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The Fermi-Pasta-Ulam problem

gj-1 q; gj+1

MW@ W@ WN—@—AMAN—

System of particles on the line

1
Nearest neighbour interactions with Hamiltonian given by H = Z Edf + V(gj+1 — qj)
J

Equations of motion are given by ¢; = V'(gj+1 — q;) — V'(g; — qj—-1)
Potential V(q) = 3¢+ 3aq®

Numerical experiments showed recurrent formation of solitons for long time scales

A. Vainchtein, “Solitary waves in FPU-type lattices”, Physica D 434 (2022) 133252 (22 pages)
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KdV limit for small-amplitude, long-scale waves

Ansatz in the strain variables:

ri(t) = qi41(t) — qj(t) := R (e (j — t) ,°t) + error

e Approximation satisfies the FPU system to O(£%) if R satisfies the KdV equation:

1 3
O;R +aROR + 5 0(R =0

Rigorous justification:
Schneider—Wayne (1999), Friesecke-Pego (1999-2004), Bambusi—Ponno (2005-2006)

@ Follow-up work: log-KdV in Hertzian potential (Games—P, 2014; Dumas—P., 2014), generalized
KdV on extended time intervals (Khan—P, 2017), polyatomic case (Gaison—Moskow—Wright-Zhang,
2014), nonlocal interaction (Herrmann—Mikikits—Leitner, 2016), and many more.

KdV is an attractive model due to integrability and asymptotic stability of solitary waves.
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2D Square Lattice

J+1,k+1
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KP-II limit for small-amplitude, long-scale, transversely modulated waves

There exist two versions of the two-dimensional generalization of the KdV equation:
1
(KP-1)  0¢(0;R + aRO:R + ﬂagR) —92R=0

and
1
(KP-11)  0¢(0-R + aRO:R + ﬂag’R) +92R=0

For water waves, (KP-I) arises for problems with surface tension and (KP-I1) arises for gravity waves.

For the defocusing Gross—Pitaevskii equation,

id}t + '(/}xx + 7/’yy - |1/1|21/) = 07
only (KP-I) arises in the asymptotic reduction on the nonzero background.

For the FPU lattice on the square lattice, only (KP-I1) arises in the asymptotic reduction.
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KP-II limit for small-amplitude, long-scale, transversely modulated waves

KP-Il is equally attractive due to asymptotic stability of line solitary waves (Mizumachi, 2015),
transverse stability of line periodic waves (Haragus, Li, P, 2017), and the web patterns of line solitons.
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On comparison with KP-I

Line solitary and periodic waves are unstable for KP-I and the perturbations evolve into two-dimensional
solitons called lumps.
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Justification of KP-II limit

@ By using the scalar model on 2D square lattice,
1. 1 1 1
H=2 5t 5@ — gu)’ + 3@k = Gia)* + 56%(@jert — k)’
(J’k)
Duncan—Eilbeck-Zakharov (1991) formally derived KP-II equation

1
0¢(0-R + aRO¢R + 2 0¢R) + OjR =0

@ Rigorous justification of the KP-II limit has been an open problem for 20 years!
e It was only justified recently: Gallone—Pasquali (2021) on T? and Hristov—P (2021) on R?
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Vector FPU model on square lattice

@ We look at the following Hamiltonian

1 P
H=3 Vot V(Xiie = X Yieik — Vi) + V(¥jkt1 = Yoo Xjoht1 = Xj.k)5
2
Uik EZ? Gez?

where

1 1 1
V(r,s) = E(cfr2 +c3s°) + §a1r3 + 5a2r52.

@ Aproximating function for the horizontal propagation
Xit1.k — Xjk = Al (j — at),e’k,e3t) + error

with € = ¢(j — at), n =%k, and 7 = 3t

@ The approximation satisfies FPU up to a small error if A solves the KP-II equation given by

2
2010:0,A + %agA + 2010 (ADeA) + GRA =0 (KP)
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Strain variables

o For the justification analysis it is more convenient to introduce the following strain variables:

U(l) = X
ik T Xitlk T
(1) .

Vik = Yi+1,k —

W)k 7= Xj k;

= Yj.k

@ This allows us to rewrite two second-order equations for X; x

with two compatibility conditions:

V= w
jok = Witk T
NS
Vik = Zi+1,k —
o2 (1)
Wik =G (uj,k
@
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and y; x as six first-order equations
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Theorem (Horizontal propagation)

Theorem (Hristov—P, 2021)

Let A€ C°([—7o,70], H*™® (R?)) be a solution to the KP-Il equation with fixed s > 0, whose initial
data A(§,7,0) = A satisfies Ag € H (R?), 5‘5_23%/40 € H*t (R?), and

07102 (072020 + R3] € HH (R?).

