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The Gross-Pitaevskii theory in R? with harmonic potential,

i0pw = —Aw + |z]2w — |w]*Pw,

admits two conserved quantities of mass and energy,

1
—1|w|2p+2> dx.

M) = [ JwPdr, B = | (|Vw|2+|w|2|w|2—
Rd R p+

In the absence of harmonic potential, we adopt the following
classification based on the scaling transformation:

w(t,z) — wy(t,z) = Lyw(L?,Lz), L >0,

which yields M(wp) = L ~*M(w) and E(wy) = Lz > E(w).



The Gross-Pitaevskii theory in R? with harmonic potential,

i0pw = —Aw + |z]2w — |w]*Pw,

admits two conserved quantities of mass and energy,

1
M(w) =/ fwl*dz,  E(w) =/ IVl + [z w|* — ——|w[***? ) da.
R4 R4 1

p+

e Mass-subcritical case (dp < 2): global existence in H!

e Mass-critical case (dp = 2): global existence for small L? data
and finite-time blow-up for large L?

e Mass-supercritical case (dp > 2): global existence and scattering
for E(w) > 0 and finite-time blow-up for E(w) < 0.



The Gross-Pitaevskii theory in R? with harmonic potential,

i0pw = —Aw + |z]2w — |w]*Pw,

admits two conserved quantities of mass and energy,

1
M(w) =/ fwl*dz,  E(w) =/ IVl + [z w|* — ——|w[***? ) da.
R4 R4 1

p+

o Energy-subcritical case: (d —2)p < 2.
e Energy-critical case: (d —2)p=2,d > 3.
e Energy-supercritical case: (d —2)p > 2, d > 3.

We only consider the case p = 1 to simplify technical details so that
d = 4 is the energy-critical case.



Background Main results Methods of proofs Work in progress
oce 0000000 00000000 0000

Standing wave solutions (bound states)

Standing wave solutions w(t, ) = e~ u(x) satisfy the stationary
Gross-Pitaevskii equation with harmonic potential:

—Au + |z)*u — |uPu = I,

Variationally, u € £ := H'(R?) N L>1(RY) N L*(R?) is a critical point
of energy E(u) subject to fixed mass M (u), A is Lagrange multiplier.

Among all bound states, we are only interested in the ground state
with u(z) satisfying:

e real and positive on R%;

o radially symmetric in |z|;

@ bounded and monotonically decreasing to zero.

Such solutions bifurcate from A = d to A < d.
No ground state solutions exist for A > d.
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Standing wave solutions (bound states)

Standing wave solutions w(t, ) = e~ u(x) satisfy the stationary
Gross-Pitaevskii equation with harmonic potential:

—Au + |z)?u — [u*u = I,

Variationally, u € £ := H'(R?) N L>1(RY) N L*(R?) is a critical point
of energy E(u) subject to fixed mass M (u), A is Lagrange multiplier.

Energy-subcritical case d < 3:
e Existence for every A < d follows from variational theory due to
compactness of embedding of H*(R?) N L%(R?) into L*(R%)
(Kavian & Weissler, 1994) (Fukuizumi, 2002)

@ Uniqueness follows from ODE theory
(Hirose & Ohta, 2002) (Hirose & Ohta, 2007)
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Standing wave solutions w(t, z) = e~ **u(x) satisfy the stationary
Gross-Pitaevskii equation with harmonic potential:

—Au + |z)*u — |uPu = I,

Variationally, u € £ := H'(R?) N L>1(RY) N L*(R?) is a critical point
of energy E(u) subject to fixed mass M (u), A is Lagrange multiplier.

Energy-critical case d = 4:
@ No solution exists for A < 0 due to Pohozaev’s identity

o Existence and uniqueness for some A € (0, d) has been shown
(Selem, 2011)

o It is still open if the solution exists as A — 0
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Standing wave solutions (bound states)

Standing wave solutions w(t, ) = e~ u(x) satisfy the stationary
Gross-Pitaevskii equation with harmonic potential:

—Au + |z)*u — |uPu = I,

Variationally, u € £ := H'(R?) N L>1(RY) N L*(R?) is a critical point
of energy E(u) subject to fixed mass M (u), A is Lagrange multiplier.

