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Three examples of dynamics of periodic travelling waves

Fluxon condensates in the semi-classical limit

The sine–Gordon equation in the semi-classical limit is

ε2uTT − ε2uXX + sin(u) = 0,

with small ε. Fluxon condensate arises in the evolution from the initial
condition:

u(X ,0) = 0, εuT (X ,0) = G(X ),

where G is fixed with either ‖G‖L∞ < 2 (librational waves) or ‖G‖L∞ > 2
(rotational waves). ε is selected at {εN}N∈N so that the solution is purely
N-soliton potential and εN → 0 as N →∞.
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Left: Orbits of f ′′ + sin(f ) = 0.

R.J. Buckingham–P.D. Miller (2012, 2013);
B.Y. Lu–P.D. Miller (2020)
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Three examples of dynamics of periodic travelling waves

Figure: Surface plots of cos(u) in space-time coordinates for the dynamics of fluxon
condensates in the semi-classical limit. Top: librational waves. Bottom: rotational
waves.
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Three examples of dynamics of periodic travelling waves

Rogue waves on periodic background

The focusing nonlinear Schrödinger (NLS) equation

iψt +
1
2
ψxx + |ψ|2ψ = 0

admits the exact solution

ψ(x , t) =

[
1− 4(1 + 2it)

1 + 4x2 + 4t2

]
eit .

It was discovered by H. Peregrine (1983) and was labeled as the rogue wave.

Properties of the rogue wave:
It is localized in space and time on the background of ψ0(t) = eit

It comes from nowhere and disappears without any trace.
It is significantly magnified at the center: M0 := |ψ(0,0)| = 3.
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Three examples of dynamics of periodic travelling waves

The surface plot of |ψ(x , t)| for the rogue wave in NLS equation:

The rogue wave solution is related to the lump solution of the KP-I hierarchy.
D.Pelinovsky (1997);
P.Dubbard-V.B.Matveev (2013)
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Three examples of dynamics of periodic travelling waves

The ”second-order” rogue wave as in Y.Ohta-J.Yang (2012)
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Three examples of dynamics of periodic travelling waves

Peregrine’s rogue wave has long believed to play the major role in more
complicated dynamics of periodic waves in the NLS equation.

The result of numerical simulations in D. Agafontsev–V.E. Zakharov (2016)
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Three examples of dynamics of periodic travelling waves

Modulational instability of periodic waves

The derivative nonlinear Schrödinger (DNLS) equation

iψt + ψxx + i(|ψ|2ψ)x = 0

admits the periodic traveling and standing wave solution

ψ(x , t) = e4ibtu(x + 2ct)

with two parameters b and c.
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Three examples of dynamics of periodic travelling waves

Linear stability of such solutions is defined by linearized evolution equation

iwt − 4bw + 2icwx + wxx + i[2|u|2wx + u2w̄x + 2(uūx + ūux )w + 2uux w̄ ] = 0

for the perturbation w in ψ(x , t) = e4ibt [u(x + 2ct) + w(x + 2ct , t)].

Separating variables by w(x , t) = w1(x)etΛ and w̄(x , t) = w2(x)etΛ results in
the spectral problem for the eigenvector (w1,w2)T and eigenvalue Λ.

Stability spectrum is the union of all Λ for which (w1,w2)T is bounded (Floquet
spectrum related to periodic u).

Definition

The periodic wave u is spectrally unstable if there exists Λ with Re(Λ) > 0
such that (w1,w2) ∈ L∞(R). The periodic wave is modulationally unstable if
there exists an unstable band of Floquet spectrum with Re(Λ) > 0 that
intersects Λ = 0.
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Three examples of dynamics of periodic travelling waves

Stability spectrum Λ can be characterized from the linear Lax system
representing the DNLS equation for φ(x , t) = e2btσ3ϕ(x + 2ct , t):

