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The Diffusion Equation with Absorption
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The Slow Diffusion Equation with Strong Absorption
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» Slow diffusion: m > 0
implies finite propagation speed for contact lines
(Herrero-Vazquez, 1987)

» Strong absorption: n < 1
implies finite time extinction for compactly supported data
(Kersner, 1983).



Physical Examples

The slow diffusion equation
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describes physical processes with dynamics of interfaces.
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» spread of viscous films over a horizontal plate subject to gravity and constant
evaporation (m = 3 and n = 0) (Acton-Huppert-Worster, 2001)

» dispersion of biological populations with a constant death rate (m = 2, n = 0)
» nonlinear heat conduction with a constant rate of heat loss (m = 4, n = 0)

» fluid flows in porous media with a drainage rate driven by gravity or background
flows (m = 1 and n = 1 or n = 0) (Pritchard—~Woods—Hogg, 2001)



Interface Dynamics

Advancing interfaces Receding interfaces

» driven by diffusion > driven by absorption
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We wish to construct a solution that exhibits reversing behaviour:
Advancing — Receding
or anti-reversing behaviour:

Receding — Advancing



Results in mathematical literature

» Kawohl-Kersner (1992) - weak formulation for n < 0
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and existence of solutions (uniqueness is open).

» Chen-Matano—Mimura (1995) - bell-shaped data remains bell-shaped in the
time evolution before finite-time extinction. No info on reversing behavior.

» Galaktionov-Shmarev-Vazquez (1999) - position of the interface, £(7), is a
Lipschitz continuous function of time if m 4+ n > 1, found from integrating the
interface equations
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For technical reasons, n € (0, 1) was assumed.



Self-similar solutions

Consider the following self-similar reduction (Gandarias, 1994):
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where m > 0 and n < 1. The functions H+ satisfy the ODEs:
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We seek positive solutions H+ on the semi-infinite line [A4, co0) that satisfy
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is monotonically increasing for all ¢ > A4,
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Consider the following self-similar reduction (Gandarias, 1994):
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where m > 0 and n < 1. The functions H+ satisfy the ODEs:
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We seek positive solutions H+ on the semi-infinite line [A4, co0) that satisfy

(@): +(¢) >0 as ¢ —Ag,

(ii): Hi(¢) is monotonically increasing for all ¢ > A4,
(iii): +(¢) > +o0 as ¢ — +oo,
(iv): (@) ~H_(9) as ¢ — +oo.

If A+ > 0, the existence of self-similar solutions imply reversing behaviour:
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If m +n > 1, then £/(0) = 0.



Dynamical Systems Framework

Solutions were approximated by a naive numerical scheme
in Foster et al. [SIAM J. Appl. Math. 72, 144 (2012)].

The scope of our work is to develop a “rigorous” shooting method:
» The ODEs are singular in the limits of small and large H4
» Make transformations to change singular boundary values to equilibrium points
» Obtain near-field asymptotics (small H+): (¢, u, w) = (A+,0,0)
» Obtain far-field asymptotics (large H+): (x,y,z) = (x0, 0, 0)

» Connect between near-field and far-field asymptotics.




Near-field asymptotics

In variables u = Hy and w = H'} H). (¢), the system is non-autonomous:
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The system is singular at u = 0.
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The set of equilibrium points is given by (¢, u, w) = (A,0,0), where A € R. If
m > 1, each equilibrium point is associated with the Jacobian matrix

0 0 0
0 0 1

m+1—
R

with a double zero eigenvalue and a simple nonzero eigenvalue if A # 0.



Center manifold

Foreverym > 0,n < 1,and m + n > 1 and for every A # 0, there exists a
two-dimensional center manifold near (A, 0, 0), which can be parameterized by
2(1 —n)

W.(A,0,0) = {w = im
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Dynamics on W,(A, 0, 0) is topologically equivalent to that of
{ é=u",
. 2(1l—n)u"
==+ (m+1—n)A *

In particular, for every A # 0, there exists exactly one trajectory on W,(4, 0, 0),
which approaches the equilibrium point (A, 0,0) as 7 — —oo if +A4 > 0.



