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Section 1. Motivations

The KdV equation
ut + 6uux + uxxx = 0 (KdV)

with the step-like data lim
x→−∞

u(t, x) = u−, lim
x→+∞

u(t, x) = u+, u− 6= u+, has

been used for both analysis and applications.

M. Ablowitz, J. Cole, G. El, M. Hoefer, X. Luo, Stud. Appl. Math. 151 (2023) 795–856

Y. Mao, S. Chandramouli, W. Xu, M. Hoefer, Phys. Rev. Lett. 131 (2023) 147201
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Breathers = solitary waves on the traveling periodic wave

Traveling waves u(x, t) = φ(x− ct) satisfy

ut + 6uux + uxxx = 0 ⇒ φ′′′ + 6φφ′ − cφ′ = 0.

After integration(s), it yields

φ′′ + 3φ2 − cφ = b ⇒ (φ′)2 + 2φ3 − cφ2 = 2bφ+ d

with three parameters (b, c, d). Due to scaling transformation

u(x, t) 7→ αu(αx, α3t)

and Galilean transformation

u(x, t) 7→ β + u(x− 6βt, t),

only one parameter is independent and the normalized TW solution is

φ(x) = 2k2cn2(x; k), b0 = 4k2(1− k2), c0 = 4(2k2 − 1), d0 = 0.
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Stability of the traveling periodic wave

The KdV equation with the TW solution u(x, t) = φ(x− ct) has the Lax pair

Lv = λv,
∂v

∂t
=Mv,

where L = −∂2
x − φ(x− ct) and M = −4∂3

x − 6φ(x− ct)∂x − 3φ′(x− ct).

Separation of the variables as v(x, t) = w(x− ct)eω(λ)t yields the characteristic
polynomial

ω2 + 16P (λ) = 0,

where

P (λ) = λ3 +
c

2
λ2 +

c2 − 4b

16
λ− d+ bc

16
= (λ− λ1)(λ− λ2)(λ− λ3).

The eigenfunction w ∈ L∞(R) is defined by the Schrödinger equation Lw = λw
with the elliptic potential. If φ(x+ L) = φ(x) is spatially periodic, then
w(x+ L) = w(x)eiκx is quasi-periodic (Floquet’s theorem) if and only if λ
belongs to the Lax spectrum:

λ ∈ σL := [λ1, λ2] ∪ [λ3,∞).

G. Lamé, 1837.
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Traveling periodic waves are spectrally stable

Each bounded solution w ∈ L∞(R) of the Lax pair generates bounded solutions of
the linearized KdV equation with the perturbation

u(x, t) = φ(x− ct) + ũ(x, t),

by means of the squared eigenfunction relation

ũ(x, t) = w(x− ct)w′(x− ct)e2ω(λ)t.

M. Ablowitz, D. Kaup, A. Newell, and H. Segur, 1974.

Since P (λ) > 0 for λ ∈ σL, then
ω = ±4i

√
P (λ) ∈ iR, and the

TW is spectrally stable.

Breather solutions are generated by the Darboux transformation:
ũ = u+ 2∂2

x log(v) with a general eigenfunction v for a selected value of λ ∈ R.
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Breathers on the stable traveling periodic wave

• Elevation (bright) breathers correspond to adding a point λ0 ∈ (−∞, λ1) to σL.

• Depression (dark) breathers correspond to adding a point λ ∈ (λ2, λ3) to σL.

E. Kuznetsov, A. Mikhailov, JETP 40 (1974) 855
F. Gesztesy, R. Svirsky, Memoirs AMS 118 (1995) 1–88
X.R. Hu, S.Y. Lou, Y. Chen, Phys. Rev. E 85 (2012) 056607
A. Nakayashiki, Lett. Math. Phys. 111 (2021) 85
M. Hoefer, A. Mucalica and D.E. Pelinovsky, J. Phys. A: Mathem. Theor. 56 (2023) 185701

M. Bertola, R. Jenkins, A. Tovbis, Nonlinearity 36 (2023) 3622
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Section 2. The BO and NLS-BO models

The Benjamin–Ono equation is a model for long internal waves in deep fluid:

ut + uux +H(uxx) = 0, H(u) :=
1

π
p.v.