Energy-supercritical case d > 5:
@ No solution exists for A < 0 due to Pohozaev’s identity

e The solution exists in a subset of A € (0, d)
(Selem & Kikuchi, 2012)

@ The solution branch is connected to an unbounded solution
Uoo € &, Use ¢ L™ for some A € (0,d)
(Selem & Kikuchi & Wei, 2013)
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The ground state is defined as a solution of the boundary-value
problem for fixed A € R:

u(r) + 2 () — r2u(r) + u(r) +u(r)® =0, >0,
u(r) >0, w(r) <0,
lim u(r) < oo, lim u(r) =0.
r—0 —00
Solutions u may not exist or their number may depend on \.

The shooting method (Joseph & Lundgren, 1973) allows to find
solutions u from the initial-value problem:

{ V() + L) = 2 fo(r) £ Mu(r) + fo(r)2 =0, r >0,

fo(0) =0, f;(0) =0,

where b > 0 is fixed parameter. If f,(r) > 0, f;(r) <0, and fu(r) — 0
as r — 0o, then u(r) = f,(r) for some A.



Fix d > 4. For every b > 0, there exists A\ € (d — 4,d), labeled as A(b),
such that the unique classical solution f, € C%(0,00) to the
ingtial-value problem with A = A(b) is a solution u € €N L™ to the
boundary-value problem.

@ Uniqueness of A\(b) is an open problem.

@ This result holds both for critical and supercritical cases.
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Figure 1: Graph of X as a function of b for the ground state u of the
boundary-value problem for d =5 (left) and d = 13 (right).



The limiting singular solution u., € &, Uy, ¢ L™ is defined by

Uso (1) = d_3[1+(’)(7’2)] as r— 0.

r




The limiting singular solution uy, € &, Us ¢ L™ is defined by

Uso (1) = dr_ 5 [1+0(r%)] as r— 0.

Fiz d > 5. There exists A € (0,d), labeled as Ao, such that the
limiting singular solution ux € £ exists so that A(b) — A and

uld) 2 ue in & as b— oco.

e Uniqueness of A\, is an open problem.

@ Details of convergence A(b) — Ao were not studied.



Fiz d > 5. Under some non-degeneracy assumptions, \(b) is uniquely
defined near \oo for b>1 and
0 A(b) — Moo ~ Axb™Psin(alnb + 64 if 5 < d < 12,
for some Ass >0, dso € (0,27), >0, and 5 > 0
@ A(b) — Ao ~ Bogb™" if d > 13
for some By, # 0 and k > 0.




Fiz d > 5. Under some non-degeneracy assumptions, \(b) is uniquely
defined near \oo for b>1 and
0 A(b) — Moo ~ Axb™Psin(alnb + 64 if 5 < d < 12,
for some Ass >0, dso € (0,27), >0, and 5 > 0
@ A(b) — Ao ~ Bogb™" if d > 13
for some By, # 0 and k > 0.

The oscillatory behavior has been studied for the stationary NLS
equation in a ball with dynamical system methods.

(Budd, Norbury, 1987), (Budd, 1989), (Merle & Peletier, 1991),
(Dolbeault & Flores, 2007)



o Linearization around the ground state u:

d? d—14d

E”::_W_ rodr

+ 7% = A(b) — 3u®(r).

o Linearization around the singular solution u:

2 d-1d ,
Loo = B = R + 77— Ao — 3uZ (7).




o Linearization around the ground state u:

P d-1d

E”::_W_ rodr

+ 72 = A(b) — 3u*(r).

o Linearization around the singular solution u:

£ d-1d ,
Loo = B = R + 77— Ao — 3uZ (7).

