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The focusing NLS equation

The focusing nonlinear Schrédinger (NLS) equation

i+ e+ 9122 = 0
has been derived as the main model for modulating quasi-harmonic waves
ep(e(x — ct), t)e/lloX—wol) 1 eih(e(x — ct), 2t)e~ (kX —wol) 4 higher-order terms
from water wave equations, Maxwell equations, and the like.

Y(x,t) = e'is the constant-amplitude wave,
Y(x, t) = sech(x)e'/? is a solitary wave.
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The rogue wave of the cubic NLS equation

The focusing nonlinear Schrédinger (NLS) equation

A
e+ e+ [Py =0

vix 1) = [1 T 1442+ 4R
It was discovered by H. Peregrine (1983) and was labeled as the rogue wave.

admits the exact solution
4(1 4 2it) } it
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1. Periodic waves and rogue waves

Modulational instability of the constant-amplitude wave

The rogue wave solution is related to the modulational instability of the
constant-amplitude wave:

Y(x.t) =€ [1 + (K + 2iN) MR 4 (K2 + 2//‘\)ef_\t—ikx} 7

where k € R is the wave number and A is given by

1
N =kK2(1-_K?).
(1-5)

The wave is unstable for k € (0, 2).

4

2

o
Re(A)
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1. Periodic waves and rogue waves

Other rogue waves - Akhmediev breathers (AB)

Spatially periodic homoclinic solution was constructed by N.N. Akhmediev,
V.M. Eleonsky, and N.E. Kulagin (1985):

2(1 — A2) cosh(kAt) + ikAsinh(kAt)

—etl1_
w(xv t) =e |1 cosh(k)\t) — )\COS(kX) ’

where k =2v/1 — X2 € (0,2) and X € (0, 1) is the only free parameter. There
is a unique solution for each spatial period L = 27’“ = L= >T.

V1-)2

= _
= _—t =
Eo
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Re(A)
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1. Periodic waves and rogue waves

Other rogue waves - Kuznetsov-Ma breathers

Temporally periodic soliton was constructed by E. A. Kuznetsov (1977) and
Y.-C. Ma (1979):

B 2(N2 — 1) cos(BAL) + iBAsin(BAL)]
vt = {1 B A cosh(Bx) — cos(BAL) e
where 3 = 2v/)2 — 1 and A € (1, 0) is the only free parameter. There is a
unique solution for each temporal period T = g—’; = A\/zzﬁ > 0 with k = ig.

4
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Traveling periodic waves

The focusing nonlinear Schrédinger (NLS) equation

A
e+ e+ [Py =0

also admits the periodic traveling and standing wave solutions, e.g. the
dnoidal and cnoidal waves:

Yan(X, 1) = dn(x; k)& K/2t - (x, £) = ken(x; k)e/K 1/t
where k € (0, 1) is elliptic modulus.
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1. Periodic waves and rogue waves

Rogue wave on background of periodic waves

J. Chen, D. P, Proceedings A (2018)
J. Chen, D. P, R. White, Physica D (2020)

Amplitude

Space(x) 10 Time (t)
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1. Periodic waves and rogue waves

Double-periodic wave background

Double-periodic solutions (Akhmediev, Eleonskii, Kulagin, 1987):
en(t; K)en(v1 + kx; k) + iv1 + ksn(t; K)dn(vV/1 + kx; k)
V1 + kdn(v/1 + kx; k) — dn(t; K)en(v/1 + kx; k)
Blx 1) = dn(t; k)en(vV2x; k) + i/k(1 + k)sn(t; k) e,
V1+k— \/?cn(t; k)cn(\/ﬁx; K)

where k € (0, 1) is elliptic modulus and « € (0, 1) is determined by k.

