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Shocks and Spatial Periodicity

Spatially Homogeneous Quasilinear Hyperbolic System
8tV + axf(V) =0 J

Smooth data generates typically a shock wave in finite time (Lax 64)
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Introduction

Shocks and Spatial Periodicity

Spatially Homogeneous Quasilinear Hyperbolic System }

8tV + axf(V) =0

Smooth data generates typically a shock wave in finite time (Lax 64)

Spatially Periodic Quasilinear Hyperbolic System
Ov + Ok f(x,v) =0, f(x+2m,v) =f(x,v) }

Can spatial periodicity stabilize shock formation?
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Regularizing Shocks

@ Diffusive regularization:
Vi + VWx = UVxx
@ Dispersive regularization:
Vi + Wy = QViyxx-
@ Dispersion from spatial periodicity (Maxwell Model):
07 (n*(2)E + xE?) = O2E,
where n(z +27) = n(z) is the refractive index of the periodic media.

@ Does this model display wave breaking (shocks)?
@ Does this model admit stable localized states (solitons)?
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Maxwell & Coupled Mode Equations

Periodic Nonlinear Maxwell Equation

97 (n(2)E + xE?) = O2E

nP(z)=1+e Z NyeP?, e < 1.
pEZ\{0}
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Maxwell & Coupled Mode Equations

Periodic Nonlinear Maxwell Equation

97 (n(2)E + xE?) = O2E

nP(z)=1+e Z NyeP?, e < 1.
pEZ\{0}

Two-wave approximation of small-amplitude resonant waves
E ~€f? <5+(ez, et)el@=t) 4 5_(ez,et)e_i(z+t)>

yields the Nonlinear Coupled Mode Equations (NLCME) for ££(Z, T) in
slow variables Z = ez and T = et.
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Properties of the NLCME

The Nonlinear Coupled Mode Equations (NLCME)
oret+ 028t = itpe™ + 1T (| P 42067 ) £,
OTE™ — 0767 = iNpe™ +iT (|7 +2|e*|?) &
where ' = 3x/2.
o Dispersive: £ e/(KZ-9T) with Q2 = K2 + | Ny|?,

@ Possess explicit solitary wave solutions (Aceves—Wabnitz 89),
@ Globally well-posed in H'(R) (Goodman et al. 01), but
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Properties of the NLCME

The Nonlinear Coupled Mode Equations (NLCME)
oret+ 028t = itpe™ + 1T (| P 42067 ) £,
OTE™ — 0767 = iNpe™ +iT (|7 +2|e*|?) &

where ' = 3x/2.
o Dispersive: £+ e/(KZ-9T) with Q2 = K2 + |N,?,

@ Possess explicit solitary wave solutions (Aceves—Wabnitz 89),

@ Globally well-posed in H'(R) (Goodman et al. 01), but

@ Mathematically inconsistent, because the correction term &,

(33 — 83) (Cj — (54—)3 e3i(z—t) + (5_)3 e_3,'(z+t) b

grow linearly in t.
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Coupled Mode Equations

Numerics with Soliton Data

Seed NLCME Soliton (£1,£7) into Maxwell equations,
E(z,t) = €2 <5+(ez, et)e @D 4 £ (ez, et)e—"<z+f>) .
@ No periodic potential:
07 (E+xE®) = 02E
@ Small cos-periodic potential:
92 (E + ecos(z)E + XE3) = 0%E

Side pulses are absent in the NLCME.
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Properties of NLCME

Local and global existence

The normalized NLCME:
OrET + 076 = i€ +i (|5+\2 12 \5—\2) £,
orE” — 078~ =gt +i(|e7P +2)etP) e

Theorem

Assume the initial data in H'(R). There exists a unique global solution in
C(R, HY(R)), which depends continuously on the initial data.