Then there are constants Cy, C1,&0 > 0 such that for € € (0,eq) if the initial conditions of the
two-dimensional FPU system satisfies

| ot

then the solution to the two-dimensional FPU system satisfies for t € [—oe 3, 73]

i

uf,}) — 52A0H aF ‘ u,f)
ZZ

o+ Wi+ o]l o + ‘ ye

| il < Gocf

1 2 2 2
Hu( )(t) —¢ AH@2 o Hu( )(t)sz + ||w(t) + 2aA,, +

0,

5
vO@)|, + Izl < Get.
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Outline of Proof

@ Well-posedness of KP-II equation in Sobolev spaces of high regularity

@ Approximation bound between sequences on Z? and smooth functions on R? with slow scaling
© Expansions to satisfy the compatibility conditions

@ Control of residual terms

@ Energy estimates

@ Bounds on the approximation error in the time evolution

Vertical propagation follows by symmetry of the square lattice.
Diagonal or any oblique propagation leads to further problems and open questions.
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Time evolution of the KP-Il equation
The KP-II equation
512 4 2q2

2¢10:0;A+ EagA + 200 (AdgA) + c30,A =0

can be written in the evolution form
2
€l o3 o & H-192
A+ —0A+ — (ADA — A=0,
Or A+ 5,0 +Cl( ¢ )+2€18,E 0A=0

where 97 1A = [*_ A(¢)d€'.

@ In the residual terms, we need a bound in Sobolev norm for terms of the form 85_183A.
These terms are related to 9, 2920, A or 92A.

@ No such terms arise in the justification of KP-II from 2D Boussinesq [Gallay-Schneider, 2001]

O%u— Au+ A%u+ A(v?) = 0.
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Time evolution of the KP-Il equation

Lemma (Hristov—P, 2021)

For any Ag € H**® (R?) such that 85_26%A0 € H* (R?) and

07 102 [07202 A0 + A3 € HEH (R?)

with fixed s > 0, there exists 19 > 0 such that the Cauchy problem admits a unique solution

Ae C° ([—To,’To] 5 HS+9) Nt ([—To,To] 5 H5+6) nc? ([—7’0,7’0] 5 HS+3) ncs ([—7’077'0] s HS) .

Analysis is based on writing the evolution problm for D := 852672]A,

0;D+ 9D+ 9;192(D + A%) = 0.
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Approximation result between sequences on Z? and functions on R?

Lemma (Hristov—P, 2021)

Let uj x = U(gj, k), with U € H5(R?), s > 1. Then, there is a constant Cs > 0, such that for every
e € (0,1) we have

lullpgzey < Coe ™2 [Ullpeqgey, YU € H° (R?).

@ One-dimensional result loses only e~1/2, extra power of epsilon due to the €2 scaling of 7.

@ The result is an exercise on Fourier transforms on Z?2 and on R2.
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Expansions to satisfy the compatibility conditions

Here is the starting system of equations of motion:

k= Wik+1 — Wik,

i)

= Wjt1,k — Wj k,

-(1)
J.k

u;

Zj k+1 — Zjks

—~

o X
o~

Zj+1,k — Zjks

(1) _
L=

Yj,

and
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Expansions to satisfy the compatibility conditions

@ We introduce the following decomposition:

uf) = A7)+ U
uj(zk) = 2B, (&,m,7) + € Uj(zk)
vl
i
wjx = 2 W, (&,n,7) +2 W«
Zjk = Zk,

where £ = e(j — at),n = e*k, 7 =3t

@ Here B., and W, are introduced to satisfy the linear equations of motion:

S , W2 _ )
Uik = Witk — Wk, Uik = Wik+1 — Wk,
KP-Il limit of 2D FPU
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Expansions to satisfy the compatibility conditions

These equations are satisfied up to O(£®) order:

WE (é- + €, 77) - WE (57 77) = _EC18§A(5, 77) + 5367’4(57 77);
W (&0 +e%) = We (&) = —ea1deBo(€,m) + £°0-B-(&,n).

@ We seek an approximate solution by expanding W_, B, in orders of ¢

W. = —ciA+e ($0cA) + 2 (9710, A~ $02A) — & (30,A)

B. = e07 '0,A — &2 (30,A) + & (301024 + 500,

By construction of terms W, and B., the residual terms of the two equations vanish to O(e®).
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Control of residual terms
The last two remaining equations are
W= (U = U] + ¢ [u - U]
+ e [2AUJ.(’1,() —2A(E—em U, + (Ul ) (v, k)2:|
+ ape? [Ba eV =B (en—) VI + UQVE) —uf) v }

+ 04262

om0 L] et [ 2|
+ oe® | B (§,m) U
+ aze? [A E&m VR — A —en) VI + VUG - v kU(l)Lk}

Js
[ 2 2
rac? (V) - (V) } ¢ Res?,
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Control of residual terms

