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Gross–Pitaevskii equation

The Gross-Pitaevskii theory in Rd with harmonic potential,

i∂tw = −∆w + |x|2w − |w|2pw,

admits two conserved quantities of mass and energy,

M(w) =

∫
Rd
|w|2dx, E(w) =

∫
Rd

(
|∇w|2 + |x|2|w|2 − 1

p+ 1
|w|2p+2

)
dx.

In the absence of harmonic potential, we adopt the following
classification based on the scaling transformation:

w(t, x) 7→ wL(t, x) = L
1
pw(L2t, Lx), L > 0,

which yields M(wL) = L
2
p−dM(w) and E(wL) = L

2
p+2−dE(w).
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Gross–Pitaevskii equation

The Gross-Pitaevskii theory in Rd with harmonic potential,

i∂tw = −∆w + |x|2w − |w|2pw,

admits two conserved quantities of mass and energy,

M(w) =

∫
Rd
|w|2dx, E(w) =

∫
Rd

(
|∇w|2 + |x|2|w|2 − 1

p+ 1
|w|2p+2

)
dx.

Mass-subcritical case (dp < 2): global existence in H1

Mass-critical case (dp = 2): global existence for small L2 data
and finite-time blow-up for large L2

Mass-supercritical case (dp > 2): global existence and scattering
for E(w) > 0 and finite-time blow-up for E(w) < 0.
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Gross–Pitaevskii equation

The Gross-Pitaevskii theory in Rd with harmonic potential,

i∂tw = −∆w + |x|2w − |w|2pw,

admits two conserved quantities of mass and energy,

M(w) =

∫
Rd
|w|2dx, E(w) =

∫
Rd

(
|∇w|2 + |x|2|w|2 − 1

p+ 1
|w|2p+2

)
dx.

Energy-subcritical case: (d− 2)p < 2.

Energy-critical case: (d− 2)p = 2, d ≥ 3.

Energy-supercritical case: (d− 2)p > 2, d ≥ 3.

We only consider the case p = 1 to simplify technical details so that
d = 4 is the energy-critical case.
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Standing wave solutions (bound states)

Standing wave solutions w(t, x) = e−iλtu(x) satisfy the stationary
Gross-Pitaevskii equation with harmonic potential:

−∆u+ |x|2u− |u|2u = λu,

Variationally, u ∈ E := H1(Rd) ∩ L2,1(Rd) ∩ L4(Rd) is a critical point
of energy E(u) subject to fixed mass M(u), λ is Lagrange multiplier.

Among all bound states, we are only interested in the ground state
with u(x) satisfying:

real and positive on Rd;
radially symmetric in |x|;
bounded and monotonically decreasing to zero.

Such solutions bifurcate from λ = d to λ . d.
No ground state solutions exist for λ > d.
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Standing wave solutions (bound states)

Standing wave solutions w(t, x) = e−iλtu(x) satisfy the stationary
Gross-Pitaevskii equation with harmonic potential:

−∆u+ |x|2u− |u|2u = λu,

Variationally, u ∈ E := H1(Rd) ∩ L2,1(Rd) ∩ L4(Rd) is a critical point
of energy E(u) subject to fixed mass M(u), λ is Lagrange multiplier.

Energy-subcritical case d ≤ 3:

Existence for every λ < d follows from variational theory due to
compactness of embedding of H1(Rd) ∩ L2,1(Rd) into L4(Rd)
(Kavian & Weissler, 1994) (Fukuizumi, 2002)

Uniqueness follows from ODE theory
(Hirose & Ohta, 2002) (Hirose & Ohta, 2007)
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Standing wave solutions (bound states)

Standing wave solutions w(t, x) = e−iλtu(x) satisfy the stationary
Gross-Pitaevskii equation with harmonic potential:

−∆u+ |x|2u− |u|2u = λu,

Variationally, u ∈ E := H1(Rd) ∩ L2,1(Rd) ∩ L4(Rd) is a critical point
of energy E(u) subject to fixed mass M(u), λ is Lagrange multiplier.

Energy-critical case d = 4:

No solution exists for λ < 0 due to Pohozaev’s identity

Existence and uniqueness for some λ ∈ (0, d) has been shown
(Selem, 2011)

It is still open if the solution exists as λ→ 0
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Standing wave solutions (bound states)

Standing wave solutions w(t, x) = e−iλtu(x) satisfy the stationary
Gross-Pitaevskii equation with harmonic potential:

−∆u+ |x|2u− |u|2u = λu,

Variationally, u ∈ E := H1(Rd) ∩ L2,1(Rd) ∩ L4(Rd) is a critical point
of energy E(u) subject to fixed mass M(u), λ is Lagrange multiplier.

