

Self-similar solutions for reversing interfaces in slow diffusion with strong absorption

Dmitry Pelinovsky

Department of Mathematics, McMaster University, Canada

With Jamie Foster, University of Portsmouth, England

Workshop “‘Coherent Structures in PDEs and Their Applications’’
June 20-24, 2016, Oaxaca, Mexico

The Diffusion Equation with Absorption

$$\frac{\partial h}{\partial t} = \frac{\partial^2 h}{\partial x^2} - h$$

The Slow Diffusion Equation with Strong Absorption

$$\frac{\partial h}{\partial t} = \frac{\partial}{\partial x} \left(h^{\textcolor{red}{m}} \frac{\partial h}{\partial x} \right) - h^{\textcolor{red}{n}}$$

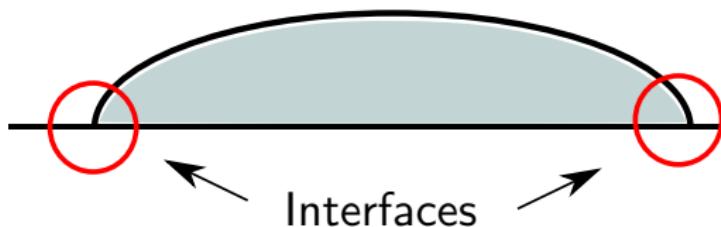
- ▶ Slow diffusion: $\textcolor{red}{m} > 0$
implies finite propagation speed for contact lines
(Herrero-Vazquez, 1987)
- ▶ Strong absorption: $\textcolor{red}{n} < 1$
implies finite time extinction for compactly supported data
(Kersner, 1983).

Physical Examples

The slow diffusion equation

$$\frac{\partial h}{\partial t} = \frac{\partial}{\partial x} \left(h^m \frac{\partial h}{\partial x} \right) - h^n$$

describes physical processes with dynamics of interfaces.

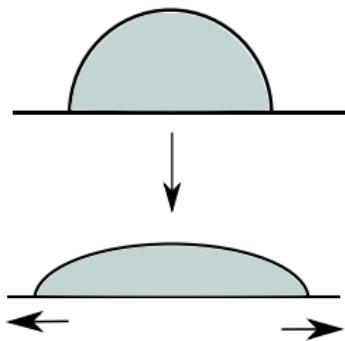


- ▶ spread of viscous films over a horizontal plate subject to gravity and constant evaporation ($m = 3$ and $n = 0$) (Acton-Huppert-Worster, 2001)
- ▶ dispersion of biological populations with a constant death rate ($m = 2$, $n = 0$)
- ▶ nonlinear heat conduction with a constant rate of heat loss ($m = 4$, $n = 0$)
- ▶ fluid flows in porous media with a drainage rate driven by gravity or background flows ($m = 1$ and $n = 1$ or $n = 0$) (Pritchard-Woods-Hogg, 2001)

Interface Dynamics

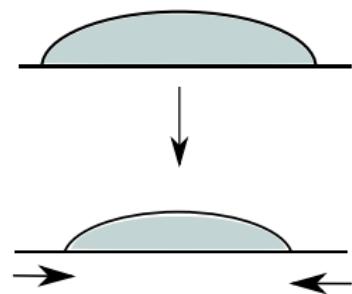
Advancing interfaces

- ▶ driven by diffusion



Receding interfaces

- ▶ driven by absorption



$$h \sim (x - \ell(t))^{1/m}$$

$$h \sim (x - \ell(t))^{1/(1-n)}$$

We wish to construct a solution that exhibits **reversing** behaviour:

Advancing \rightarrow Receding

or **anti-reversing** behaviour:

Receding \rightarrow Advancing

Results in mathematical literature

- ▶ Kawohl–Kersner (1992) - weak formulation for $n \leq 0$

$$\frac{\partial h}{\partial t} = \frac{\partial}{\partial x} \left(h^m \frac{\partial h}{\partial x} \right) - h^n \chi_{h>0}$$

and existence of solutions (uniqueness is open).

- ▶ Chen-Matano–Mimura (1995) - bell-shaped data remains bell-shaped in the time evolution before finite-time extinction. No info on reversing behavior.
- ▶ Galaktionov-Shmarev-Vazquez (1999) - position of the interface, $\ell(t)$, is a Lipschitz continuous function of time if $m + n > 1$, found from integrating the interface equations

$$\frac{d\ell}{dt} = \begin{cases} -h^{m-1} \frac{\partial h}{\partial x} \Big|_{x=\ell(t)^+} & \text{if } \dot{\ell} \leq 0, \\ h^n \left(\frac{\partial h}{\partial x} \right)^{-1} \Big|_{x=\ell(t)^+} & \text{if } \dot{\ell} \geq 0. \end{cases}$$

For technical reasons, $n \in (0, 1)$ was assumed.