@ Residuals are given by:
Res!} :=c1c0¢W. — 220, W. + ] [A(&,n) — A(§ — &,1)]
+ [B: (&) — B (6,0 —€%)] + [A (&)’ —A(¢ —e, n)z} ,

Oézf:‘z

2

zZ ._
Resf ) =

[Ba (&) —B.(&,n— 52)2} :

e Expanding Res"V gives the following formal expansion:
c? -
Resj‘f‘,i = &3 {2c187/4 + 1—125§’A + 62235 18727/4 + a10¢ (Az)]
o avoar Sotar Soeas “g2 (A%) | + O(e%)
PRI g te T T e '
@ Res? has a formal order of O(£9)
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Control of residual terms

Let A € CO(R, H*) be a solution to the KP-II equation (KP) with s > 9. There is a positive constant C
that depend on A such that for all € € (0, 1], we have

|Rests |, + [|Res¥’ |, + I Restll s + | ResZell < €.

@ The formal expansions of the residual terms are handled using Taylor's theorem, e.g.
1 1 !
A(&+e,n)—A(&,n) = e0cA+= 6265A—|— 365A+Ee482A+555/ (1-r)* 0 A(e(j+r), ek, % t)dr
. . 0

@ The integral residual terms is estimated in ¢2-norm for every r on [0, 1]
@ Since the rigorous bound loses O(c~3/2), the formal bound of O(e%) yields O(¢7/2) in the £>-norm.
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Energy Estimates

@ Recall the total energy of the FPU system in strain variables

2 1 2
Z 2+ () + S + GO+ B(vR)?
(JkeZZ
1 1 2 1 1 1 2 2
tgar 2 WP+ Jae 0 (@D + (WP,
(.k)ez? U.k)ez?

@ This suggests the following energy quantity to control the growth of the approximation error:

S Wz () v (U2) s (V) 4 (v)’

J,kez?
# ot 3 [ () () "+ (v2)]
J,kez?
’ a2521 . [ (v lk))Q + U (Vj(,lk))Q + (Uj(?k))2 V@ 428,02 V},i’} .
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Energy Estimates

@ Here we can recall the decomposition

u) = A0, ) + U7, MOELVO)
uy) = e2B. (€,n,7) +2U%), vl =2V
Wik = W (&,1,7) + €Wk, Zik=eZy,

@ The e-dependent terms in the energy E(t) are chosen such that the growth rate E’(t) does not
contain terms up to the formal order O(£?)

@ The energy is used to control the approximation errors in the following sense. Assume that
E(t) < Eg for some e-independent constant Eq > 0 for every t € [—1oe 3, 7oe~3]. There exist
some constants g > 0 and Ky > 0 that depend on A such that

2 2 ool v o] @|?
B M N e O e e
for each € € (0,¢9) and t € [~7oe ™3, 70 73]

D. Pelinovsky (McMaster University) KP-II limit of 2D FPU

23/32



Energy Estimates

By differentiating E(t), we obtain

E'(t)= Y WiResy + Z«Resf, + ---
J,keZ?

2

J5

+ a2 (—c1e0:A+ 538TA) (U.(l)
2 3 @, 2 3 %
+ ape (—clsagBE +e aTBE) UV, + aoe (—clzsagA +e BTA) (\/Jk) .

Js Js

From here, Cauchy-Schwartz and the estimates for the residual terms and for the approximation errors
gives the differential inequality:

IE'(t)| < C <e7/2E(t)1/2 +53E(t)) :

for some Cp > 0 as long as E(t) < Ey for some Ey > 0.
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Bounds on the approximation error in the time evolution

o By making the substitution E(t) := $Q(t)?, we obtain:

Qe < (77 +) (QB)

@ We obtain a bound on Q(t) from the Gronwall lemma

Lemma
Assume that Q(t) satisfies (QB) for t € [~1oe 3, 70e 3] and Q(0) < Coc'/? for some s-independent
constant Cy. There exists g > 0 such that

Q(t) < 12(1+ Go) exp (Cro)

3

for each ¢ € (0,50) and t € [~1oe 3, 706 73].