Energy-supercritical case d ≥ 5:

No solution exists for λ < 0 due to Pohozaev’s identity

The solution exists in a subset of λ ∈ (0, d)
(Selem & Kikuchi, 2012)

The solution branch is connected to an unbounded solution
u∞ ∈ E , u∞ /∈ L∞ for some λ∞ ∈ (0, d)
(Selem & Kikuchi & Wei, 2013)
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Shooting methods as a tool

The ground state is defined as a solution of the boundary-value
problem for fixed λ ∈ R:

u′′(r) + d−1
r u′(r)− r2u(r) + λu(r) + u(r)3 = 0, r > 0,

u(r) > 0, u′(r) < 0,
lim
r→0

u(r) <∞, lim
r→∞

u(r) = 0.

Solutions u may not exist or their number may depend on λ.

The shooting method (Joseph & Lundgren, 1973) allows to find
solutions u from the initial-value problem:{

f ′′b (r) + d−1
r f ′b(r)− r2fb(r) + λfb(r) + fb(r)

3 = 0, r > 0,
fb(0) = b, f ′b(0) = 0,

where b > 0 is fixed parameter. If fb(r) > 0, f ′b(r) < 0, and fb(r)→ 0
as r →∞, then u(r) = fb(r) for some λ.
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First result: existence

Theorem (BFPS, 2021)

Fix d ≥ 4. For every b > 0, there exists λ ∈ (d− 4, d), labeled as λ(b),
such that the unique classical solution fb ∈ C2(0,∞) to the
initial-value problem with λ = λ(b) is a solution u ∈ E ∩ L∞ to the
boundary-value problem.

Uniqueness of λ(b) is an open problem.

This result holds both for critical and supercritical cases.
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First result: existence
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Figure 1: Graph of λ as a function of b for the ground state u of the
boundary-value problem for d = 5 (left) and d = 13 (right).
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Ground state in the limit of b→∞?

The limiting singular solution u∞ ∈ E , u∞ /∈ L∞ is defined by

u∞(r) =

√
d− 3

r

[
1 +O(r2)

]
as r → 0.
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Ground state in the limit of b→∞?

The limiting singular solution u∞ ∈ E , u∞ /∈ L∞ is defined by

u∞(r) =

√
d− 3

r

[
1 +O(r2)

]
as r → 0.

Theorem (Selem–Kikuchi–Wei, 2013)

Fix d ≥ 5. There exists λ ∈ (0, d), labeled as λ∞, such that the
limiting singular solution u∞ ∈ E exists so that λ(b)→ λ∞ and

u(b)→ u∞ in E as b→∞.

Uniqueness of λ∞ is an open problem.

Details of convergence λ(b)→ λ∞ were not studied.
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Second result: convergence

Theorem (BFPS, 2021)

Fix d ≥ 5. Under some non-degeneracy assumptions, λ(b) is uniquely
defined near λ∞ for b� 1 and

λ(b)− λ∞ ∼ A∞b−β sin(α ln b+ δ∞) if 5 ≤ d ≤ 12,
for some A∞ > 0, δ∞ ∈ (0, 2π), α > 0, and β > 0

λ(b)− λ∞ ∼ B∞b−κ if d ≥ 13
for some B∞ 6= 0 and κ > 0.
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Second result: convergence

Theorem (BFPS, 2021)

Fix d ≥ 5. Under some non-degeneracy assumptions, λ(b) is uniquely
defined near λ∞ for b� 1 and

λ(b)− λ∞ ∼ A∞b−β sin(α ln b+ δ∞) if 5 ≤ d ≤ 12,
for some A∞ > 0, δ∞ ∈ (0, 2π), α > 0, and β > 0

λ(b)− λ∞ ∼ B∞b−κ if d ≥ 13
for some B∞ 6= 0 and κ > 0.

The oscillatory behavior has been studied for the stationary NLS
equation in a ball with dynamical system methods.

(Budd, Norbury, 1987), (Budd, 1989), (Merle & Peletier, 1991),
(Dolbeault & Flores, 2007)
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Linearization and Morse index

Linearization around the ground state u:

Lb := − d2

dr2
− d− 1

r

d

dr
+ r2 − λ(b)− 3u2(r).

Linearization around the singular solution u∞:

L∞ := − d2

dr2
− d− 1

r

d

dr
+ r2 − λ∞ − 3u2∞(r).
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Linearization and Morse index

Linearization around the ground state u:

Lb := − d2

dr2
− d− 1

r

d

dr
+ r2 − λ(b)− 3u2(r).

Linearization around the singular solution u∞:

L∞ := − d2

dr2
− d− 1

r

d

dr
+ r2 − λ∞ − 3u2∞(r).

