on the energy method and Gronwall inequality.

I The travelling waves of the FPU lattice are stable w.r.t.
modulations of any spatial scales, up to the time scale of O(ε−3).



Discussion

What is known about the generalized KdV equation?

2∂τW +
1
12

∂
3
ξ
W + ∂ξW p = 0.

I KdV solitary waves are orbitally stable for p = 2,3,4 and
unstable for p ≥ 5.

I Global solutions exists in Hs(R) for s ≥ 1 for p = 2,3,4 and, if
the norm in Hs0(R) is small, s0 = p−5

2(p−1) , for p ≥ 5.

Contradiction?

I Result of Theorem 1 suggests correlation of stability of FPU
solitons and KdV solitons for p ≥ 2.

I Result of Theorem 2 suggests stability of all small FPU travelling
waves up to the time scale of O(ε−3) for any p ≥ 2.
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Proof of (Stability) Theorem 2

The scalar FPU lattice equation can be written in the vector form{
u̇n = pn+1−pn,
ṗn = V ′(un)−V ′(un−1),

n ∈ Z.

The energy functional is conserved at any (u,p) ∈ C1(R, l2(Z)):

H := ∑
n∈Z

1
2

p2
n +

1
2

u2
n +

ε2

p + 1
up+1

n .

Let (utrav,ptrav) ∈ C1(R, l2(Z)) denote the travelling wave to the FPU
lattice with the speed c. Then, utrav(t) = ustat(n− ct) satisfy{

−cu′stat(z) = pstat(z + 1)−pstat(z),
−cp′stat(z) = V ′(ustat(n− ct))−V ′(ustat(n−1− ct)),

z ∈ R.



Decomposition and the energy method

For any fixed c, we decompose

u(t) = utrav(t) + U(t), p(t) = ptrav(t) + P (t),

such that H = H0 + H1 + H2 + HR with

H0 =
1
2 ∑

n∈Z
p2

stat(n− ct) + ∑
n∈Z

V (ustat(n− ct)),

H1 = ∑
n∈Z

pstat(n− ct)Pn + ∑
n∈Z

V ′(ustat(n− ct))Un,

H2 =
1
2 ∑

n∈Z
P 2

n +
1
2 ∑

n∈Z
V ′′(ustat(n− ct))U2

n ,

and
|HR| ≤ Cρ sup

z∈R
|V ′′′(ustat(z))| ‖U‖3

l2 ≤ Cρε
2‖U‖3

l2 ,

as long as ‖U‖l2 ≤ ρ.



Energy estimates
I H0 is independent of t (direct differentiation).

I H2 is a convex quadratic form with the lower bound (if p is odd)

H2 ≥
1
2
‖P‖2

l2 +
1
2
‖U‖2

l2 .

I H1 is controlled in terms of H2:

dH1

dt
=

c
2 ∑

n∈Z
u′stat(n− ct)V ′′′(ustat(n− ct))

(
U2

n + O(U3
n)
)
.

Hence, we have∣∣∣∣dH1

dt

∣∣∣∣ ≤ Cρε
3‖U‖2

l2 ≤ 2Cρε
3H2,

and

H1(t)−H1(0)≥−2Cρε
3
∫ |t|

0
H2(t ′)dt ′.
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End of the proof of Theorem 2

By using the energy expansion, we have

H−H0−H1(0)≥−2Cρε
3
∫ |t|

0
H2(t ′)dt ′+ H2(t)(1−Cρε

2
ρ).

By Gronwall’s inequality, we obtain

H2(t)≤ H−H0−H1(0)

1−Cρε2ρ
e2Cρε3|t|≤ H2(0) + HR(0)

1−Cρε2ρ
e2Cρε3|t|≤ C̃2

ρδ
2e2Cρτ0 .

Theorem 2 is proved in the ball in l2(Z) with radius ρ := C0δ, where

C0 := C̃ρeCρτ0 .