References: Delgado (1978); Goodman-Weinstein-Holmes (2001);
Selberg-Tesfahun (2010); Huh (2011); Zhang (2013).
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Quick proof of global well-posedness in H!(R)

o [? conservation gives [|E4]12, + [|E_||2, = const
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Quick proof of global well-posedness in H!(R)

o [? conservation gives [|E4]12, + [|E_||2, = const

@ To obtain apriori energy estimates, the nonlinear term is canceled in

8T (|g+’2p+2 + |S_‘2P+2) + 82 (|5+|2p+2 _ ‘g_’2p+2)
il 1)(EE £ € | P,
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Quick proof of global well-posedness in H!(R)

o [? conservation gives [|E4]12, + [|E_||2, = const

@ To obtain apriori energy estimates, the nonlinear term is canceled in

a_,_ (|g+’2p+2 + |S_‘2P+2) + 82 (|5+|2p+2 _ ‘g_’2p+2)
il 1)(EE £ € | P,

@ By Gronwall's inequality, we have
IE£(T) 202 < €TV E£(0) 202, T €R,

which holds for any p > 0 including p — oo.
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Quick proof of global well-posedness in H!(R)

o [? conservation gives [|E4]12, + [|E_||2, = const

@ To obtain apriori energy estimates, the nonlinear term is canceled in

a_,_ (|g+’2p+2 + |S_‘2P+2) + 82 (|g+|2p+2 _ ‘g_’2p+2)
il 1)(EE £ € | P,

@ By Gronwall's inequality, we have
IE£(T) 202 < €TV E£(0) 202, T €R,

which holds for any p > 0 including p — oo.

@ This allows to control

d
d—Tllazgi(T)Hfz < ce®ll||oze.(T)| 2.

Dmitry Pelinovsky (McMaster University) Nonlinear Maxwell Equations 8 /31



Properties of NLCME

Existence of solitary waves

Time-periodic space-localized solutions

EN(Z,T)=U,(2)e ™T, £(Z,T)=V,(2)e ™7

are known in the closed analytic form:
L . el
Uu(Z) = isin(y) sech [Zsm’y - /5} = V,(2),

where w = cos(7) € (—1,1).
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Existence of solitary waves

Time-periodic space-localized solutions
EN(Z,T)=U,(2)e ™T, £(Z,T)=V,(2)e ™7
are known in the closed analytic form:
U,(Z) = isin(7y) sech [Zsin'y - /%} = V,(2),
where w = cos(7) € (—1,1).
@ Translations in Z and T can be added as free parameters.

@ Constraint w = cosy € (—1,1) exists because spectrum of linear
waves is located for (—oo, —1] U [1, c0).

@ Moving solitons can be obtained from the stationary solitons with a
generalized Lorentz transformation.
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Properties of NLCME

Stability of solitary waves

@ Spectral stability of solitary waves was mainly studied numerically,
e.g., by |. Barashenkov (1998), G. Gottwald (2005), M. Chugunova
(2006), A. Comech (2012), A. Saxena (2014), P. Kevrekidis (2014).

@ Asymptotic stability of solitary waves was proved for nonlinear Dirac
equations with quintic nonlinearities by D.P. & A. Stefanov (2012)
and in three dimensions by N. Boussaid & S. Cuccagna (2013).

@ Orbital stability of solitary waves was proved for integrable massive
Thirring model by D.P. & Y. Shimabukuro (2014).
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Properties of NLCME

Stability of solitary waves

@ Spectral stability of solitary waves was mainly studied numerically,
e.g., by |. Barashenkov (1998), G. Gottwald (2005), M. Chugunova
(2006), A. Comech (2012), A. Saxena (2014), P. Kevrekidis (2014).

@ Asymptotic stability of solitary waves was proved for nonlinear Dirac
equations with quintic nonlinearities by D.P. & A. Stefanov (2012)
and in three dimensions by N. Boussaid & S. Cuccagna (2013).

@ Orbital stability of solitary waves was proved for integrable massive
Thirring model by D.P. & Y. Shimabukuro (2014).