ϕx = U(u, λ)ϕ, ϕt + 2ibσ3ϕ+ 2cϕx = V (u, λ)ϕ,

where

U =

(
−iλ2 λu
−λū iλ2

)
, V =

(
−2iλ4 + iλ2|u|2 2λ3u + λ(iux − |u|2u)

−2λ3ū + λ(i ūx + |u|2ū) 2iλ4 − iλ2|u|2
)
,

If λ ∈ C belongs to Lax spectrum (Floquet spectrum related to periodic u),
then eigenvector ϕ(x , t) = χ(x)etΩ(λ) for some specific Ω(λ) determines
solution of the spectral stability problem for (w1,w2)T and Λ in

w1 = ∂xχ
2
1, w2 = ∂xχ

2
2, Λ = 2Ω.

Squared eigenfunctions were found in X.G. Chen-J.Yang (2002).
Recent study was done in J. Upsal-B. Deconinck (2020)
after similar studies of NLS in B. Deconinck–B.L. Segal (2017).
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Three examples of dynamics of periodic travelling waves

Main result from J. Upsal-B. Deconinck (2020):

If Λ ∈ iR for a given λ ∈ R ∪ iR, then λ ∈ R ∪ iR belongs to the Lax spectrum.

Spectral stability of periodic waves in DNLS subject to perturbations of the
same period was studied in S.Hakkaev-A.Stefanov-M.Stanislavova (2020).
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Three examples of dynamics of periodic travelling waves

Our methods and results

We explore construction of periodic waves of integrable equations by
using complex-valued Hamiltonian systems arising in the nonlinearization
of the Lax equations (Cao–Geng, 1990) Also Z. Qiao; R. Zhou; J. Chen.
This allows to characterize the periodic waves in terms of eigenvalues of
the Lax equations associated with the periodic eigenfunctions for Λ = 0.
We give precise information on the location of Lax and stability spectra,
with assistance of a numerical package based on Hill’s method.
We obtain solutions describing localized structures on the background of
periodic waves (either rogue waves or propagating algebraic solitons),
with assistance of the Darboux transformations.

A particularly interesting outcome is the explicit relation between
the existence of modulational instability and the existence of a rogue wave
on the background of periodic travelling waves.
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Characterization of periodic waves in the derivative NLS

Periodic travelling and standing waves

The derivative nonlinear Schrödinger (DNLS) equation

iψt + ψxx + i(|ψ|2ψ)x = 0

admits the periodic traveling and standing wave solution

ψ(x , t) = e4ibtu(x + 2ct)

with two parameters b and c. The envelope u = u(x) satisfies

u′′ + 2|u|2u + 2icu′ − 4bu = 0,

From here, solutions are usually constructed by separation of variables
u(x) = R(x)eiΘ(x) with two additional integrations:

dΘ

dx
= − a

R2 −
3
4

R2 − c

and (
dR
dx

)2

+
a2

R2 +
1

16
R6 +

c
2

R4 + R2
(

c2 − 4b − a
2

)
+ 2ac − 4d = 0,

where a and d are constants of integration.
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Characterization of periodic waves in the derivative NLS

Consider the first-order equation:

(
dR
dx

)2

+
a2

R2 +
1

16
R6 +

c
2

R4 + R2
(

c2 − 4b − a
2

)
+ 2ac − 4d = 0.

For a 6= 0, phase singularity is unfolded for ρ := 1
2 R2 and the solutions are

found from the quadrature (
dρ
dx

)2

+ Q(ρ) = 0,

where Q(ρ) = ρ4 + 4cρ3 + 2(2c2 − a− 8b)ρ2 + 4(ac − 2d)ρ+ a2.

For a = 0, there is no phase singularity and solutions are obtained from
Newton’s dynamics: (

dR
dx

)2

+ F (R) = 4d ,

where F (R) = 1
16 R6 + c

2 R4 + (c2 − 4b)R2.
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Characterization of periodic waves in the derivative NLS

Families of periodic waves for a = 0

Left: c2 < 4b. Right: c2 > 4b, c < 0, and b > 0. Here ρ = 1
2 R2 > 0.
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Characterization of periodic waves in the derivative NLS

More properties from the integrability structure

A solution to the derivative nonlinear Schrödinger (DNLS) equation is the
compatibility condition of the Lax system discovered by D.Kaup–A.Newell
(1978), where the first equation is now called the Kaup–Newell problem:

ϕx =

(
−iλ2 λu
−λū iλ2

)
ϕ.