Lb is well-defined in the form domain E := H1
r ∩ L2,1

r . It is a
self-adjoint Sturm–Liouville operator in L2

r with a purely point
spectrum.
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Linearization and Morse index

Linearization around the ground state u:

Lb := − d2

dr2
− d− 1

r

d

dr
+ r2 − λ(b)− 3u2(r).

Linearization around the singular solution u∞:

L∞ := − d2

dr2
− d− 1

r

d

dr
+ r2 − λ∞ − 3u2∞(r).

Stability of standing waves in the Gross–Pitaevskii equation:

u is orbitally stable if Lb has exactly one negative eigenvalue and
the mapping λ 7→ ‖u‖2L2 is decreasing.

u is orbitally unstable if Lb has two or more negative eigenvalues

Note that 〈Lbu, u〉 = −2‖u‖4L4
r
< 0, hence Lb is not positive.
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Oscillatory versus monotone convergence

Since
Lb∂bu = λ′(b)u, ∂bu ∈ Er,

the number of negative eigenvalues of Lb : E 7→ E∗ change for every b
for which λ′(b) = 0.
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Third result: stability

Theorem (P & Sobieszek, 2022)

For every d ≥ 13, there exists b0 > 0 such that the Morse index of
Lb : E 7→ E∗ is finite and is independent of b for every b ∈ (b0,∞).
Moreover, it coincides with the Morse index of L∞ : E 7→ E∗.
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Third result: stability

Theorem (P & Sobieszek, 2022)

For every d ≥ 13, there exists b0 > 0 such that the Morse index of
Lb : E 7→ E∗ is finite and is independent of b for every b ∈ (b0,∞).
Moreover, it coincides with the Morse index of L∞ : E 7→ E∗.

These approximations of Lbv = 0 suggest that the Morse index is one.
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Third result: stability

Theorem (P & Sobieszek, 2022)

For every d ≥ 13, there exists b0 > 0 such that the Morse index of
Lb : E 7→ E∗ is finite and is independent of b for every b ∈ (b0,∞).
Moreover, it coincides with the Morse index of L∞ : E 7→ E∗.

This graph suggests that the mapping λ 7→ ‖u‖2L2 is decreasing.
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Conclusion: the standing waves are stable for d ≥ 13.
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Emden-Fowler transformation

The initial-value problem,{
f ′′b (r) + d−1

r f ′b(r)− r2fb(r) + λfb(r) + fb(r)
3 = 0, r > 0,

fb(0) = b, f ′b(0) = 0,

after the transformation

r = et, f(r) = ψ(t),

becomes the invariant manifold problem:{
ψ′′(t) + (d− 2)ψ′(t) + e2t

(
λ+ ψ(t)2

)
ψ(t)− e4tψ(t) = 0, t ∈ R,

ψ(t)→ b, t→ −∞.
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Emden-Fowler transformation

The initial-value problem,{
f ′′b (r) + d−1

r f ′b(r)− r2fb(r) + λfb(r) + fb(r)
3 = 0, r > 0,

fb(0) = b, f ′b(0) = 0,

after the transformation

r = et, f(r) = ψ(t),

becomes the invariant manifold problem:{
ψ′′(t) + (d− 2)ψ′(t) + e2t

(
λ+ ψ(t)2

)
ψ(t)− e4tψ(t) = 0, t ∈ R,

ψ(t)→ b, t→ −∞.

The solution is a fixed point of the integral operator A(ψ) given by

A(ψ)(t) := b+(d−2)−1
∫ t

−∞
[1−e−(d−2)(t−t

′)][e4t
′
ψ−e2t

′
(λψ+ψ3)]dt′.
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Emden-Fowler transformation

The initial-value problem,{
f ′′b (r) + d−1

r f ′b(r)− r2fb(r) + λfb(r) + fb(r)
3 = 0, r > 0,

fb(0) = b, f ′b(0) = 0,

after the transformation

r = et, f(r) = ψ(t),

becomes the invariant manifold problem:{
ψ′′(t) + (d− 2)ψ′(t) + e2t

(
λ+ ψ(t)2

)
ψ(t)− e4tψ(t) = 0, t ∈ R,

ψ(t)→ b, t→ −∞.