D. Pelinovsky (McMaster University) KP-II limit of 2D FPU 25 /32



Bounds on the approximation error in the time evolution

@ Recall the energy bounds:
2 2
KoE(t) < WP + 1 2| + HU<1>H + e H + v+ v, < 2Kk,
@ Hence the initial bound gives

Q) < |

in

+ H S
22 m

|
02

@ Gronwall's lemma and the decomposition then yield

N, 120le) < Gt

‘EZ

Hu(l)(t) — A (c(j — at),n’k,3t) H/z + Hu(2)(t) — &°B. ((j — at),n’k, %) sz

+[lw(e) = W (0 = ct) Pk )+ VOO, + V200, + 1202 < Koc2@(e)
which is bounded by Ce%/2. This completes the proof of the justification theorem.
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Towards other directions of the propagation

Xm,n—2 Xm4+1,n—1 Xm+1,n—1 Xm+2,n

Xm+1,n

Xm+1,n+1

Xm,n+1
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KP-II equation for the diagonal propagation

@ Diagonal propagation is similar to diatomic lattice

1. 1, .
m = 5(./ + k)v n= 5(./ - k)v Xm,n = Xj ks Xm,n ‘= Xj+1 k-

@ Formal aproximating function
Xm0 — Xmn = €2A(e (m — ¢ t), €2 (n — c5t),e3t) + error

«_ 1 2 2 1 2 2
where ¢f =35V + ¢ and ¢; =35V —6

@ However, it is hard to control error in general case because non-local terms related to KP-II
solutions appear at lower orders in ¢

o With N. Hristov, we only succeeded to justify the KP-II equation for the choice ¢; = ¢, and
o = 2a7, for which the FPU system is satisfied by the invariant reduction x; x = y; «x and ¢; = 0.
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Other propagation directions

With G. Schneider, we achieved a better progress for arbitrary directions of propagation.

The first simplification is to work with the second-order equations, rather than the first-order equations.
From

Um,n = Wm+1,n — Wm,n,
Vm,n = Wm,n+1 — Wm,n,

Wm,n = V/(um,n) - V/(um—l,n) + V/(Vm,n) - V/(Vm,n—l)-

we eliminate wp, , and get

i]m,n = V/(Um+1,n) - 2V/(um7n) + V/(Umfl,n)

+V/(Vm+1,n) - V/(Vm+1,n—1) - V/(Vm,n) + V/(Vm,n—l)a
Vm,n — V/(Vm,n+1) - 2V/(Vm,n) + V/(Vm,n—l)

+V,(Um,n+1) - V/(Um—l,n+1) - V,(Um,n) + V/(Um—l,n);

There exists still a compatibility condition between up, , and vy, 5.
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Other propagation directions

The second simplification is to use the Fourier transform and convert the system into the form:

020 = —(w? + w?) i+ wi(0* 0) — (e~ — 1)(1 — e)(V * ¥),
020 = —(w? + w0 + wA(V * ) — (e~ — 1)(1 — e*) (G  d).

where w? := 2 — 2cos(k) and we use V'(u) = u — u? just for simplifications.
The compatibility condition between up, , and vy, , can be expressed easier in the Fourier form as

(e~ —1)V(k, I, t) = (e~ " = 1)a(k, I, t).
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Other propagation directions

The leading order approximation for an arbitrary angle ¢ can be expressed by
Umn(t) = E2AX, Y, T), Vmn(t) = 2B(X, Y, T),
where
X = ¢e((cosg)m + (sing)n —t), Y =e*(—(sing)m+ (cos¢)n), T =e3t.
This yields the extended KP-II equation
—20x07A = %[(cos $)* + (sin ¢)*|O%A + 03 A
— (cos §)?0% (A%) — (sin ¢)(cos $)) 9% (B?)
- %6[(cos ¢)? — (sin ¢)?](cos ¢)(sin ¢)dx Iy A + 2¢(cos ¢)(sin ¢)Ix Iy (A%)
— [(cos )* — (sin ¢)*]0x Dy (B?)
~ Selcosd —sin 6 (cos 6)(sin 0)35 (B). &

and (cos ¢)9x B = (sin $)Ox A up to the leading order.
o) (il 20 (L W



Other propagation directions

The extended KP-II equation splits into the KP-II equation and the linearized KP-II equation, where we
need to control 95 dy(A?) in Sobolev spaces. However, this is impossible on R2.

On other hand, working on torus T2 (Bourgain, 1993), if the mean value of A in X is independent of Y,
then 95393 A is controllable in H*(T?) and so is 5 dy (A?).

Thus, we will be able to justify the KP-Il equation for arbitrary directions of propagations on T?, but
not on R? (P-Schneider, 2022).
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Other propagation directions

The extended KP-II equation splits into the KP-II equation and the linearized KP-II equation, where we
need to control 95 dy(A?) in Sobolev spaces. However, this is impossible on R2.

On other hand, working on torus T2 (Bourgain, 1993), if the mean value of A in X is independent of Y,
then 95393 A is controllable in H*(T?) and so is 5 dy (A?).

Thus, we will be able to justify the KP-Il equation for arbitrary directions of propagations on T?, but
not on R? (P-Schneider, 2022).

Thank you for your attention. Questions 77?7
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