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1. Periodic waves and rogue waves

The focusing NLS equation

The focusing nonlinear Schrödinger (NLS) equation

iψt +
1
2
ψxx + |ψ|2ψ = 0

has been derived as the main model for modulating quasi-harmonic waves

εψ(ε(x − ct), ε2t)ei(k0x−ω0t) + εψ̄(ε(x − ct), ε2t)e−i(k0x−ω0t) + higher-order terms

from water wave equations, Maxwell equations, and the like.

ψ(x , t) = eit is the constant-amplitude wave,
ψ(x , t) = sech(x)eit/2 is a solitary wave.
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1. Periodic waves and rogue waves

The rogue wave of the cubic NLS equation

The focusing nonlinear Schrödinger (NLS) equation

iψt +
1
2
ψxx + |ψ|2ψ = 0

admits the exact solution

ψ(x , t) =

[
1− 4(1 + 2it)

1 + 4x2 + 4t2

]
eit .

It was discovered by H. Peregrine (1983) and was labeled as the rogue wave.

D.Pelinovsky (McMaster University) Periodic and double periodic waves 3 / 40



1. Periodic waves and rogue waves

Modulational instability of the constant-amplitude wave

The rogue wave solution is related to the modulational instability of the
constant-amplitude wave:

ψ(x , t) = eit
[
1 + (k2 + 2iΛ)eΛt+ikx + (k2 + 2iΛ̄)eΛ̄t−ikx

]
,

where k ∈ R is the wave number and Λ is given by

Λ2 = k2
(

1− 1
4

k2
)
.

The wave is unstable for k ∈ (0,2).

D.Pelinovsky (McMaster University) Periodic and double periodic waves 4 / 40



1. Periodic waves and rogue waves

Other rogue waves - Akhmediev breathers (AB)

Spatially periodic homoclinic solution was constructed by N.N. Akhmediev,
V.M. Eleonsky, and N.E. Kulagin (1985):

ψ(x , t) = eit
[
1− 2(1− λ2) cosh(kλt) + ikλ sinh(kλt)

cosh(kλt)− λ cos(kx)

]
,

where k = 2
√

1− λ2 ∈ (0,2) and λ ∈ (0,1) is the only free parameter. There
is a unique solution for each spatial period L = 2π

k = π√
1−λ2

> π.
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1. Periodic waves and rogue waves

Other rogue waves - Kuznetsov-Ma breathers

Temporally periodic soliton was constructed by E. A. Kuznetsov (1977) and
Y.-C. Ma (1979):

ψ(x , t) =

[
1− 2(λ2 − 1) cos(βλt) + iβλ sin(βλt)

λ cosh(βx)− cos(βλt)

]
eit ,

where β = 2
√
λ2 − 1 and λ ∈ (1,∞) is the only free parameter. There is a

unique solution for each temporal period T = 2π
βλ = π

λ
√
λ2−1

> 0 with k = iβ.
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1. Periodic waves and rogue waves

Traveling periodic waves

The focusing nonlinear Schrödinger (NLS) equation

iψt +
1
2
ψxx + |ψ|2ψ = 0

also admits the periodic traveling and standing wave solutions, e.g. the
dnoidal and cnoidal waves:

ψdn(x , t) = dn(x ; k)ei(1−k2/2)t , ψcn(x , t) = kcn(x ; k)ei(k2−1/2)t ,

where k ∈ (0,1) is elliptic modulus.
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1. Periodic waves and rogue waves

Rogue wave on background of periodic waves

J. Chen, D. P., Proceedings A (2018)
J. Chen, D. P., R. White, Physica D (2020)
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1. Periodic waves and rogue waves

Double-periodic wave background

Double-periodic solutions (Akhmediev, Eleonskii, Kulagin, 1987):