There exists a unique solution ψ ∈ C2(R) such that

ψb(t) = b− (λb+ b3)(2d)−1e2t +O(e4t), as t→ −∞.
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Rigorously implemented shooting method

For the uniquely defined solution ψb(t) = b+O(e2t), we define the
partition of R = I+ ∪ I0 ∪ I− for parameter λ:

I+ := {λ ∈ R : ∃t0 ∈ R : ψ(t0) = 0, while ψ(t) > 0, ψ′(t) < 0, t < t0} ,
I− := {λ ∈ R : ∃t0 ∈ R : ψ′(t0) = 0, while ψ(t) > 0, ψ′(t) < 0, t < t0} ,
I0 := {λ ∈ R : ψ(t) > 0, ψ′(t) < 0, t ∈ R} .
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Rigorously implemented shooting method

For the uniquely defined solution ψb(t) = b+O(e2t), we define the
partition of R = I+ ∪ I0 ∪ I− for parameter λ:

I+ := {λ ∈ R : ∃t0 ∈ R : ψ(t0) = 0, while ψ(t) > 0, ψ′(t) < 0, t < t0} ,
I− := {λ ∈ R : ∃t0 ∈ R : ψ′(t0) = 0, while ψ(t) > 0, ψ′(t) < 0, t < t0} ,
I0 := {λ ∈ R : ψ(t) > 0, ψ′(t) < 0, t ∈ R} .

We have I− ∩ I+ = ∅, I± ∩ I0 = ∅, and furthermore,

[d,∞) ⊂ I+ and I+ is open;
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Rigorously implemented shooting method

For the uniquely defined solution ψb(t) = b+O(e2t), we define the
partition of R = I+ ∪ I0 ∪ I− for parameter λ:

I+ := {λ ∈ R : ∃t0 ∈ R : ψ(t0) = 0, while ψ(t) > 0, ψ′(t) < 0, t < t0} ,
I− := {λ ∈ R : ∃t0 ∈ R : ψ′(t0) = 0, while ψ(t) > 0, ψ′(t) < 0, t < t0} ,
I0 := {λ ∈ R : ψ(t) > 0, ψ′(t) < 0, t ∈ R} .

We have I− ∩ I+ = ∅, I± ∩ I0 = ∅, and furthermore,

[d,∞) ⊂ I+ and I+ is open;

(−∞, 0] ⊂ I− and I− is open;
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Rigorously implemented shooting method

For the uniquely defined solution ψb(t) = b+O(e2t), we define the
partition of R = I+ ∪ I0 ∪ I− for parameter λ:

I+ := {λ ∈ R : ∃t0 ∈ R : ψ(t0) = 0, while ψ(t) > 0, ψ′(t) < 0, t < t0} ,
I− := {λ ∈ R : ∃t0 ∈ R : ψ′(t0) = 0, while ψ(t) > 0, ψ′(t) < 0, t < t0} ,
I0 := {λ ∈ R : ψ(t) > 0, ψ′(t) < 0, t ∈ R} .

We have I− ∩ I+ = ∅, I± ∩ I0 = ∅, and furthermore,

[d,∞) ⊂ I+ and I+ is open;

(−∞, 0] ⊂ I− and I− is open;

I0 ⊂ (0, d) is closed and if λ(b) ∈ I0, then ψb(t)→ 0 as t→ +∞
with the precise asymptotics:

ψb(t) ∼ ce
λ−d
2 te−

1
2 e

2t

, as t→ +∞,

for some c > 0.
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Rigorously implemented shooting method

For the uniquely defined solution ψb(t) = b+O(e2t), we define the
partition of R = I+ ∪ I0 ∪ I− for parameter λ:

I+ := {λ ∈ R : ∃t0 ∈ R : ψ(t0) = 0, while ψ(t) > 0, ψ′(t) < 0, t < t0} ,
I− := {λ ∈ R : ∃t0 ∈ R : ψ′(t0) = 0, while ψ(t) > 0, ψ′(t) < 0, t < t0} ,
I0 := {λ ∈ R : ψ(t) > 0, ψ′(t) < 0, t ∈ R} .

λ=λ(b)

λ>λ(b)

λ<λ(b)
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Towards the proof of convergence as b→∞
Recall the limiting singular solution u∞ ∈ E , u∞ /∈ L∞ defined by

u∞(r) =

√
d− 3

r

[
1 +O(r2)

]
as r → 0.

The solution can be represented by u(r) = r−1F (r) with bounded F .
Using Emden-Fowler transformation and ψ(t) = e−tΨ(t), we obtain

Ψ′′(t) + (d− 4)Ψ′(t) + (3− d)Ψ(t) + Ψ(t)3 + λe2tΨ(t)− e4tΨ(t) = 0.
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Towards the proof of convergence as b→∞
Recall the limiting singular solution u∞ ∈ E , u∞ /∈ L∞ defined by

u∞(r) =

√
d− 3

r

[
1 +O(r2)

]
as r → 0.

The solution can be represented by u(r) = r−1F (r) with bounded F .
Using Emden-Fowler transformation and ψ(t) = e−tΨ(t), we obtain

Ψ′′(t) + (d− 4)Ψ′(t) + (3− d)Ψ(t) + Ψ(t)3 + λe2tΨ(t)− e4tΨ(t) = 0.

