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The Diffusion Equation with Absorption

∂h
∂t

=
∂2h
∂x2 − h

The Slow Diffusion Equation with Strong Absorption

∂h
∂t

=
∂

∂x

(
hm ∂h
∂x

)
− hn

I Slow diffusion: m > 0
implies finite propagation speed for contact lines
(Herrero-Vazquez, 1987)

I Strong absorption: n < 1
implies finite time extinction for compactly supported data
(Kersner, 1983).



Physical Examples

The slow diffusion equation

∂h
∂t

=
∂

∂x

(
hm ∂h
∂x

)
− hn

describes physical processes with dynamics of interfaces.

Interfaces

I spread of viscous films over a horizontal plate subject to gravity and constant
evaporation (m = 3 and n = 0) (Acton-Huppert-Worster, 2001)

I dispersion of biological populations with a constant death rate (m = 2, n = 0)

I nonlinear heat conduction with a constant rate of heat loss (m = 4, n = 0)

I fluid flows in porous media with a drainage rate driven by gravity or background
flows (m = 1 and n = 1 or n = 0) (Pritchard–Woods–Hogg, 2001)



Interface Dynamics

Advancing interfaces
I driven by diffusion

h ∼ (x− `(t))1/m

Receding interfaces
I driven by absorption

h ∼ (x− `(t))1/(1−n)

We wish to construct a solution that exhibits reversing behaviour:

Advancing→ Receding

or anti-reversing behaviour:

Receding→ Advancing



Results in mathematical literature

I Kawohl–Kersner (1992) - weak formulation for n ≤ 0

∂h
∂t

=
∂

∂x

(
hm ∂h
∂x

)
− hnχh>0

and existence of solutions (uniqueness is open).

I Chen-Matano–Mimura (1995) - bell-shaped data remains bell-shaped in the
time evolution before finite-time extinction. No info on reversing behavior.

I Galaktionov-Shmarev-Vazquez (1999) - position of the interface, `(t), is a
Lipschitz continuous function of time if m + n > 1, found from integrating the
interface equations

d`
dt

=


−hm−1 ∂h

∂x

∣∣∣
x=`(t)+

if ˙̀ ≤ 0,

hn ( ∂h
∂x

)−1
∣∣∣

x=`(t)+
if ˙̀ ≥ 0.

For technical reasons, n ∈ (0, 1) was assumed.



Self-similar solutions

Consider the following self-similar reduction (Gandarias, 1994):

h(x, t) = (±t)
1

1−n H±(φ), φ = x(±t)−
m+1−n
2(1−n) , ±t > 0,

where m > 0 and n < 1. The functions H± satisfy the ODEs:

d
dφ

(
Hm
±

dH±
dφ

)
± m + 1− n

2(1− n)
φ

dH±
dφ

= Hn
± ±

1
1− n

H±

We seek positive solutions H± on the semi-infinite line [A±,∞) that satisfy

(i): H±(φ)→ 0 as φ→ A±,

(ii): H±(φ) is monotonically increasing for all φ > A±,

(iii): H±(φ)→ +∞ as φ→ +∞,
(iv): H+(φ) ∼ H−(φ) as φ→ +∞.

If A± > 0, the existence of self-similar solutions imply reversing behaviour:

`(t) = A±(±t)
m+1−n
2(1−n) , ±t > 0.

If m + n > 1, then `′(0) = 0.
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Dynamical Systems Framework

Solutions were approximated by a naive numerical scheme
in Foster et al. [SIAM J. Appl. Math. 72, 144 (2012)].

The scope of our work is to develop a “rigorous” shooting method:
I The ODEs are singular in the limits of small and large H±
I Make transformations to change singular boundary values to equilibrium points
I Obtain near-field asymptotics (small H±): (φ, u,w) = (A±, 0, 0)
I Obtain far-field asymptotics (large H±): (x, y, z) = (x0, 0, 0)
I Connect between near-field and far-field asymptotics.



Near-field asymptotics

In variables u = H± and w = Hm
±H′±(φ), the system is non-autonomous:

du
dφ

=
w
um ,

dw
dφ

= un ± 1
1− n

u∓ m + 1− n
2(1− n)

φw
um .

The system is singular at u = 0.

Introduce the map τ 7→ φ by dφ
dτ = um for u > 0. Then, we obtain the 3D

autonomous dynamical system
φ̇ = um,
u̇ = w,
ẇ = um+n ± 1

1−n um+1 ∓ m+1−n
2(1−n) φw.