Self-similar solutions

Consider the following self-similar reduction (Gandarias, 1994):

$$h(x, t) = (\pm t)^{\frac{1}{1-n}} H_{\pm}(\phi), \quad \phi = x(\pm t)^{-\frac{m+1-n}{2(1-n)}}, \quad \pm t > 0,$$

where $m > 0$ and $n < 1$. The functions H_{\pm} satisfy the ODEs:

$$\frac{d}{d\phi} \left(H_{\pm}^m \frac{dH_{\pm}}{d\phi} \right) \pm \frac{m+1-n}{2(1-n)} \phi \frac{dH_{\pm}}{d\phi} = H_{\pm}^n \pm \frac{1}{1-n} H_{\pm}$$

Self-similar solutions

Consider the following self-similar reduction (Gandarias, 1994):

$$h(x, t) = (\pm t)^{\frac{1}{1-n}} H_{\pm}(\phi), \quad \phi = x(\pm t)^{-\frac{m+1-n}{2(1-n)}}, \quad \pm t > 0,$$

where $m > 0$ and $n < 1$. The functions H_{\pm} satisfy the ODEs:

$$\frac{d}{d\phi} \left(H_{\pm}^m \frac{dH_{\pm}}{d\phi} \right) \pm \frac{m+1-n}{2(1-n)} \phi \frac{dH_{\pm}}{d\phi} = H_{\pm}^n \pm \frac{1}{1-n} H_{\pm}$$

We seek positive solutions H_{\pm} on the semi-infinite line $[A_{\pm}, \infty)$ that satisfy

- (i): $H_{\pm}(\phi) \rightarrow 0$ as $\phi \rightarrow A_{\pm}$,
- (ii): $H_{\pm}(\phi)$ is monotonically increasing for all $\phi > A_{\pm}$,
- (iii): $H_{\pm}(\phi) \rightarrow +\infty$ as $\phi \rightarrow +\infty$,
- (iv): $H_+(\phi) \sim H_-(\phi)$ as $\phi \rightarrow +\infty$.

Self-similar solutions

Consider the following self-similar reduction (Gandarias, 1994):

$$h(x, t) = (\pm t)^{\frac{1}{1-n}} H_{\pm}(\phi), \quad \phi = x(\pm t)^{-\frac{m+1-n}{2(1-n)}}, \quad \pm t > 0,$$

where $m > 0$ and $n < 1$. The functions H_{\pm} satisfy the ODEs:

$$\frac{d}{d\phi} \left(H_{\pm}^m \frac{dH_{\pm}}{d\phi} \right) \pm \frac{m+1-n}{2(1-n)} \phi \frac{dH_{\pm}}{d\phi} = H_{\pm}^n \pm \frac{1}{1-n} H_{\pm}$$

We seek positive solutions H_{\pm} on the semi-infinite line $[A_{\pm}, \infty)$ that satisfy

- (i): $H_{\pm}(\phi) \rightarrow 0$ as $\phi \rightarrow A_{\pm}$,
- (ii): $H_{\pm}(\phi)$ is monotonically increasing for all $\phi > A_{\pm}$,
- (iii): $H_{\pm}(\phi) \rightarrow +\infty$ as $\phi \rightarrow +\infty$,
- (iv): $H_+(\phi) \sim H_-(\phi)$ as $\phi \rightarrow +\infty$.

If $A_{\pm} > 0$, the existence of self-similar solutions imply reversing behaviour:

$$\ell(t) = A_{\pm} (\pm t)^{\frac{m+1-n}{2(1-n)}}, \quad \pm t > 0.$$

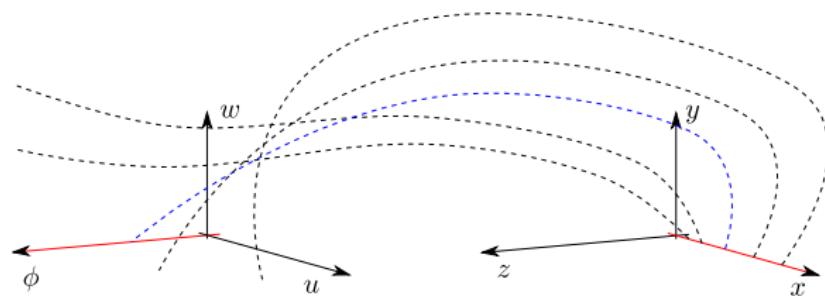
If $m + n > 1$, then $\ell'(0) = 0$.

Dynamical Systems Framework

Solutions were approximated by a naive numerical scheme in Foster *et al.* [SIAM J. Appl. Math. **72**, 144 (2012)].