Ly is well-defined in the form domain £ := H}! N L3!. Tt is a
self-adjoint Sturm-Liouville operator in L? with a purely point
spectrum.



o Linearization around the ground state u:

P d-1d

E”::_W_ rodr

+ 72 = A(b) — 3u*(r).

o Linearization around the singular solution u:

2 d-1d )
Loo = R R + 77— Ao — BuZ (1).

Stability of standing waves in the Gross—Pitaevskii equation:
e u is orbitally stable if £, has exactly one negative eigenvalue and
the mapping A — ||u|?. is decreasing.
e u is orbitally unstable if £, has two or more negative eigenvalues
Note that (Lpu,u) = —2||u||‘i$ < 0, hence Ly is not positive.



Since

LyOpu = X(b)u, Opt € E,'r,

the number of negative eigenvalues of Ly, : £ — £* change for every b
for which A (b) = 0.
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For every d > 13, there exists by > 0 such that the Morse index of
Ly € — E* is finite and is independent of b for every b € (by, ).
Moreover, it coincides with the Morse index of Lo : € — E*.




For every d > 13, there exists by > 0 such that the Morse index of
Ly € — E* is finite and is independent of b for every b € (by, ).
Moreover, it coincides with the Morse index of Lo : € — E*.

These approximations of £,v = 0 suggest that the Morse index is one.
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For every d > 13, there exists by > 0 such that the Morse index of
Ly € — E* is finite and is independent of b for every b € (by, ).
Moreover, it coincides with the Morse index of Lo : € — E*.

This graph suggests that the mapping A — |lul|2, is decreasing.

2
Uy e
1000 [EN

A
1292 1294 1296 1298 13.00

Conclusion: the standing waves are stable for d > 13.



The initial-value problem,

{ B+ L) = 2 fo(r) + Mo(r) + fo(r)* =0, 7 >0,
h(0)=b, f;(0) =0,

after the transformation

becomes the invariant manifold problem:

{ () + (d = 2)9' (1) + e (A +9(1)?) (t) — e*p(t) =0, tER,
P(t) = b, t — —oo.



The initial-value problem,

{ B+ L) = 2 fo(r) + Mo(r) + fo(r)* =0, 7 >0,
h(0)=b, f;(0) =0,

after the transformation

becomes the invariant manifold problem:

{ () + (d = 2)¢' (1) + € (A + (1)) P(t) — e*p(t) =0, tER,
P(t) = b, t — —oo.

The solution is a fixed point of the integral operator A(1)) given by

A@W)(t) = b+(d=2)7! / [1— e DOt — 2 (447 d

— 00



The initial-value problem,

{ B+ L) = 2 fo(r) + Mo(r) + fo(r)* =0, 7 >0,
h(0)=b, f;(0) =0,

after the transformation

becomes the invariant manifold problem:

{ () + (d = 2)¢' (1) + € (A + (1)) P(t) — e*p(t) =0, tER,
P(t) = b, t — —oo.

There exists a unique solution 1 € C?(R) such that

Yp(t) = b— (Ab+0%)(2d) 1e* + O(e*), ast — —oc0.



For the uniquely defined solution 1 (t) = b+ O(e?!), we define the
partition of R = I, U Iy U I_ for parameter A:

I, = {MNeR: FyeR: ¥(tg) =0, while y(t) >0, ¢'(t) <0, t <to},

I = {MNeR: 3tyeR: ¢ (tp) =0, while (t) >0, ¢'(t) <0, t<to},
In == {MeR:9Y(t)>0, ¢'(t) <0, teR}.




For the uniquely defined solution 1 (t) = b+ O(e?!), we define the
partition of R = I, U Iy U I_ for parameter A:

I, = {MNeR: FyeR: ¥(tg) =0, while y(t) >0, ¢'(t) <0, t <to},
I = {MNeR: 3tyeR: ¢ (tp) =0, while (t) >0, ¢'(t) <0, t<to},
In == {MeR:9Y(t)>0, ¢'(t) <0, teR}.