ψ(x , t) = k
cn(t ; k)cn(

√
1 + kx ;κ) + i

√
1 + ksn(t ; k)dn(

√
1 + kx ;κ)√

1 + kdn(
√

1 + kx ;κ)− dn(t ; k)cn(
√

1 + kx ;κ)
eit ,

ψ(x , t) =
dn(t ; k)cn(

√
2x ;κ) + i

√
k(1 + k)sn(t ; k)

√
1 + k −

√
kcn(t ; k)cn(

√
2x ;κ)

eikt ,

where k ∈ (0,1) is elliptic modulus and κ ∈ (0,1) is determined by k .
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1. Periodic waves and rogue waves

Rogue wave on background of double-periodic waves

J. Chen, D. P., R. White, Phys. Rev. E (2019)
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2. Exact periodic and double-periodic solutions

NLS hierarchy

The focusing nonlinear Schrödinger (NLS) equation

iψt +
1
2
ψxx + |ψ|2ψ = 0

is a member of the NLS hierarchy

d
dtk

[
u
ū

]
= J∇Hk (u), ∇Hk+1(u) = R∇Hk (u),

where

J = i
[
0 −1
1 0

]
, R = i

[
∂x + 2ū∂−1

x u −2ū∂−1
x ū

2u∂−1
x u −∂x − 2u∂−1

x ū

]
,

Thus, we obtain

H0 =

∫
R
|u|2dx , H1 =

i
2

∫
R

(uūx − ux ū) dx ,

H2 =

∫
R

(
|ux |2 − |u|4

)
dx , H3 =

i
2

∫
R

[
ux ūxx − uxx ūx − 3|u|2(uūx − ux ū)

]
dx .
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2. Exact periodic and double-periodic solutions

Stationary Lax-Novikov equations

The stationary (Lax–Novikov) equations are given by

∇H1(u) + 2c∇H0(u) = 0,
∇H2(u) + 2c∇H1(u) + 4b∇H0(u) = 0,
∇H3(u) + 2c∇H2(u) + 4b∇H1(u) + 8a∇H0(u) = 0,

or explicitly,

u′(x) + 2icu = 0,

u′′(x) + 2|u|2u + 2icu′ + 4bu = 0,

u′′′(x) + 6|u|2u′ + 2ic(u′′ + 2|u|2u) + 4bu′ + 8iau = 0,

where c, b, a are constants.
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2. Exact periodic and double-periodic solutions

Solutions of stationary Lax-Novikov equations

In terms of the NLS equation

iψt +
1
2
ψxx + |ψ|2ψ = 0

the stationary Lax–Novikov equations

u′ + 2icu = 0,

u′′ + 2|u|2u + 2icu′ + 4bu = 0,

u′′′ + 6|u|2u′ + 2ic(u′′ + 2|u|2u) + 4bu′ + 8iau = 0,

generate the following solutions:
1 Constant-amplitude wave ψ(x , t) = Ae−2ic(x+ct)+iA2t ,
2 Traveling standing wave ψ(x , t) = u(x + ct)e−2ibt

3 Double-periodic wave ψ(x , t) = [q(x , t) + iδ(t)]eit+iα(t),
where q(x + L, t) = q(x , t + T ) = q(x , t), δ(t + T ) = δ(t), α(t + T ) = α(t).
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2. Exact periodic and double-periodic solutions

Characterization of u′′ + 2|u|2u + 2icu′ + 4bu = 0

Consider the Lax system of linear equations

ϕx = U(λ,u)ϕ, U(λ,u) =

(
λ u
−ū −λ

)
and

ϕt = V (λ,u)ϕ, V (λ,u) = i
(
λ2 + 1

2 |u|
2 1

2 ux + λu
1
2 ūx − λū −λ2 − 1

2 |u|
2

)
.

Fix λ = λ1 ∈ C with ϕ = (p1,q1) ∈ C2 and set u = p2
1 + q̄2

1 . The spectral
problem ϕx = U(λ,u)ϕ becomes the Hamiltonian system generated by

H = λ1p1q1 + λ̄1p̄1q̄1 +
1
2

(p2
1 + q̄2

1)(p̄2
1 + q2

1).

with additional constant F = i(p1q1 − p̄1q̄1).