Definition

If u(x) = R(x)eiΘ(x) with L-periodic R and Θ′, then λ is called an eigenvalue
w.r.t. periodic boundary conditions if ϕ = (p,q)T is given by
p(x) = P(x)eiΘ(x)/2 and q(x) = Q(x)e−iΘ(x)/2 with L-periodic P and Q.
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Characterization of periodic waves in the derivative NLS

Three properties of eigenvalues and eigenvectors

1 Let λ ∈ iR be a simple eigenvalue with the periodic eigenvector
ϕ = (p,q)T . Then, there is c ∈ C with |c| = 1 such that q = cp̄.

2 Let λ ∈ C be a simple eigenvalue with the periodic eigenvector
ϕ = (p,q)T . Then, λ̄ is a simple eigenvalue with ϕ = (q̄,−p̄)T .

3 Let λ ∈ R be an eigenvalue with the periodic eigenvector ϕ = (p,q)T .
Then, it is at least double with two linearly independent eigenvectors.
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Characterization of periodic waves in the derivative NLS

Complex Hamiltonian system

Fix λ = λ1 with ϕ = (p1,q1)T and λ = λ2 with ϕ = (p2,q2)T s.t. λ1 6= λ2.
Consider the potential u of the Kaup–Newell problem given by either

λ1 ∈ C\iR, λ2 = λ̄1 :

{
u = λ1p2

1 + λ̄1q̄2
1 ,

ū = λ̄1p̄2
1 + λ1q2

1

or
λ1 = iβ1, λ2 = iβ2
q1 = −i p̄1, q2 = −i p̄2

:

{
u = iβ1p2

1 + iβ2p2
2,

ū = −iβ1p̄2
1 − iβ2p̄2

2.

The Kaup–Newell problem becomes a complex Hamiltonian system
generated by the Hamiltonian function

H = iλ2
1p1q1 + iλ2

2p2q2 −
1
2

(λ1p2
1 + λ2p2

2)(λ1q2
1 + λ2q2

2).

with additional conserved quantity

M = i(p1q1 + p2q2).

Both conserved quantities are real for the two cases above.
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Characterization of periodic waves in the derivative NLS

Travelling wave reduction

Differentiating the constraint between u and eigenfunctions:

u = λ1p2
1 + λ2p2

2,

⇒ du
dx

+ i |u|2u + 2iHu + 2i(λ3
1p2

1 + λ3
2p2

2) = 0,

⇒ d2u
dx2 + i

d
dx

(|u|2u) + 2iH
du
dx

+ 4(λ5
1p2

1 + λ5
2p2

2 + iλ4
1up1q1 + iλ4

2up2q2) = 0.

The last equation yields the travelling wave reduction of DNLS:

d2u
dx2 + i

d
dx

(|u|2u) + 2ic
du
dx
− 4bu = 0,

where b := λ2
1λ

2
2(1 + M) and c := λ2

1 + λ2
2 + H.
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Characterization of periodic waves in the derivative NLS

Integrability of the complex Hamiltonian system

The complex Hamiltonian system on (p1,q1) and (p2,q2) is a compatibility
condition of the Lax equation

d
dx

Ψ = U(λ,u)Ψ−ΨU(λ,u),

where U(λ,u) is the same as in the Kaup–Newell system and

Ψ =

(
Ψ11 Ψ12
Ψ21 −Ψ11

)
with

Ψ11 = −i − λ2
1p1q1

λ2 − λ2
1
− λ2

2p2q2

λ2 − λ2
2

=
−i[λ4 − (c + 1

2 |u|2)λ2 + b]