We have I_ NI, =0, I+ NIy =0, and furthermore,
e [d,00) C Iy and I is open;




For the uniquely defined solution 1 (t) = b+ O(e?!), we define the
partition of R = I, U Iy U I_ for parameter A:

I, = {MNeR: FyeR: ¥(tg) =0, while y(t) >0, ¢'(t) <0, t <to},
I = {MNeR: 3tyeR: ¢ (tp) =0, while (t) >0, ¢'(t) <0, t<to},
In == {MeR:9Y(t)>0, ¢'(t) <0, teR}.

We have I_ NI, =0, I+ NIy =0, and furthermore,
e [d,00) C Iy and I is open;

@ (—00,0] C I_ and I_ is open;




For the uniquely defined solution 1 (t) = b+ O(e?!), we define the
partition of R = I, U Iy U I_ for parameter \:

I, = {MNeR: FyeR: ¥(tg) =0, while y(t) >0, ¢'(t) <0, t <to},
I = {MNeR: 3tyeR: ¢ (tp) =0, while (t) >0, ¢'(t) <0, t<to},
In == {MeR:9Y(t)>0, ¢'(t) <0, teR}.

We have I_ NI, =0, I+ NIy =0, and furthermore,
e [d,00) C Iy and I is open;
@ (—00,0] C I_ and I_ is open;
e Iy C (0,d) is closed and if A(b) € Ip, then ¢(t) — 0 as t — +oo
with the precise asymptotics:

1,2t
S€

() ~ ce T e~ as t— 400
)

for some ¢ > 0.



For the uniquely defined solution 1 (t) = b+ O(e?!), we define the
partition of R = I, U Iy U I_ for parameter A:

I, = {MNeR: FyeR: ¥(tg) =0, while y(t) >0, ¢'(t) <0, t <to},
I = {MNeR: 3tyeR: ¢ (tp) =0, while (t) >0, ¢'(t) <0, t<to},
Iy = {XeR: ¢(t)>0, ¢'(t) <0, teR}.
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Recall the limiting singular solution ue, € &, U, & L defined by

Uso (1) = dr_ 5 [1+0(r%)] as r— 0.

The solution can be represented by u(r) = r~1F(r) with bounded F.
Using Emden-Fowler transformation and v (t) = e *¥(t), we obtain

U () + (d— )V (t) + (3 — d)(t) + U (t)® + X" U (t) — e V(t) = 0.




Recall the limiting singular solution uy, € &, Uy, ¢ L defined by

Uso (1) = dr_ 5 [1+0(r%)] as r— 0.

The solution can be represented by u(r) = r~1F(r) with bounded F.
Using Emden-Fowler transformation and v (t) = e *¥(t), we obtain

U () + (d— )V (t) + (3 — d)(t) + U (t)® + X" U (t) — e V(t) = 0.

The limiting singular solution corresponds to the solution with
U (t) = Vd—3+0(e*), ast — —oco and U (t) =0, ast — +oo,

which exists for some A = Ao (Selem—Kikuchi-Wei, 2013).



Recall the limiting singular solution ue, € &, U, & L defined by

Uso (1) = dr_ 5 [1+0(r%)] as r— 0.

The solution can be represented by u(r) = r~1F(r) with bounded F.
Using Emden-Fowler transformation and v (t) = e *¥(t), we obtain

U () + (d— )V (t) + (3 — d)(t) + U (t)® + X" U (t) — e V(t) = 0.
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Consider the differential equation

U (1) + (d — 4V (t) + (3 — d)U(t) + T (t)® + X2 U(t) — V(1) = 0.
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o The b-family W, (t) = el (t) = be! + O(e3t) as t - —0




Consider the differential equation

U (1) + (d — 4V (t) + (3 — d)U(t) + T (t)® + X2 U(t) — V(1) = 0.
o The b-family W, (t) = el (t) = be! + O(e3t) as t - —0

o The c-family ¥ (t) — 0 as t — +oo with

A—dt2, 1 2t
U.(t)~ce 2z e 2 ast— +oo.