(Cao–Geng, 1990) (Cao–Wu–Geng, 1999) (R.Zhou, 2009) (Chen–P, 2018)
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2. Exact periodic and double-periodic solutions

Second-order Lax–Novikov equation

By differentiating of the constraints between u and (p1,q1), we obtain

u = p2
1 + q̄2

1 ,

u′ + 2iFu = 2(λ1p2
1 − λ̄1q̄2

1),

u′′ + 2|u|2u + 2iFu′ − 4Hu = 4(λ2
1p2

1 + λ̄2
1q̄2

1),

which yields the second-order Lax–Novikov equation:

u′′ + 2|u|2u + 2icu′ + 4bu = 0,

where c := F + i(λ1 − λ̄1) and b := −H − iF (λ1 − λ̄1)− |λ1|2.

The second-order equation admits two conserved quantities:

i(u′ū − uū′)− 2c|u|2 = 4a,

|u′|2 + |u|4 + 4b|u|2 = 8d .
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2. Exact periodic and double-periodic solutions

Integrability of the Hamiltonian system

The Hamiltonian system for (p1,q1) is obtained from the Lax equation

d
dx

W (λ) = U(λ,u)W (λ)−W (λ)U(λ,u),

where U(λ,u) is defined under the constraint u = p2
1 + q̄2

1 and

W (λ) =

(
W11(λ) W12(λ)

W̄12(−λ) −W̄11(−λ)

)
,

with

W11(λ) = 1− p1q1

λ− λ1
+

p̄1q̄1

λ+ λ̄1
, W12(λ) =

p2
1

λ− λ1
+

q̄2
1

λ+ λ̄1
.

Due to relations between u and p2
1, q̄2

1 , and p1q1, we have

W11(λ) =
λ2 + icλ+ b + 1

2 |u|
2

(λ− λ1)(λ+ λ̄1)
, W12(λ) =

uλ+ icu + 1
2 u′

(λ− λ1)(λ+ λ̄1)
.
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2. Exact periodic and double-periodic solutions

Algebraic polynomial for u′′ + 2|u|2u + 2icu′ + 4bu = 0

detW (λ) is constant in (x , t) and has simple poles at λ1 and −λ̄1:

det[W (λ)] = −1 +
2H + F 2

(λ− λ1)(λ+ λ̄1)
= − P(λ)

(λ− λ1)2(λ+ λ̄1)2

so that P(λ) is constant in (x , t) and has roots at λ1 and −λ̄1:

P(λ) = (λ2 + icλ+ b +
1
2
|u|2)2 − (uλ+ icu +

1
2

u′)(ūλ+ icū − 1
2

ū′)

= λ4 + 2icλ3 + (2b − c2)λ2 + 2i(a + bc)λ+ b2 − 2ac + 2d

= (λ− λ1)(λ+ λ̄1)(λ− λ2)(λ+ λ̄2),

where constants (a,b, c,d) are incorporated from the second-order
Lax-Novikov equation and its two conserved quantities.
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2. Exact periodic and double-periodic solutions

Lax spectrum for the standing periodic waves

Two possible solutions for the standing periodic waves (a = c = 0):

u(x) = dn(x ; k), u(x) = kcn(x ; k).

Solutions are periodic with some period and the Lax spectrum of
ϕx = U(λ,u)ϕ coincides with the Floquet spectrum.
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Red dots show roots of P(λ), e.g., eigenvalues of the nonlinearization method.
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2. Exact periodic and double-periodic solutions

u′′′ + 6|u|2u′ + 2ic(u′′ + 2|u|2u) + 4bu′ + 8iau = 0

Fix λ = λ1 ∈ C with ϕ = (p1,q1) ∈ C2 and λ = λ2 ∈ C with ϕ = (p2,q2) ∈ C2

such that λ1 6= ±λ2 and λ1 6= ±λ̄2. Set

u = p2
1 + q̄2

1 + p2
2 + q̄2

2 .