The set of equilibrium points is given by (φ, u,w) = (A, 0, 0), where A ∈ R. If
m > 1, each equilibrium point is associated with the Jacobian matrix 0 0 0

0 0 1
0 0 ∓m+1−n

2(1−n) A

 .
with a double zero eigenvalue and a simple nonzero eigenvalue if A 6= 0.
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Center manifold

For every m > 0, n < 1, and m + n > 1 and for every A 6= 0, there exists a
two-dimensional center manifold near (A, 0, 0), which can be parameterized by

Wc(A, 0, 0) =
{

w = ± 2(1− n)
(m + 1− n)A

um+n + · · · , φ ∈ (A,A + δ), u ∈ (0, δ)
}
.

Dynamics on Wc(A, 0, 0) is topologically equivalent to that of{
φ̇ = um,

u̇ = ± 2(1−n)um+n

(m+1−n)A .

In particular, for every A 6= 0, there exists exactly one trajectory on Wc(A, 0, 0),
which approaches the equilibrium point (A, 0, 0) as τ → −∞ if ±A > 0.

Theorem
If ±A± > 0, the unique solution has the following asymptotic behaviour

H±(φ) =
[
± 2(1− n)2

(m + 1− n)A±
(φ− A±)

]1/(1−n)

+ · · · , as φ→ A±.
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Unstable manifold

If ±A < 0, the center manifold is attracting (no trajectories leave Wc(A, 0, 0)).
However, there is an unstable manifold.

For every m > 1, n < 1, and m + n > 1 and for every ±A < 0, there exists a
one-dimensional unstable manifold near (A, 0, 0), which can be parameterized as
follows:

Wu(A, 0, 0) =
{
φ = A +O(um), w = ∓m + 1− n

2(1− n)
Au +O(um+n), u ∈ (0, δ)

}
.

Dynamics on Wu(A, 0, 0) is topologically equivalent to that of

u̇ = ∓m + 1− n
2(1− n)

Au.

Theorem
If ∓A± > 0, the unique solution has the following asymptotic behaviour

H±(φ) =
(
∓m(m + 1− n)A±

2(1− n)
(φ− A±)

)1/m

[1 + · · · ] , as φ→ A±.
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Far-field asymptotics

If a trajectory departs from the point (φ, u,w) = (A, 0, 0), how does it arrive to
infinity: φ→∞, u→∞?

Let us change the variables

φ =
x

y
m+1−n
2(1−n)

, u =
1

y
1

1−n
, w =

z

y
m+3−n
2(1−n)

and re-parameterize the time τ with new time s by

dτ
ds

= y
m+1−n
2(1−n) , y ≥ 0.

The 3D autonomous dynamical system is rewritten as a smooth system
x′ = y− m+1−n

2 xz,
y′ = −(1− n)zy,
z′ = ± 1

1−n y + y2 ∓ m+1−n
2(1−n) xz− m+3−n

2 z2,
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The 3D smooth dynamical system is
x′ = y− m+1−n

2 xz,
y′ = −(1− n)zy,
z′ = ± 1

1−n y + y2 ∓ m+1−n
2(1−n) xz− m+3−n

2 z2,

The set of equilibrium points is given by (x, y, z) = (x0, 0, 0), where x0 ∈ R. Each
equilibrium point is associated with the Jacobian matrix 0 1 −m+1−n

2 x0

0 0 0
0 ± 1

1−n ∓m+1−n
2(1−n) x0

 .
with a double zero eigenvalue and a simple nonzero eigenvalue if x0 6= 0. Only
x0 > 0 is relevant for the asymptotics as φ→ +∞.

In addition to the two-dimensional center manifold, there is a stable (attracting) curve
for the upper sign and an unstable (repelling) curve for the lower sign.



Center manifold

Assume m > 0, n < 1, and m + n > 1. For every x0 > 0, there exists a
two-dimensional center manifold near (x0, 0, 0), which can be parameterized as
follows:

Wc(x0, 0, 0) =
{

y =
m + 1− n

2
xz +O(z2), x ∈ (x0 − δ, x0 + δ), z ∈ (−δ, δ)

}
.

The dynamics on Wc(x0, 0, 0) is topologically equivalent to that of{
x′ = ±(1− n)

(
m+n+1

2 − (m+1−n)2

4 x2
0

)
z2,

z′ = −(1− n)z2.

In particular, there exists exactly one trajectory on Wc(x0, 0, 0), which approaches the
equilibrium point (x0, 0, 0) as s→ +∞.

Theorem
The solution at infinity satisfies the asymptotic behaviour

H±(φ) ∼
(
φ

x0

) 2
m+1−n

as φ→ +∞.