(x,t) =k
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1. Periodic waves and rogue waves

Rogue wave on background of double-periodic waves

J. Chen, D. P, R. White, Phys. Rev. E (2019)
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2. Exact periodic and double-periodic solutions

NLS hierarchy

The focusing nonlinear Schrédinger (NLS) equation

, 1
“pt + §¢xx + |w|21/) =0

is a member of the NLS hierarchy

i l;I :JVHk(U), VHk+1(U):RVHk(U)7
at, | u
where
Jo - _ [oc+200; 'y 200D
J'L 0}’ R'[ 2oty =0y —2ud; D)

Thus, we obtain
Ho :/|u\2dx, Hy = i/(uax—uXU) dx,
R 2 R

i _ _ _ _
Ho = / (|Ux|2 - ‘U|4) dx, Hz= E/ [Uxex — UxxUx — 3‘U|2(UUX - UXU)] ax.
R R
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2. Exact periodic and double-periodic solutions

Stationary Lax-Novikov equations

The stationary (Lax—Novikov) equations are given by

VH;i(u) +2cVHy(u) =0,
VHa(u) +2¢VH;(u) + 4bVHy(u) =0,
VHsz(u) +2cVHz(u) + 4bV Hi(u) + 8aVHy(u) =0,

or explicitly,

u'(x) + 2icu = 0,
U’ (x) + 2|uPu + 2icu’ + 4bu = 0,
u"(x) + B|ulPu’ + 2ic(u” + 2|u?u) + 4bu’ + 8iau = 0,

where ¢, b, a are constants.
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2. Exact periodic and double-periodic solutions

Solutions of stationary Lax-Novikov equations

In terms of the NLS equation

. 1
it + §¢xx + |¢|21/J =0
the stationary Lax—Novikov equations

u + 2icu = 0,
u” + 2|uf?u + 2icu’ + 4bu = 0,
u" +6|ulPu + 2ic(u” + 2|ulu) + 4bu’ + 8iau = 0,

generate the following solutions:
@ Constant-amplitude wave v(x, t) = Ag=2ic0x+en+iAt
@ Traveling standing wave ¢ (x, t) = u(x + ct)e=2bt
@ Double-periodic wave ¥ (x, t) = [q(x, t) + i§(t)]e D),
where g(x + L, 1) = q(x,t + T) = q(x,t), 6(t+ T) = 6(t), a(t + T) = «(2).
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2. Exact periodic and double-periodic solutions

Characterization of u” + 2|u|?u + 2icu’ + 4bu = 0

Consider the Lax system of linear equations

ox = U\, ), U\ u) = ( _Az, _UA )

and

) o N+ HuP Juc+au
pr= V(A u)g, V(’\’u)_'< 3O — A0 =M% — J|uP

Fix A = \y € C with ¢ = (py,q1) € C? and set u = p? + @2. The spectral
problem ¢ = U(\, u)e becomes the Hamiltonian system generated by

- _ _ 1 —on =
H=XMpigi + \ip1gq + E(P12 +G)(PF + 97)-

with additional constant F = i(p1g1 — P1GQ1).
(Cao—Geng, 1990) (Cao—Wu—-Geng, 1999) (R.Zhou, 2009) (Chen-P, 2018)
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2. Exact periodic and double-periodic solutions

Second-order Lax—Novikov equation

By differentiating of the constraints between u and (p1, g1), we obtain
u=p;+qt.
U+ 2iFu = 2()\1p12 — X (_]12),
U’ + 2|ulPu + 2iFu’ — 4Hu = 4(\2p? + X2G3),

which yields the second-order Lax—Novikov equation:
U’ + 2|ufPu + 2icu’ + 4bu = 0,

where ¢ := F +i(\ — X)) and b:= —H — iF(\ — A1) — [ M2

The second-order equation admits two conserved quantities:

iUt — ull) — 2c|uf? = 4a,
|U'|? + |u|* + 4b|ul® = 8d.
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2. Exact periodic and double-periodic solutions

