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Introduction

Inviscid Shocks
@ Dynamics of a Conservation Law
Orv + Oxf(v) =0

generate shock singularities in finite time from a large class of smooth
data and for smooth f(v).
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Introduction

Viscous Shocks

o Diffusive regularization leads to a viscous Burgers equation

Orv + O f(v) = 202v.
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Introduction

Dispersive Shocks

@ Dispersive regularization leads to the Korteweg—de Vries equation

Orv + Oxf(v) 4+ 393y = 0.

— leading ed
'= = Non-dispersive shock eading edge

solitary wave
trailing edge I
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Introduction

Granular chains
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@ Granular chains contain densely packed, elastically interacting
particles with Hertzian contact forces.

@ N. Boechler, G. Theocharis, P.G. Kevrekidis, M.A. Porter, C. Daraio.
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Introduction

Logarithmic models

Granular chains are modeled with Newton's equations of motion:
xp(t) = V'(xo41 — xn) — V'(Xn — Xn—1), n€Z,

where x, is the displacement of the nth particle and V is the interaction
potential for spherical beads (H. Hertz, 1882):

3
27
where H is the step (Heaviside) function. For hollow materials, o — 1.

V(x) = [x|'*T*H(-x), a=

@ The conservative model yields the logarithmic KdV equation
Orv + Ox(viog |v|) + A3v =0
@ The dissipative model yields the logarthmic Burgers equation

Orv + Ox(vlog |v|) = d2v
G. James & D. P., 2014; G. James, 2021
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Introduction

Modular nonlinearity
In a similar context of dynamics of particles with piecewise interaction
potentials, models with modular nonlinearities have been derived:
@ The modular KdV equation
OtV + Ox|v| + D3v =0
@ The modular Burgers equation
Orv = Oy|v| + D2v

C. M. Hedberg, O. V. Rudenko, 2016-2018

The models are linear for sign-definite solutions. Nonlinear waves
correspond to the sign-changing solutions, for which the modeling problem
becomes a moving interface problem between solutions of linear equations.

Dmitry Pelinovsky (McMaster University) Shocks in the modular Burgers equation 7/31



Traveling waves

Traveling waves in the modular Burgers equation

Starting with
Orv = Oy|v| + D2v

we can think of the traveling wave solutions v(t, x) = W(x — ct), where

W”(x) + sign(W)W'(x) + cW'(x) =0, x€R.
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Traveling waves

Traveling waves in the modular Burgers equation

Starting with
Orv = O|v| + D2v,

we can think of the traveling wave solutions v(t, x) = W(x — ct), where
W’ (x) + sign(W)W'(x) + cW/(x) =0, xeR.

Q What is the function space for solutions?

A Space of piecewise C? functions satisfying the interface conditiion
W% (%) = —2|W'(x0)|
at each interface located at xg, where [f]T(xo) = f(x;") — f(xy ) is

the jump of a piecewise continuous function f across xg.
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Traveling waves

Traveling waves in the modular Burgers equation

Integrating once yields
W (x) + [W(x)|+ cW(x)=d, x€eR,

where the constant of integration is identical for all pieces of piecewise C2
function W(x) : R — R.
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Traveling waves

Traveling waves in the modular Burgers equation

Integrating once yields

W (x) + [W(x)|+ cW(x)=d, x€eR,
where the constant of integration is identical for all pieces of piecewise C2
function W(x) : R — R.

If Wy = Xli)rgoo W/(x), then bounded solutions only exist if W_ < 0 < W4
with uniquely selected speed
c_ Wy + W_
W, — W_
and uniquely defined profile W up to spatial translations:

[ W1 - et x>0,
W) = { W_(1 — e(t=e)x), x < 0.

If Wy =—W_, then ¢ =0 and W(—x) = —W(x) is odd.
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Traveling waves

Motivational questions

@ Is the viscous shock W stable in the time evolution of the modular
Burgers equation?

@ How does the interface moves in the time evolution depending on the
initial conditions?

© s there the finite-time extinction of the area between two consequent
interfaces?

@ How can we model the moving interface problems numerically?
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Interface equation

It is natural to look for solutions of the modular Burgers equation
Oev = Oy|v| + 02v

in class of piecewise C? functions.

If v(t,&(t)) = 0 defines the interface at x = £(t), then

[ve]Z(&(t)) =0 and  [w]Z((t) =0,

whereas
[V L(£(1)) = —2|wx(t, £(2))]

determines the interface equation for £(t), t > 0.
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Asymptotic stability

Simple case: odd data

It follows from
Drv = Oy|v| + D2v

that if v(0, —x) = —v(0, x) is odd at t = 0, then v(t, —x) = —v(t, x)
remains odd for all t > 0. The interface is located at £(t) =0, t > 0.