The limiting singular solution corresponds to the solution with

Ψ∞(t) =
√
d− 3+O(e2t), as t→ −∞ and Ψ∞(t)→ 0, as t→ +∞,

which exists for some λ = λ∞ (Selem–Kikuchi–Wei, 2013).
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Towards the proof of convergence as b→∞
Recall the limiting singular solution u∞ ∈ E , u∞ /∈ L∞ defined by

u∞(r) =

√
d− 3

r

[
1 +O(r2)

]
as r → 0.

The solution can be represented by u(r) = r−1F (r) with bounded F .
Using Emden-Fowler transformation and ψ(t) = e−tΨ(t), we obtain

Ψ′′(t) + (d− 4)Ψ′(t) + (3− d)Ψ(t) + Ψ(t)3 + λe2tΨ(t)− e4tΨ(t) = 0.

λ=λ∞

λ>λ∞

λ<λ∞

-2 -1 1 2
t

-2

-1

1

2
Ψ (t)
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Two analytic family of solutions

Consider the differential equation

Ψ′′(t) + (d− 4)Ψ′(t) + (3− d)Ψ(t) + Ψ(t)3 + λe2tΨ(t)− e4tΨ(t) = 0.
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Two analytic family of solutions

Consider the differential equation

Ψ′′(t) + (d− 4)Ψ′(t) + (3− d)Ψ(t) + Ψ(t)3 + λe2tΨ(t)− e4tΨ(t) = 0.

The b-family Ψb(t) = etψb(t) = bet +O(e3t) as t→ −∞
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Two analytic family of solutions

Consider the differential equation

Ψ′′(t) + (d− 4)Ψ′(t) + (3− d)Ψ(t) + Ψ(t)3 + λe2tΨ(t)− e4tΨ(t) = 0.

The b-family Ψb(t) = etψb(t) = bet +O(e3t) as t→ −∞

The c-family Ψc(t)→ 0 as t→ +∞ with

Ψc(t) ∼ ce
λ−d+2

2 te−
1
2 e

2t

, as t→ +∞.
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Two analytic family of solutions

Consider the differential equation

Ψ′′(t) + (d− 4)Ψ′(t) + (3− d)Ψ(t) + Ψ(t)3 + λe2tΨ(t)− e4tΨ(t) = 0.

The b-family Ψb(t) = etψb(t) = bet +O(e3t) as t→ −∞

The c-family Ψc(t)→ 0 as t→ +∞ with

Ψc(t) ∼ ce
λ−d+2

2 te−
1
2 e

2t

, as t→ +∞.

Their intersection for some λ = λ(b) and c = c(b):

Ψb(t) = Ψc(b)(t).

We want to prove: λ(b)→ λ∞ with some c(b)→ c∞ as b→ +∞.
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Two analytic family of solutions

Consider the differential equation

Ψ′′(t) + (d− 4)Ψ′(t) + (3− d)Ψ(t) + Ψ(t)3 + λe2tΨ(t)− e4tΨ(t) = 0.

d = 5, b = 14000 :
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Two analytic family of solutions

Consider the differential equation

Ψ′′(t) + (d− 4)Ψ′(t) + (3− d)Ψ(t) + Ψ(t)3 + λe2tΨ(t)− e4tΨ(t) = 0.

d = 13, b = 14000 :
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The b-family of solutions

Consider the differential equation

Ψ′′(t) + (d− 4)Ψ′(t) + (3− d)Ψ(t) + Ψ(t)3 + λe2tΨ(t)− e4tΨ(t) = 0,

for the solution Ψb(t) = bet +O(e3t) as t→ −∞.
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The b-family of solutions

Consider the differential equation

Ψ′′(t) + (d− 4)Ψ′(t) + (3− d)Ψ(t) + Ψ(t)3 + λe2tΨ(t)− e4tΨ(t) = 0,

for the solution Ψb(t) = bet +O(e3t) as t→ −∞.

Formal truncation gives

Θ′′(t) + (d− 4)Θ′(t) + (3− d)Θ(t) + Θ(t)3 = 0

with uniquely defined Θ(t) = et +O(e3t) as t→ −∞.
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The b-family of solutions

Consider the differential equation

Ψ′′(t) + (d− 4)Ψ′(t) + (3− d)Ψ(t) + Ψ(t)3 + λe2tΨ(t)− e4tΨ(t) = 0,

for the solution Ψb(t) = bet +O(e3t) as t→ −∞.

Formal truncation gives

Θ′′(t) + (d− 4)Θ′(t) + (3− d)Θ(t) + Θ(t)3 = 0

with uniquely defined Θ(t) = et +O(e3t) as t→ −∞.

Easy result for all large b:

sup
t∈(−∞,0]

|Ψb(t− log b)−Θ(t)| ≤ C0b
−2.
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The b-family of solutions

Consider the differential equation

Ψ′′(t) + (d− 4)Ψ′(t) + (3− d)Ψ(t) + Ψ(t)3 + λe2tΨ(t)− e4tΨ(t) = 0,

for the solution Ψb(t) = bet +O(e3t) as t→ −∞.

