Moving gap solitonsin periodic
potentials

Dmitry Pelinovsky

Institute of Analysis and Dynamics, University of Stuttgart, Germany

Department of Mathematics, McMaster University, Canada

Joint work with Guido Schneider (University of Stuttgart)

Reference: Mathematical Methods for Physical Sciences, Submitted



M otivations

Gap solitonsare localized stationary solutions of nonlinear PDEs
with space-periodic coefficients which reside in the s@ég/aps of
associated linear operators.

Complex-valued Maxwell equation
V?E — Ey+ (V(z) +0|E]?) Ey =0
and the Gross—Pitaevskii equation
iE, = —V*E +V(z)E + ¢|E|°E,

whereE(x,t) : RY x R— C, V(x) = V(z + 27me;) : RY — R,
ando = +1.



EXxistence of stationary solutions

Stationary solution®(x,t) = U(z)e ™" with w € R satisfy a
nonlinear elliptic problem with a periodic potential

V2U 4+ wU = V(2)U + o|U|?U

[Pankov, 2005] Let/(x) be a real-valued bounded
periodic potential. Let be in a finite gap of the spectrum of
L = —V?* + V(x). There exists a non-trivial weak solution
U(x) € H'(RY), which is (i) real-valued, (ii) continuous on
r € RY and (iii) decays exponentially ag| — oo.

Additionally, there exists a localized solution
U(z) € H'(RY) in the semi-infinite gap for = —1 (NLS soliton).



Coupled-mode theory for gap solitons

Stationary gap solitons can be approximated asymptotioglthe
coupled-mode theory in one dimensiak & 1) in the limit of
small-amplitude potentiald? (x) = ¢(1 — cos x) for smalle.

The finite-band spectrum df = —9? + V(z) is shown here:

Coupled-mode equations are derived with asymptotic nsakile
expansions:

E(z,t) = /e {a(ex, et)es + blex, et)e 5 + 0(6)] e %



Gap solitons in coupled-mode equations

The vector(a,b) : R x R — C? satisfies asymptotically the
coupled-mode system:

ilar + ax) + Vob = o(|al* + 2|b]*)a,
i(by — by) + Vaa = o(2lal? + [b[2)b,

whereX = ex, T = et, andV, = V_, are Fourier coefficients of
V(z). Stationary gap solitons are obtained in the analytic form

a(X,T) =a(X)e ™™ b(X,T)=0bX)e "

_ V2 Ve — @2
V3 \/|Va] — Qcosh(kX) +ir/|Va| + Qsinh(kX)

wherex = /|V5|2 — Q2 and|Q| < |V4].

a(X) = b(X)




Moving gap solitons

Moving gap solitons are obtained in the analytic form

1/4 1/4
0 = (1 “) A(E)e, b — (1 - ) B(&)e, |e] < 1,

1 —c 1+c
where
. X —cl T —cX
p— . ’7':
V1 — ¢? V1 — ¢?

and, sinceA|* — |BJ? is constant irf € R, then
A= 6O, B=g()e,
with ¢ andy being solutions of the system

/! _260’¢|2 P n (
¥ = (1_02)7 Z¢_%¢_M¢+J(1_CQ>’¢|2¢




Questions and Answers

(a) Can we justify the use of the coupled-mode
theory to approximate stationary gap solitons?
YES: D.P., G.Schneider, Asymptotic Analysis (2007)
(b) Can we justify the use of the coupled-mode theory to
approximate moving gap solitons?
NO: this work

[Goodman,Weinstein,Holmes, 2001; Schneider,Uecker,
2001:] Let(a,b) € C([0, Ty], H?(R,C?)) be solutions of the
time-dependent coupled-mode system for a fiXgd- 0. There
existsey, C' > 0 such that for alk € (0, ¢y) the Gross—Pitaevskii
equation has a local solutidf(z, t) and

|E(z,t) — V€ |a(ex, et)e! ) L p(ex, et)ei(_kf‘:_“’t)} | r) < Ce

for some(k,w) and anyt € [0, 7Tq/¢].



Assumptions of the main theorem

Let V' (x) be a smootl2r-periodic real-valued function
with zero mean and symmetiy(z) = V(—x) onx € R, such that

V(z) =) Vome™ : Y (14+m)°|Vam|* < o0,

meZ meZ

for somes > 0, wherelV, = 0andVs,,, =V o5, = V_o,..

The moving gap soliton of the coupled-mode system is
said to be a reversible homoclinic orbit(ifi, B) decays to zero at

infinity and A(¢) = A(—¢), B(¢) = B(—¢) in the parametrization
above.

If V(x) =V (—z)andU(x) is a solution of
VU + wU = V(2)U + o|U|?U, thenU(—2x) is also a solution.