The spectral problem ϕx = U(λ,u)ϕ becomes the Hamiltonian system with
four conserved quantities:

F0 = i〈p,q〉,

F1 = 〈Λp,q〉+
1
2
〈p,p〉〈q,q〉 − 1

2
〈p,q〉2,

F2 = i
[
〈Λ2p,q〉+

1
2
〈Λp,p〉〈q,q〉+

1
2
〈p,p〉〈Λq,q〉 − 〈p,q〉〈Λp,q〉

]
,

F3 = 〈Λ3p,q〉+
1
2
〈Λ2p,p〉〈q,q〉+

1
2
〈Λp,p〉〈Λq,q〉+

1
2
〈p,p〉〈Λ2q,q〉

− 1
2
〈Λp,q〉2 − 〈p,q〉〈Λ2p,q〉,

where p = (p1,p2, q̄1, q̄2)t , q = (q1,q2,−p̄1,−p̄2)t , Λ := diag(λ1, λ2,−λ̄1,−λ̄2).
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2. Exact periodic and double-periodic solutions

Fourth-order Lax–Novikov equation

By differentiating of the constraints between u and (p,q), we obtain

u = 〈p,p〉,
u′ + 2iF0u = 2〈Λp,p〉,

u′′ + 2|u|2u + 2iF0u′ − 4Hu = 4〈Λ2p,p〉,
u′′′ + 6|u|2u′ + 2iF0(u′′ + 2|u|2u)− 4Hu′ + 8iKu = 8〈Λ3p,p〉,

u′′′′ + 8|u|2u′′ + 2u2ū′′ + 4u|u′|2 + 6(u′)2ū + 6|u|4u

+2iF0(u′′′ + 6|u|2u′)− 4H(u′′ + 2|u|2u) + 8iKu′ − 16Eu = 16〈Λ4p,p〉,

which yields the fourth-order Lax–Novikov equation:

u′′′′ + 8|u|2u′′ + 2u2ū′′ + 4u|u′|2 + 6(u′)2ū + 6|u|4u

+2ic(u′′′ + 6|u|2u′) + 4b(u′′ + 2|u|2u) + 8iau′ + 16du = 0,

which is integrable with four conserved quantities. If u solves the
second-order equation u′′ + 2|u|2u + 2icu′ + 4bu = 0, then the fourth-order
equation is identically satisfied.
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2. Exact periodic and double-periodic solutions

Integrability of the Hamiltonian system

The Hamiltonian system for (p1,p2,q1,q2) is obtained from the Lax equation

d
dx

W (λ) = U(λ,u)W (λ)−W (λ)U(λ,u), W (λ) =

(
W11(λ) W12(λ)

W̄12(−λ) −W̄11(−λ)

)
,

with

W11(λ) = 1−
2∑

j=1

(
pjqj

λ− λj
−

p̄j q̄j

λ+ λ̄j

)
, W12(λ) =

2∑
j=1

(
p2

j

λ− λj
+

q̄2
j

λ+ λ̄j

)
.

Due to relations between u and squared eigenfunctions, we have

W11(λ) =
λ4 + iT1λ

3 + T2λ
2 + iT3λ+ T4

(λ− λ1)(λ− λ2)(λ+ λ̄1)(λ+ λ̄2)
,


T1 = c,
T2 = b + 1

2 |u|
2,

T3 = a + 1
2 c|u|2 − i

4 (u′ū − uū′),
T4 = d + 1

2 b|u|2 + i
4 c(u′ū − uū′) + 1

8 (uū′′ + u′′ū − |u′|2 + 3|u|4),

W12(λ) =
S0λ

3 + S1λ
2 + S2λ+ S3

(λ− λ1)(λ− λ2)(λ+ λ̄1)(λ+ λ̄2)
,


S0 = u,
S1 = 1

2 u′ + icu,
S2 = 1

4 (u′′ + 2|u|2u) + i
2 cu′ + bu,

S3 = 1
8 (u′′′ + 6|u|2u′) + i

4 c(u′′ + 2|u|2u) + 1
2 bu′ + iau,
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2. Exact periodic and double-periodic solutions

