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1. Metric graphs

In many problems (BECs, photonics, optics, river networks, bio networks),
wave dynamics can be considered trapped on a graph I that consists of a set
of edges E = {¢;} connected at the set of vertices V = {v;}.

Compared to combinatorial graphs, edge lengths are important, whereas the
angles between the edges at each vertex and the directions of orientation of
each edge does not play any role. We can introduce a metric space on a
metric graph, e.g. L”(T") defined pointwise on edges E with the norm
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for a piecewisely defined function ¥(x) : I' — C.



Laplace operator on a metric graph

One can define a Laplace operator Ar : dom(Ar) C L?(T') — L*(T') by the
pointwise definition on edges E = {¢;}:

_ &y

(AF\IJ)(.X) = W’ X e ;.

However, we need boundary conditions on vertices V = {v;} which connect
components of W on every edge incident to a particular vertex v. The natural
conditions are called Neumann—Kirchhoff boundary conditions:

{ Ye(v) = Ve (v) for every e, e’ < v,
Ze<v 5%(") =0,

.. . di,
where 01, (v) denotes outward derivative of ¢, at v (which is i% (v).



PDEs on a metric graph

The Laplace operator is self-adjoint on L?(I") subject to the
Neumann—Kirchhoff (NK) boundary conditions:

(=ArY, @)p2ry = (Vr¥, Vrd) 2y = (¥, —Ar®) 21

for every ¥, ® € dom(Ar) = {H*(T') : NK conditions}. Similarly, one can
define the form domain of Ar by H.(T") = {H'(T") : continuity conditions}.

Many nonlinear PDEs can be expressed by using the Laplace operator Ar:
(NLS) IOV = —Ap¥ + |U|PP,
(Fisher—KPP) OV = ArU + U(1 — ),
(sine-Gordon) ~ 9}W = ApW + sin (),
(Boussinesq) i,V = (1— Ap)*l (AF\I/ + \Ilz) .

However, some nonlinear PDEs are expressed by the first-order operators
(Dirac) and third-order operators (KdV).



Example: a star graph
A star graph is the union of N half-lines connected at a single vertex with

LX(T)=LRY) & & LX(RY),

N elements
with
He(D) ={¥ e H'(D): ¢1(0) = 2(0) = - = 4y (0)},

dom(Ar) = {¥ € H*(T)NHHT): Y /(0) = 0}.
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Other graphs with loops (tadpole and flower)

» Variational methods were developed by R. Adami, S. Dovetta, E. Serre,
P. Tilli, A. Pankov, . ..

» Dynamical stability (PDE) methods were developed by J. A. Pava,
N. Goloshchapova, M. Cavalcante, R. Plaza, A. Ardila, . ..

> Dispersive estimates were developed by V. Banica, L. Ignat, A. Grecu,
F. Mehmeti, K. Ammari, S. Nicaise, . ..

> Period function and ODE methods were developed in
A. Kairzhan, R. Marangell, D.P, & K. Xiao, JDE 271 (2021) 719-763
D. Noja & D.P., Calc. Var. 59 (2020) 173 (31 pages)
A. Kairzhan, D. Noja, & D.P., Standing waves on quantum graphs,
J. Phys. A: Math. Theor. 55 (2022) 243001



2. The Fisher—KPP model on metric graphs

The Fisher—KPP equation, the Keller—Segel systems, and other
reaction—diffusion PDEs on a metric graph has been considered for modeling
of populations, river networks, chemotaxis, reaction-diffusion systems:

(Fisher-KPP) : O = Aru+ u(l — u).
and

Ou = Aru — Vrx(u,v)Vrv + f(u,v),

Keller—Segel) :
( gel {T@,v = Apv+g(u,v).

The recent mathematical studies include the following:

» Existence and stability of steady states on compact metric graphs -
E. Yanagida (2001), Y. Ishii & K. Kurata (2021), Y. Ishii (2022)

» Bifurcations and asymptotic stability of constant states -
H. Shemtaga, W. Shen, & S. Sukhtaiev (2024, 2025)

» Spreading speeds of a propagation front (slowing down) -
W-T. L. Fan, W. Hu, & G. Terlov (2021)

» Trapping of the spreading front at vertices -
S. Jimbo & Y. Morita (2019, 2021, 2024)



Main problem related to the Fisher—KPP equation

Let I" be a compact metric graph with finitely many edges of finite lengths.
We assume that I is connected and there is at least one pendant (an edge
with a boundary vertex not connected to any other edge).