The scope of our work is to develop a “rigorous” shooting method:

- ▶ The ODEs are singular in the limits of small and large H_{\pm}
- ▶ Make transformations to change singular boundary values to equilibrium points
- ▶ Obtain near-field asymptotics (small H_{\pm}): $(\phi, u, w) = (A_{\pm}, 0, 0)$
- ▶ Obtain far-field asymptotics (large H_{\pm}): $(x, y, z) = (x_0, 0, 0)$
- ▶ Connect between near-field and far-field asymptotics.



Near-field asymptotics

In variables $u = H_\pm$ and $w = H_\pm^m H'_\pm(\phi)$, the system is non-autonomous:

$$\begin{aligned}\frac{du}{d\phi} &= \frac{w}{u^m}, \\ \frac{dw}{d\phi} &= u^n \pm \frac{1}{1-n} u \mp \frac{m+1-n}{2(1-n)} \frac{\phi w}{u^m}.\end{aligned}$$

The system is singular at $u = 0$.

Near-field asymptotics

In variables $u = H_\pm$ and $w = H_\pm^m H'_\pm(\phi)$, the system is non-autonomous:

$$\begin{aligned}\frac{du}{d\phi} &= \frac{w}{u^m}, \\ \frac{dw}{d\phi} &= u^n \pm \frac{1}{1-n} u \mp \frac{m+1-n}{2(1-n)} \frac{\phi w}{u^m}.\end{aligned}$$

The system is singular at $u = 0$.

Introduce the map $\tau \mapsto \phi$ by $\frac{d\phi}{d\tau} = u^m$ for $u > 0$. Then, we obtain the 3D autonomous dynamical system

$$\begin{cases} \dot{\phi} = u^m, \\ \dot{u} = w, \\ \dot{w} = u^{m+n} \pm \frac{1}{1-n} u^{m+1} \mp \frac{m+1-n}{2(1-n)} \phi w. \end{cases}$$

Near-field asymptotics

In variables $u = H_\pm$ and $w = H_\pm^m H'_\pm(\phi)$, the system is non-autonomous:

$$\begin{aligned}\frac{du}{d\phi} &= \frac{w}{u^m}, \\ \frac{dw}{d\phi} &= u^n \pm \frac{1}{1-n}u \mp \frac{m+1-n}{2(1-n)} \frac{\phi w}{u^m}.\end{aligned}$$

The system is singular at $u = 0$.

Introduce the map $\tau \mapsto \phi$ by $\frac{d\phi}{d\tau} = u^m$ for $u > 0$. Then, we obtain the 3D autonomous dynamical system

$$\begin{cases} \dot{\phi} = u^m, \\ \dot{u} = w, \\ \dot{w} = u^{m+n} \pm \frac{1}{1-n}u^{m+1} \mp \frac{m+1-n}{2(1-n)} \phi w. \end{cases}$$

The set of equilibrium points is given by $(\phi, u, w) = (A, 0, 0)$, where $A \in \mathbb{R}$. If $m > 1$, each equilibrium point is associated with the Jacobian matrix

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & \mp \frac{m+1-n}{2(1-n)} A \end{bmatrix}.$$

with a double zero eigenvalue and a simple nonzero eigenvalue if $A \neq 0$.

Center manifold

For every $m > 0$, $n < 1$, and $m + n > 1$ and for every $A \neq 0$, there exists a two-dimensional center manifold near $(A, 0, 0)$, which can be parameterized by

$$W_c(A, 0, 0) = \left\{ w = \pm \frac{2(1-n)}{(m+1-n)A} u^{m+n} + \dots, \quad \phi \in (A, A+\delta), \quad u \in (0, \delta) \right\}.$$

Dynamics on $W_c(A, 0, 0)$ is topologically equivalent to that of

$$\begin{cases} \dot{\phi} = u^m, \\ \dot{u} = \pm \frac{2(1-n)u^{m+n}}{(m+1-n)A}. \end{cases}$$

In particular, for every $A \neq 0$, there exists exactly one trajectory on $W_c(A, 0, 0)$, which approaches the equilibrium point $(A, 0, 0)$ as $\tau \rightarrow -\infty$ if $\pm A > 0$.

Center manifold

For every $m > 0$, $n < 1$, and $m + n > 1$ and for every $A \neq 0$, there exists a two-dimensional center manifold near $(A, 0, 0)$, which can be parameterized by

$$W_c(A, 0, 0) = \left\{ w = \pm \frac{2(1-n)}{(m+1-n)A} u^{m+n} + \dots, \phi \in (A, A+\delta), u \in (0, \delta) \right\}.$$

Dynamics on $W_c(A, 0, 0)$ is topologically equivalent to that of

$$\begin{cases} \dot{\phi} = u^m, \\ \dot{u} = \pm \frac{2(1-n)u^{m+n}}{(m+1-n)A}. \end{cases}$$

In particular, for every $A \neq 0$, there exists exactly one trajectory on $W_c(A, 0, 0)$, which approaches the equilibrium point $(A, 0, 0)$ as $\tau \rightarrow -\infty$ if $\pm A > 0$.