Center manifold

Foreverym > 0,n < 1,and m + n > 1 and for every A # 0, there exists a
two-dimensional center manifold near (A, 0, 0), which can be parameterized by

2(1 —n)

W.(A,0,0) = {w = im

um+n+“.7 ¢€(A7A+5)7 MG(O,&)}

Dynamics on W,(A, 0, 0) is topologically equivalent to that of
{ é=u",
. 2(1l—n)u"
==+ (m+1—n)A *

In particular, for every A # 0, there exists exactly one trajectory on W,(4, 0, 0),
which approaches the equilibrium point (A, 0,0) as 7 — —oo if +A4 > 0.

Theorem
If £A4 > 0, the unique solution has the following asymptotic behaviour
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Unstable manifold

If +A < 0, the center manifold is attracting (no trajectories leave W (A, 0, 0)).
However, there is an unstable manifold.

Foreverym > 1,n < 1,and m + n > 1 and for every £A < 0, there exists a
one-dimensional unstable manifold near (A, 0, 0), which can be parameterized as
follows:
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Theorem
If FA+ > 0, the unique solution has the following asymptotic behaviour
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Far-field asymptotics

If a trajectory departs from the point (¢, u, w) = (A, 0,0), how does it arrive to
infinity: ¢ — oo, u — o0?



Far-field asymptotics
If a trajectory departs from the point (¢, u, w) = (A, 0,0), how does it arrive to
infinity: ¢ — oo, u — o0?
Let us change the variables
X 1 Z

¢ = m—+1—n ? u= 1 w= m—+3—n
2(1— T— 2(1—
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and re-parameterize the time 7 with new time s by
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The 3D autonomous dynamical system is rewritten as a smooth system
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The 3D smooth dynamical system is
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The set of equilibrium points is given by (x,y,z) = (xo0, 0,0), where xo € R. Each
equilibrium point is associated with the Jacobian matrix

_m+l—n
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0
0
0 :l:l—n T3 (=) X0

with a double zero eigenvalue and a simple nonzero eigenvalue if xop 7% 0. Only
xo > 0 is relevant for the asymptotics as ¢ — +o0.

In addition to the two-dimensional center manifold, there is a stable (attracting) curve
for the upper sign and an unstable (repelling) curve for the lower sign.



Center manifold

Assume m > 0,n < 1, and m + n > 1. For every xo > 0, there exists a
two-dimensional center manifold near (xo, 0, 0), which can be parameterized as
follows:

m+1—n

We(x0,0,0) = {y = 3
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The dynamics on W,(xo, 0, 0) is topologically equivalent to that of
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In particular, there exists exactly one trajectory on W, (xo, 0, 0), which approaches the
equilibrium point (xo, 0, 0) as s — +oo.
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In particular, there exists exactly one trajectory on W, (xo, 0, 0), which approaches the
equilibrium point (xo, 0, 0) as s — +oo.

Theorem
The solution at infinity satisfies the asymptotic behaviour

Hi(qs)N(?)m as ¢ — +oo.
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The family of diverging solutions is 1D for H_ and 2D for H .



Back to the plan

We are developing “rigorous” shooting method:
» The ODEs are singular in the limits of small and large H+
» Make transformations to change singular boundary values to equilibrium points
» Obtain near-field asymptotics (small H+): (¢, u, w) = (A+,0,0)
» Obtain far-field asymptotics (large H+): (x,y,z) = (x0, 0, 0)

» Connect between near-field and far-field asymptotics.




Connection results for H (after reversing)

» Trajectory that departs from (¢, u, w) = (A+,0,0) is 1D
» Trajectory that arrives to (x,y,z) = (xo0,0,0) is 2D.