We use the Neumann—Kirchhoff conditions on interior vertices and the
Dirichlet condition on boundary vertices.

Ou=Aru+u(l—u) onT.
u = 0 1is a constant (trivial) state but # = 1 is no longer a valid state.

Question: existence, uniqueness, and asymptotic stability of the nonconstant
(positive) states in dependence of the graph geometry (e.g. edge lengths).



The gradient system with the free energy
The Fisher—KPP equation is a gradient system with the energy

H(u) = %/F[(Vpu)2 — u?)dx + %/lfdx,

r

defined on
Ho={uecHyT): u>0}.

If ug € Ho, then there exists a unique global solution u € C°([0, c0), Ho)
with initial data u|,—¢y = uo, which converges to a global attractor u, € H, as

Uy = z—lj-?oo u(t,-).

The attractor u, € H, is a critical point of H(u), that is, a solution of the
steady state problem

—Aru =u(l —u), u€ D(Ar).

Main question is now to characterize the existence, uniqueness, and
asymptotic stability of u, # 0 in dependence of the graph geometry.



3. Main results
Let {L;} be the set of lengths of edges of the graph I.

1. There is a unique global attractor for every uy € Hy. The attractor is
either trivial or nontrivial depending whether the smallest eigenvalue
Ao(T) of —Ar in L2(T) is greater or smaller than one.

2. There exists Lo > 0 such that if max; L; < Lo, then the trivial (zero)
state is a global attractor and a minimizer of the energy H(u) in H, at
the zero level.

3. For every j-th edge of length L;, there is L}O) € [0, 00) such that for

every L; > L}O), a strictly positive state is a global attractor and a
minimizer of the energy H(u) in H, at a negative level.

4. There exist L, > Lo such that if Ly, := min; L; > L., then the unique,
strictly positive state u, satisfies

||I/t* — 1||L00(F0) < Ce_L‘"‘",

for some C > 0, where I'y is the part of I" without the pendants.



Positive states on the flower graphs

For the tadpole graph with a single loop, the unique positive state is

For the flower graph with two loops of different lengths, it is

u 2L,




4. Classical methods for the Fisher—KPP equation

The spectrum of —Ar in L?(I") consists of isolated positive eigenvalues,
since I" is compact. Furthermore, the Laplace equation associated with Ap
enjoyes the same maximum principle on I' as in open regions of R¢.

As aresult, we can use the classical methods of analysis:
» Linearization and the lowest eigenvalue of —Arp.
> Variational methods for the energy H (u).

» Comparison principle with subsolutions and supersolutions.

This gives the main results (1), (2), and (3). For the exponential localization
of the main result (4), we develop a novel method based on the period
function. The period function method also gives the precise construction of
the ground state, but for the simplest class of graphs (e.g., the flower graphs).



Classical methods: the lowest eigenvalue of —Ap

Lemma

Let the set of lengths {L;} be fixed except for one edge parameterized as
[0,L]. Let \(T') > 0 be a simple eigenvalue of —Ar in L*(T') with the
corresponding eigenfunction ¥ : T' — R in D(Ar). Then, A\(T') is a C!
function of L satisfying

aAr)

o= T OF =D <0,

where 1(x) : [0,L] — R is the component of ¥ on the edge [0, L].

Corollary
Let X\o(T") be the lowest eigenvalue of —Ar. Then, U(x) > 0 forallx € T
except for the boundary vertices (under Dirichlet condition) and d’\o(r) < 0.

Corollary

The trivial state 0 in O,u = Aru + u(1 — u) is stable if \o(T') > 1 and
unstable if A\o(T') < 1



Classical methods: the energy minimization

Lemma

If (L) > 1, then the infimum of H(u) in Hy is attained at u = 0 for which
H(0) = 0. If \(T') € (0, 1), then the infimum of H(u) in Hy is attained at u
with H(u,) < 0, where u, > 0 for all points of T except for boundary
vertices.

This follows from the Rayleigh quotient which yields
[ (v > 2Ol V€ BT,
> If \o(T") > 1, then
HG0) > 5 [ (902 = elds = 0o() = 1) il
> If \o(I') < 1, then H(u) is bounded from below:

1 1 1
H(u) Z_E/FMde_'—g/pudeZ_g Zj:Lj.



Classical methods: the supersolution

Theorem
If (1) > 1, then u = 0 is a unique global attractor for every ug € H,.

Let @i(x, 1) = Cell =I5 (x) with eigenfunction ¢ > 0 and choose
C > 1 such that up(x) < Cipo(x) for all x € T'. Then, we have

= (1—XM)u>Au+u(l —u),
so that

u— Aru—u(l —u) >0=u — Aru—u(l —u).