Integrability of the Hamiltonian system

The Hamiltonian system for (p1, g1) is obtained from the Lax equation

d
W) = UL )W) = W)U, u),

where U()\, u) is defined under the constraint u = p? + g% and

_( Wn(d)  Wi(})
W) = ( Wia(=A) —Wii(=X) )’

with

P1G1 P13 ps 5
W; =1- = W, = .
1) A=A +)\—|—)\1’ 2(Y) A =M +)\+>\1

Due to relations between u and p?, g2, and p1 g1, we have

W ()\)_)\2+ic)\+b+%|u|2 Wis(2) = UA + icu + Ju'
T TOSN0 A  TEYT E)O+ a)
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2. Exact periodic and double-periodic solutions

Algebraic polynomial for v” + 2|u|?u + 2icu’ + 4bu = 0

detW()\) is constant in (x, t) and has simple poles at A\; and —\1:

o 2H+F2 P(A)
det(W(N)] = -1 + ()\_)\1)()\4_5\1) o ()\—)\1)2()\+5\1)2

so that P()\) is constant in (x, t) and has roots at Ay and —\+:

P(\) = (XN +icA+ b+ %|u|2)2 — (UX + fcu + %u’)(m + icl — %a’)
=M+ 2icA3 + (2b — c®)\2 + 2i(a+ be)\ + b — 2ac + 2d
= A=A+ M)A = X)X+ A2),

where constants (a, b, ¢, d) are incorporated from the second-order
Lax-Novikov equation and its two conserved quantities.
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2. Exact periodic and double-periodic solutions

Lax spectrum for the standing periodic waves

Two possible solutions for the standing periodic waves (a = ¢ = 0):
u(x) = dn(x; k), u(x) = ken(x; k).

Solutions are periodic with some period and the Lax spectrum of
ox = U(X, u)p coincides with the Floquet spectrum.
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Red dots show roots of P()), e.g., eigenvalues of the nonlinearization method.
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2. Exact periodic and double-periodic solutions

u" + 6|ul2u’ + 2ic(u" 4 2|u|?u) + 4bu’' + 8iau = 0

Fix A = A1 € Cwith ¢ = (p1,q1) € C2and A = A\p € C with ¢ = (p2, g2) € C?
such that A\ # +Xs and Ay # £),. Set

u=pi+a+p5+ 3.

The spectral problem ¢, = U(\, u)e becomes the Hamiltonian system with
four conserved quantities:

Fo =i{p,q),
Fi = (Ap,q) + %<p,p><q7q> - %<p7q>2,

F>=i|(N%p,q) + %</\p, p){(a,q) + %<p, p)(Ag,q) — (P, a)(Ap, Q)| ,
Fs = (\%.a) + 5(N2p.p)(a,q) + 5 (AD.P)(AG,q) + 5 (PP} (0, q)
- %</\|07c1>2 — (p,a)(A\?p, q),

where p = (p1, P2, G1, G2)', d = (q1, G2, —P1, —P2)', A := diag( A1, A2, = A1, =A2).
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2. Exact periodic and double-periodic solutions

Fourth-order Lax—Novikov equation

By differentiating of the constraints between u and (p, q), we obtain

UNH+8|U‘2UH+2U2L_JH+4U|U/|2 +6(U/)2EI+6|U|4U
+2iFo(u" + 6|ulPu’) — 4H(U" + 2|ul?u) + 8iKU' — 16Eu = 16(A\*p, p),
which yields the fourth-order Lax—Novikov equation:
U//// —|—8|U|2UN +2U2EIH +4U|ul|2 + G(UI)ZD+6‘U|4U
+2ic(u" + 6|ufu’) + 4b(u” + 2|uf?u) + 8iau’ + 16du = 0,

which is integrable with four conserved quantities. If u solves the
second-order equation u” + 2|uf?u + 2icu’ + 4bu = 0, then the fourth-order
equation is identically satisfied.
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2. Exact periodic and double-periodic solutions