∫
R

u(y, t)dy

y − x
. (BO)

B.T. Benjamin, J. Fluid Mech. 29 (1967) 559

H. Ono, J. Phys. Soc. Japan 39 (1975) 1082–1091.

Question: Given a slow modulation of the linear waves,

u(x, t) = εA(ε(x− 2|k|t), εt)eikx−ik|k|t+ εĀ(ε(x− 2|k|t), εt)e−ikx+ik|k|t+O(ε2),

what is the normal form for the complex amplitude A = A(ξ, τ)?

For the KdV equation ut + 6uux + uxxx = 0, the answer to this question is the
defocusing cubic NLS equation

iAτ +Aξξ − |A|2A = 0, (NLS)

where the constant-amplitude background is linearly and nonlinearly stable and
stable dark solitons propagate at the stable periodic traveling background.

A. Mucalica, D. Pelinovsky, Lett. Math. Phys. 114 (2024) 100

7



Modulation equation for the BO equation

For the BO equation, the dispersion relation ω(k) = k|k| yields ω′′(k) = 2 for
k > 0 so that the linear Schrödinger equation iAτ +Aξξ = 0 holds for linear
perturbations. However, the coefficient of the cubic term |A|2A is zero and the
next nonlinear term is the cubic derivative term iA(|A|2)ξ.

M. Tanaka, J. Phys. Soc. Japan 51 (1982) 2686

However, the mean field was computed incorrectly in the derivation of the local
cubic derivative term. With the account of the mean field and the asymptotic
multi-scale expansions, one can obtain the correct modulation equation as

iAτ +Aξξ +A(i+H)(|A|2)ξ = 0. (NLS-BO+)

D. Pelinovsky, Phys. Lett. A 197 (1995) 401-406

R. Grimshaw, D. Pelinovsky, J. Math. Phys. 36 (1995) 4203–4219

Similarly to the defocusing cubic NLS equation, the constant-amplitude solutions
of NLS-BO+ are linearly stable and stable dark solitons propagate on the constant
background.
Y. Matsuno, Phys. Lett. A 278 (2000) 53-58
Y. Matsuno, J. Phys. Soc. Japan 73 (2004) 3285–3293

. . .
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Another version of the NLS-BO equation

In the continuous approximation of dynamics of particles of the
Calogero–Moser–Sutherland system, a continuum limit was derived as

iAτ +Aξξ−A(i+H)(|A|2)ξ = 0. (NLS-BO-)

A. Abanov, E. Betterlheim, and P. Wiegmann, J. Phys. A: Math. Theor. 42 (2009) 135201

This equation has recently been studied in many details:

• Well-posedness, blow-up in a finite time, and stable bright solitons

P. Gérard, E. Lenzmann, Comm. Pure Appl. Math. 77 (2024) 4008–4062
Y. Matsuno, Stud. Appl. Math. 151 (2023) 883-922

J. Hogan, M. Kowalski (2024); R. Killip, T. Laurens, M. Visan (2024); K. Kim, T. Kim, S. Kwon (2024)

• Periodic traveling waves, Lax spectrum, and well-posedness

R. Badreddine, Pure Appl. Anal. 6 (2023) 379-414

R. Badreddine, Ann. Inst. H. Poincaré C (2024)

• Coupled integrable systems of the NLS-BO-type

B. K. Berntson, E. Langmann, J. Lenells, Lett. Math. Phys. 112 (2022) 50
B. K. Berntson, A. Fagerlund, Physica D 451 (2024) 133762

R. Sun, Lett. Math. Phys. 114 (2024) 74
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Our contributions

For the BO equation ut + uux +H(uxx) = 0, we study

• how (bright) and (dark) breathers are obtained from the (well-known)
multi-periodic solutions and how their existence is related to the Lax spectrum
of the periodic traveling waves.

J. Chen, D. Pelinovsky, Wave Motion 126 (2024) 147–173

For the NLS–BO equation iut = uxx ± u(i+H)(|u|2)x, we study

• if the constant-amplitude background is stable/unstable in the
defocusing/focusing cases

• how the Lax spectrum combines embedded and isolated bands and eigenvalues

• how many families of (bright) and (dark) breathers exist in each case

• if any rogue waves exist in the focusing case as in iut + uxx + |u|2u = 0

J. Chen, D. Pelinovsky, Nonlinearity (2025), submitted
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Section 3. Breathers in the BO equation

Consider the exact solutions of the BO equation:

ut + uux +H(uxx) = 0, u(x, t) : R× R→ R.