(λ2 − λ2
1)(λ2 − λ2

2)
,

Ψ12 = λ

[
λ1p2

1

λ2 − λ2
1

+
λ2p2

2

λ2 − λ2
2

]
=
λ[λ2u + i

2 ( du
dx + i |u|2u)− cu

(λ2 − λ2
1)(λ2 − λ2

2)
.
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Characterization of periodic waves in the derivative NLS

detΨ is constant and has simple poles at (±λ1,±λ2):

det Ψ = 1− 2Hλ2 − λ2
1λ

2
2M(M + 2)

(λ2 − λ2
1)(λ2 − λ2

2)
=

P(λ)

(λ2 − λ2
1)2(λ2 − λ2

2)2

with

P(λ) = λ8 − 2cλ6 + (a + 2b + c2)λ4 + (d − c(a + 2b))λ2 + b2.

Here the new constants a and d appear in the conserved quantities

2i
(

ū
du
dx
− u

dū
dx

)
− 3|u|4 − 4c|u|2 = 4a

and

2
∣∣∣∣du
dx

∣∣∣∣2 − |u|6 − 2c|u|4 − 4(a + 2b)|u|2 = 8d

New parameters are related to parameters of the algebraic method:
a := λ2

1λ
2
2M2 − H2 and d := λ2

1λ
2
2MH(M + 2)− H2(λ2

1 + λ2
2 + H).
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Characterization of periodic waves in the derivative NLS

Characterization of periodic waves

Thus, the periodic waves of the DNLS are related to the polynomial

P(λ) = λ8 − 2cλ6 + (a + 2b + c2)λ4 + (d − c(a + 2b))λ2 + b2.

Denote four pairs of roots of P(λ) by {±λ1,±λ2,±λ3,±λ4}, where any two
roots can be picked for the algebraic method.

Recall the periodic waves are given by the first-order equation for ρ = 1
2 |u|2:(

dρ
dx

)2

+ Q(ρ) = 0,Q(ρ) = ρ4 + 4cρ3 + 2(2c2 − a− 8b)ρ2 + 4(ac − 2d)ρ+ a2

Denote four roots of Q(ρ) by {u1,u2,u3,u4}.
The remarkable property of periodic wave is the explicit relation:{

u1 = − 1
2 (λ1 − λ2 + λ3 − λ4)2,

u2 = − 1
2 (λ1 − λ2 − λ3 + λ4)2,

{
u3 = − 1

2 (λ1 + λ2 − λ3 − λ4)2,
u4 = − 1

2 (λ1 + λ2 + λ3 + λ4)2.

A. Kamchatnov (1990)
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Characterization of periodic waves in the derivative NLS

First family of periodic waves

Four roots of Q(ρ) are real: u4 ≤ u3 ≤ u2 ≤ u1. Then,

ρ(x) = u4 +
(u1 − u4)(u2 − u4)

(u2 − u4) + (u1 − u2)sn2(µx ; k)
,

with 2µ =
√

(u1 − u3)(u2 − u4) and 2µk =
√

(u1 − u2)(u3 − u4).

This family occurs only in two cases:
Two complex quadruplets when u4 ≤ u3 ≤ 0 ≤ u2 ≤ u1,

λ1 = λ̄2 = α1 + iβ1, λ3 = λ̄4 = α2 + iβ2.

Four pairs of purely imaginary eigenvalues when 0 ≤ u4 ≤ u3 ≤ u2 ≤ u1,

λ1 = iβ1, λ2 = iβ2, λ3 = iβ3, λ4 = iβ4.
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Characterization of periodic waves in the derivative NLS

Second family of periodic waves

Two roots of Q(ρ) are real u2 ≤ u1 and two roots of Q(ρ) are
complex-conjugate u3,4 = γ ± iη. Then,

ρ(x) = u1 +
(u2 − u1)(1− cn(µx ; k))

1 + δ + (δ − 1)cn(µx ; k)
,

with δ, µ, and k are given in terms of u1, u2, γ, and η.