Adding an odd perturbation w(t, x) to the odd viscous shock
W(x) = (1 — e )sgn(x) with ¢ = 0 as v(t,x) = W(x) + w(t, x), we
get the linear initial-boundary-value problem

Wi = Wy + Wy, x>0, t>0,
w(t,0) =0, t>0,
w(t,x) — 0 as X — +00, t>0,

w(0,x) = wo(x), x>0,
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Asymptotic stability

Main result: odd data

Theorem (Le, Pelinovsky, Poullet, 2021)
For every € > 0 there is § > 0 such that for every odd vy satisfying
o = Wlip <6,
there exists a unique odd solution v(t, x) with v(0,x) = vp(x) satisfying
lv(t,) = W] <e, t>0

and

lv(t,") — W|lwze — 0 as t— 4oc.

e Since W(0) =0, W/(0) = 1, and H? is embedded into C!, we have
v(t,x) = W(x) + w(t,x) > 0 for every x >0 and t > 0.
@ The result is extended to W/(x — ct) under suitably scaled data.
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Asymptotic stability

General case: single interface
Consider the viscous shock W(x) = (1 — e~)sgn(x) with ¢ = 0 but

make no assumption on the symmetry of the perturbations. With the
decomposition

v(t,x) = W(x = &(28) + w(t,x = £(t),  y =x—¢&(),

we have now the linear initial-boundary-value problem

The two equations on half-lines are coupled by the interface conditions

(€'() £ 1wy (£,0%) + wyy (£,0%) +€'(£) = 0,

we = (£'(t) £ Dwy + wy, + ()W (y), +y >0, t>0,
W(t,O):O, t>07
w(t,x) =0 as y — oo, t >0,
W(Ovy) = WO(.y)a ye R,

which are consistent due to the conditions [t ] (£(t)). = —2|ux(t, £(2))).
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Asymptotic stability

Main result: general data

Theorem (Le, Pelinovsky, Poullet, 2021)
Fix o € (0,1). For every e > 0 there is § > 0 s.t. for every v s.t.
Ivo — Wllpenwzee + €7 1(vo — W)llwzee < 6
there exists a unique solution v(t, x) with v(0,x) = wy(x) satisfying
Iv(t,- +&(t)) = Wilherwee <€, t>0

and
|v(t,-+£&(t) — W|lwae =0 as t— +o0,

with & € LY(Ry) N L®(R;) and € = thoof(t).
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Numerical approximations

Reformulation for numerical approximations

The original problem for general perturbation w(t,y) with y = x — £(t):

we = (£'(t) £ Dwy +wy, +&(t)eY, Ly >0, t >0,
W(t,O):O, t>07
w(t,x) — 0 as y — oo, t>0,
W(an) = WO(y)7 y € R,

By using variables v*(t,y) := w(t,y) F w(t, —y) with y > 0 we obtain
the coupled system

i = v v+ (0)y y >0,
ve =V, tv. +§ (t)v"’ +2§’(t)e‘y, y >0,

i v, (t,0
subject to v¥(t,0) =0, v, (¢,0) =0, and £'(t) = 2+y§yg't(t,2))'

Dmitry Pelinovsky (McMaster University) Shocks in the modular Burgers equation 16 /31



Numerical approximations

Remarks on the numerical method

o Central-difference approximation of spatial derivatives.

e Neumann condition for v, (t,0) = 0 is modelled with an extra grid

point v_(t) = vy (t).

@ The smoothness condition for v;f (t,0) + v,/ (t,0) = 0 is modelled

with an extra grid point
2+ h
v (t) = —mer(t)-

_ vy (t0)
2+v; (t,0)

__@=hmv (1)
hv(t) + h2(2 — h)’

@ The interface condition &'(t) = is resolved as

¢'(t) =

@ Time steps are performed with the implicit Crank-Nicholson_method
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Initial data with Gaussian decay

v(0,y) = 0.1(y — O.5y2)e_y2, v (0,y) = 0.5y%e "
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Numerical approximations

Initial data with exponential decay

vF(0,y) = 0.1(y +0.5y%)e™”, v (0,y) =05y%e™”,
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Numerical approximations

Convergence in time for [2-norm of perturbation
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Multiple shocks

Initial data with multiple interfaces

Main question: Is there the finite-time extinction of the area between two
consequent interfaces?