For the NLCME, the solitary waves
EN(Z,T)=U,(2)e ™", £(Z,T)=V,(2)e ™"

are spectrally stable for w € (0,1) and unstable for w € (—1,0).
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Back to properties of the NLCME

The Nonlinear Coupled Mode Equations (NLCME)
oret+ 028t = itpe™ + 1T (| P 42067 ) £,
OTE™ — 0767 = iNpe™ +iT (|7 +2|e*|?) &

where ' = 3x/2.
o Dispersive: £+ e/(KZ-9T) with Q2 = K2 + |N,?,

@ Possess explicit solitary wave solutions (Aceves—Wabnitz 89),

@ Globally well-posed in H'(R) (Goodman et al. 01), but

@ Mathematically inconsistent, because the correction term &,

(33 — 83) (Cj — (54—)3 e3i(z—t) + (5_)3 e_3,'(z+t) b

grow linearly in t.
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Revised Asymptotic Expansion
Simpson—-Weinstein' 2011

Nonlinear and Periodic Maxwell Equation
82 (E +eN(2)E + x|EP E) = 92E.

Generalized Ansatz

E = /2 (E+(z —t, 2 T)+E-(z+t,Z,T) + cED(z,t) + .. ) .

Constraint on the Growth of the Correction Term

L (e
i 2 feo]a=o

Nonlinear Maxwell Equations
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Integro-Differential equations for EX(¢, Z, T)

Let N(z) = N(z + 27). The correction term is bounded if

™

(01 +0z)ET =0, [% / N(¢p+0)E(Z,T,p+ 29)d9}

r 413 Y A 2 +
+ 30, [(E ) +3<2W/W|E (2,7,0)] d9>E ,

(0r —07)E™ = —04 [% /7T N(p — 0)E+(Z, T,¢— 20)d0:|
r 1 ("
20, [(E‘)3 3 (% | e 0)|2d9) E‘] ,
where [ = %X-
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Extended Nonlinear Coupled Mode Equations (xNLCMEs)

Periodically Varying Index of Refraction

N(z)=N(z+2r) = N@z)=> NP, No=0

Fourier Decomposition

E¥(¢,Z,T)=> Ef(Z,T)eP.
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Extended Nonlinear Coupled Mode Equations (xNLCMEs)

Periodically Varying Index of Refraction

N(z)=N(z+2r) = N@z)=> NP, No=0

Fourier Decomposition

E¥(¢,Z,T)=> Ef(Z,T)eP.

Fourier amplitudes satisfy the infinite-dimensional NLCMEs:

oy + 0265 — oty + 2[R, 43 (Xl T) ]

3
OrEy — 0z, = iploEy + L[S E E Ey  +3(|E7F) £ J
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Extended Coupled Mode Equations

Numerics with Soliton Data

Inclusion of third harmonic (Ej;), resolves side pulses

Questions:
@ Do the xNLCMEs admit localized stationary states (solitons)?
@ Are localized states robust in the dynamics of the xXNLCMEs?

Simplifications:
© We reduce the system of xNLCMEs near band edges to a system of
coupled nonlinear Schrodinger equations.
© We use the Gaussian trial functions and variational approximations.

© We truncate the system of equations and perform numerical
continuations.
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Localized states

Localized stationary solutions

Stationary decomposition

+ _ AL —ipQT
Eb (2?,7')-—/4p(2?)e P ’

Amplitude equations (xNLCMEs)

, r
IAL(Z) + PQA, + pN2pB, + 3 | 34, S IBP+ > AAA g | =0,
qEZ q,r€Z

r
3 3BPZ|ACI|2+ Z ByBBp—gq-r | =0,
qEZ q,r€Z

—iB(Z) + pQ2B, + pNapA, + p

Dmitry Pelinovsky (McMaster University) Nonlinear Maxwell Equations



Band Edge Approximation

Linear approximation
Ai(z) ~ e~ IPIIZIV/[Nop? =%

Exponential decay is provided by the assumption
Nop =1 forall p and Q€ (-1,1).

