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1. Metric graphs
In many problems (BECs, photonics, optics, river networks, bio networks),
wave dynamics can be considered trapped on a graph Γ that consists of a set
of edges E = {ej} connected at the set of vertices V = {vj}.

Compared to combinatorial graphs, edge lengths are important, whereas the
angles between the edges at each vertex and the directions of orientation of
each edge does not play any role. We can introduce a metric space on a
metric graph, e.g. Lp(Γ) defined pointwise on edges E with the norm

‖Ψ‖Lp(Γ) =

∑
ej∈E

‖ψj‖p
Lp(ej)

 1
p

,

for a piecewisely defined function Ψ(x) : Γ→ C.



Laplace operator on a metric graph

One can define a Laplace operator ∆Γ : dom(∆Γ) ⊂ L2(Γ)→ L2(Γ) by the
pointwise definition on edges E = {ej}:

(∆ΓΨ)(x) =
d2ψj

dx2 , x ∈ ej.

However, we need boundary conditions on vertices V = {vj} which connect
components of Ψ on every edge incident to a particular vertex v. The natural
conditions are called Neumann–Kirchhoff boundary conditions:{

ψe(v) = ψe′(v) for every e, e′ ≺ v,∑
e≺v ∂ψe(v) = 0,

where ∂ψe(v) denotes outward derivative of ψe at v (which is ± dψe
dx (v)).



PDEs on a metric graph
The Laplace operator is self-adjoint on L2(Γ) subject to the
Neumann–Kirchhoff (NK) boundary conditions:

〈−∆ΓΨ,Φ〉L2(Γ) = 〈∇ΓΨ,∇ΓΦ〉L2(Γ) = 〈Ψ,−∆ΓΦ〉L2(Γ)

for every Ψ,Φ ∈ dom(∆Γ) = {H2(Γ) : NK conditions}. Similarly, one can
define the form domain of ∆Γ by H1

C(Γ) = {H1(Γ) : continuity conditions}.

Many nonlinear PDEs can be expressed by using the Laplace operator ∆Γ:

(NLS) i∂tΨ = −∆ΓΨ + |Ψ|pΨ,

(Fisher–KPP) ∂tΨ = ∆ΓΨ + Ψ(1−Ψ),

(sine-Gordon) ∂2
t Ψ = ∆ΓΨ + sin(Ψ),

(Boussinesq) i∂tΨ = (1−∆Γ)−1 (∆ΓΨ + Ψ2) .
However, some nonlinear PDEs are expressed by the first-order operators
(Dirac) and third-order operators (KdV).



Example: a star graph
A star graph is the union of N half-lines connected at a single vertex with

L2(Γ) = L2(R+)⊕ · · · ⊕ L2(R+)︸ ︷︷ ︸
N elements

,

with

H1
C(Γ) = {Ψ ∈ H1(Γ) : ψ1(0) = ψ2(0) = · · · = ψN(0)},

dom(∆Γ) = {Ψ ∈ H2(Γ) ∩ H1
C(Γ) :

N∑
j=1

ψ′j (0) = 0}.

A. Kairzhan & D.P, JDE 264 (2018) 7357–7383;
A. Kairzhan & D.P, JPA: Math. Theor. 51 (2018) 095203;
A. Kairzhan, D.P. & R. Goodman, SIAM J. Dyn. Syst. 18 (2019) 1723–1755



Other graphs with loops (tadpole and flower)

I Variational methods were developed by R. Adami, S. Dovetta, E. Serre,
P. Tilli, A. Pankov, . . .

I Dynamical stability (PDE) methods were developed by J. A. Pava,
N. Goloshchapova, M. Cavalcante, R. Plaza, A. Ardila, . . .

I Dispersive estimates were developed by V. Banica, L. Ignat, A. Grecu,
F. Mehmeti, K. Ammari, S. Nicaise, . . .

I Period function and ODE methods were developed in
A. Kairzhan, R. Marangell, D.P, & K. Xiao, JDE 271 (2021) 719-763
D. Noja & D.P., Calc. Var. 59 (2020) 173 (31 pages)
A. Kairzhan, D. Noja, & D.P., Standing waves on quantum graphs,
J. Phys. A: Math. Theor. 55 (2022) 243001



2. The Fisher–KPP model on metric graphs
The Fisher–KPP equation, the Keller–Segel systems, and other
reaction–diffusion PDEs on a metric graph has been considered for modeling
of populations, river networks, chemotaxis, reaction-diffusion systems:

(Fisher-KPP) : ∂tu = ∆Γu + u(1− u).

and

(Keller–Segel) :

{
∂tu = ∆Γu−∇Γχ(u, v)∇Γv + f (u, v),

τ∂tv = ∆Γv + g(u, v).