Traveling periodic waves are expressed in elementary functions:

u(x, t) =
k sinhφ

cos k(x− ct) + coshφ
, tanhφ =

k

c
,

where k > 0 (k = 1 due to scaling transformation) and c ∈ (k,∞) is arbitrary.

Traveling waves are spectrally stable. This is based on the direct analysis of
eigenfunctions, no relations to the squared eigenfunctions.

M. Spector, T. Miloh, SIAM J. Appl. Math. 54 (1994) 688–707
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Lax spectrum for the traveling periodic waves

The BO equation is a compatibility condition of the linear system:{
iϕ+
x + λ(ϕ+ − ϕ−) + uϕ+ = 0,

iϕ±t − 2iλϕ±x + ϕ±xx ∓ 2iϕ±P±(ux) = 0,

where ϕ± are analytic functions in C± such that P±ϕ± = ϕ± and P±ϕ∓ = 0.

• Lax spectrum in L2(R) is obtained from the spectrum of the self-adjoint
operator L : H1(R) ∩ L2

+ 7→ L2
+ = {f ∈ L2(R) : P+f = f} given by

L = −i∂x − P+(u·).

Lax spectrum in L2(R) is ∪∞j=0[λj, λj + k],

where {λj}∞j=0 are eigenvalues in L2
per(0,

2π
k ).

P. Gérard, T. Kappeler, Comm. Pure Appl. Math. 74 (2021) 1685–1747

• Lax spectrum of the traveling periodic waves is located at

[λ0, λ0 + k] ∪ [0,∞), λ0 := −c+ k

2
.

S. Dobrokhotov, I. Krichever, Math. Notices 49 (1991) 583–594
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Degeneration of multi-periodic solutions

Breather solutions are obtained by degeneration of multi-periodic solutions in the
long-wave limit, e.g. for two eigenvalues below.

0

0

1 0 21 0 2

0

0

1 20 0

Multi-periodic solutions are available in elementary (exponential) functions. When
all periods go to ∞, they become multi-soliton solutions expressed by the rational
functions.

J. Satsuma, Y. Ishimori, J. Phys. Soc. Japan 46 (1979) 681–687

Y. Matsuno, J. Phys. Soc. Japan 73 (2004) 3285–3293

Here we keep one period fixed and all others go to ∞ to get breathers.
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Single breather solutions

Breather solution contains a mixture of exponential and power functions:

u =
2(cb + kβ) coshφ+ [k(1 + β2 + c2bη

2) + 2βcb] sinhφ+ 2cb cos(kξ)

(1 + β2 + c2bη
2) coshφ+ 2β sinhφ+ (1− β2 + c2bη

2) cos(kξ) + 2βcbη sin(kξ)
,

where ξ = x− ct, η = x− cbt− η0, β = 2cbk
(cb−c)2−k2, and

• either cb > c+ k (bright breathers) with {−cb2 } ∪ [λ0, λ0 + k] ∪ [0,∞)

• or cb < c− k (dark breathers) with [λ0, λ0 + k] ∪ {−cb2 } ∪ [0,∞)
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Two-soliton breathers

• Bright-bright breathers with {λ1, λ2} ∪ [λ0, λ0 + k] ∪ [0,∞)

• Bright-dark breathers with {λ1} ∪ [λ0, λ0 + k] ∪ {λ2} ∪ [0,∞)

• Dark-dark breathers with [λ0, λ0 + k] ∪ {λ1, λ2} ∪ [0,∞)

• Solitons impair no phase shift upon interaction with the traveling wave.

• Solitons have the same speed as at the zero background.
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General breathers

General breathers can be expressed explicitly in the determinant form:

u(x, t) = −k + i∂x log
det(F̄ )

det(F )
,

with

F =



1 + e
ikξ+φ 2k

k + c− c1

. . .
2k

k + c− cN
2c1

k + c1 − c
−ic1η1 − 1−

2kc1

(c− c1)2 − k2
. . .

2c1

c1 − cN
... ... . . . ...

2cN

k + cN − c
2cN

cN − c1

. . . −icNηN − 1−
2kcN

(c− cN)2 − k2


,

where for 1 ≤ j ≤ N , we have defined ηj = x− cjt− xj with arbitrary xj ∈ R
and arbitrary distinct cj > 0 satisfing |cj − c| > k.

Theorem 1 (J. Chen & D.P., 2024). The general breather solution is bounded
for every (x, t) ∈ R× R and every N ∈ N.