The family of diverging solutions is 1D for H− and 2D for H+.
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Back to the plan

We are developing “rigorous” shooting method:
I The ODEs are singular in the limits of small and large H±
I Make transformations to change singular boundary values to equilibrium points
I Obtain near-field asymptotics (small H±): (φ, u,w) = (A±, 0, 0)
I Obtain far-field asymptotics (large H±): (x, y, z) = (x0, 0, 0)
I Connect between near-field and far-field asymptotics.



Connection results for H+ (after reversing)

I Trajectory that departs from (φ, u,w) = (A+, 0, 0) is 1D
I Trajectory that arrives to (x, y, z) = (x0, 0, 0) is 2D.

Lemma
Fix A+ ∈ R\{0} and consider a 1D trajectory such that (φ, u,w)→ (A+, 0, 0) as
τ → −∞ and u > 0. Then, there exists a τ0 ∈ R such that φ(τ)→ +∞ and
u(τ)→ +∞ as τ → τ0.

The proof is based on the energy method

E(w, u) :=
1
2

w2 − 1
m + n + 1

um+n+1 − 1
(m + 2)(1− n)

um+2

with the rate of change along the trajectory given by

dE
dτ

= −m + 1− n
2(1− n)

φw2.
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Connection results for H− (before reversing)

I Trajectory that departs from (φ, u,w) = (A−, 0, 0) is 1D
I Trajectory that arrives to (x, y, z) = (x0, 0, 0) is 1D.

If we shoot from (A−, 0, 0), then the trajectory does not generally reach (x0, 0, 0)
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Figure: Panels (a) and (b) show trajectories with m = 3 and n = 0 for H+ and H− respectively.



Connection results for H− (before reversing)

I Trajectory that departs from (φ, u,w) = (A−, 0, 0) is 1D
I Trajectory that arrives to (x, y, z) = (x0, 0, 0) is 1D.

Therefore, we shoot from (x0, 0, 0) trying to reach (A−, 0, 0).

Lemma
Fix x0 > 0 and consider a 1D trajectory such that (x, y, z)→ (x0, 0, 0) as s→ +∞
and y > 0. Then, there exists an s0 ∈ R such that

(i) either w = 0 and u ≥ 0 as s→ s0

(ii) or u = 0 and w ≥ 0 as s→ s0.

In both cases, if (u,w) 6= (0, 0) as s→ s0, then |φ| <∞ as s→ s0.

Open ends:
I It is unknown if the two piecewise C1 maps intersect:

(i) R+ 3 x0 7→ (ξ, u) ∈ R× R+ and (ii) R+ 3 x0 7→ (ξ,w) ∈ R× R+.

I It is unknown if φ remains bounded at the intersection point.

And here the numerical approximation kicks in...
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Numerical Shooting Method

for H− (before reversing)

I Select a value x0 which characterizes the far-field behaviour
I Use asymptotic behaviour to take a small step away
I Integrate in decreasing φ
I Find intersections of the trajectory either with w = 0 or with u = 0
I Plot the two piecewise maps versus x0

I Find the interaction points x0 = x∗ between the two piecewise maps at
(u,w) = (0, 0) and record the corresponding value for φ = A−

for H+ (after reversing)

I Select a value A+ which characterizes the near-field behaviour
I Use asymptotic behaviour to take a small step away
I Integrate with increasing φ
I Find x0 from the far-field behaviour
I Plot x0 versus A+

I For the value x∗ in part H−, find the value of A+.
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Finding the intersection points x0 = x∗
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Figure: Panels (a)-(b) show plots of the piecewise C1 maps for m = 2 and m = 4. In all cases
the blue, red and black curves show the value of w at u = 0, the value of u at w = 0 and the
value of ξ at the termination point respectively.



Finding the value of A+
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Figure: Panel (a): Plots of the variation of x0 with A+ for various different values of m = 2, 3
and 4. Panel (b): Plots of the trajectories emanating from A+ = 0.1, 0.2, 0.3, 0.4 and 0.5 for
m = 3. The constant to which these trajectories tend in the far-field is selected to be the
corresponding value of x0.



Self-similar solutions for n = 0 and bifurcations
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Summary on self-similar solutions

We have demonstrated that

I For each value of m > 1 and n = 0, there exists at least one value of x0 = x∗0
that defines a trajectory emanating from (x∗0 , 0, 0) and terminating at (A−, 0, 0),
and thus a suitable solution for H−.

I For every value of A+ ∈ R, there exists a unique corresponding value of x0,
thereby defining an infinite family of suitable solutions for H+.