Theorem

If $\pm A_\pm > 0$, the unique solution has the following asymptotic behaviour

$$H_\pm(\phi) = \left[\pm \frac{2(1-n)^2}{(m+1-n)A_\pm} (\phi - A_\pm) \right]^{1/(1-n)} + \dots, \quad \text{as } \phi \rightarrow A_\pm.$$

Unstable manifold

If $\pm A < 0$, the center manifold is attracting (no trajectories leave $W_c(A, 0, 0)$). However, there is an unstable manifold.

For every $m > 1$, $n < 1$, and $m + n > 1$ and for every $\pm A < 0$, there exists a one-dimensional unstable manifold near $(A, 0, 0)$, which can be parameterized as follows:

$$W_u(A, 0, 0) = \left\{ \phi = A + \mathcal{O}(u^m), \quad w = \mp \frac{m+1-n}{2(1-n)} Au + \mathcal{O}(u^{m+n}), \quad u \in (0, \delta) \right\}.$$

Dynamics on $W_u(A, 0, 0)$ is topologically equivalent to that of

$$\dot{u} = \mp \frac{m+1-n}{2(1-n)} Au.$$

Unstable manifold

If $\pm A < 0$, the center manifold is attracting (no trajectories leave $W_c(A, 0, 0)$). However, there is an unstable manifold.

For every $m > 1$, $n < 1$, and $m + n > 1$ and for every $\pm A < 0$, there exists a one-dimensional unstable manifold near $(A, 0, 0)$, which can be parameterized as follows:

$$W_u(A, 0, 0) = \left\{ \phi = A + \mathcal{O}(u^m), \quad w = \mp \frac{m+1-n}{2(1-n)} Au + \mathcal{O}(u^{m+n}), \quad u \in (0, \delta) \right\}.$$

Dynamics on $W_u(A, 0, 0)$ is topologically equivalent to that of

$$\dot{u} = \mp \frac{m+1-n}{2(1-n)} Au.$$

Theorem

If $\mp A_\pm > 0$, the unique solution has the following asymptotic behaviour

$$H_\pm(\phi) = \left(\mp \frac{m(m+1-n)A_\pm}{2(1-n)} (\phi - A_\pm) \right)^{1/m} [1 + \dots], \quad \text{as } \phi \rightarrow A_\pm.$$

Far-field asymptotics

If a trajectory departs from the point $(\phi, u, w) = (A, 0, 0)$, how does it arrive to infinity: $\phi \rightarrow \infty, u \rightarrow \infty$?

Far-field asymptotics

If a trajectory departs from the point $(\phi, u, w) = (A, 0, 0)$, how does it arrive to infinity: $\phi \rightarrow \infty, u \rightarrow \infty$?

Let us change the variables

$$\phi = \frac{x}{y^{\frac{m+1-n}{2(1-n)}}}, \quad u = \frac{1}{y^{\frac{1}{1-n}}}, \quad w = \frac{z}{y^{\frac{m+3-n}{2(1-n)}}}$$

and re-parameterize the time τ with new time s by

$$\frac{d\tau}{ds} = y^{\frac{m+1-n}{2(1-n)}}, \quad y \geq 0.$$

The 3D autonomous dynamical system is rewritten as a smooth system

$$\begin{cases} x' = y - \frac{m+1-n}{2} xz, \\ y' = -(1-n)zy, \\ z' = \pm \frac{1}{1-n}y + y^2 \mp \frac{m+1-n}{2(1-n)}xz - \frac{m+3-n}{2}z^2, \end{cases}$$

The 3D smooth dynamical system is

$$\begin{cases} x' = y - \frac{m+1-n}{2}xz, \\ y' = -(1-n)zy, \\ z' = \pm \frac{1}{1-n}y + y^2 \mp \frac{m+1-n}{2(1-n)}xz - \frac{m+3-n}{2}z^2, \end{cases}$$

The set of equilibrium points is given by $(x, y, z) = (x_0, 0, 0)$, where $x_0 \in \mathbb{R}$. Each equilibrium point is associated with the Jacobian matrix

$$\begin{bmatrix} 0 & 1 & -\frac{m+1-n}{2}x_0 \\ 0 & 0 & 0 \\ 0 & \pm \frac{1}{1-n} & \mp \frac{m+1-n}{2(1-n)}x_0 \end{bmatrix}.$$

with a double zero eigenvalue and a simple nonzero eigenvalue if $x_0 \neq 0$. Only $x_0 > 0$ is relevant for the asymptotics as $\phi \rightarrow +\infty$.