Lemma

Fix A4 € R\{0} and consider a 1D trajectory such that (¢, u,w) — (A4, 0,0) as
T — —oo and u > 0. Then, there exists a 7o € R such that ¢(17) — +o0 and
u(t) = +ooas T — 7.



Connection results for H (after reversing)

» Trajectory that departs from (¢, u, w) = (A+,0,0) is 1D
» Trajectory that arrives to (x,y,z) = (xo0,0,0) is 2D.

Lemma

Fix A4 € R\{0} and consider a 1D trajectory such that (¢, u,w) — (A4, 0,0) as
T — —oo and u > 0. Then, there exists a 7o € R such that ¢(17) — +o0 and
u(t) = +ooas T — 7.

The proof is based on the energy method
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Connection results for H_ (before reversing)

» Trajectory that departs from (¢, u,w) = (A_,0,0) is 1D
» Trajectory that arrives to (x,y,z) = (x0,0,0) is 1D.

If we shoot from (A_, 0, 0), then the trajectory does not generally reach (xo, 0, 0)
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Figure: Panels (a) and (b) show trajectories with m = 3 and n = 0 for H4 and H_ respectively.



Connection results for H_ (before reversing)

» Trajectory that departs from (¢, u,w) = (A_,0,0) is 1D
» Trajectory that arrives to (x,y,z) = (x0,0,0) is 1D.

Therefore, we shoot from (xo, 0, 0) trying to reach (A—, 0, 0).

Lemma
Fix xo > 0 and consider a 1D trajectory such that (x,y,z) — (x0,0,0) as s — 400
andy > 0. Then, there exists an so € R such that

(i) eitherw =0andu > 0ass — so
(i) oru=0andw > 0as s — so.

In both cases, if (u, w) # (0,0) as s — so, then |¢| < oo as s — so.
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Open ends:

» Tt is unknown if the two piecewise C' maps intersect:
: + + - + +
O R"ox— (§,u) eRxR" and (i) R"dx+— (§,w) ERXRT.
» It is unknown if ¢ remains bounded at the intersection point.

And here the numerical approximation kicks in...



Numerical Shooting Method

for H_ (before reversing)

» Select a value xo which characterizes the far-field behaviour
» Use asymptotic behaviour to take a small step away
» Integrate in decreasing ¢

» Find intersections of the trajectory either with w = 0 or withu = 0

v

Plot the two piecewise maps versus xo

v

Find the interaction points xo = x. between the two piecewise maps at
(u, w) = (0, 0) and record the corresponding value for ¢ = A_



Numerical Shooting Method

for H_ (before reversing)

» Select a value xo which characterizes the far-field behaviour
» Use asymptotic behaviour to take a small step away
» Integrate in decreasing ¢

» Find intersections of the trajectory either with w = 0 or withu = 0

v

Plot the two piecewise maps versus xo

v

Find the interaction points xo = x. between the two piecewise maps at
(u, w) = (0, 0) and record the corresponding value for ¢ = A_

for H (after reversing)

> Select a value A4 which characterizes the near-field behaviour
» Use asymptotic behaviour to take a small step away
» Integrate with increasing ¢

» Find x( from the far-field behaviour

v

Plot xo versus A+

v

For the value x. in part H_, find the value of A..



Finding the intersection points xy = X,

o

Figure: Panels (a)-(b) show plots of the piecewise C! maps for m = 2 and m = 4. In all cases
the blue, red and black curves show the value of w at u = 0, the value of # at w = 0 and the
value of £ at the termination point respectively.



Finding the value of A
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Figure: Panel (a): Plots of the variation of xy with A4 for various different values of m = 2, 3
and 4. Panel (b): Plots of the trajectories emanating from A = 0.1, 0.2, 0.3, 0.4 and 0.5 for
m = 3. The constant to which these trajectories tend in the far-field is selected to be the
corresponding value of xg.



Self-similar solutions for n = 0 and bifurcations
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Summary on self-similar solutions

We have demonstrated that

» For each value of m > 1 and n = 0, there exists at least one value of xo = x;
that defines a trajectory emanating from (x, 0, 0) and terminating at (A—, 0, 0),
and thus a suitable solution for H_.