Main Theorem

Let V' (x) satisfy the assumption and,, # 0 foran € N.
Letw = 2 + eQ with Q] < Qy = [Vp,| V2=
Let0 < ¢ < n, such that =< ¢ Z. Fix N € N.
Then, there exists), L, C' > 0 such that for alk € (0, ¢) the
Gross—Pitaevskil equation has a solution in the form
E(x,t) = e ") (z,y), wherey = x — ¢t and the function)(x, y)
IS a periodic (anti-periodic) function af for even (odd),

satisfying the reversibility constraint(z,y) = ¢ (x, —y), and

V(w,y) — e (adley)e® + bley)e™ )| < G2,

forallz € Randy € [—L/eV !, L/eN T, Here

a.(Y)=a(Y)+ O(e) onY = ey € R is an exponentially decaying
reversible solution, while(Y") is a solution of the coupled-mode
system withY” = X — T



Remarkson theMain Theorem

1. The solution)(z,y) is a bounded non-decaying function on a
large finite interval

y€[-L/e"T LIV CR

and we do not claim that the solutier{z, y) can be extended
to a global bounded function ane R.

2. Since the homoclinic orbiiz, b) of the coupled-mode system is
single-humped, the traveling solutiariz, y) is represented by
a single bump surrounded by bounded oscillatory tails.

3. The solution(a,, b.) is defined up to the terms @f(¢") and it
satisfies an extended coupled-mode system, which is a
perturbation of the coupled-mode system with= X — ¢T'.



Spatial dynamics formulation

SetE(x,t) = e ™) (x,y) with y = 2 — ¢t and a parameter. For
traveling solutions¢ # 0 and we set > 0. Then,

(w —icdy + 02 + 20,0, + 02) ¥ = V(x)yp + oy

We consider functions (x, y) being27-periodic or2r-antiperiodic
In z and bounded iy. Therefore,

V(T y) =Y Ymly)e™,

meZ’

such that),,(y) satisfy the nonlinear system of coupled ODEs:

m2

Y+ 1(m — )¢y, + (w - —) Y=Y Vinemi®m, + N.T.

!
mi1EZ’



Eigenvalues of the spatial dynamics

Linearization of the system with,,,(v) = €™, ., gives roots

n?.

Kk = kp, IN the quadratic equation with = =

m2

52+i(m—c)/£+w—?:0, Ym e 7.

2 2
* Form > mg = [“ — } all roots are complex-valued.

* Form < my, all roots are purely imaginary. The zero root is
semi-simple of multiplicity two. All other roots are
semi-simple of maximal multiplicity three.

* If cisirrational, all non-zero roots are simple but may apploac
to each other arbitrarily closer.



Hamiltonian for mulation

Let ¢, (y) = ., (y) — £(c — m)i,,,(y) and rewrite the system of
ODEs:

{ W = G+ E(c— M),

Do = —L(n?+ —2em) P + §(c—m)dm — €Uy + N.T.

The system is Hamiltonian in canonical variablés ¢, 1), ¢). The
vector field maps a domain iR to a range inX, where

D = {(, ¢, %, P) € I2,,(Z,CH}, X = { (b, p, 9, @) € [3(Z,CH)}

andiZ(Z) is a Banach algebra for amy> 7. The phase space is.



Symmetries

Solutions are invariant under the reversibility transfatrmn

Y(y) = P(-y), o) — —d(—y), YyeR.

and the gauge transformation
P(y) = “P(y), d(y)— e“P(y), VaeR

Reversible solutions satisfy the constraints:

Y(—y) =P(y), ¢(—y) =—dy), Yy eR,

which means that the trajectory intersects the revergislirface

S, = {(, ¢, ) € D: Imp =0, Red =0} .



Canonical transfor mations

letZ_ ={meZ : m<my},Z,={meZ : m>mgy}and

ct + ¢ i
7 ), = n U : m:—f/nQ—l—cz—Qcmc;:—c;n,
v \4/n2+02—20m¢ 2 ( )

ct + ¢ 1,
i _ m m _ o m2 _ R2( T
Loy iy = \4/20m—n2—02’¢m_2\/26m n? —c2(c —c. ).

The new Hamiltonian system is rewritten in new canonicaialdes

Y e 7 dc 8H dc. oH
m _ = —j—,
dy 8c+ " dy Jc-
dcT OH dc- 5’H
MESy T T o dy | oo

whereH is a new Hamiltonian functions in variables andc—.



Truncated coupled-mode system

The new Hamiltonian function iIs

H= Y (kflchl? = Enlen )+ > (kmemeh — khchen) +N.T.

mEeEZ _ m€Z+

Consider the subspace
S={c’ =0, Vm e Z\{n}, ¢, =0, Vm e Z\{-n}}
and truncatéd on the subspace:

Qe | Al Vanlefeza +ez)

H|g =€
s n—c n+c Vn2 — 2

+ N.T.|.