Third-order Lax–Novikov equation

If T4 = S3 = 0, then the fourth-order Lax–Novikov equation

u′′′′ + 8|u|2u′′ + 2u2ū′′ + 4u|u′|2 + 6(u′)2ū + 6|u|4u

+2ic(u′′′ + 6|u|2u′) + 4b(u′′ + 2|u|2u) + 8iau′ + 16du = 0,

is satisfied by its reduction to the third-order Lax–Novikov equation

u′′′ + 6|u|2u′ + 2ic(u′′ + 2|u|2u) + 4bu′ + 8iau = 0,

which is integrable with three conserved quantities:

d +
1
2

b|u|2 +
i
4

c(u′ū − uū′) +
1
8

(uū′′ + u′′ū − |u′|2 + 3|u|4) = 0,

2e − a|u|2 − 1
4

c(|u′|2 + |u|4) +
i
8

(u′′ū′ − u′ū′′) = 0,

f − i
2

a(u′ū − uū′) +
1
4

b(|u′|2 + |u|4) +
1

16
(|u′′ + 2|u|2u|2 − (u′ū − uū′)2) = 0.
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2. Exact periodic and double-periodic solutions

Algebraic polynomial for the third-order equation

detW (λ) is constant in (x , t) and has simple poles at λ1, λ2, −λ̄1, and −λ̄2:

det[W (λ)] = − λ2P(λ)

(λ− λ1)2(λ− λ2)2(λ+ λ̄1)2(λ+ λ̄2)2
,

with

P(λ) = λ6 + 2icλ5 + (2b − c2)λ4 + 2i(a + bc)λ3 + (b2 − 2ac + 2d)λ2

+ 2i(e + ab + cd)λ+ f + 2bd − 2ce − a2.

where constants (a,b, c,d ,e, f ) are incorporated from the third-order
Lax-Novikov equation and its three conserved quantities.
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2. Exact periodic and double-periodic solutions

Lax spectrum for the double-periodic waves

Two possible solutions for the double-periodic waves (a = c = e = 0):

ψ(x , t) = k
cn(t ; k)cn(

√
1 + kx ;κ) + i

√
1 + ksn(t ; k)dn(

√
1 + kx ;κ)√

1 + kdn(
√

1 + kx ;κ)− dn(t ; k)cn(
√

1 + kx ;κ)
eit ,

ψ(x , t) =
dn(t ; k)cn(

√
2x ;κ) + i

√
k(1 + k)sn(t ; k)

√
1 + k −

√
kcn(t ; k)cn(

√
2x ;κ)

eikt ,

where k ∈ (0,1) is elliptic modulus and κ ∈ (0,1) is determined by k .
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2. Exact periodic and double-periodic solutions

Lax spectrum for the double-periodic waves

Solutions are periodic in x with some period and the Lax spectrum of
ϕx = U(λ,u)ϕ coincides with the Floquet spectrum.
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Red dots show roots of P(λ), eigenvalues of the nonlinearization method.
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3. Stability of standing periodic waves

Linearized NLS equation

Let ψ be a standing periodic wave solution of the NLS equation

iψt +
1
2
ψxx + |ψ|2ψ = 0.

Let χ be a perturbation of ψ. In the linearized approximation, it satisfies the
linearized NLS equation

iχt +
1
2
χxx + 2|ψ|2χ+ ψ2χ̄ = 0,

which is obtained from NLS after substituting ψ + χ to the NLS equation and
neglecting χ2, χ3.
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3. Stability of standing periodic waves

Spectral stability of standing waves

For the standing periodic waves, the variables can be separated:

ψ(x , t) = u(x + ct)e−2ibt , χ(x , t) = v(x + ct)e−2ibt+Λt ,

where
1
2

u′′ + |u|2u + icu′ + 2bu = 0

and
Λv +

1
2

v ′′ + 2|u|2v + u2v̄ + icv ′ + 2bv = 0.