In addition to the two-dimensional center manifold, there is a stable (attracting) curve for the upper sign and an unstable (repelling) curve for the lower sign.

Center manifold

Assume $m > 0, n < 1$, and $m + n > 1$. For every $x_0 > 0$, there exists a two-dimensional center manifold near $(x_0, 0, 0)$, which can be parameterized as follows:

$$W_c(x_0, 0, 0) = \left\{ y = \frac{m+1-n}{2} xz + \mathcal{O}(z^2), \quad x \in (x_0 - \delta, x_0 + \delta), \quad z \in (-\delta, \delta) \right\}.$$

The dynamics on $W_c(x_0, 0, 0)$ is topologically equivalent to that of

$$\begin{cases} x' = \pm(1-n) \left(\frac{m+n+1}{2} - \frac{(m+1-n)^2}{4} x_0^2 \right) z^2, \\ z' = -(1-n)z^2. \end{cases}$$

In particular, there exists exactly one trajectory on $W_c(x_0, 0, 0)$, which approaches the equilibrium point $(x_0, 0, 0)$ as $s \rightarrow +\infty$.

Center manifold

Assume $m > 0, n < 1$, and $m + n > 1$. For every $x_0 > 0$, there exists a two-dimensional center manifold near $(x_0, 0, 0)$, which can be parameterized as follows:

$$W_c(x_0, 0, 0) = \left\{ y = \frac{m+1-n}{2} xz + \mathcal{O}(z^2), \quad x \in (x_0 - \delta, x_0 + \delta), \quad z \in (-\delta, \delta) \right\}.$$

The dynamics on $W_c(x_0, 0, 0)$ is topologically equivalent to that of

$$\begin{cases} x' = \pm(1-n) \left(\frac{m+n+1}{2} - \frac{(m+1-n)^2}{4} x_0^2 \right) z^2, \\ z' = -(1-n)z^2. \end{cases}$$

In particular, there exists exactly one trajectory on $W_c(x_0, 0, 0)$, which approaches the equilibrium point $(x_0, 0, 0)$ as $s \rightarrow +\infty$.

Theorem

The solution at infinity satisfies the asymptotic behaviour

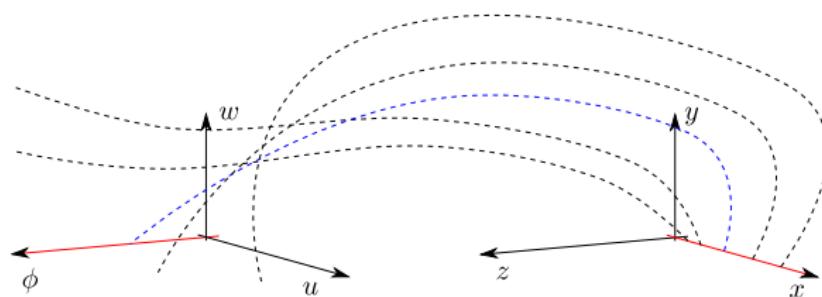
$$H_{\pm}(\phi) \sim \left(\frac{\phi}{x_0} \right)^{\frac{2}{m+1-n}} \quad \text{as} \quad \phi \rightarrow +\infty.$$

The family of diverging solutions is 1D for H_- and 2D for H_+ .

Back to the plan

We are developing “rigorous” shooting method:

- ▶ The ODEs are singular in the limits of small and large H_{\pm}
- ▶ Make transformations to change singular boundary values to equilibrium points
- ▶ Obtain near-field asymptotics (small H_{\pm}): $(\phi, u, w) = (A_{\pm}, 0, 0)$
- ▶ Obtain far-field asymptotics (large H_{\pm}): $(x, y, z) = (x_0, 0, 0)$
- ▶ Connect between near-field and far-field asymptotics.



Connection results for H_+ (after reversing)

- ▶ Trajectory that departs from $(\phi, u, w) = (A_+, 0, 0)$ is 1D
- ▶ Trajectory that arrives to $(x, y, z) = (x_0, 0, 0)$ is 2D.

Lemma

Fix $A_+ \in \mathbb{R} \setminus \{0\}$ and consider a 1D trajectory such that $(\phi, u, w) \rightarrow (A_+, 0, 0)$ as $\tau \rightarrow -\infty$ and $u > 0$. Then, there exists a $\tau_0 \in \mathbb{R}$ such that $\phi(\tau) \rightarrow +\infty$ and $u(\tau) \rightarrow +\infty$ as $\tau \rightarrow \tau_0$.

Connection results for H_+ (after reversing)

- ▶ Trajectory that departs from $(\phi, u, w) = (A_+, 0, 0)$ is 1D
- ▶ Trajectory that arrives to $(x, y, z) = (x_0, 0, 0)$ is 2D.