I Invoking the matching condition at far-field for each value of x0 = x∗0 , we obtain
unique values of A− and A+.



Relevance to the slow diffusion equation

The asymptotic behavior of the self-similar solutions H± is compatible with the
interface conditions

d`
dt

=


−hm−1 ∂h

∂x

∣∣∣
x=`(t)+

if `′(t) ≤ 0,

hn ( ∂h
∂x

)−1
∣∣∣

x=`(t)+
if `′(t) ≥ 0.

obtained in Galaktionov-Shmarev-Vazquez (1999).

For instance, if A± > 0 and `′(t) > 0, t > 0, we have justified that

d`
dt

= lim
x→`(t)+

hn
(
∂h
∂x

)−1

=
m + 1− n
2(1− n)

A+t
m+1−n
2(1−n)−1

.

After an integration with the condition `(0) = 0, this yields the interface evolution

`(t) = A+t
m+1−n
2(1−n) , t > 0,

in agreement with the self-similar solution

h(x, t) = t
1

1−n H+(φ), φ = xt−
m+1−n
2(1−n) , t > 0.



Simulations of the slow diffusion equation

Numerical simulations with initial data

h|t=0 = λ sin

(
π

2

(
1− x

`0

)1/m
)

and `|t=0 = `0,
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Figure: Panel (a) shows a comparison between the predictions on the behaviour of `(t) as given
by: (i) the self-similar theory (solid line) and (ii) direct numerical simulation, for m = 4 and
n = 0. The dashed, dash-dotted and dotted curves show the results from direct numerical
simulation with λ = 5, 10, 20 and `0 = −1. Panel (b) shows representative plots of h(x, t) for
the choice λ = 5 at 10 equally spaced values of t. The blue curve show the solution
immediately prior to the reversing event, i.e., when the simulation was terminated.



Self-similar solutions for other values of n
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Location of Bifurcations

The black curve corresponds to the exact solution with A+ = A− = 0:

H±(φ) =
(
φ

xQ

) 2
m+1−n

, x2
Q =

2(m + 1 + n)
(m + 1− n)2 .

After substituting self-similar variables, it is a static solution h(x, t) = h(x). New
self-similar solutions bifurcate from the static solutions at

m = mk = (1− n)(2k − 1), k = 1, 2, 3, ...
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Analysis of Bifurcations (n = 0)

Write H− as a perturbation to the exact solution

H− = x
2

m+1 + u(x), x =
φ

xQ
, x2

Q =
2

m + 1
.

The bifurcation problem is related to the linear equation Lu = 0, where

Lu =
m + 1

2
d2

dx2

(
x

2m
m+1 u(x)

)
− m + 1

2
x

du
dx

+ u(x) = 0, x ∈ (0,∞).

The boundary conditions for admissible self-similar solutions are

u(x) ∼ x
2

m+1 as x→∞

At the bifurcation point m = mk, the self-similar solutions must satisfy the other
boundary condition

u(x) ∼ x
1−m
1+m as x→ 0,

related to the derivative of x2/(m+1) in x.



Analysis of Bifurcations

After a coordinate transformation, the homogeneous equation Lu = 0 becomes the
Kummer’s differential equation (1837),

z
d2w
dz2 + (b− z)

dw
dz

+ aw(z) = 0, z ∈ (0,∞),

where
a := −m + 1

2
, b :=

m + 3
2

.

The only solution with the correct boundary condition at infinity was characterized
by Tricomi (1947). The set of bifurcating solutions at m = mk, k ∈ N with the correct
boundary condition at zero is found by truncating the power series into a polynomial.

These solutions of the linear equation Lu = 0 are incorporated in the construction of
self-similar solutions with a two-scale (inner and outer) matched asymptotic
expansion.



Numerical confirmations

Bifurcation at m = 5 and n = 0:

A− = −40
9
(x0 − xQ) + · · ·

and
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Figure: Left: The variation of the parameter A− with 5 − m, and; right: the variation of x0 − xQ
with A− local to m = 5. The black dots are numerics, the blue lines are asymptotics.



Conclusion
I For every m > 0, n < 1 and m + n > 1 a pair of solutions H+ and H− can be

constructed numerically and then converted to h(x, t)
I Solutions with A± > 0 correspond to reversing interfaces
I Solutions with A± < 0 correspond to anti-reversing interfaces

I The behaviour of the self-similar solution at zero and infinity was justified by
dynamical system theory

I Bifurcations of self-similar solutions are predicted from analysis of the classical
differential equations

I Relevance of the self-similar solutions for the slow diffusion equations is
confirmed numerically and from weak solutions.
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