Formal truncation gives

Θ′′(t) + (d− 4)Θ′(t) + (3− d)Θ(t) + Θ(t)3 = 0

with uniquely defined Θ(t) = et +O(e3t) as t→ −∞.

Harder result for every T > 0 and a ∈ (0, 1):

sup
t∈[0,T+a log b]

|Ψb(t− log b)−Θ(t)| ≤ CT,ab−2(1−a)
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The b-family of solutions

Consider the differential equation

Ψ′′(t) + (d− 4)Ψ′(t) + (3− d)Ψ(t) + Ψ(t)3 + λe2tΨ(t)− e4tΨ(t) = 0,

for the solution Ψb(t) = bet +O(e3t) as t→ −∞.

Formal truncation gives

Θ′′(t) + (d− 4)Θ′(t) + (3− d)Θ(t) + Θ(t)3 = 0

with uniquely defined Θ(t) = et +O(e3t) as t→ −∞.

Θ(t)→
√
d− 3 as t→ +∞ since

(
√
d− 3, 0) is a stable spiral point for 5 ≤ d ≤ 12

(
√
d− 3, 0) is a stable nodal point for d ≥ 13.
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The b-family of solutions

Consider the differential equation

Ψ′′(t) + (d− 4)Ψ′(t) + (3− d)Ψ(t) + Ψ(t)3 + λe2tΨ(t)− e4tΨ(t) = 0,

for the solution Ψb(t) = bet +O(e3t) as t→ −∞.

Formal truncation gives

Θ′′(t) + (d− 4)Θ′(t) + (3− d)Θ(t) + Θ(t)3 = 0

with uniquely defined Θ(t) = et +O(e3t) as t→ −∞.

Non-degeneracy assumption (5 ≤ d ≤ 12):

Θ(t) =
√
d− 3 +A0e

−βt sin(αt+ δ0) +O(e−2βt) as t→ +∞,

where A0 6= 0.
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The b-family of solutions

Consider the differential equation

Ψ′′(t) + (d− 4)Ψ′(t) + (3− d)Ψ(t) + Ψ(t)3 + λe2tΨ(t)− e4tΨ(t) = 0,

for the solution Ψb(t) = bet +O(e3t) as t→ −∞.
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The c-family of solutions

Consider the differential equation

Ψ′′(t) + (d− 4)Ψ′(t) + (3− d)Ψ(t) + Ψ(t)3 + λe2tΨ(t)− e4tΨ(t) = 0,

for the solution Ψc(t) ∼ ce
λ−d+2

2 te−
1
2 e

2t

as t→ +∞.
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The c-family of solutions

Consider the differential equation

Ψ′′(t) + (d− 4)Ψ′(t) + (3− d)Ψ(t) + Ψ(t)3 + λe2tΨ(t)− e4tΨ(t) = 0,

for the solution Ψc(t) ∼ ce
λ−d+2

2 te−
1
2 e

2t

as t→ +∞.

Recall the limiting solution Ψ∞(t)→
√
d− 3 as t→ −∞, which exists

for (λ, c) = (λ∞, c∞) and write

Ψc = Ψ∞ + (λ− λ∞)Ψ1 + (c− c∞)Ψ2 + Σ,

for (λ, c) near (λ∞, c∞).
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The c-family of solutions

Consider the differential equation

Ψ′′(t) + (d− 4)Ψ′(t) + (3− d)Ψ(t) + Ψ(t)3 + λe2tΨ(t)− e4tΨ(t) = 0,

for the solution Ψc(t) ∼ ce
λ−d+2

2 te−
1
2 e

2t

as t→ +∞.

Recall the limiting solution Ψ∞(t)→
√
d− 3 as t→ −∞, which exists

for (λ, c) = (λ∞, c∞) and write

Ψc = Ψ∞ + (λ− λ∞)Ψ1 + (c− c∞)Ψ2 + Σ,

for (λ, c) near (λ∞, c∞).

Easy result for every t ∈ (−∞, (a− 1) log b+ T ]:

|Ψ1,2(t)−A1,2e
−βt sin(αt+ δ1,2)| ≤ CT,ab−2(1−a)e−βt,

where A1, A2 6= 0 (non-degeneracy assumption).
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The c-family of solutions

Consider the differential equation

Ψ′′(t) + (d− 4)Ψ′(t) + (3− d)Ψ(t) + Ψ(t)3 + λe2tΨ(t)− e4tΨ(t) = 0,

for the solution Ψc(t) ∼ ce
λ−d+2

2 te−
1
2 e

2t

as t→ +∞.