Remark: The proof of nonlinear stability uses the KdV limit scaling of
small ε, but does not rely on the stability of KdV travelling waves.



Proof of (Justification) Theorem 1
Let us now use the decomposition

un(t) = W (ε(n− t),ε3t) + Un(t), pn(t) = P(ε(n− t),ε3t) + Pn(t),

where W (ξ,τ) is a solution of the generalized KdV equation

2∂τW +
1
12

∂
3
ξ
W + ∂ξW p = 0.

and P(ξ,τ) satisfies the approximation problem

P(ξ + ε,τ)−P(ξ,τ) =−ε∂ξW + ε
3
∂τW ,

up to and including the order of O(ε4).

The perturbation terms satisfy

U̇n(t) = Pn+1(t)−Pn(t) + ε
5Res(1)n (t),

Ṗn(t) = Pn(t)−Pn−1(t) + pε
2W p−1Un(t)−pε

2W (·− ε)p−1Un−1(t)

+ε
2Rn(W ,U)(t) + ε

5Res(2)n (t),

where R(W ,U) is quadratic in U in the l2(Z) norm.
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Energy estimates
Approximation Lemma:
There exists C > 0 such that for all X ∈ H1(R) and ε ∈ (0,1],

‖x‖l2 ≤ Cε
−1/2‖X‖H1 ,

where xn := X(εn), n ∈ Z.

The energy quadratic form is

E(t) :=
1
2 ∑

n∈Z

[
P 2

n (t) + U2
n(t) + pε

2W p−1U2
n(t)

]
.

The energy balance equation:∣∣∣∣dE
dt

∣∣∣∣≤ CW E1/2
(

ε
9/2 + ε

3E1/2 + ε
2E

)
,

where CW depends on ‖W‖H6 .
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End of the proof of Theorem 1
Let Q := E1/2 and the time span be defined by

TC(ε) := sup
{

T0 ∈ (−τ0ε
−3,τ0ε

−3] : Q (t)≤ Cε, t ∈ [−T0,T0]
}
.

Then, the energy balance estimate is∣∣∣∣dQ
dt

∣∣∣∣≤ CW

(
ε

9/2 + ε
3(1 + C)Q

)

By Gronwall’s inequality, we obtain

Q (t)≤
(

Q (0) + CW ε
9/2|t|

)
eCW (1+C)ε3t , t ∈ (−TC ,TC).

Since Q (0)≤ ε3/2 and ε3/2� ε, then TC is extended to the full time
span τ0ε−3 with the constant

C0 := (1 + CW τ0)eCW (1+C)τ0 .



Discussion

Recall that from the generalized KdV equation

2∂τW +
1
12

∂
3
ξ
W + ∂ξW p = 0,

KdV solitary waves are orbitally stable for p = 2,3,4 and
unstable for p ≥ 5.

Is there a contradiction?

I Result of Theorem 1 suggests correlation of stability of FPU
solitons and KdV solitons for p ≥ 2.

I Result of Theorem 2 suggests stability of all small FPU travelling
waves up to the time scale of O(ε−3) for any p ≥ 2.

There is no contradiction:
C0 depends exponentially on τ0 in both theorems.
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KdV approximation on the extended time span
For the modified KdV equations (p = 2,3), integrability implies

∃Cs > 0 : ‖W (·,τ)‖Hs ≤ Cs ∀τ,

for every integer s.

Theorem 3 (A.Khan–D.P., 2015)
Let W ∈ C(R,H6(R)) be a global solution to the KdV equation with
p = 2,3. For fixed r ∈ (0, 1

2 ), there exist positive constants ε0 and C0

s.t. for all ε ∈ (0,ε0), when initial data uini,ε ∈ l2(R) are given s.t.