Integrability of the Hamiltonian system

The Hamiltonian system for (p1, p2, g1, G2) is obtained from the Lax equation

d Wii(A)  Wia(X) )
W) = UM )W) -WNUNu), W)= 3 = ,
W) = U0 W)Wy 0. Wy = (g e
with
2 - — 2 2 ~2
P9 P4 Fj 9
Wiy (A\) =1— DA B ) Wi () = —_ — .
i Z(A—N A+Aj> 12 Z<A—A/+/\+A/
Jj=1 j=1
Due to relations between u and squared eigenfunctions, we have
T1 = C,
MAE TN+ A2+ T+ Ty T2 =b+ 3|uf?,
Wii(\) = 3 ER _ 1 2 (T =
(A= A)(A = A2) (A + A1) (A + A2) Ta =a+ zclul” — z(U't —ut'),
Ta=d+ Sbluf + sc(u't— ul’) + §(
So =u,
Wi ()\)7 So)\3+81)\2+82)\+83 S = %Ul-i-I.CU7 .
VTSN O - )+ )+ x) So = (U + 2ulPu) + feu' + bu,
Ss = F(u" +6|ulPu’) + fe(u” + 2|ul?
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2. Exact periodic and double-periodic solutions

Third-order Lax—Novikov equation

If T4 = S3 = 0, then the fourth-order Lax—Novikov equation
u" + 8lulPu” + 2uPT" + 4uld'|? + 6(U)?T + 6|ul*u
+2ic(u"" + 6|ufu’) + 4b(u" + 2|uf?u) + 8iau’ 4+ 16du = 0,
is satisfied by its reduction to the third-order Lax—Novikov equation
u" +6lulPu + 2ic(u” + 2|ulPu) + 4bu + 8iau = 0,

which is integrable with three conserved quantities:

1, _ _
g(uu” +u'u— V)P +3u*) =0,

1 j _ _
2¢ — alul? — g e(lu/F +|ul*) + é(u”u’ — U =0,

j _ _ 1 1 _ _
f— éa(u’u —ul') + Zb(|u’|2 + u)*) + ﬁ(“’” + 2|uPul® — (vt — ut)?) = 0.

1 2 i /T =/
d+ §b|u| +Zc(uufuu)+
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2. Exact periodic and double-periodic solutions

Algebraic polynomial for the third-order equation

detW()\) is constant in (x, t) and has simple poles at A1, A2, —\1, and —Xa:

A2P())
(A= 212N = X2)2(A 4+ A )2(\ + Xp)2’

det[W(\)] = —
with

P()\) = \® + 2ic)\® + (2b — ®)\* + 2i(a + be)\® + (b — 2ac + 2d)\?
+2i(e+ab+ cd)\ + f +2bd — 2ce — &.

where constants (a, b, ¢, d, e, f) are incorporated from the third-order
Lax-Novikov equation and its three conserved quantities.
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2. Exact periodic and double-periodic solutions

Lax spectrum for the double-periodic waves

Two possible solutions for the double-periodic waves (a=c = e = 0):
en(t; K)en(v1 + kx; ) + iv/1 + ksn(t; k)dn(v/1 + kx; &) ot
V1 + kdn(V1 + kx; k) — dn(t; K)en(v/1 + kx; &) ’
Blx.t) = dn(t; k)en(vV2x; k) + iv/k(1 + k)sn(t; k) et
V1 + k — Vken(t; k)en(v2x; k)

where k € (0,1) is elliptic modulus and « € (0, 1) is determined by k.

(x,t) =k
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2. Exact periodic and double-periodic solutions

Lax spectrum for the double-periodic waves

Solutions are periodic in x with some period and the Lax spectrum of
vx = U(X, U)p coincides with the Floquet spectrum.

Imaginary Part
Imaginary Part
el 2T

Real Part Real Part

Red dots show roots of P()), eigenvalues of the nonlinearization method.
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3. Stability of standing periodic waves

Linearized NLS equation

Let ) be a standing periodic wave solution of the NLS equation

. 1
I + wax + ‘¢|2¢ =0.