S. Dobrokhotov, I. Krichever, Math. Notices 49 (1991) 583–594
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Section 4. Stability in the NLS–BO equation

For the NLS–BO equation,

iut = uxx + σu(i+H)(|u|2)x, u(x, t) : R× R→ C, σ = ±1,

the main question is whether the focusing (σ = −1) and defocusing (σ = +1)
cases have different conclusions in the stability of the constant solution as it
happens for the local NLS equation

iut = −uxx + σ|u|2u, u(x, t) : R× R→ C, σ = ±1.

Due to symmetries:

u(x, t) 7→ u(x+ x0, t+ t0)eiθ0, u(x, t) 7→ αu(α2x, α4t), x0, t0, θ0, α ∈ R,

it is sufficient to normalize the background to unity: u = 1.
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Linear stability theorem

Theorem 2 (J. Chen & D.P., 2025). Let u = 1 + v and consider the linearized
equations of motion

ivt = vxx + σ(i+H)(vx + v̄x).

In the defocusing case σ = +1, for every initial data v0 ∈ Hs(R), s ≥ 0, the
unique solution v ∈ C0(R, Hs(R)) with v|t=0 = v0 satisfies

‖v(·, t)‖Hs ≤ C‖v0‖Hs for every t ∈ R,

for some constant C > 0.

Remark 3. In the focusing case σ = −1, there is a resonance of Fourier modes
which suggests the linear instability of the constant solution u = 1 in the space
of 2π-periodic functions. This linear instability is missed in L2

per(0, T ) if the
spatial period T is not divisible by 2π. The linear instability is also missed in
L2(R) if the Fourier transform of v|t=0 = v0 is zero at the resonant modes.
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Proof of the linear stability (defocusing case)

Separating the real and imaginary parts as v = A+ iB and using Fourier
transform in x with Fourier parameter k ∈ R yields the system{

Ât = −k2B̂ + 2σikÂ,

B̂t = k2Â+ 2σ|k|Â,

from which we obtain the characteristic equation,

λ2 − 2iσkλ+ k2(k2 + 2σ|k|) = 0 ⇒
{
λ1(k) = −ik|k|,
λ2(k) = ik(2σ + |k|).

For σ = 1, there is no resonance λ1(k) = λ2(k) with k 6= 0 so that there exists
C > 0 such that

|Â(k, t)|+ |B̂(k, t)| ≤ C
(
|Â(k, 0)|+ |B̂(k, 0)|

)
, t ∈ R,

which implies
‖v(·, t)‖Hs ≤ C‖v0‖Hs for every t ∈ R.
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Proof of the linear stability (focusing case)

For σ = −1, there is resonance λ1(k) = λ2(k) at k = ±1 with linear growth of
Â(±1, t) and B̂(±1, t):{

Â(±1, t) = (ĉ1 + ĉ2t) e
∓it,

B̂(±1, t) = (∓iĉ1 + (∓it− 1)ĉ2) e∓it,

For every k ∈ R\{+1,−1}, we get the solution{
Â(k, t) = kĈ1(k)e−ik|k|t + Ĉ2(k)eik(|k|−2)t,

B̂(k, t) = i(|k| − 2)Ĉ1(k)e−ik|k|t − isgn(k)Ĉ2(k)eik(|k|−2)t,

where

Ĉ1(k) =
isgn(k)Â(k, 0) + B̂(k, 0)

2i(|k| − 1)
, Ĉ1(k) =

i(|k| − 2)Â(k, 0) + sgn(k)B̂(k, 0)

2i(|k| − 1)
,

which implies

‖v(·, t)‖Hs ≤ C‖v0‖Hs∩L2,2, for every t ∈ R

only if Â(k, 0), B̂(k, 0) are C1 at k = ±1 with Â(±1, 0) = B̂(±1, 0) = 0.
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Nonlinear stability theorem (defocusing case)

Theorem 4 (J. Chen & D.P., 2025). For every fixed T > 0, there exists δ > 0
such that for every v0 ∈ H1

per((0, T ),C) with ‖v0‖H1
per
≤ δ, the unique solution

u ∈ C0(R, H1
per((0, T ),C)) with u|t=0 = 1 + v0 satisfies

‖e−iθ(t)u(·, t)− 1‖H1
per
≤ C‖v0‖H1

per
for every t ∈ R,

for some constant C > 0 and some function θ ∈ C0(R).