This family occurs only in one case:
One complex quadruplet and two pairs of purely imaginary eigenvalues when
0 ≤ u2 ≤ u1.
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Characterization of periodic waves in the derivative NLS

Periodic waves for a = 0 and c2 < 4b
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Three different cases:
d ∈ (d−,0): positive periodic solutions of the first family with two complex
quadruplets;
d ∈ (0,d+): sign-indefinite periodic solutions of the first family with two
complex quadruplets;
d ∈ (d+,∞): sign-indefinite periodic solutions of the second family with
one complex quadruplet and two pairs of purely imaginary eigenvalues.
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Characterization of periodic waves in the derivative NLS

Two complex quadruplets
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(a) u1 = 0.2, u2 = 0.1, u3 = 0, u4 = −0.9.
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(b) u1 = 1.9, u2 = 0.2, u3 = 0, u4 = −0.3.
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Characterization of periodic waves in the derivative NLS

Two complex quadruplets
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(a) u1 = 1.2, u2 = 0.3, u3 = 0, u4 = −0.8.
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(b) u1 = 3.9, u2 = 0.193012, u3 = 0, u4 = −4.090301.
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Characterization of periodic waves in the derivative NLS

One complex quadruplet and two pairs of imaginary
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(a) u1 = 1.2, u2 = 0, u3 = −0.4 − 0.2i , u4 = −0.4 + 0.2i .
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(b) u1 = 3.2, u2 = 0, u3 = −0.6 + 0.2i , u4 = −0.6 − 0.2i .
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Characterization of periodic waves in the derivative NLS

One complex quadruplet and two pairs of imaginary

(a) u1 = 8, u2 = 0, u3 = −0.1 + 0.6i , u4 = −0.1 − 0.6i .

Missing for analysis:
No Lax spectrum between imaginary eigenvalues;
No four reconnection across the outer branches
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Characterization of periodic waves in the derivative NLS

Periodic waves for a = 0, c2 > 4b, c < 0, and b > 0
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Three different cases:
d ∈ (d−,0): positive periodic solutions of the first family with two complex
quadruplets;
d ∈ (0,d+): positive and sign-indefinite periodic solutions of the first
family with four pairs of purely imaginary eigenvalues;
d ∈ (d+,∞): sign-indefinite periodic solutions of the second family with
one complex quadruplet and two pairs of purely imaginary eigenvalues.
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Characterization of periodic waves in the derivative NLS

Four pairs of imaginary eigenvalues
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Remarkable properties:
Stability is observed only for c2 > 4b, c < 0, and b > 0 for periodic waves
ψ(x , t) = e4ibtu(x + 2ct)
Two different families of periodic waves (positive and sign-indefinite)
share the same Lax spectrum and the same stability.
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Characterization of periodic waves in the derivative NLS

Commercial break: job posting at McMaster University

Tier 1 CRC in Mathematical Analysis and Applications

The Department of Mathematics and Statistics at McMaster University invites
applications for a faculty position at the rank of Associate or full Professor to
hold a proposed Tier 1 Canada Research Chair in Mathematical Analysis and
Applications. This position is intended to be a tenure-track appointment,
although a tenured appointment is possible. The expected start date for this
position is July 1, 2021.

Deadline for application is December 1, 2020.

Further details on https://www.mathjobs.org/jobs/application/16437
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Rogue waves on the periodic wave background in the NLS

Periodic wave background

The focusing nonlinear Schrödinger (NLS) equation

iψt +
1
2
ψxx + |ψ|2ψ = 0

also admits the periodic traveling and standing wave solutions, e.g. the
dnoidal and cnoidal waves:

ψdn(x , t) = dn(x ; k)ei(1−k2/2)t , ψcn(x , t) = kcn(x ; k)ei(k2−1/2)t .
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Rogue waves on the periodic wave background in the NLS

Rogue waves on the periodic wave background

Can we obtain a rogue wave on the background ψ0 such that

inf
x0,t0,α0∈R

sup
x∈R

∣∣∣ψ(x , t)− ψ0(x − x0, t − t0)eiα0

∣∣∣→ 0 as t → ±∞ ???