The recent mathematical studies include the following:
I Existence and stability of steady states on compact metric graphs -

E. Yanagida (2001), Y. Ishii & K. Kurata (2021), Y. Ishii (2022)
I Bifurcations and asymptotic stability of constant states -

H. Shemtaga, W. Shen, & S. Sukhtaiev (2024, 2025)
I Spreading speeds of a propagation front (slowing down) -

W-T. L. Fan, W. Hu, & G. Terlov (2021)
I Trapping of the spreading front at vertices -

S. Jimbo & Y. Morita (2019, 2021, 2024)



Main problem related to the Fisher–KPP equation
Let Γ be a compact metric graph with finitely many edges of finite lengths.
We assume that Γ is connected and there is at least one pendant (an edge
with a boundary vertex not connected to any other edge).

We use the Neumann–Kirchhoff conditions on interior vertices and the
Dirichlet condition on boundary vertices.

∂tu = ∆Γu + u(1− u) on Γ.

u = 0 is a constant (trivial) state but u = 1 is no longer a valid state.

Question: existence, uniqueness, and asymptotic stability of the nonconstant
(positive) states in dependence of the graph geometry (e.g. edge lengths).



The gradient system with the free energy
The Fisher–KPP equation is a gradient system with the energy

H(u) =
1
2

∫
Γ

[(∇Γu)2 − u2]dx +
1
3

∫
Γ

u3dx,

defined on
H0 =

{
u ∈ H1

0(Γ) : u ≥ 0
}
.

If u0 ∈ H0, then there exists a unique global solution u ∈ C0([0,∞),H0)
with initial data u|t=0 = u0, which converges to a global attractor u∗ ∈ H0 as

u∗ = lim
t→+∞

u(t, ·).

The attractor u∗ ∈ H0 is a critical point of H(u), that is, a solution of the
steady state problem

−∆Γu = u(1− u), u ∈ D(∆Γ).

Main question is now to characterize the existence, uniqueness, and
asymptotic stability of u∗ 6= 0 in dependence of the graph geometry.



3. Main results
Let {Lj} be the set of lengths of edges of the graph Γ.

1. There is a unique global attractor for every u0 ∈ H0. The attractor is
either trivial or nontrivial depending whether the smallest eigenvalue
λ0(Γ) of −∆Γ in L2(Γ) is greater or smaller than one.

2. There exists L0 > 0 such that if maxj Lj < L0, then the trivial (zero)
state is a global attractor and a minimizer of the energy H(u) inH0 at
the zero level.

3. For every j-th edge of length Lj, there is L(0)
j ∈ [0,∞) such that for

every Lj > L(0)
j , a strictly positive state is a global attractor and a

minimizer of the energy H(u) inH0 at a negative level.

4. There exist L∗ > L0 such that if Lmin := minj Lj > L∗, then the unique,
strictly positive state u∗ satisfies

‖u∗ − 1‖L∞(Γ0) ≤ Ce−Lmin ,

for some C > 0, where Γ0 is the part of Γ without the pendants.



Positive states on the flower graphs
For the tadpole graph with a single loop, the unique positive state is

For the flower graph with two loops of different lengths, it is



4. Classical methods for the Fisher–KPP equation
The spectrum of −∆Γ in L2(Γ) consists of isolated positive eigenvalues,
since Γ is compact. Furthermore, the Laplace equation associated with ∆Γ

enjoyes the same maximum principle on Γ as in open regions of Rd.

As a result, we can use the classical methods of analysis:

I Linearization and the lowest eigenvalue of −∆Γ.

I Variational methods for the energy H(u).

I Comparison principle with subsolutions and supersolutions.

This gives the main results (1), (2), and (3). For the exponential localization
of the main result (4), we develop a novel method based on the period
function. The period function method also gives the precise construction of
the ground state, but for the simplest class of graphs (e.g., the flower graphs).