-10 -5 (0] 5 X 10

Interface at x = 0 persists for odd data. Interfaces at x = ££(t) move.
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Multiple shocks

A simple argument suggesting finite-time coalescence

Let z(t,x) :=1 — u(t, x). It satisfies z; = —|1 — z|x + Zyx-
If z(0,-) : (0,00) — R is positive and integrable, then z(t,-) : (0,00) = R
is positive and integrable for t > 0 by comparison principle.

We have for some time t € [0, 79)

) ~
0<&(t) g/o z(t,x)dx§/0 2(t, x)dx = M(#),

because z(t,x) > 1 for x € [0,£(t)] and z(t, x) > 0 for x € [£(t), 00).
On the other hand,

am

T = 1 z(t,0) < —1.
” z(t,0)

Hence, M(t) < M(0) — t and we have finite-time coalescence: £(mp) = 0.
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Reformulation for numerical approximations

The original problem is

Up = —Uy + Uy, u(t,x) <0, 0 < x < (1),

Ur = Uy + Uy, u(t,x) >0, &(t) < x < o0,

u(t,0) =0, u(t,&(t)) =0, lim wu(t,x) =1,
X—r+00

By using y := x/&(t), the boundary-value problem is mapped to the
time-independent regions:

utzf_l(f’y—l)uy+§_2uyy, u(t,y) <0, O<y<l,

ut:§71(§'y+1)uy+£*2uyy, u(t,y) >0, 1<y < oo,
u(t,0) =0, u(t,1) =0, (t,y)=1,

lim o
y—r+oo

closed with the interface condition:

(t)uy (t,1) §(t)uy (t,1)°
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Multiple shocks

Remarks on the numerical method

o Central-difference approximation of spatial derivatives.

@ The grid on [0, 1] is complemented with the extra grid point
yn+1 =1+ h and the approximation vy ;. The grid on [1, L] with
L =10 is complemented with the extra grid point yy_1 =1 — h and
the approximation uy,_;. Note that up,; # un+1.

@ The additional variables u;‘VJrl and ujp,_; are found from the interface
conditions: [u,]T(1) = 0 and [uy,]T(1) = —2£(t)|uy(t,1)|. This
yields the relation between linear advection-diffusion equation and

(2= h8)(ung1 + un-1)
hé(unt1 — un—1)

€)=~

@ Time steps are performed with the implicit Crank-Nicholson method
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Multiple shocks

Initial data and evolution: a = 1.5

1— e—al*-1) 1< x < oo,

9

x(1 — x)(ax® + bx + c), 0<x<1,
uOM:{( ) )

with &'(0) = 2(av — 1), where a, b, ¢ are uniquely defined by «.
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Multiple shocks

Initial data and evolution: a = 0.5

(x) = x(1=x)(ax®?+bx+c), 0<x<lI,
tolx) = 1-— e_o‘(x2_1), 1< x < oo,

with &'(0) = 2(av — 1), where a, b, ¢ are uniquely defined by «.
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Conjecture based on numerical data [P., de Rijk, 2023]

There exists ty € (0,00) such that

E(t) ~Vito—t, ux(t,&(t)) ~ (to —t), wx(t,&(t)7) ~to—t.

This is in agreement with

t,8(t)7)
(t) = +1— (1, .
é. ( ) + LIX(t7 1)
Furthermore, we conjecture

£(t) £(t)
u(t, x)dx| ~ (to — )2, / Rt x)dx ~ /(o — £,
J 0 v
in agreement with the balance laws
d [&@ d [&® &(1)
— udx = ux(t,&(t)) — ux(t,0), —/ u?dx = —2/ u2dx.
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The method of data extraction, e.g. for £(t) ~ \/ty — t

For a fixed value of ty (past the termination time of our computations) ,

we compute c¢; (left) and ¢ in the linear regression

log(&

as well as the approximation error (right). The minimal error of 109 is
attained at tg = 0.17 with ¢; = 0.492.

(t)) versus
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Summary and open questions

Summary

@ Evolution of the modular Burgers equation is considered.

@ Asymptotic stability of a traveling viscous shock is proven and
illustrated numerically.

@ It is shown that shock waves with multiple interfaces extinct in a
finite time due to finite-time coalesence of interfaces

@ A precise scaling law of the finite-time coalescence is suggested based
on the numerical data.
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Summary and open questions

Open question

© Numerical approximations of shock waves with multiple interfaces as
a problem with moving boundaries.

@ Numerical approximation of solitary waves with multiple interfaces in
the modular KdV equation.

© Analytical proof of well-posedness of the linear evolution with multiple
interfaces.

@ Analytical proof of the precise scaling law of the finite-time
coalescence.

© Expanding methods to the Burgers and KdV models with logartihmic
nonlinearities...
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Summary and open questions
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