This rogue wave appears from nowhere and disappears without trace.

Let ψ be a solution of the NLS and φ = (p,q)T be solution of the Lax system:

φx =

(
λ ψ
−ψ̄ −λ

)
φ, φt = i

(
λ2 + 1

2 |ψ|2 1
2ψx + λψ

1
2 ψ̄x − λψ̄ −λ2 − 1

2 |ψ|2
)
φ.

Let ϕ = (p1,q1) be a nonzero solution of the Lax system for λ = λ1 ∈ C. The
following one-fold Darboux transformation (DT):

ψ̂ = ψ +
2(λ1 + λ̄1)p1q̄1

|p1|2 + |q1|2
,

provides another solution ψ̂ of the same NLS equation.
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Rogue waves on the periodic wave background in the NLS

Lax and stability spectra for the dn-periodic wave

Similarly to the DNLS case, the periodic waves are related to the polynomial,

P(λ) = λ4 − 1
2

(u2
1 + u2

2)λ2 +
1

16
(u2

1 − u2
2)2

with two pairs of roots {±λ1,±λ2}:

λ1 =
u1 + u2

2
, λ2 =

u1 − u2

2
.

The dn-periodic wave has u1 = 1, u2 =
√

1− k2:
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Rogue waves on the periodic wave background in the NLS

Let φ = (p1,q1)T be the periodic eigenvector for the eigenvalue λ1 with Λ = 0
(a root in the algebraic method). The second, linearly independent solution
φ = (p̂1, q̂1) can be defined in several ways, e.g.

p̂1 = p1θ1 −
q̄1

|p1|2 + |q1|2
, q̂1 = q1θ1 +

p̄1

|p1|2 + |q1|2
,

such that p1q̂1 − p̂1q1 = 1 (the Wronskian is normalized to 1).

The scalar function θ1(x , t) satisfies

∂θ1

∂x
= −4(λ1 + λ̄1)p̄1q̄1

(|p1|2 + |q1|2)2

and
∂θ1

∂t
= −4i(λ2

1 − λ̄2
1)p̄1q̄1

(|p1|2 + |q1|2)2 +
2i(λ1 + λ̄1)(ψp̄2

1 + ψ̄q̄2
1)

(|p1|2 + |q1|2)2 .

It is generally a linear growing function of (x , t) as |x |+ |t | → ∞.
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Rogue waves on the periodic wave background in the NLS

Rogue wave on the dn-periodic background

Here we have ψ(x , t) = dn(x ; k)ei(1−k2/2)t , |p1|2 + |q1|2 = dn(x ; k), and

θ1(x , t) = 2x + 2i(1±
√

1− k2)t ± 2
√

1− k2
∫ x

0

dy
dn2(y ; k)

,

such that |θ1(x , t)| → ∞ as |x |+ |t | → ∞.

Rogue wave on the background ψ is generated by the DT:

ψ̂ = ψ +
2(λ1 + λ̄1)p̂1 ˆ̄q1

|p̂1|2 + |q̂1|2
,

where
p̂1 = p1θ1 −

2q̄1

|p1|2 + |q1|2
, q̂1 = q1θ1 +

2p̄1

|p1|2 + |q1|2
.

As t → ±∞,

ψ̂(x , t)||θ1|→∞ = ψ +
2(λ1 + λ̄1)p1q̄1

|p1|2 + |q1|2
= dn(x + K (k); k)ei(1−k2/2)t .
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Rogue waves on the periodic wave background in the NLS

The rogue wave for the larger eigenvalue λ1 = 1
2 (u1 + u2) has the larger

magnification M(k) = 2 +
√

1− k2, k ∈ [0,1].
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Rogue waves on the periodic wave background in the NLS

The rogue wave for the smaller eigenvalue λ2 = 1
2 (u1 − u2) has the smaller

magnification M(k) = 2−
√

1− k2, k ∈ [0,1].
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Rogue waves on the periodic wave background in the NLS