Let x be a perturbation of . In the linearized approximation, it satisfies the
linearized NLS equation

, 1 _
ixe+ 50+ 210X + 07X =0,

which is obtained from NLS after substituting ) + x to the NLS equation and
neglecting x2, x°.
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3. Stability of standing periodic waves

Spectral stability of standing waves

For the standing periodic waves, the variables can be separated:
V(x, t) = u(x + ct)e 2P x(x,t) = v(x + ct)e 2PN
where ’
EUN + [ujPu+icu’ +2bu =0
and ’
Av + Ev” + 2|ulPv + UPV +icv' + 2bv = 0.
The spectral parameter A is found from the condition that v(x) is bounded.

Since u(x + L) = u(x) is periodic, then by Floquet theory, v(x) = w(x)e',
where 6 € [-7/L,m/L] and w(x + L) = w(x).

If there exists A with Re(A) > 0 for some 6 € [—n/L, n/L], then the standing
periodic wave is unstable in the time evolution of the NLS equation. It is
modulationally unstable if the band with Re(A) > 0 intersects A =0 as § — 0.
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3. Stability of standing periodic waves

Relation to squared eigenfunctions

Recall the linear Lax system:

ox = U\ ), Un ) = < _AQ; —w)\ )

and

B _ i RBAERE 3kt e
pr= V(N ¥)p, V(sz/’)—’( 10 oA _32—;|w|2)’

where 1 is a solution of the NLS equation.

If  and ¢ are two linearly independent solutions of the Lax system, then

Pair | Pair Il Pair Il
X=¢5— P52 | X=p101— Pad2 | X =5 — 95
X = ipf + 1035 | x = ip191 + igage | x = idT +i¢5

are solutions of the linearized NLS equation.
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3. Stability of standing periodic waves

Relation to squared eigenfunctions

Theorem
Let X\ belongs to the Lax spectrum so that

(p(X, t) _ €(X + Ct)e—ZibagH—Qt

with £ € L*=(R). Then, Q = £i\/P(\), where P(})) is the polynomial for the
second-order Lax—Novikov equation:

P()\) = X* + 2icA3 + (2b — ¢®)\2 + 2i(a+ be) + b? — 2ac + 2d

Consequently, N = 2Q = £2i/P(\).

The proof follows from separation of variables for

£ = U\ ), U\ u) = ( _Az, _UA )

L N+ uE Juc+
Q€ + ¢ty — 2ibasé = V(A u)é, V(/\,u)_/< 1 SAn 38— LR )

Nl
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3. Stability of standing periodic waves

Instability of the dnoidal periodic waves

u(x) = dn(x; k), L =2K(k).

1
0.8
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Figure: Left: Lax spectrum. Right: stability spectrum related by A = +2i,/P(}\).
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3. Stability of standing periodic waves

Instability of the cnoidal periodic waves

u(x) = Ken(x; k), L=4K(k).

04
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Figure: Left: Lax spectrum. Right: stability spectrum related by A = +2i,/P(}\).
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4. Stability of double-periodic waves

Spectral stability of double-periodic waves

For the double-periodic waves, the variables can not be separated:
w(x, t) = [q(x, ) + io(1)] e+,

where g(x + L, t) = q(x,t+ T) = q(x, 1), 5(t+ T) = 6(t), a(t+ T) = a(t).
Perturbation x(x, t) to ¢(x, t) satisfies the linearized NLS equation

, 1 _
ixt+ 500+ 2[y|Px + 1?x = 0,

Due to periodicity, we can think of the Floquet theory both with respect to x
and t to represent the perturbation in the form

X(x, 1) = v(x, 1),

where v(x + L, t) = v(x,t+ T) = v(x,t), 0 € [-7/L,w/L], and A is somehow
defined (unique if Im(A) € [-7/T,7/T]).
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4. Stability of double-periodic waves

Spectral stability of double-periodic waves

Recall the linear Lax system

ox = U\ ) o= (% 4

and

N+ SR S+ W )
- \/ ‘X s b/ )\7 = _ 2 . 2 ,
Pt ( 7¢)90 ( w) ’< %wx _ /\,(/J _/\2 _ %|w|2
where 1 is a solution of the NLS equation.