The Hamiltonian system fdi:;', —) IS nothing but the

coupled-mode system far= “—»_ inY = ey.

\/7 - Vn+c



Extended coupled-mode system

How to avoid formal truncation and to separate the coupledian
system from the remainder? Use near-identity canonical
transformations to obtain the new Hamiltonian functionha form

H= 3" (khlenl = kalenl?) + 3 (Rncndh — mncien)

mEZ _ m€Z+

+eHg(ch, cZ ) +eHp(ch e et e+ e T Hp(ch e et e).

If Hr = 0, the subspac# Is invariant subspace of the Hamiltonian
system and dynamics ghis given by a four-dimensional ODE
system

dC?—,L'_ 0HS dC:n (?HS

— —

dy —  oet’ vy o,

whereY =



Per sistenceresults

There exists a reversible homoclinic orbit of the extended
coupled-mode system which satisfies

ex ()] < Coe™™, ez, (y)| < C_e™W, vy eR,

for somevy, C_, C_ > 0 and sufficiently smal.

The linearized system at the zero solution is topologically
equivalent for sufficiently smad, except that the double zero
eigenvalue at = 0 split into a pair of complex eigenvalues to the
left and right half-planes for > 0.

Divide the phase space near the zero solution into
X=X,0X.9 X, X,

and rewrite the system fax, + c;, € X, andc € X, X, & X..



Final system of equations

The system of equations

dc
d—yh — EAh(Co)Ch —+ EGT(CO)(Ch, C) + €N+1GR(CO - Ch; C)7
d

d_; — A.c+ GFT(CO =+ Cp, C) T €N+1FR(CO + Ch, c),

where the linearization operatdr, (cy) has a two-dimensional
kernel spanned by, (y) ando;cy(y) and the remainder terms
satisfy the bounds

VAN

N (leo + eall, + llell )
Nr (lleli%, + llell%. )

My (lleo + enllx, + llell ) llellx,

Grllx,

VAN

Grl x,

|F7|| x

AN



L ocal center-stable manifold

Leta € X, b e X, and(a;,as) € C? be small:

x, S Cue,  |Ibllx, < Che™, o]+ |ao| < Cue™.

la]

There exists a family of local solutiorg = ¢, (y; a, b, aq, as) and
c = c(y;a, b, ay,as) such that

c.(0) =a, c,=e""b+¢(y), cn=as1(y)+azss(y)+cn(y),

wherec,(y) andc,(y) are uniquely defined and the family of local
solutions satisfies the bound

sup  len(®)llx, < Cue”, sup  Jle(y)llxr < Cev,
Vye[0,L/eN+1] Vy€e[0,L/eN+1]

for some constants’;,, C' > 0.



| deas of the proof

1. Use the cut-off function on € [0, y,| and use the Implicit
Function Theorem for components, c,, resulting in

HCS,UHCQ < CHFS,UHC}B-

2. Use the cut-off functions om € |0, yy| and the reversible
continuation of solutions op € |—yy, 0]. Then, use the Implicit
Function Theorem for componeaj resulting in

C

lenllep < —=[1Fallcp-
€

3. Use variation of constant formula and the Gronwall indityuéor
component.. The bounds are consistent fgr= L /¥ 1.



Proof of the main theorem

The local center-stable manifold is extended to a localtgmiwn
y € |—yo, Yol if it intersects the reversibility surface,.

Sincec,.(0) = ais arbitrary, we can set immediately
Im(a)r =0, Vm € Z_\{n}, Im(a), =0, Vm € Z_\{—n}.

The other parametetsand(«aq, ay) are not however the initial
conditions. They satisfy the set of reversibility congital

Reb,,+Re(Cs)m(0) = Re(cy)m(0), Imb,,+Im(c;),,(0) = —Im(cy,).m(C
and
Imc(0) =0, ImcZ, (0)=0.

The first set is solved by the Implicit Function Theorem. The
second set Is satisfleddf, = a, = 0, since the kernel does not
satisfy the reversibility but the inhomogeneous solutionci, does.



Extensions

We have checked that modified Gross—Pitaevskii equatidhs st
possess infinitely many eigenvalues on the imaginary axis:

Ey = E,, +V(z)E+o|E|°E,
iB, = —Eu+iE,+V(2)E +0|E|°E,
ZEn — T Lin4+1 — Ep_1+ VoEy + O_‘EnIQEn

In all these equations, there is no hope to construct trueolabnic
solution (moving gap soliton) but one can construct a local
reversible center-stable manifold, which resembles dsibgmp
surrounded by oscillatory talls.

It Is an open problem how to extend this local solution to dglo
solution defined on the entire line.
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