» For every value of A € R, there exists a unique corresponding value of xo,
thereby defining an infinite family of suitable solutions for H .

» Invoking the matching condition at far-field for each value of xo = xj, we obtain
unique values of A_ and A-.



Relevance to the slow diffusion equation

The asymptotic behavior of the self-similar solutions H+ is compatible with the
interface conditions

_gym—10h : / <
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dt (2 ¢ (1) > 0.
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obtained in Galaktionov-Shmarev-Vazquez (1999).

For instance, if A+ > 0 and é’(z) > 0, ¢ > 0, we have justified that
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After an integration with the condition £(0) = 0, this yields the interface evolution

L) =Apr20=0 | >0,

in agreement with the self-similar solution
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Simulations of the slow diffusion equation

Numerical simulations with initial data
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Figure: Panel (a) shows a comparison between the predictions on the behaviour of £(r) as given
by: (i) the self-similar theory (solid line) and (ii) direct numerical simulation, for m = 4 and

n = 0. The dashed, dash-dotted and dotted curves show the results from direct numerical
simulation with A = 5, 10, 20 and £y = —1. Panel (b) shows representative plots of i(x, t) for
the choice A = 5 at 10 equally spaced values of z. The blue curve show the solution
immediately prior to the reversing event, i.e., when the simulation was terminated.



Self-similar solutions for other values of n




Location of Bifurcations

The black curve corresponds to the exact solution with Ay = A_ = 0:
2
¢ m¥i—n 2 2(111 + 1 + n)
H = —_— =
+(9) <xQ C T G 1y

After substituting self-similar variables, it is a static solution (x, ) = h(x). New
self-similar solutions bifurcate from the static solutions at

m=m=(1-n)2k—-1), k=1,2,3, ..

s




Analysis of Bifurcations (n = 0)

Write H_ as a perturbation to the exact solution

H,:xm%r'Jru(x), x:%, X3 P

The bifurcation problem is related to the linear equation Lu = 0, where

m+1d*

Lu="7""
" 2 de

(xm%'lu(x)) _ L"_lx@ +u(x) =0, x€(0,00).

The boundary conditions for admissible self-similar solutions are

u(x)wxmi+l as x — 0o

At the bifurcation point m = my, the self-similar solutions must satisfy the other
boundary condition

-
u(x)wxlTZ as x—0,

related to the derivative of x*/"+1) in x.



Analysis of Bifurcations

After a coordinate transformation, the homogeneous equation Lu = 0 becomes the
Kummer’s differential equation (1837),

d*w dw
Zd712+(b_z)diz+aw(Z)70’ z € (0,00),
where
m+1 b’*m+3
= 7 =

The only solution with the correct boundary condition at infinity was characterized
by Tricomi (1947). The set of bifurcating solutions at m = my, k € N with the correct
boundary condition at zero is found by truncating the power series into a polynomial.

These solutions of the linear equation Ly = 0 are incorporated in the construction of
self-similar solutions with a two-scale (inner and outer) matched asymptotic
expansion.



Numerical confirmations

Bifurcation at m = 5 and n = 0:
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Figure: Left: The variation of the parameter A_ with 5 — m, and; right: the variation of xo — xp
with A_ local to m = 5. The black dots are numerics, the blue lines are asymptotics.



Conclusion

» Foreverym > 0,n < 1 and m 4+ n > 1 a pair of solutions H; and H_ can be
constructed numerically and then converted to A(x, 1)

> Solutions with A4+ > 0 correspond to reversing interfaces
> Solutions with A4+ < 0 correspond to anti-reversing interfaces

» The behaviour of the self-similar solution at zero and infinity was justified by
dynamical system theory

» Bifurcations of self-similar solutions are predicted from analysis of the classical
differential equations

» Relevance of the self-similar solutions for the slow diffusion equations is
confirmed numerically and from weak solutions.
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