Lax and stability spectra for the cn-periodic wave

Here polynomial P(λ) = λ4 − 1
2 (u2

1 + u2
2)λ2 + 1

16 (u2
1 − u2

2)2 has a quadruplet of
roots {±λ1,±λ̄1} with λ1 = 1

2 (u1 + u2), where u1 = k , u2 = i
√

1− k2.
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Rogue waves on the periodic wave background in the NLS

Rogue wave on the cn-periodic background

Here we have ψ(x , t) = kcn(x ; k)ei(k2−1/2)t , |p1|2 + |q1|2 = dn(x ; k), and

θ1(x , t) = 2k2
∫ x

0

cn2(y ; k)dy
dn2(y ; k)

∓ 2ik
√

1− k2
∫ x

0

dy
dn2(y ; k)

+ 2ikt

such that |θ1(x , t)| → ∞ as |x |+ |t | → ∞.

Rogue wave on the background u is generated by the DT:

ψ̂ = ψ +
2(λ1 + λ̄1)p̂1 ˆ̄q1

|p̂1|2 + |q̂1|2
,

where
p̂1 = p1θ1 −

2q̄1

|p1|2 + |q1|2
, q̂1 = q1θ1 +

2p̄1

|p1|2 + |q1|2
.

As t → ±∞,

ψ̂(x , t)||θ1|→∞ = ψ +
2(λ1 + λ̄1)p1q̄1

|p1|2 + |q1|2
= kcn(x + K (k); k)ei(k2−1/2)t .
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Rogue waves on the periodic wave background in the NLS

The rogue wave has exactly the double magnification factor.
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Rogue waves on the periodic wave background in the NLS

The rogue wave has exactly the double magnification factor.
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Rogue waves on the periodic wave background in the NLS

With the two-fold Darboux transformations, one can use both eigenvalues and
construct a more symmetric rogue waves on the cn-periodic background. The
rogue wave has exactly the triple magnification factor.
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Rogue waves on the periodic wave background in the NLS

Experimental observations of rogue waves

The same rogue waves are observed in optics (left) and hydrodynamics
(right). Thanks to G. Xu, B. Kibler (left) and A. Chabchoub (right).
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Rogue waves on the periodic wave background in the NLS

Relation to modulation instability of the periodic wave

The NLS equation admits the periodic waves with nontrivial phase:

u(x) = R(x)eiΘ(x)e2ibt

with

R(x) =
√
β − k2sn2(x ; k), Θ(x) = −2a

∫ x

0

dx
R(x)2 ,

where β and k are two parameters. B. Deconinck–B.L. Segal (2017).
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β = 1: dn-periodic waves.
β = k2: cn-periodic waves.
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of Lax spectrum.
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Rogue waves on the periodic wave background in the NLS
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Rogue waves on the periodic wave background in the NLS

Here are two rogue waves obtained from the one-fold Darboux transformation
associated with the eigenvalues λ = 1

2 (
√
ρ1 ±√ρ2)± i

2
√−ρ3. The rogue wave

is defined by the growth of the function

θ1(x , t) = 2
∫ x

0

ρ(y)±√ρ1ρ2 ∓ i
√−ρ3(

√
ρ1 ±√ρ2)

dn2(y ; k)
dy + 2i(

√
ρ1 ±

√
ρ2)t
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Fluxon condensates in the sine–Gordon equation

Travelling periodic waves in the sine–Gordon equation

The sine–Gordon equation is

utt − uxx + sin(u) = 0.

The travelling wave solutions u(x , t) = f (x − ct) with c > 1 satisfy (after
Lorentz transformation) the differential equation f ′′ + sin(f ) = 0.
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Rotational solutions:
f ′(x) = ±2k−1dn(k−1x , k).