Recall the limiting solution Ψ∞(t)→
√
d− 3 as t→ −∞, which exists

for (λ, c) = (λ∞, c∞) and write

Ψc = Ψ∞ + (λ− λ∞)Ψ1 + (c− c∞)Ψ2 + Σ,

for (λ, c) near (λ∞, c∞).

Harder result for the remainder term for every t ∈ [(a− 1) log b, 0]:

|Σ(t)| ≤ CT,aε2,

as long as (λ− λ∞)2 + (c− c∞)2 ≤ ε2b−2β(1−a) with small ε > 0.
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The c-family of solutions

Consider the differential equation

Ψ′′(t) + (d− 4)Ψ′(t) + (3− d)Ψ(t) + Ψ(t)3 + λe2tΨ(t)− e4tΨ(t) = 0,

for the solution Ψc(t) ∼ ce
λ−d+2

2 te−
1
2 e

2t

as t→ +∞.
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Intersection of the b-family and the c-family

We define λ = λ(b) and c = c(b) from

Ψb(t) = Ψc(b)(t), t ∈ R.

We can use the two asymptotic representations for every
t ∈ [(a− 1) log b, (a− 1) log b+ T ] with arbitrary T > 0.
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Intersection of the b-family and the c-family

We define λ = λ(b) and c = c(b) from

Ψb(t) = Ψc(b)(t), t ∈ R.

We can use the two asymptotic representations for every
t ∈ [(a− 1) log b, (a− 1) log b+ T ] with arbitrary T > 0.

Ψb(T + (a− 1) log b) = Θ(T + a log b) + error

=
√
d− 3 +A0b

−aβe−βT sin(αT + δ0) + error
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Intersection of the b-family and the c-family

We define λ = λ(b) and c = c(b) from

Ψb(t) = Ψc(b)(t), t ∈ R.

We can use the two asymptotic representations for every
t ∈ [(a− 1) log b, (a− 1) log b+ T ] with arbitrary T > 0.

Ψb(T + (a− 1) log b) = Θ(T + a log b) + error

=
√
d− 3 +A0b

−aβe−βT sin(αT + δ0) + error

Ψc(T + (a− 1) log b) = Ψ∞(T + (a− 1) log b) + linear terms

=
√
d− 3 +A1(λ− λ∞)b(1−a)βe−βT sin(αT + δ1)

+A2(c− c∞)b(1−a)βe−βT sin(αT + δ1) + error
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Intersection of the b-family and the c-family

We define λ = λ(b) and c = c(b) from

Ψb(t) = Ψc(b)(t), t ∈ R.

We can use the two asymptotic representations for every
t ∈ [(a− 1) log b, (a− 1) log b+ T ] with arbitrary T > 0.

Under the non-degeneracy assumption that A0, A1, A2 6= 0 we obtain
with the implicit function theorem,

λ(b)− λ∞ = A∞b
−β sin(α log b+ δ∞) + error,

inside |λ− λ∞| ≤ εb−β(1−a).
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Intersection of the b-family and the c-family

We define λ = λ(b) and c = c(b) from

Ψb(t) = Ψc(b)(t), t ∈ R.

We can use the two asymptotic representations for every
t ∈ [(a− 1) log b, (a− 1) log b+ T ] with arbitrary T > 0.
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Remarks

Similar results but with monotone decay are obtained for d ≥ 13.

Derivative ∂bΨb(t) is a solution of the linearized equation
satisfying ∂bΨb(t)→ 0 as t→ −∞.

Derivative ∂cΨc(t) is a solution of the linearized equation
satisfying ∂cΨc(t)→ 0 as t→ +∞.

In the monotone case d ≥ 13, under the non-degeneracy
assumptions, we can show that if for λ = λ(b),

Ψb(t) = Ψc(b)(t), t ∈ R,

then there exists no C ∈ R such that

∂bΨb(t) = C∂cΨc(b)(t), t ∈ R.

Hence the linearized operator Lb at ub has no zero eigenvalues.
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Remarks

Similar results but with monotone decay are obtained for d ≥ 13.

Derivative ∂bΨb(t) is a solution of the linearized equation
satisfying ∂bΨb(t)→ 0 as t→ −∞.

Derivative ∂cΨc(t) is a solution of the linearized equation
satisfying ∂cΨc(t)→ 0 as t→ +∞.

In the monotone case d ≥ 13, under the non-degeneracy
assumptions, we can show that if for λ = λ(b),

Ψb(t) = Ψc(b)(t), t ∈ R,

then there exists no C ∈ R such that

∂bΨb(t) = C∂cΨc(b)(t), t ∈ R.

Hence the linearized operator Lb at ub has no zero eigenvalues.
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Remarks

Similar results but with monotone decay are obtained for d ≥ 13.