Classical methods: the lowest eigenvalue of −∆Γ

Lemma
Let the set of lengths {Lj} be fixed except for one edge parameterized as
[0,L]. Let λ(Γ) ≥ 0 be a simple eigenvalue of −∆Γ in L2(Γ) with the
corresponding eigenfunction Ψ : Γ→ R in D(∆Γ). Then, λ(Γ) is a C1

function of L satisfying

dλ(Γ)

dL
= −|ψ′(L)|2 − λ(Γ)|ψ(L)|2 ≤ 0,

where ψ(x) : [0,L]→ R is the component of Ψ on the edge [0,L].

Corollary
Let λ0(Γ) be the lowest eigenvalue of −∆Γ. Then, Ψ(x) > 0 for all x ∈ Γ

except for the boundary vertices (under Dirichlet condition) and dλ0(Γ)
dL < 0.

Corollary
The trivial state 0 in ∂tu = ∆Γu + u(1− u) is stable if λ0(Γ) ≥ 1 and
unstable if λ0(Γ) < 1.



Classical methods: the energy minimization

Lemma
If λ0(Γ) ≥ 1, then the infimum of H(u) inH0 is attained at u = 0 for which
H(0) = 0. If λ0(Γ) ∈ (0, 1), then the infimum of H(u) inH0 is attained at u∗
with H(u∗) < 0, where u∗ > 0 for all points of Γ except for boundary
vertices.

This follows from the Rayleigh quotient which yields∫
Γ

(∇Γu)2dx ≥ λ0(Γ)‖u‖2
L2(Γ), ∀u ∈ H1

0(Γ).

I If λ0(Γ) ≥ 1, then

H(u) ≥ 1
2

∫
Γ

[(∇Γu)2 − u2]dx ≥ (λ0(Γ)− 1) ‖u‖2
L2(Γ),

I If λ0(Γ) < 1, then H(u) is bounded from below:

H(u) ≥ −1
2

∫
Γ

u2dx +
1
3

∫
Γ

u3dx ≥ −1
6

∑
j

Lj.



Classical methods: the supersolution

Theorem
If λ0(Γ) ≥ 1, then u = 0 is a unique global attractor for every u0 ∈ H0.

Let u(x, t) = Ce(1−λ0(Γ))tϕ0(x) with eigenfunction ϕ0 > 0 and choose
C� 1 such that u0(x) ≤ Cϕ0(x) for all x ∈ Γ. Then, we have

ut = (1− λ0(Γ)) u ≥ ∆u + u(1− u),

so that

ut −∆Γu− u(1− u) ≥ 0 = ut −∆Γu− u(1− u).

By the comparison principle, u is a supersolution to u satisfying
u(t, x) ≤ u(t, x) for all (t, x) ∈ [0,∞)× Γ so that if λ0(Γ) > 1, then

lim
t→∞

u(t, x) ≤ lim
t→∞

u(t, x) = 0, for every x ∈ Γ.



Classical methods: the subsolution

Theorem
If λ0(Γ) < 1, then the strictly positive ground state u∗ ∈ H0 is a unique
global attractor for every u0 ∈ H0\{0}.

Let u|t=0 = εϕ0 for some ε > 0 and choose ε� 1 such that

H(u|t=0) =
1
2

(λ0(Γ)− 1) ε2‖ϕ0‖2
L2(Γ) +

1
3
ε3‖ϕ0‖3

L3(Γ) < 0.

The attractor for u, denoted as u∗, is nontrivial. Furthermore, u∗ > 0 inH0.

Assume first that u0(x) > 0 for every x ∈ Γ except for the boundary vertices.
Then, there is ε� 1 so that εϕ0 ≤ u0. By the comparison principle, u is a
subsolution to u satisfying u(t, x) ≤ u(t, x) for all (t, x) ∈ [0,∞)× Γ. The
attractor for u, denoted as u∗, satisfies u∗ ≤ u∗.

The attractor ψ = u∗ is the eigenfunction of the Schrödinger equation:

−∆Γψ + (u∗ − 1)ψ = 0, ψ ∈ D(∆Γ)

The uniqueness of u∗ follows from Sturm’s comparison theorem.



Further improvements
If u0 vanishes at some points of Γ other than the boundary vertices, then the
solution u(t, ·) is advanced forward in time for some t0 > 0: u(t0, ·) > 0 by
the strong maximum principle and ∃ε� 1: εϕ0 ≤ u(t0, ·).