Lemma

Fix $A_+ \in \mathbb{R} \setminus \{0\}$ and consider a 1D trajectory such that $(\phi, u, w) \rightarrow (A_+, 0, 0)$ as $\tau \rightarrow -\infty$ and $u > 0$. Then, there exists a $\tau_0 \in \mathbb{R}$ such that $\phi(\tau) \rightarrow +\infty$ and $u(\tau) \rightarrow +\infty$ as $\tau \rightarrow \tau_0$.

The proof is based on the energy method

$$E(w, u) := \frac{1}{2}w^2 - \frac{1}{m+n+1}u^{m+n+1} - \frac{1}{(m+2)(1-n)}u^{m+2}$$

with the rate of change along the trajectory given by

$$\frac{dE}{d\tau} = -\frac{m+1-n}{2(1-n)}\phi w^2.$$

Connection results for H_- (before reversing)

- ▶ Trajectory that departs from $(\phi, u, w) = (A_-, 0, 0)$ is 1D
- ▶ Trajectory that arrives to $(x, y, z) = (x_0, 0, 0)$ is 1D.

If we shoot from $(A_-, 0, 0)$, then the trajectory does not generally reach $(x_0, 0, 0)$

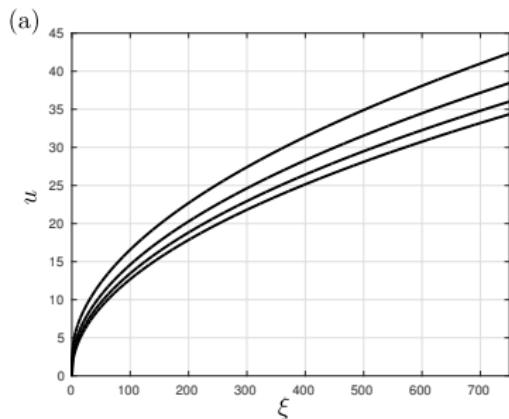
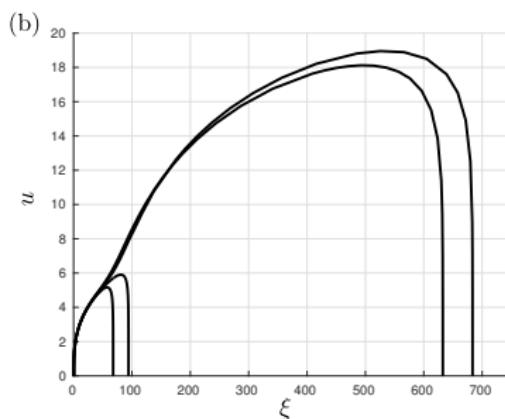


Figure: Panels (a) and (b) show trajectories with $m = 3$ and $n = 0$ for H_+ and H_- respectively.

Connection results for H_- (before reversing)

- ▶ Trajectory that departs from $(\phi, u, w) = (A_-, 0, 0)$ is 1D
- ▶ Trajectory that arrives to $(x, y, z) = (x_0, 0, 0)$ is 1D.

Therefore, we shoot from $(x_0, 0, 0)$ trying to reach $(A_-, 0, 0)$.

Lemma

Fix $x_0 > 0$ and consider a 1D trajectory such that $(x, y, z) \rightarrow (x_0, 0, 0)$ as $s \rightarrow +\infty$ and $y > 0$. Then, there exists an $s_0 \in \mathbb{R}$ such that

- (i) either $w = 0$ and $u \geq 0$ as $s \rightarrow s_0$
- (ii) or $u = 0$ and $w \geq 0$ as $s \rightarrow s_0$.

In both cases, if $(u, w) \neq (0, 0)$ as $s \rightarrow s_0$, then $|\phi| < \infty$ as $s \rightarrow s_0$.

Connection results for H_- (before reversing)

- ▶ Trajectory that departs from $(\phi, u, w) = (A_-, 0, 0)$ is 1D
- ▶ Trajectory that arrives to $(x, y, z) = (x_0, 0, 0)$ is 1D.

Therefore, we shoot from $(x_0, 0, 0)$ trying to reach $(A_-, 0, 0)$.

Lemma

Fix $x_0 > 0$ and consider a 1D trajectory such that $(x, y, z) \rightarrow (x_0, 0, 0)$ as $s \rightarrow +\infty$ and $y > 0$. Then, there exists an $s_0 \in \mathbb{R}$ such that

- (i) either $w = 0$ and $u \geq 0$ as $s \rightarrow s_0$
- (ii) or $u = 0$ and $w \geq 0$ as $s \rightarrow s_0$.

In both cases, if $(u, w) \neq (0, 0)$ as $s \rightarrow s_0$, then $|\phi| < \infty$ as $s \rightarrow s_0$.