By the comparison principle, % is a supersolution to u satisfying
u(t,x) <u(t,x) forall (¢,x) € [0,00) x I so that if A\g(T") > 1, then

lim u(r,x) < lim @(¢,x) =0, forevery x €T

t—0o0 t—0o0



Classical methods: the subsolution

Theorem
If \o(T) < 1, then the strictly positive ground state u, € Hy is a unique
global attractor for every ug € Ho\{0}.

Let u|,—9 = e for some € > 0 and choose € < 1 such that

1 1
H(uli=0) = 5 (Mo(T) = 1) &[lgoll iy + 57 lollzsr) < 0.
2 3

The attractor for u, denoted as u,, is nontrivial. Furthermore, u, > 0 in Hy.

Assume first that ug(x) > 0 for every x € T except for the boundary vertices.
Then, there is ¢ < 1 so that ey < uy. By the comparison principle, u is a
subsolution to u satisfying u(¢,x) < u(t,x) for all (z,x) € [0,00) x I". The
attractor for u, denoted as u,, satisfies u, < u..

The attractor ¢ = u, is the eigenfunction of the Schrodinger equation:
—Ary + (u — 1) =0, o € D(Ar)

The uniqueness of u, follows from Sturm’s comparison theorem.



Further improvements

If uy vanishes at some points of I" other than the boundary vertices, then the
solution u(t, -) is advanced forward in time for some 7y > 0: u(ty, -) > 0 by
the strong maximum principle and Je < 1: e < u(fy, -).

Corollary

There exists Ly > 0 such that if max; L; < Lo, then u = 0 is globally
asymptotically stable for initial data uy € H,.

This follows the uniform scaling of eigenvalues A\(I"). If L; = L¢; with

L-independent {/;}, then A\(I') = L™2\(T") with L-independent A(T").

Corollary
For every j-th edge of length L, HL;O) € [0,00): for every L; > L}O) with this

J» u = u, > 0is globally asymptotically stable for initial data u € Hy\{0}.

This follows from the monotone decrease of \y(T") with Ag(I") — 0 as
L; — oo for at least one L;.



5. Novel methods based on the period function

Since I consists of edges {e;} (which are 1D intervals), we can consider the
integral curves of the second-order equation

W’ (x) Fulx) —u(x)>=0, wukx):R-R
to construct piecewisely smooth solutions to

—Aru — (1 — I/t)lzt =0, ’L/) S D(AF)

We will work with # = 1 — u satisfying
@' (x) —a(x) +a(x)* =0, a(x):R—R,
so that # = 1 at the boundary vertices and & € (0, 1) everywhere in T

Integral curves on the phase plane (i, ) correspond to constant values of the
first-order invariant
2.5

E(i1,v) :172—122+§u ,

_ d

b= N



Period function I
Let (p,q) € (0,1) x (—00,0) be a point on the phase plane (i, V) and
consider an integral curve connecting (1, g) and (p, g), where
2 . 1
Ep.q)=¢ —p +30° =3~
3 3
The period function T'(p, ¢) is defined by

1
du 2
T(p.a)= | - v:\/E(p,q)+u23u3-
P

(P> a)




Main results about 7'(p, q)

Lemma
For every (p,q) € (0,1) x (—00,0), we have
or or
— <0 — >0
ap <0, g >

Two asymptotic limits near the saddle and center points are also important

> As (p,q) — (0,0), we have
T.0) = -1 ("55%) =20+ 0,

_ V3
where xy = 2arccosh ( ﬁ)
> As (p,q) — (1,0), we have

. 1-p
T(p,q) = arcsin ——————=+ O(|1 — p|).
(v.9) T+ O



Period function 11

Let (p,q) € (0,1) x (—00,0) be a point on the phase plane (i, V) and
consider an integral curve connecting (p, ¢) and (p, 0), where

2 2
E(p.q)=q¢*—p*+ P = —py + =pp.-

3 3
The period function Ty(p, ¢) is defined by
? du 2
TO(PaCI): R V= \/E(p,q)+u23u3.

Po

(Po, 0)

\(p, )

NI




Main results about Ty(p, q)

Lemma

For every (p,q) € (0,1) x (—00,0), we have
Ty
— <0.
9q

However, Ty(p, ¢) is more difficult for analysis:

> %—i" < O only for p € (0, 1) and is not monotone if p € (3, 1).
» The asymptotic expansion of Ty(p, g) as (p,q) — (0,0) does not make

sense.