Corollary
There exists L0 > 0 such that if maxj Lj < L0, then u = 0 is globally

asymptotically stable for initial data u0 ∈ H0.

This follows the uniform scaling of eigenvalues λ(Γ). If Lj = L`j with
L-independent {`j}, then λ(Γ) = L−2λ(Γ̃) with L-independent λ(Γ̃).

Corollary
For every j-th edge of length Lj, ∃L(0)

j ∈ [0,∞): for every Lj > L(0)
j with this

j, u = u∗ ≥ 0 is globally asymptotically stable for initial data u ∈ H0\{0}.

This follows from the monotone decrease of λ0(Γ) with λ0(Γ)→ 0 as
Lj →∞ for at least one Lj.



5. Novel methods based on the period function
Since Γ consists of edges {ej} (which are 1D intervals), we can consider the
integral curves of the second-order equation

u′′(x) + u(x)− u(x)2 = 0, u(x) : R→ R

to construct piecewisely smooth solutions to

−∆Γu− (1− u)u = 0, ψ ∈ D(∆Γ).

We will work with ũ = 1− u satisfying

ũ′′(x)− ũ(x) + ũ(x)2 = 0, ũ(x) : R→ R,

so that ũ = 1 at the boundary vertices and ũ ∈ (0, 1) everywhere in Γ.

Integral curves on the phase plane (ũ, ṽ) correspond to constant values of the
first-order invariant

E(ũ, ṽ) = ṽ2 − ũ2 +
2
3

ũ3, ṽ :=
dũ
dx
. (1)



Period function I
Let (p, q) ∈ (0, 1)× (−∞, 0) be a point on the phase plane (ũ, ṽ) and
consider an integral curve connecting (1, q̃) and (p, q), where

E(p, q) = q2 − p2 +
2
3

p3 = q̃2 − 1
3

The period function T(p, q) is defined by

T(p, q) =

∫ 1

p

du
v
, v :=

√
E(p, q) + u2 − 2

3
u3.



Main results about T(p, q)

Lemma
For every (p, q) ∈ (0, 1)× (−∞, 0), we have

∂T
∂p

< 0,
∂T
∂q

> 0.

Two asymptotic limits near the saddle and center points are also important:

I As (p, q)→ (0, 0), we have

T(p, q) = − ln

(
p− q

12

)
− x0 +O(p),

where x0 = 2arccosh
(√

3√
2

)
.

I As (p, q)→ (1, 0), we have

T(p, q) = arcsin
1− p√

(1− p)2 + q2
+O(|1− p|).



Period function II
Let (p, q) ∈ (0, 1)× (−∞, 0) be a point on the phase plane (ũ, ṽ) and
consider an integral curve connecting (p, q) and (p0, 0), where

E(p, q) = q2 − p2 +
2
3

p3 = −p2
0 +

2
3

p3
0.

The period function T0(p, q) is defined by

T0(p, q) =

∫ p

p0

du
v
, v :=

√
E(p, q) + u2 − 2

3
u3.



Main results about T0(p, q)

Lemma
For every (p, q) ∈ (0, 1)× (−∞, 0), we have

∂T0

∂q
< 0.

However, T0(p, q) is more difficult for analysis:

I ∂T0
∂p < 0 only for p ∈ (0, 1

2 ) and is not monotone if p ∈ ( 1
2 , 1).

I The asymptotic expansion of T0(p, q) as (p, q)→ (0, 0) does not make
sense.

I As (p, q)→ (1, 0), we only have the limit

lim
(p,q)→(1,0)

T0(p, q) =
π

2
− arcsin

1− p√
(1− p)2 + q2

,

but not the remainder term.



Ground state on the symmetric flower graph

Let (p, q) ∈ (0, 1)× (−∞, 0) be parameters for the boundary conditions
p = ũ(L) and q = ũ′(L) at the vertex. By uniqueness of integral curves, the
steady state is necessarily described by the identical and even functions
ũj = ũ0 satisfying the boundary conditions ũ0(±L0) = p and
ũ′0(±L0) = ∓ q

2N . The existence of the steady state is equivalent to finding a
root (p, q) ∈ (0, 1)× (−∞, 0) of the system of two equations:

T(p, q) = L, T0

(
p,

q
2N

)
= L0.