Open ends:

- ▶ It is unknown if the two piecewise C^1 maps intersect:
 - $\mathbb{R}^+ \ni x_0 \mapsto (\xi, u) \in \mathbb{R} \times \mathbb{R}^+$ and
 - $\mathbb{R}^+ \ni x_0 \mapsto (\xi, w) \in \mathbb{R} \times \mathbb{R}^+$.
- ▶ It is unknown if ϕ remains bounded at the intersection point.

And here the numerical approximation kicks in...

Numerical Shooting Method

for H_- (before reversing)

- ▶ Select a value x_0 which characterizes the far-field behaviour
- ▶ Use asymptotic behaviour to take a small step away
- ▶ Integrate in decreasing ϕ
- ▶ Find intersections of the trajectory either with $w = 0$ or with $u = 0$
- ▶ Plot the two piecewise maps versus x_0
- ▶ Find the interaction points $x_0 = x_*$ between the two piecewise maps at $(u, w) = (0, 0)$ and record the corresponding value for $\phi = A_-$

Numerical Shooting Method

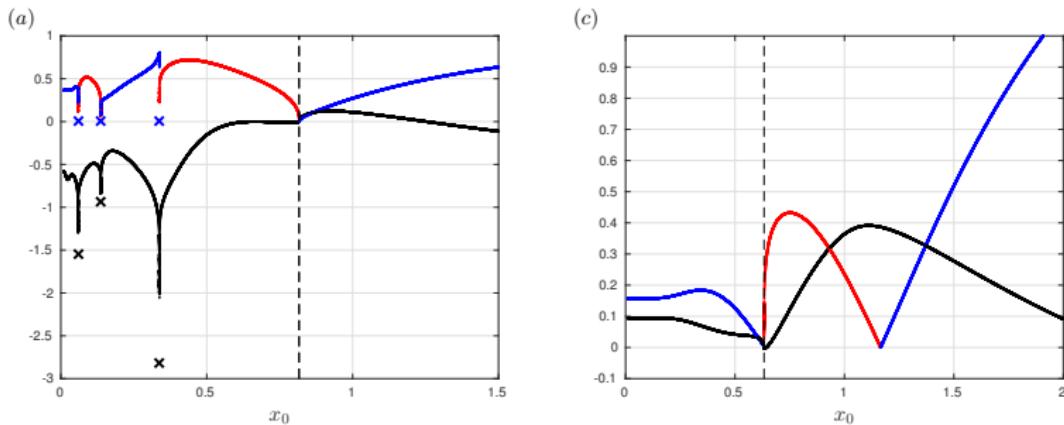
for H_- (before reversing)

- ▶ Select a value x_0 which characterizes the far-field behaviour
- ▶ Use asymptotic behaviour to take a small step away
- ▶ Integrate in decreasing ϕ
- ▶ Find intersections of the trajectory either with $w = 0$ or with $u = 0$
- ▶ Plot the two piecewise maps versus x_0
- ▶ Find the interaction points $x_0 = x_*$ between the two piecewise maps at $(u, w) = (0, 0)$ and record the corresponding value for $\phi = A_-$

for H_+ (after reversing)

- ▶ Select a value A_+ which characterizes the near-field behaviour
- ▶ Use asymptotic behaviour to take a small step away
- ▶ Integrate with increasing ϕ
- ▶ Find x_0 from the far-field behaviour
- ▶ Plot x_0 versus A_+
- ▶ For the value x_* in part H_- , find the value of A_+ .