Librational solutions:
f ′(x) = 2kcn(x , k).
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Fluxon condensates in the sine–Gordon equation

Spectral and modulational instability of periodic waves

Top:
Rotational waves
Bottom:
Librational waves

Left:
Lax spectrum
Right:
Stability spectrum

B. Deconinck–P. McGill–B.L. Segal (2017)
C. Jones, R. Marangell, P. Miller, R.G. Plaza (2013).
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Fluxon condensates in the sine–Gordon equation

Real-valued Hamiltonian system

The Lax system of linear equations is written in characteristic form:

∂

∂ξ

[
p
q

]
=

1
2

[
λ −uξ
uξ −λ

] [
p
q

]
and

∂

∂η

[
p
q

]
=

1
2λ

[
cos(u) sin(u)
sin(u) − cos(u)

] [
p
q

]
,

where ξ = 1
2 (x + t) and η = 1

2 (x − t).

The real-valued Hamiltonian system is obtained with the constraint:

−uξ = p2
1 + q2

1 ,

where (p1,q1)T is an eigenvector for the eigenvalue λ1, which is a root of the
polynomial P(λ), and u = f (ξ − η) being the normalized periodic wave.
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Fluxon condensates in the sine–Gordon equation

Rogue wave on the rotational background

One-fold transformation with the second solution

p̂1 = p1θR −
q1

p2
1 + q2

1
, q̂1 = q1θR +

p1

p2
1 + q2

1
,

with θR(ξ, η) = C + 1
2 (ξ + η)− Hk3

2(1−k2)

∫ k−1(ξ−η)

0 dn2(z + K (k); k)dz.

This rogue wave corresponds to the larger positive eigenvalue λ1.
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Fluxon condensates in the sine–Gordon equation

Another rogue wave on the rotational background

This rogue wave corresponds to the smaller positive eigenvalue λ1.
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Fluxon condensates in the sine–Gordon equation

Both rogue waves on the rotational background

Using two eigenvalues in the two-fold Darboux transformation gives the
kink-antikink solution with the speeds on (x , t) plane:

x = ± E(k)√
1− k2K (k)

t ,
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Fluxon condensates in the sine–Gordon equation

Computing sin(û) = ûξη by numerically differentiating ŵ = −ûξ in η with a
forward difference yields the surface plots of sin(û) in (x , t).

Compare with R.J. Buckingham–P.D. Miller (2013):
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Fluxon condensates in the sine–Gordon equation

Rogue wave on the librational background

One-fold transformation with the second solution

p̂1 =
θL − 1

q1
, q̂1 =

θL + 1
p1

,

with θL(ξ, η) = (4H − (f ′)2)
(

C + η
2λ1

+
∫ ξ−η

0
2λ1(f ′)2dx

(4H−(f ′)2)2

)
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Fluxon condensates in the sine–Gordon equation

Computing sin(û) = ûξη by numerically differentiating ŵ = −ûξ in η with a
forward difference yields the surface plots of sin(û) in (x , t).

Compare with R.J. Buckingham–P.D. Miller (2013):
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Fluxon condensates in the sine–Gordon equation

Rogue waves by other methods

We are using the Darboux transformation (DT):

ûξ = uξ −
4λpq

p2 + q2 .

R.Li–X.Geng (2020) used another DT in the form:

û = u − 4 arctan [tan(arg(λ1)) tanh(Im(p1/q1))] .

B.Y. Lu–P.D. Miller (2020) used DT in the Riemann–Hilbert problem.
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Fluxon condensates in the sine–Gordon equation

Summary

Periodic waves of integrable equations are constructed by using either
real or complex Hamiltonian systems
This allows us to characterize the periodic waves in terms of eigenvalues
of the Lax equations associated with the periodic eigenfunctions
We obtain the precise location of Lax and stability spectra, with
assistance of the numerical package based on the Hill’s method.
We further obtain exact solutions describing localized structures on the
background of periodic waves (either rogue waves or propagating
algebraic solitons), with assistance of the Darboux transformations.
Full localization of rogue waves is related to the modulational instability of
the background periodic wave.

Thank you for listening!
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