Applications of period functions: uniqueness
Here is the equivalent system of equations:

T(p, q) = L, T0

(
p,

q
2N

)
= L0,

for a given point (L,L0) ∈ R+ × R+.

Theorem
There exists a simply connected region Ω ∈ R+ × R+ such that the positive
steady state exists for every (L,L0) ∈ Ω and is unique.

The result follows from the positivity of the Jacobian of the transformation
(p, q) 7→ (L,L0):

∂T(p, q)

∂p
∂T0(p, q

2N )

∂q
− ∂T(p, q)

∂q
∂T0(p, q

2N )

∂p
> 0.



Applications of period functions: threshold on existence
Let Ω ⊂ R+ × R+ be the existence region in (L,L0). Then

I L0 = 0 :⇒ [0,L] is an interval with Dirichlet and Neumann conditions.
Then, q = 0 and L > π

2 for existence.

I L = 0 :⇒ [0,L0] is an interval with Dirichlet and Neumann conditions.
Then, p = 1 and L0 >

π
2 for existence.

I The lower boundary appears in the singular limit (p, q)→ (1, 0), where
cot(L) = 2N tan(L0). It is the same as λ0(Γ) = 1 from classical theory.



Applications of period functions: limit of long graphs

Theorem
There exist L∗ > L0 such that if Lmin := minj Lj > L∗, then the positive
ground state u∗ is unique and satisfies

‖u∗ − 1‖L∞(Γ0) ≤ Ce−Lmin ,

where C is a positive constant and Γ0 = Γ\P0 without the set of pendants P0.

Let V0 be the subset of interior vertices V = {vj} which are the boundary
vertices between Γ0 and P0. Denote pj = ũ(vj) at vj ∈ V0 and write −∆Γ0 ũ + ũ = ũ2 in Γ0,

ũ satisfies NK conditions on V\V0,
ũ(vj) = pj ≥ 0, vj ∈ V0,

and  −ũ′′(x) + ũ(x) = ũ(x)2 in P0,
ũ satisfies Dirichlet condition on boundary vertices,
ũ(vj) = pj ≥ 0, vj ∈ V0.



Dirichlet-to-Neumann map I
For  −∆Γ0 ũ + ũ = ũ2 in Γ0,

ũ satisfies NK conditions on V\V0,
ũ(vj) = pj ≥ 0, vj ∈ V0,

there exist C0 > 0, p0 > 0, L∗ > 0 such that if Lmin = minj Lj > L∗, then for
every ~p such that ‖~p‖ ≤ p0, there is a unique solution ũ ∈ D(∆Γ0) satisfying

‖ũ‖L∞(Γ0) ≤ C0‖~p‖

and
|qj − djpj| ≤ C0

(
‖~p‖e−Lmin + ‖~p‖2) , vj ∈ V0,

where qj is the Neumann data (the sum of outward derivatives from Γ0) at
the vertex vj and dj is the degree of the vertex vj ∈ V0.



Dirichlet-to-Neumann map II
For  −ũ′′(x) + ũ(x) = ũ(x)2 in P0,

ũ satisfies Dirichlet condition on boundary vertices,
ũ(vj) = pj ≥ 0, vj ∈ V0.

we denote qj = ũ′(Lj) and obtain from T(pj, qj) = Lj in the limit of
Lmin = minj Lj � 1 that

qj = pj − 12e−Lj−x0 +O(e−2Lj), x0 = 2arccosh

(√
3√
2

)
.

Bringing both Dirichlet–to–Neumann maps together in the NK conditions:

djpj +O(‖~p‖e−Lmin + ‖~p‖2) + mjpj − 12
∑
`j→vj

e−Lj−x0 +O(e−2Lmin) = 0.

By IFT, there exists a unique solution for small ‖~p‖ ≤ p0:

pj =
12

dj + mj

∑
`j→vj

e−Lj−x0 +O(e−2Lmin).



6. Summary
We have considered the selection of the ground state on the compact metric
graph with two groups of methods:

I Classical methods: linearization and the lowest eigenvalue of −∆Γ,
variational methods for the energy H(u), and the comparison principle
with subsolutions and supersolutions.

I Novel methods based on the period function for differential equations.

The period function methods give more precise infomation about
construction of the ground state but their application is limited to either
simplest graphs or to the asymptotic limit of long graphs. On the other hand,
they work when the classical methods are not applicable.



THANK YOU FOR ATTENTION!
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