(Therefore, N(z) is a periodic sequence of Dirac delta-distributions.)

Localized states near a band edge

\\ 0 //
+ 2 N /
Ap(Z) = 2pUp(pZ) + O(p7), Q= 1—p2 N
// \\ K
This expansion allows us to derive coupled nonlinear TN
Schrédinger equations. J N
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The coupled NLS equations

Coupled Stationary Nonlinear Schrodinger Equation
Us(Q) = PPUp + 307 (3Up D 1Ug2 + 3 UgUr Upg-1) =0,

where ( = pZ.

With the Fourier series,

u,Q)= Y Up(¢)e™

PEZoad

the system is converted to a scalar equation

2 1 (7
(02 + 93U = §8§, [U3 +3 (% /_ﬂ |U(<,0)|2d9> U] :
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Localized states

Justification theorem

Theorem

Assume the existence of a localized state U € X® of the NLS equations,
X ={U(¢,¢) € H(RxT): U(¢,¢) = U((,9). }, s>1,
satisfying the symmetry Up(¢) = U_p(—(). There exists jig > 0 such that

for any || < po, the xNLCMEs with Q = /1 — p? admit a unique
localized state A* € X* satisfying the bound

IC>0: AT F U, )|xs < Cu?.

@ H*(R x T) is a Banach algebra with respect to the pointwise
multiplication for any s > 1.

o If Ue X®fors>1, then Ue L*°(R x T) and
lim U(¢,¢) =0, VoeT.
I¢l—00
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Localized states

Existence of localized stationary states

Coupled NLS equations

Us(Q) = P2Up + 397 (3Up D 1Ug2 + 3" UgUUpg-r) = 0

The main question is to establish the existence of a localized state U € X*
for s > 1 satisfying the symmetry U,(¢) = U—_p(—().

v

For a scalar NLS equation at p = =1, we have the NLS soliton

Ui = %sech(g).

Will this solution persist in the system of coupled NLS equations?
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Localized states

Energy arguments

Energy functional is well defined in X* for any s > 1.

2
1 1 - _
H:/R Z?‘U;’)F_ Z|Up‘2 3 Z UpUqUrUgir—p | dC

PEZL PEZL p,q,r€Z
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Localized states

Energy arguments

Energy functional is well defined in X* for any s > 1.

2

1 1 _ _
H:/R Z?‘ULF— Z’Up|2 —3 Z UpUgU, Ugsr—p | dC

PEZL PEZL p,q,r€Z

v

Constrained variational problem
minimize H subject to fixed N = /}RZ |U,|2dC.
However, H is unbounded from below, even under the constraint. Let
Up(€) = M *W(n) (B +0p—n) . P € Z:

where W € HY(R) is fixed and A\, = n, n € N. Then,
H= ||W’||%2 — 6n||B||t4 — —00 as N — 0.
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Rayleigh—Ritz Approximations

Rayleigh—Ritz Approximation

Gaussian Ansatz

_ 2
Up(€) = ape 5% p € Zoaa,

Reduced Energy

He = Z Vboaj n a; _ a5y _ V2apagarap—q—r
p? Vbp  \/bp+bg 3\/by+bg+b+byq

Euler—Lagrange Equations

VaH(;(a, b) = 0, VbH(;(a, b) =0.
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Rayleigh—Ritz Approximation, Results

Truncated Solutions of Euler—Lagrange Equations:

No. of Modes a by a3 b3 as bs
1 0.56060 0.33333 - - - -
2 0.56321 0.33148 -0.13918 3.9413 - -
3 0.56329 0.33189 -0.14585 3.6287 0.062822 8.5577
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Rayleigh—Ritz Approximation, Results

Truncated Solutions of Euler—Lagrange Equations:

No. of Modes a by a3 b as bs

1 0.56060 0.33333 - - -

2 0.56321 0.33148 -0.13918 3. 9413 -

3 0.56329 0.33189 -0.14585 3.6287 0.062822 8.5577
Questions:

@ Does the solution converge to a localized state with finite energy H?
@ Is the alternating sign between the modes important?