The spectral parameter Λ is found from the condition that v(x) is bounded.

Since u(x + L) = u(x) is periodic, then by Floquet theory, v(x) = w(x)eiθx ,
where θ ∈ [−π/L, π/L] and w(x + L) = w(x).

If there exists Λ with Re(Λ) > 0 for some θ ∈ [−π/L, π/L], then the standing
periodic wave is unstable in the time evolution of the NLS equation. It is
modulationally unstable if the band with Re(Λ) > 0 intersects Λ = 0 as θ → 0.
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3. Stability of standing periodic waves

Relation to squared eigenfunctions

Recall the linear Lax system:

ϕx = U(λ, ψ)ϕ, U(λ, ψ) =

(
λ ψ
−ψ̄ −λ

)
and

ϕt = V (λ, ψ)ϕ, V (λ, ψ) = i
(
λ2 + 1

2 |ψ|
2 1

2ψx + λψ
1
2 ψ̄x − λψ̄ −λ2 − 1

2 |ψ|
2

)
,

where ψ is a solution of the NLS equation.

If ϕ and φ are two linearly independent solutions of the Lax system, then

Pair I Pair II Pair III
χ = ϕ2

1 − ϕ̄2
2 χ = ϕ1φ1 − ϕ̄2φ̄2 χ = φ2

1 − φ̄2
2

χ = iϕ2
1 + iϕ̄2

2 χ = iϕ1φ1 + iϕ̄2φ̄2 χ = iφ2
1 + iφ̄2

2

are solutions of the linearized NLS equation.
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3. Stability of standing periodic waves

Relation to squared eigenfunctions

Theorem
Let λ belongs to the Lax spectrum so that

ϕ(x , t) = ξ(x + ct)e−2ibσ3t+Ωt

with ξ ∈ L∞(R). Then, Ω = ±i
√

P(λ), where P(λ) is the polynomial for the
second-order Lax–Novikov equation:

P(λ) = λ4 + 2icλ3 + (2b − c2)λ2 + 2i(a + bc)λ+ b2 − 2ac + 2d

Consequently, Λ = 2Ω = ±2i
√

P(λ).

The proof follows from separation of variables for

ξx = U(λ,u)ξ, U(λ,u) =

(
λ u
−ū −λ

)
Ωξ + cξx − 2ibσ3ξ = V (λ,u)ξ, V (λ,u) = i

(
λ2 + 1

2 |u|
2 1

2 ux + λu
1
2 ūx − λū −λ2 − 1

2 |u|
2

)
,
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3. Stability of standing periodic waves

Instability of the dnoidal periodic waves

u(x) = dn(x ; k), L = 2K (k).
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Figure: Left: Lax spectrum. Right: stability spectrum related by Λ = ±2i
√

P(λ).
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3. Stability of standing periodic waves

Instability of the cnoidal periodic waves

u(x) = kcn(x ; k), L = 4K (k).
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Figure: Left: Lax spectrum. Right: stability spectrum related by Λ = ±2i
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4. Stability of double-periodic waves

Spectral stability of double-periodic waves

For the double-periodic waves, the variables can not be separated:

ψ(x , t) = [q(x , t) + iδ(t)]eit+iα(t),

where q(x + L, t) = q(x , t + T ) = q(x , t), δ(t + T ) = δ(t), α(t + T ) = α(t).
Perturbation χ(x , t) to ψ(x , t) satisfies the linearized NLS equation

iχt +
1
2
χxx + 2|ψ|2χ+ ψ2χ̄ = 0,

Due to periodicity, we can think of the Floquet theory both with respect to x
and t to represent the perturbation in the form