‖uini,ε−W (ε·,0)‖l2 ≤ ε
3/2,

the unique solution uε to the FPU lattice belongs to
C1([−τ0ε−3,τ0ε−3], l2(Z)) with τ0 = O(| log(ε)|) and satisfies

‖uε(t)−W (ε(·− t),ε3t)‖l2 ≤ C0ε
3/2−r , t ∈

[
−τ0ε

−3,τ0ε
−3] .



Proof of Theorem 3
It is the same framework as in the (Justification) Theorem 1. The initial
time span is defined by

TC(ε) := sup
{

T0 ∈ (−τ0(ε)ε
−3,τ0(ε)ε

−3] : Q (t)≤ Cε, t ∈ [−T0,T0]
}
.

where τ0 depends on ε.

Then, the energy balance estimate is∣∣∣∣dQ
dt

∣∣∣∣≤ Csε
9/2 + ε

3ksQ ,

where ks depends on Cs and C.

By Gronwall’s inequality, we obtain

Q (t)≤
(

Q (0) + Csk−1
s ε

3/2
)

eksε3t , t ∈ (−TC ,TC).

If τ0(ε) is chosen s.t. eksτ0(ε) = µε−r for an ε-independent µ, then

Q (t)≤
(
1 + Csk−1

s

)
µε

3
2−r , t ∈ (−TC ,TC).



Discussion
The initial time span TC is extended to the full time span τ0(ε)ε−3 with
the ε-independent constant

C0 := µ(1 + Csk−1
s ).

The KdV time τ0(ε) = rk−1
s | log(ε)|+ O(1) is large as ε→ 0. Thus,

the approximation result

‖uε(t)−W (ε(·− t),ε3t)‖l2 ≤ C0ε
3/2−r , t ∈

[
−τ0ε

−3,τ0ε
−3]

holds uniformly on the logarithmically large time scale.

The approximation result justifies also nonlinear stability of
small-amplitude FPU solitons with respect to perturbations of the
same spatial scale on the time scale of O(ε−3).

Remark: Similar extension of the KdV approximation can be obtained
even if ‖W (·,τ)‖Hs grows at most exponentially in τ, which may be
relevant for the generalized KdV equation with p ≥ 4.
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The Klein–Gordon chain

Coupled nonlinear oscillators satisfy the discrete KG equation

d2xn

dt2 + xn + x3
n = ε(xn+1−2xn + xn−1), n ∈ Z,

where V (u) is the onsite potential and ε is the coupling constant.

Using the asymptotic multi-scale expansion

un(t) = ε
1/2Xn(t) + error terms, Xn(t) := an(εt)eit + ān(εt)e−it ,

we derive the discrete NLS equation at the order O(ε3/2)

2i ȧn + 3|an|2an = an+1−2an + an−1, n ∈ Z.

Solitary waves of dNLS correspond to discrete breathers of KG.



Justification of the dNLS approximation

Theorem 4 (D.P.-Penati–Paleari, 2015)
For every τ0 > 0, there are positive constants C0 and ε0 such that for
every ε ∈ (0,ε0), for which the initial data satisfies

‖u(0)− ε
1/2X(0)‖l2 ≤ ε

3/2,

the solution of the dKG equation satisfies for every t ∈ [−τ0ε−1,τ0ε−1],

‖u(t)− ε
1/2X(t)‖l2 ≤ C0ε

3/2.

Remarks:
I The constant C0 again grows exponentially in τ0.

I The proof relies on the energy method and Gronwall inequality.



Extended time scale

To relate existence and stability of discrete breathers in

d2xn

dt2 + xn + x3
n = ε(xn+1−2xn + xn−1), n ∈ Z,

with existence and stability of discrete solitons in

2i ȧn + 3|an|2an = an+1−2an + an−1, n ∈ Z.

we can justify the dNLS approximation on the logarithmically extended
time scale O(| log(ε)|ε−1). This is always possible since solutions of
the dNLS equation enjoy global estimates in `2(Z) norm.

Remark: dNLS approximation is different from the tools developed in
the anti-continuum limit ε→ 0 for nearly compact KG breathers.
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