Derivative ∂bΨb(t) is a solution of the linearized equation
satisfying ∂bΨb(t)→ 0 as t→ −∞.

Derivative ∂cΨc(t) is a solution of the linearized equation
satisfying ∂cΨc(t)→ 0 as t→ +∞.

In the monotone case d ≥ 13, under the non-degeneracy
assumptions, we can show that if for λ = λ(b),

Ψb(t) = Ψc(b)(t), t ∈ R,

then there exists no C ∈ R such that

∂bΨb(t) = C∂cΨc(b)(t), t ∈ R.

Hence the linearized operator Lb at ub has no zero eigenvalues.
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Remarks

Similar results but with monotone decay are obtained for d ≥ 13.

Derivative ∂bΨb(t) is a solution of the linearized equation
satisfying ∂bΨb(t)→ 0 as t→ −∞.

Derivative ∂cΨc(t) is a solution of the linearized equation
satisfying ∂cΨc(t)→ 0 as t→ +∞.

In the monotone case d ≥ 13, under the non-degeneracy
assumptions, we can show that if for λ = λ(b),

Ψb(t) = Ψc(b)(t), t ∈ R,

then there exists no C ∈ R such that

∂bΨb(t) = C∂cΨc(b)(t), t ∈ R.

Hence the linearized operator Lb at ub has no zero eigenvalues.
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Future goals

We have shown existence of λ(b) and λ∞ but not uniqueness.

No proof that if Lb has a zero eigenvalue in L2
b , then λ′(b) = 0.

In the oscillatory case, the Morse index is expected to increase by
one every time λ(b) passes through the extremal point.

The existence of λ(b) has been shown in the energy critical case
d = 4 but we should prove that λ(b)→ 0 as b→∞ with the
limiting singular solution being the algebraic soliton.
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Energy-critical case d = 4
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The b-family and c-family of solutions for d = 4

Consider the differential equation

Ψ′′(t)−Ψ(t) + Ψ(t)3 + λe2tΨ(t)− e4tΨ(t) = 0,

for the solution Ψb(t) = bet +O(e3t) as t→ −∞.
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The b-family and c-family of solutions for d = 4

Consider the differential equation

Ψ′′(t)−Ψ(t) + Ψ(t)3 + λe2tΨ(t)− e4tΨ(t) = 0,

for the solution Ψb(t) = bet +O(e3t) as t→ −∞.

Formal truncation gives

Θ′′(t)−Θ(t) + Θ(t)3 = 0

with uniquely defined

Θ(t) =
8bet

8 + b2e2t
,

which corresponds to the algebraic soliton in variable r = et.
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The b-family and c-family of solutions for d = 4

Consider the differential equation

Ψ′′(t)−Ψ(t) + Ψ(t)3 + λe2tΨ(t)− e4tΨ(t) = 0,

for the solution Ψb(t) = bet +O(e3t) as t→ −∞.

One can again continue the solution for every T > 0 and a ∈ (0, 1):

sup
t∈[0,T+a log b]

|Ψb(t− log b)−Θ(t)| ≤ CT,ab−2(1−a),

such that Θ(T + a log b) = 8b−ae−T +O(b−3a) is small.

Dmitry E. Pelinovsky McMaster University

Ground states



Background Main results Methods of proofs Work in progress

The b-family and c-family of solutions for d = 4

Consider the differential equation

Ψ′′(t)−Ψ(t) + Ψ(t)3 + λe2tΨ(t)− e4tΨ(t) = 0,

for the solution Ψb(t) = bet +O(e3t) as t→ −∞.

For the c-family, we can take the solution of the linear equation

Ψc(t) = cete−
1
2 e

2t

U(e2t; a = 1− λ

4
, b = 2),

where U(z; a, b) is the Tricomi solution of Kummer’s differential
equation.
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The b-family and c-family of solutions for d = 4

Consider the differential equation

Ψ′′(t)−Ψ(t) + Ψ(t)3 + λe2tΨ(t)− e4tΨ(t) = 0,

for the solution Ψb(t) = bet +O(e3t) as t→ −∞.

Both solutions Ψb and Ψc are defined for arbitrary λ and their
intersection is tangential in the sense that equation

Ψb(t) = Ψc(b)(t), t ∈ R,

determines only c(b) = 8b−1 + o(b−1) but not λ(b).
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Energy-critical case d = 3 (quintic nonlinearity)

The situation becomes even more interesting in three dimensions:
f ′′b + 2r−2f ′b − r2fb + λfb + f5b = 0
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Thank you for attention!
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Energy-critical case d = 3 (quintic nonlinearity)

The situation becomes even more interesting in three dimensions:
f ′′b + 2r−2f ′b − r2fb + λfb + f5b = 0
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