Consider the differential equation

U (1) + (d — 4V (t) + (3 — d)U(t) + T (t)® + X2 U(t) — V(1) = 0.
o The b-family W, (t) = el (t) = be! + O(e3t) as t - —0
o The c-family ¥ (t) — 0 as t — +oo with

A—dt2, 1 2t
U.(t)~ce 2z e 2 ast— +oo.

o Their intersection for some A = A(b) and ¢ = ¢(b):
Wy (t) = Wy (t).

We want to prove: A(b) — Ao with some ¢(b) = ¢oo as b — +o00.



Consider the differential equation

U (1) + (d — 4V (t) + (3 — d)U(t) + T (t)® + X2 U(t) — V(1) = 0.

d=>5, b=14000:
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Consider the differential equation

U (1) + (d — 4V (t) + (3 — d)U(t) + T (t)® + X2 U(t) — V(1) = 0.

d=13, b=14000:
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Consider the differential equation

T (1) + (d — 4V (t) + (3 — d)(t) + T (t)® + X2 V(1) — * V(1) = 0,

for the solution Wy(¢) = bet + O(e3) as t — —cc.




Consider the differential equation

T (1) + (d — 4V (t) + (3 — d)(t) + T (t)® + X2 V(1) — * V(1) = 0,
for the solution Wy(¢) = bet + O(e3) as t — —cc.

Formal truncation gives

Q"(t)+ (d—4)0'(t) + (3—d)O(t) + O(1)* =0

with uniquely defined O(t) = e + O(e®') as t — —o0.




Consider the differential equation

T (1) + (d — 4V (t) + (3 — d)(t) + T (t)® + X2 V(1) — * V(1) = 0,
for the solution Wy(¢) = bet + O(e3) as t — —cc.
Formal truncation gives
Q"(t)+ (d—4)0'(t) + (3—d)O(t) + O(1)* =0
with uniquely defined O(t) = e + O(e®') as t — —o0.
Easy result for all large b:

sup | Uy (t —logh) — O(t)| < Cob™2.
te(—o00,0]



Consider the differential equation

T (1) + (d — 4V (t) + (3 — d)(t) + T (t)® + X2 V(1) — * V(1) = 0,
for the solution Wy(¢) = bet + O(e3) as t — —cc.
Formal truncation gives
Q"(t)+ (d—4)0'(t) + (3—d)O(t) + O(1)* =0
with uniquely defined O(t) = e + O(e®') as t — —o0.
Harder result for every T' > 0 and a € (0,1):

sup Uy (t —logh) — O(t)| < Cr b~ 207
t€[0,T+a log b]



Consider the differential equation

T (1) + (d — 4V (t) + (3 — d)(t) + T (t)® + X2 V(1) — * V(1) = 0,
for the solution Wy(¢) = bet + O(e3) as t — —cc.
Formal truncation gives
O (t) + (d—4)0'(t) + (3 - d)O(t) + O(t)> = 0
with uniquely defined O(t) = e + O(e®') as t — —o0.

O(t) —» vd— 3 as t = +oo since
e (v/d—3,0) is a stable spiral point for 5 < d <12
e (v/d—3,0) is a stable nodal point for d > 13.



Consider the differential equation

T (1) + (d — 4V (t) + (3 — d)(t) + T (t)® + X2 V(1) — * V(1) = 0,
for the solution Wy(¢) = bet + O(e3) as t — —cc.
Formal truncation gives
Q"(t)+ (d—4)0'(t) + (3—d)O(t) + O(1)* =0
with uniquely defined O(t) = e + O(e®') as t — —o0.
Non-degeneracy assumption (5 < d < 12):
O(t) = Vd — 3+ Age Psin(at + &) + O(e ) as t — +oo,

where Ay # 0.