> As(p,q) — (1,0), we only have the limit

. ™ . 1—-p
lim Ty(p,q) = = — arcsin —————,
(p,q)—(1,0) r.9) 2 (1-p)2+¢*

but not the remainder term.



Ground state on the symmetric flower graph

Let (p,q) € (0,1) x (—00,0) be parameters for the boundary conditions
p=u(L) and g = &' (L) at the vertex. By uniqueness of integral curves, the
steady state is necessarily described by the identical and even functions

it; = nip satisfying the boundary conditions ity(+Lo) = p and

ity(£Lo) = F 5% The existence of the steady state is equivalent to finding a
root (p,q) € (0,1) x (—o0,0) of the system of two equations:

T(p.g) =L To(p55) = Lo



Applications of period functions: uniqueness
Here is the equivalent system of equations:
T(p,q)=L, To (P, i) = Lo,
2N
for a given point (L, L) € R x R*.

Theorem

There exists a simply connected region Q € Rt x RY such that the positive
steady state exists for every (L, Ly) € ) and is unique.

The result follows from the positivity of the Jacobian of the transformation
(P q) = (L, Lo):

OT(p,q) 0To(p, o)  9T(p,q) OTo(p, 7%)
op dq 9q 9p

> 0.



Applications of period functions: threshold on existence
Let Q C RT x R™ be the existence region in (L, Ly). Then

» Ly =0:= [0,L] is an interval with Dirichlet and Neumann conditions.
Then, ¢ = 0 and L > 7 for existence.

» L =0:=[0,Lois an interval with Dirichlet and Neumann conditions.
Then,p =1 and Ly > g for existence.

» The lower boundary appears in the singular limit (p,q) — (1,0), where
cot(L) = 2N tan(Ly). It is the same as A\o(I") = 1 from classical theory.




Applications of period functions: limit of long graphs

Theorem
There exist L, > Lo such that if Ly, := min; L; > L,, then the positive
ground state u, is unique and satisfies

||M* — lHLao(l"o) < CeiL'“i"7

where C is a positive constant and Ty = T'\ Py without the set of pendants P,.

Let V; be the subset of interior vertices V = {v;} which are the boundary
vertices between I'y and Py. Denote p; = ii(v;) at v; € V, and write

—Apoft +u= i in T,
i satisfies NK conditions on V\ V),
ﬁ(Vj) = pj > 07 Vi S V()7

and
—i" (x) + @(x) = @t(x)? in Py,
u satisfies Dirichlet condition on boundary vertices,
ﬁ(vj) =pj = 0, vi € Vp.



Dirichlet-to-Neumann map I

For

—Arpyii +ii =i inTy,

i satisfies NK conditions on V\Vy,

ft(V]‘) = pj >0, Vi € Vo,
there exist Cy > 0, pg > 0, L, > 0 such that if Ly, = min;L; > L,, then for
every p such that ||p|| < po, there is a unique solution & € D(Ar,) satisfying

llat]| Lo () < Col|Pl
and
g — dipj| < Co (IBlle™ ™ + [15]1*) ,  vj € Vo,

where g; is the Neumann data (the sum of outward derivatives from I'y) at
the vertex v; and d| is the degree of the vertex v; € V.



Dirichlet-to-Neumann map II

For
—i" (x) + it(x) = @(x)? in Py,
u satisfies Dirichlet condition on boundary vertices,
Ijt(Vj) =Ppj Z 0, Vj € V().

we denote ¢; = i’ (L;) and obtain from T'(p;, g;) = L; in the limit of
Liyin = HliIlj Lj > 1 that

L Y V3
gi=p;— 12757 4 O(e "), xy = 2arccosh <\/§ .

Bringing both Dirichlet-to—-Neumann maps together in the NK conditions:
dipj + O(|[plle™ + |IB]1*) +mp; — 12 77 4+ O(e~?m) = 0.
@—)v,
By IFT, there exists a unique solution for small ||7]| < po:

12

T di+m
i L=y

P e—Lj—Xo + O(e—ZLmiu ) .



6. Summary

We have considered the selection of the ground state on the compact metric
graph with two groups of methods:

» Classical methods: linearization and the lowest eigenvalue of —Ar,
variational methods for the energy H(u), and the comparison principle
with subsolutions and supersolutions.

» Novel methods based on the period function for differential equations.

The period function methods give more precise infomation about
construction of the ground state but their application is limited to either
simplest graphs or to the asymptotic limit of long graphs. On the other hand,
they work when the classical methods are not applicable.
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