@ Does the alternating sign persist with the number of modes?
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Rayleigh—Ritz Approximations

Reduced Rayleigh—Ritz Approximation

Simplified Gaussian Ansatz

Up(C) = ape ™, p € Zoaa,
with
ap = A(=1)IPI=D72 o= by =5

Two Parameter Energy

Ha = he(v, A) = A*f(7) — A*g(y)

At a critical point, this expression simplifies to

()
4g(7)

he(v, A(7)) =
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Reduced Rayleigh—Ritz Approximation, Results

The Gaussian ansatz

P2 <2

[Up(Q) ~ [pl e 5%,

with
Yy ~ 1.26

produces

Ue X®, s<

| Numerical verification of the
condition of the theorem.
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Ansatz without Alternating Signs

For the ansatz

P
Up(Q) = Alp| e 3¢, p € Zoaa,

no extrema points occur in the reduced energy dependence on 7.

0.8
0.7
0.6}
0.5f
0.4+
P =
) - -hl
03 — |
4 - ,}3
0.2y’ bt
- .h5
76
0.1 . . . . n
0 0.5 1 15 2 25 3
v
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Stable localized states

Direct Numerical Solution of Truncated NLS System

NLS System
Up(©) = P2Up + 30 (3Up X 1Ual? + 37 Ul Upg-) =0

For up to 12 modes, the structure of sign alternations persists:

P L )
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Stable localized states

Equivalent integro-differential equation

Elliptic equation

2 1 [
2 2\ £92 |3 = 2
(8€~ +8¢)U— 38¢ [U +3 (27r /_WIU(C,H)] dG) U] ,
where

u@.Q)= Y Up(¢)e".

PEZodd

Dmitry Pelinovsky (McMaster University) Nonllnear Maxwell Equatlons



Time evolution of NLS Solitons in xNLCMEs

OTES +07E5 = ipNopEy + 2 [Z EFEFES ., +3 (Z |E;|2) E:]
OrE, — 02E, = ipapES [ZE E- +3(Z|Eq+|2) E .
Z 0) =+uly(pZ), p=1
pn=0.1
40 0.55 40 0.55
35 05
0.45 0.45
30 04
035T 25 035 —
3 = 03 =
- = =20 =
025&; O.ZSJEE
0.2
0.15 0.15
0.1
0.05 0.05
0

0

~o
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Time evolution of NLS Solitons in xNLCMEs

. _  ip _2
OTES +0zEf =ipNoyEy + 2 S ESEFES . +3(Y|E;|7) 7]
_ _ .= ip 2 _
OrEy — 0z, = ipoEf + 4 [Y B E By +3(D|E[) £
p=3
0.14 40 L 0.14
0.12 35 0.12
0.1 0.1
0.08 — 0.083
OOGJEQ o 0.08§
0.04 0.04
0.02 0.02
0,
-5 0 5
¢
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Time evolution of NLS Solitons in xNLCMEs

OTES +0zE) = ipNopE, + 2 {Z E+E+ Eomg-r 3(Z‘EJ|2) E;}

O7E; — 07E; = ipNyES 13 > EE e +3(YIE)E .
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Conclusion

Summary:

Our results suggest that the localized states are robust for the nonlinear
periodic Maxwell model. Existence of such states do not eliminate a
possibility of shocks for large amplitudes.

Further directions

@ Prove the existence of localized solutions in the coupled NLS
equations (or in the equivalent elliptic problem)

@ Justify the coupled NLS equations in the original Maxwell system
with periodic Dirac delta-distributions

@ Consider localized solutions in the Maxwell system with bounded
refractive index.
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Conclusion
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