Consider the differential equation
T (1) + (d — 4V (t) + (3 — d)(t) + T (t)® + X2 V(1) — * V(1) = 0,

for the solution Wy(¢) = bet + O(e3) as t — —cc.

w(t)




Consider the differential equation

T (1) + (d — 4V (t) + (3 — d)(t) + T (t)® + X2 V(1) — * V(1) = 0,

)\7¢:H»2t

L2t
e 2 as t — +o00.

for the solution W (t) ~ ce™ 2




Consider the differential equation

T (1) + (d — 4V (t) + (3 — d)(t) + T (t)® + X2 V(1) — * V(1) = 0,

for the solution W, (t) ~ ce TEt

L2t
e 2 as t — +o00.

Recall the limiting solution ¥, (t) = v/d — 3 as t — —oo, which exists
for (A, ¢) = (Moo, Coo) and write

U=+ (A= Ao)¥1 + (¢ — €0) P2 + 3,

for (A, ¢) near (Ao, Coo)-




Consider the differential equation

T (1) + (d — 4V (t) + (3 — d)(t) + T (t)® + X2 V(1) — * V(1) = 0,

for the solution W, (t) ~ ce TEt

L2t
e 2 as t — +o00.

Recall the limiting solution ¥, (t) = v/d — 3 as t — —oo, which exists
for (A, ¢) = (Moo, Coo) and write

U=+ (A= Ao)¥1 + (¢ — €0) P2 + 3,

for (A, ¢) near (Ao, Coo)-

Easy result for every ¢t € (—oo, (a — 1) logb + T1:
Wy 5(t) — Ay ge P sin(at + 61.0)] < Cpab 207D e P,

where Aj, A # 0 (non-degeneracy assumption).



Consider the differential equation

T (1) + (d — 4V (t) + (3 — d)(t) + T (t)® + X2 V(1) — * V(1) = 0,

for the solution W, (t) ~ ce TEt

L2t
e 2 as t — +o00.

Recall the limiting solution ¥, (t) = v/d — 3 as t — —oo, which exists
for (A, ¢) = (Moo, Coo) and write

U=+ (A= Ao)¥1 + (¢ — €0) P2 + 3,

for (A, ¢) near (Ao, Coo)-

Harder result for the remainder term for every t € [(a — 1) logb, 0]:
I2(1)] < Cr.u€?,

as long as (A — Aoo)? + (€ — €oo)? < 20720079 wwith small € > 0.



Consider the differential equation

T (1) + (d — 4V (t) + (3 — d)(t) + T (t)® + X2 V(1) — * V(1) = 0,

for the solution W, (t) ~ ce TEt

L2t
e 2 as t — +o00.
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We define A = A(b) and ¢ = ¢(b) from

\IJb(t) = \Ilc(b) (t)v teR.

We can use the two asymptotic representations for every
t€[(a—1)logd, (a —1)logb+ T] with arbitrary T > 0.




We define A = A(b) and ¢ = ¢(b) from

\IJb(t) = \Ilc(b) (t)v teR.

We can use the two asymptotic representations for every
t€[(a—1)logd, (a —1)logb+ T] with arbitrary T > 0.

Up(T + (a—1)logb) = ©O(T + alogb) + error
Vd =3+ Agb~ e PT sin(aT + &) + error




We define A = A(b) and ¢ = ¢(b) from

\IJb(t) = \Ilc(b) (t)v teR.
We can use the two asymptotic representations for every

t€[(a—1)logd, (a —1)logb+ T] with arbitrary T > 0.

Up(T + (a—1)logb) = ©O(T + alogb) + error
Vd =3+ Agb~ e PT sin(aT + &) + error

Uo(T + (a — 1) logb) + linear terms
= Vd=34 A1\ = Ao)bI DB T sin(aT + 6,)
+A5(c — o) D= DPeBT gin(aT + 6,) + error

V(T + (a—1)logh)



We define A = A(b) and ¢ = ¢(b) from

\IJb(t) = \Ilc(b) (t)v teR.