By the Floquet theory both with respect to x and ¢, we write
<p(X, t) — £(X, t)ei0x+t9’
Ex+LH=¢&x,t+T)=¢£(x,t),0 € [-n/L,n/L], Im(Q) € [-n/T,n/T].
@ )\ is found from the Lax spectrum for o5 = U(X, ¢).

@ Qis found from ¢ = V(X ¢)e.
Is there a relation between Q and P(\) for the double-periodic solution :?
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4. Stability of double-periodic waves

Instabilities of the first solution

k = 0.85 (Pelinovsky, 2021):

0.8
A
0.1 A
0.4
0.05
0f = C—T— amn 0
-0.05
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Left: Lax spectrum. Right: stability spectrum.
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4. Stability of double-periodic waves

Instabilities of the second solution

k = 0.6 (Pelinovsky, 2021):

1 0.2 A
A
0.5 0.1
0 > ¢ < 0
-0.5 -0.1
R . . 0.2
-0.5 -0.25 0 0.25 0.5 -0.1 -0.05 0 0.05 0.1

Left: Lax spectrum. Right: stability spectrum.
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4. Stability of double-periodic waves

Instabilities of the second solution

k = 0.9 (Pelinovsky, 2021):

0.8
A 0.1 A
0.4 0.05
O q_ﬂmﬂ@ :mmm-mh O
04 005
0.1
0.8 dk
05 -0.25 0 0.25 05 0.1 -0.05 0 0.05 0.1

Left: Lax spectrum. Right: stability spectrum.
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4. Stability of double-periodic waves

Akhmediev breathers

In the limit kK — 1 both families converge to a particular example of the
Akhmediev breather (AB):

V(x.t) = cos(v/2x) + iv/2sinh(t) ot

V2 cosh(t) — cos(v/2t)

D.Pelinovsky (McMaster University) Periodic and double periodic waves 37/40



4. Stability of double-periodic waves

Akhmediev breathers under periodic perturbation

A family of Akhmediev breathers with parameter A € (0, 1):

2(1 — A2) cosh(kAt) + ikAsinh(kAt)
cosh(kAt) — A cos(kx) ’

If the perturbation is periodic, the Lax and stability spectra are purely discrete.
There was an open question if the Akhmediev breather is linearly unstable.

P. Grinevich & P. Santini, Nonlinearity 34 (2021) 8331-8358

M. Haragus & D. Pelinovsky, J. Nonlinear Science 32 (2022) 66

Y(x, 1) =e" |1 -

=
~ = —————
g EC°
-2
-a
o 05 1 15 2 -2 -1 o 1 2
Re(y Re(A)

Figure: Lax spectrum (left) and stability spectrum (right) of Akhmediev breather.
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5. Summary

Other examples of integrable Hamiltonian systems

@ Modified Korteweg—de Vries equation
us + 6U2Ux + Upx =0

Dnoidal periodic waves are modulationally stable.
Cnoidal periodic waves are modulationally unstable.
J. Chen & D. Pelinovsky, Nonlinearity 31 (2018) 1955—-1980

@ Sine—Gordon equation
Ut — Uxx +sin(u) =0

Same conclusion.
D. Pelinovsky & R. White, Proceedings A 476 (2020) 20200490

@ Derivative NLS equation
it + Yxx + /(|1/)|21/1)x =0.

There exist modulationally stable periodic waves.
J. Chen, D. Pelinovsky, & J. Upsal, J. Nonlinear Science 31 (2021) 58
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5. Summary
Summary

@ Standing periodic waves are solutions of the second-order Lax—Novikov
equation. Double-periodic waves are solutions of the third-order
Lax—Novikov equation. Akhmediev and Kuznetsov—Ma breathers are
particular cases of double-periodic solutions.

@ Standing periodic waves are spectrally (modulationally) unstable, their
instability is computed from separation of variables and Floquet theory.

@ Double-periodic waves are also linearly unstable, their instability is
computed from double Floquet theory (both in x and ).

@ Breathers are also linearly unstable.

Many thanks for your attention!
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