• Local well-posedness in H1(R) was proven in

R. Moura, D. Pilod, Adv. Diff. Eqs. 15 (2010) 925–952

• There exist infinitely many conserved quantities:

I1(u) =

∮
(|u|2 − 1)dx,

I2(u) = i

∮
(uūx − ūux)dx+ σ

∮
(|u|4 − 1)dx,

I3(u) =

∮ (
|ux|2 −

i

2
σ|u|2(ūux − ūxu)− 1

2
σ|u|2H(|u|2)x +

1

3
(|u|6 − 1)

)
dx.

R. Grimshaw, D. Pelinovsky, J. Math. Phys. 36 (1995) 4203–4219
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Lyapunov functional

Combining three conserved quantities together yields the Lyapunov functional

Λ(v) := I3(1 + v)− σI2(1 + v) + I1(1 + v)

=

∮ (
|vx|2 +

1

2
σ(v + v̄)K(v + v̄) +N(v)

)
dx,

where K := −H∂x ≥ 0 is a self-adjoint operator in L2 with Dom(K) = H1
per.

If σ = +1, then∮ [
|vx|2 +

1

2
(v + v̄)K(v + v̄)

]
dx =

∑
n∈Z

4π2n2

T
|v̂n|2 + π|n||v̂n + ¯̂v−n|2

≥ 1

2
‖vx‖2L2 +

2π2

T 2
‖v − v̂0‖2L2.

If v̂0(t) is controlled, then coercivity and Banach algebra of H1
per for N(v) yields

‖v(·, t)‖H1
per
≤ ‖v̂0(t)‖L2 + ‖v(·, t)− v̂0(t)‖H1

per

≤
√
T |v̂0(t)|+ C

√
Λ(v) ≤ C‖v0‖H1

per
.
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Control of the mean-value term

Re(v̂0)(t) can be controlled from conservation of

I1(1+v) =

∮
(v+v̄+|v|2)dx ⇒ |Re(v̂0)(t)| ≤

√
T + I1(1 + v)√

T
−1 ≤ C‖v0‖L2,

provided that Im(v̂0)(t) = 0 from the orthogonal decomposition

u(x, t) = eiθ(t) [1 + v(x, t)] ,

∮
Im(v)(x, t)dx = 0.

The latter is achieved with the implicit function theorem for f(θ) : R→ R,

f(θ) =

∮
Im(e−iθu− 1)dx

in a ball with small inf
θ∈R
‖e−iθu− 1‖H1

per
≤ C‖v0‖H1

per
.
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Nonlinear stability (focusing case)

The quadratic part if coercive if T < π:∮ [
|vx|2 −

1

2
(v + v̄)K(v + v̄)

]
dx =

∑
n∈Z

4π2n2

T
(|R̂e(v)n|

2
+ |Îm(v)n|

2
)− 4π|n||R̂e(v)|2.

Recall the resonance and the linear instability if T = 2π or if T is multiple to 2π.

Nonlinear stability of the constant background in the focusing case is an open
problem in H1

per(0, T ) with T ≥ π.
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Section 5. Breathers in the NLS–BO equation

Let us look at the exact solutions of the NLS–BO equation,

iut = uxx + 2iσuP+(|u|2)x, u(x, t) : R× R→ C, σ = ±1.

Traveling periodic waves are expressed in elementary functions:

u =
g

f+
, ū =

h

f−
, |u(x, t)|2 = 1− iσ ∂

∂x
ln
f+

f−
= 1− σk sinhφ

cos k(x− ct) + coshφ
,

where k > 0 and c ∈ R are arbitrary parameters such that

e2φ =
(c− k)(c+ k + 2σ)

(c+ k)(c− k + 2σ)
> 1,

c+ k

c− k
> 0.

• If σ = 1, then k ∈ (0, 1) and c ∈ (−2 + k,−k).

• If σ = −1, then k ∈ (0,∞) and either c ∈ (k + 2,∞) or c ∈ (−∞,−k).

Traveling wave solutions are defined in H1 ∩ L2
+, L2

+ = {u ∈ L2 : P+u = u}.
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Lax spectrum for the traveling periodic waves

Solutions of the NLS-BO is the compatibility condition for the linear system:
ipx + λp+ uq+ = 0,
q+ − µq− + σūp = 0,
ipt + λ2p+ λuq+ + i(uq+

x − uxq+) = 0,
iq±t − 2iλq±x + q±xx ± 2iσq±P±(|u|2)x = 0,

where λ is the spectral parameter, and q± ∈ L2
±.