We can use the two asymptotic representations for every
t€[(a—1)logd, (a —1)logb+ T] with arbitrary T > 0.

Under the non-degeneracy assumption that Ag, A1, As # 0 we obtain
with the implicit function theorem,

A(b) — Moo = Asob P sin(alogb + 6 + error,

inside |\ — \oo| < eb=P-a),



We define A = A(b) and ¢ = ¢(b) from

\IJb(t) = \Ilc(b) (t)v teR.

We can use the two asymptotic representations for every
t€[(a—1)logd, (a —1)logb+ T] with arbitrary T > 0.
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o Similar results but with monotone decay are obtained for d > 13.
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o Similar results but with monotone decay are obtained for d > 13.

@ Derivative 0¥, (t) is a solution of the linearized equation
satisfying 0, Wy (t) — 0 as t — —oo.

@ Derivative 9., (t) is a solution of the linearized equation
satisfying 9. U.(¢t) — 0 as t = +o0.

o In the monotone case d > 13, under the non-degeneracy
assumptions, we can show that if for A = A(b),

\I/b(t) = \Ilc(b) (t), teR,
then there exists no C' € R such that
HU(t) = C@C\I/c(b) (t), teR.

Hence the linearized operator £, at u, has no zero eigenvalues.



e We have shown existence of A(b) and Ao, but not uniqueness.

e No proof that if £;, has a zero eigenvalue in L?, then X' (b) = 0.

o In the oscillatory case, the Morse index is expected to increase by
one every time A(b) passes through the extremal point.

o The existence of A(b) has been shown in the energy critical case
d = 4 but we should prove that A(b) — 0 as b — oo with the
limiting singular solution being the algebraic soliton.
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Consider the differential equation

U (1) — W(t) + U(t)® + AU (1) — MU (t) =0,

for the solution Wy(¢) = bet + O(e3) as t — —cc.




Consider the differential equation

U (1) — W(t) + U(t)® + AU (1) — MU (t) =0,

for the solution Wy(¢) = bet + O(e3) as t — —cc.

Formal truncation gives
e't)—e)+6e@)?*=0

with uniquely defined
_ 8be!
8+ b2’

which corresponds to the algebraic soliton in variable r = et.

o(t)



Consider the differential equation

U (1) — W(t) + U(t)® + AU (1) — MU (t) =0,

for the solution Wy(¢) = bet + O(e3) as t — —cc.

One can again continue the solution for every T' > 0 and a € (0,1):

sup |y (t —logh) — O(t)| < Cpub~ 2179,
t€[0,T+alog b)

such that O(T + alogb) = 8% ~T + O(h=39) is small.




Consider the differential equation

U (1) — W(t) + U(t)® + AU (1) — MU (t) =0,

for the solution Wy(¢) = bet + O(e3) as t — —cc.
For the c-family, we can take the solution of the linear equation
t,—Le*rr 2t A
U (t) =ce'e2¢ Ule*;a=1— Z’b=2)’

where U(z; a,b) is the Tricomi solution of Kummer’s differential
equation.



Consider the differential equation

U (1) — W(t) + U(t)® + AU (1) — MU (t) =0,

for the solution Wy(¢) = bet + O(e3) as t — —cc.

Both solutions ¥y, and ¥, are defined for arbitrary A and their
intersection is tangential in the sense that equation

\Ilb(t) = \ch(b) (t)a teR,

determines only ¢(b) = 86! + o(b~1) but not A(b).




The situation becomes even more interesting in three dimensions:

VA2 =2+ A+ [ =0
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The situation becomes even more interesting in three dimensions:
U 2r 2 = fo+ A+ 2 =0

p=2,d=3 p=2, d=3
2 Psi
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08¢ — 0904139 — 6.99801
osh — 150807 — 54.1644
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Thank you for attention!
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