χ(x , t) = v(x , t)eit+iθx+Λt ,

where v(x + L, t) = v(x , t + T ) = v(x , t), θ ∈ [−π/L, π/L], and Λ is somehow
defined (unique if Im(Λ) ∈ [−π/T , π/T ]).
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4. Stability of double-periodic waves

Spectral stability of double-periodic waves

Recall the linear Lax system

ϕx = U(λ, ψ)ϕ, U(λ, ψ) =

(
λ ψ
−ψ̄ −λ

)
and

ϕt = V (λ, ψ)ϕ, V (λ, ψ) = i
(
λ2 + 1

2 |ψ|
2 1

2ψx + λψ
1
2 ψ̄x − λψ̄ −λ2 − 1

2 |ψ|
2

)
,

where ψ is a solution of the NLS equation.

By the Floquet theory both with respect to x and t , we write

ϕ(x , t) = ξ(x , t)eiθx+tΩ,

ξ(x + L, t) = ξ(x , t + T ) = ξ(x , t), θ ∈ [−π/L, π/L], Im(Ω) ∈ [−π/T , π/T ].
λ is found from the Lax spectrum for ϕx = U(λ, ψ).
Ω is found from ϕt = V (λ, ψ)ϕ.

Is there a relation between Ω and P(λ) for the double-periodic solution ψ?
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4. Stability of double-periodic waves

Instabilities of the first solution

k = 0.85 (Pelinovsky, 2021):
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4. Stability of double-periodic waves

Instabilities of the second solution

k = 0.6 (Pelinovsky, 2021):
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4. Stability of double-periodic waves

Instabilities of the second solution

k = 0.9 (Pelinovsky, 2021):
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4. Stability of double-periodic waves

Akhmediev breathers

In the limit k → 1 both families converge to a particular example of the
Akhmediev breather (AB):

ψ(x , t) =
cos(
√

2x) + i
√

2 sinh(t)√
2 cosh(t)− cos(

√
2t)

eit .
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4. Stability of double-periodic waves

Akhmediev breathers under periodic perturbation

A family of Akhmediev breathers with parameter λ ∈ (0,1):

ψ(x , t) = eit
[
1− 2(1− λ2) cosh(kλt) + ikλ sinh(kλt)

cosh(kλt)− λ cos(kx)

]
,

If the perturbation is periodic, the Lax and stability spectra are purely discrete.
There was an open question if the Akhmediev breather is linearly unstable.
P. Grinevich & P. Santini, Nonlinearity 34 (2021) 8331–8358
M. Haragus & D. Pelinovsky, J. Nonlinear Science 32 (2022) 66

Figure: Lax spectrum (left) and stability spectrum (right) of Akhmediev breather.
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5. Summary

Other examples of integrable Hamiltonian systems

Modified Korteweg–de Vries equation

ut + 6u2ux + uxxx = 0

Dnoidal periodic waves are modulationally stable.
Cnoidal periodic waves are modulationally unstable.
J. Chen & D. Pelinovsky, Nonlinearity 31 (2018) 1955–1980

Sine–Gordon equation

utt − uxx + sin(u) = 0

Same conclusion.
D. Pelinovsky & R. White, Proceedings A 476 (2020) 20200490

Derivative NLS equation

iψt + ψxx + i(|ψ|2ψ)x = 0.

There exist modulationally stable periodic waves.
J. Chen, D. Pelinovsky, & J. Upsal, J. Nonlinear Science 31 (2021) 58
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5. Summary

Summary

Standing periodic waves are solutions of the second-order Lax–Novikov
equation. Double-periodic waves are solutions of the third-order
Lax–Novikov equation. Akhmediev and Kuznetsov–Ma breathers are
particular cases of double-periodic solutions.

Standing periodic waves are spectrally (modulationally) unstable, their
instability is computed from separation of variables and Floquet theory.

Double-periodic waves are also linearly unstable, their instability is
computed from double Floquet theory (both in x and t).

Breathers are also linearly unstable.

Many thanks for your attention!
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