Hence q+ = −σP+(ūp) and the Lax spectrum is defined by the self-adjoint
operator in L : H1(R) ⊂ L2(R) 7→ L2(R) given by

L := −i∂x + σuP+(ū ·)

If u ∈ H1 ∩ L2
+, then p ∈ H1 ∩ L2

+, that is, the Lax spectrum is the set of
admissible values of L|L2

+
given by

Lu|L2
+

= −i∂x + σP+uP+(ū ·)

P. Gérard, E. Lenzmann, Comm. Pure Appl. Math. 77 (2024) 4008–4062

R. Badreddine, Ann. Inst. H. Poincaré C (2024)
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Exact eigenfunctions for the Lax spectrum

By using the bilinear form, we computed eigenfunctions for the Lax spectrum:

Σ = [λ0, λ0 + k] ∪ [σ,∞), λ0 := −c+ k

2
.

For [σ,∞), q− = 0 and q+ is analytic in C+ and bounded as Im(x)→ +∞:

q+ = ei(λ−σ)x+i(λ2−1)t1 + eik(x−ct)+φ

1 + eik(x−ct)−φ.

For [λ0, λ0 + k], both q+ and q− are bounded as Im(x)→ ±∞ and co-periodic:

q+ =
1

1 + eik(x−ct)−φ

[
1 +

c+ 2λ+ k

c+ 2λ− k
eik(x−ct)−φ

]
,

q− =
1

1 + e−ik(x−ct)−φ

[
e−ik(x−ct)−φ +

c+ 2λ+ k

c+ 2λ− k

]
.

We have
∮
q−dx = 0 at λ = λ0, for which c+ 2λ+ k = 0.

P. Gérard, T. Kappeler, Comm. Pure Appl. Math. 74 (2021) 1685–1747
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No difference between isolated and embedded bands?

• If σ = +1, then [λ0, λ0 + k] ⊂ (0, 1) is isolated from [1,∞).

• If σ = −1, then either c ∈ (k + 2,∞) for which [λ0, λ0 + k] is isolated from
[−1,∞) or c ∈ (−∞,−k) for which [λ0, λ0 + k] is embedded into [−1,∞).

However, all families of traveling periodic waves are symmetric about the midpoint:

σ = +1 : c+ 1 ∈ (−1 + k, 1− k), k ∈ (0, 1)

σ = −1 : c− 1 ∈ (−∞,−1− k) ∪ (1 + k,∞), k ∈ (0,∞).

with no difference in dynamics.

In both defocusing and focusing case, we have only obtained breathers steadily
propagating on the traveling periodic background. We observed no rogue waves or
instability of the traveling periodic wave.

28



Breathers in the defocusing case σ = +1

Top: k = 1
4, c = −1, cb = −1

2, Lax spectrum {−cb2 } ∪ [λ0, λ0 + k] ∪ [1,∞)

Bottom: k = 1
4, c = −1

2, cb = −1, Lax spectrum [λ0, λ0 + k] ∪ {−cb2 } ∪ [1,∞)
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Breathers in the focusing case σ = −1

Top: k = 1
4, c = 2 + 2k, cb = c+ 2k, Lax spectrum {−cb2 } ∪ [λ0, λ0 + k]∪ [−1,∞)

Bottom: k = 1
4, c = 2 + 2k, cb = c− 3

2k, Lax sp. [λ0, λ0 + k] ∪ {−cb2 } ∪ [−1,∞)
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Breathers in the focusing case σ = −1

k = 1
4, c = 2 + 2k, cb = −k

Lax spectrum [λ0, λ0 + k] ∪ [−1,∞) with −cb2 ∈ [−1,∞) embedded.

If c ∈ (−∞,−k) so that [λ0, λ0 + k] is embedded into [−1,∞), then the same
breather solutions hold after symmetrical reflection.
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Section 6. Conclusion

We have considered stability and breathers on the background of the traveling
periodic waves in the NLS–BO equation.

• Defocusing case: Constant background is linearly and nonlinearly stable, stable
dark breathers propagate on the TW background.

• Focusing case: Both bright and dark breathers propagate on the TW
background, no rogue waves or instabilities are detected, no difference in
dynamics between isolated or embedded eigenvalues.

• Open Problem 1: Stability of the constant wave for long periodic perturbations
in the focusing case.

• Open Problem 2: Stability of the traveling periodic wave in both cases.
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