Finding the intersection points $x_0 = x_*$



Finding the value of A_+

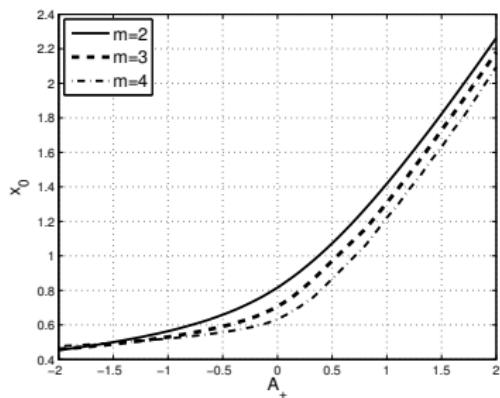
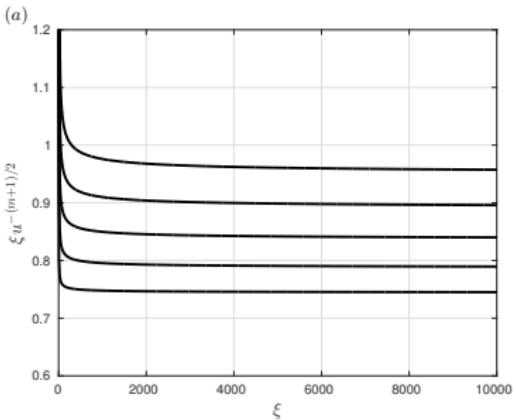
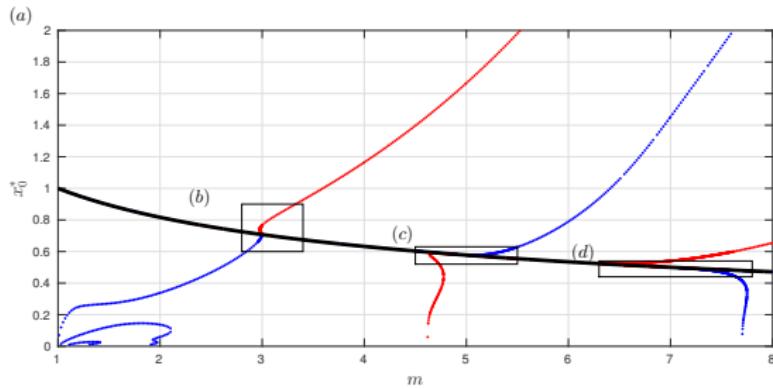
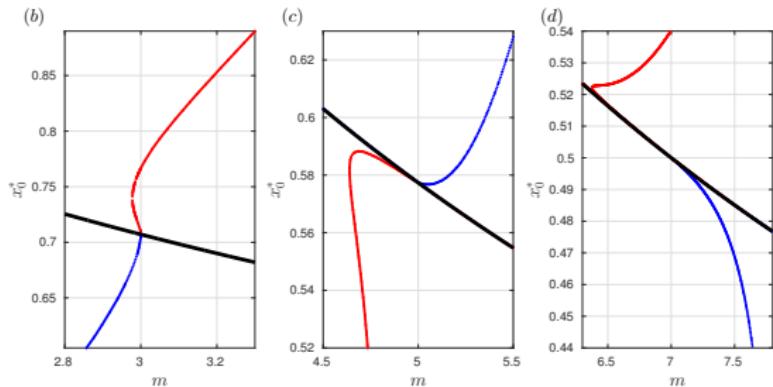


Figure: Panel (a): Plots of the variation of x_0 with A_+ for various different values of $m = 2, 3$ and 4 . Panel (b): Plots of the trajectories emanating from $A_+ = 0.1, 0.2, 0.3, 0.4$ and 0.5 for $m = 3$. The constant to which these trajectories tend in the far-field is selected to be the corresponding value of x_0 .

Self-similar solutions for $n = 0$ and bifurcations



Summary on self-similar solutions

We have demonstrated that

- ▶ For each value of $m > 1$ and $n = 0$, there exists *at least* one value of $x_0 = x_0^*$ that defines a trajectory emanating from $(x_0^*, 0, 0)$ and terminating at $(A_-, 0, 0)$, and thus a suitable solution for H_- .
- ▶ For every value of $A_+ \in \mathbb{R}$, there exists a unique corresponding value of x_0 , thereby defining an infinite family of suitable solutions for H_+ .
- ▶ Invoking the matching condition at far-field for each value of $x_0 = x_0^*$, we obtain unique values of A_- and A_+ .

Relevance to the slow diffusion equation

The asymptotic behavior of the self-similar solutions H_{\pm} is compatible with the interface conditions

$$\frac{d\ell}{dt} = \begin{cases} -h^{m-1} \frac{\partial h}{\partial x} \Big|_{x=\ell(t)^+} & \text{if } \ell'(t) \leq 0, \\ h^n \left(\frac{\partial h}{\partial x} \right)^{-1} \Big|_{x=\ell(t)^+} & \text{if } \ell'(t) \geq 0. \end{cases}$$

obtained in Galaktionov-Shmarev-Vazquez (1999).

For instance, if $A_{\pm} > 0$ and $\ell'(t) > 0$, $t > 0$, we have justified that

$$\frac{d\ell}{dt} = \lim_{x \rightarrow \ell(t)^+} h^n \left(\frac{\partial h}{\partial x} \right)^{-1} = \frac{m+1-n}{2(1-n)} A_+ t^{\frac{m+1-n}{2(1-n)} - 1}.$$

After an integration with the condition $\ell(0) = 0$, this yields the interface evolution

$$\ell(t) = A_+ t^{\frac{m+1-n}{2(1-n)}}, \quad t > 0,$$

in agreement with the self-similar solution

$$h(x, t) = t^{\frac{1}{1-n}} H_+(\phi), \quad \phi = xt^{-\frac{m+1-n}{2(1-n)}}, \quad t > 0.$$

Simulations of the slow diffusion equation

Numerical simulations with initial data

$$h|_{t=0} = \lambda \sin \left(\frac{\pi}{2} \left(1 - \frac{x}{\ell_0} \right)^{1/m} \right) \quad \text{and} \quad \ell|_{t=0} = \ell_0,$$

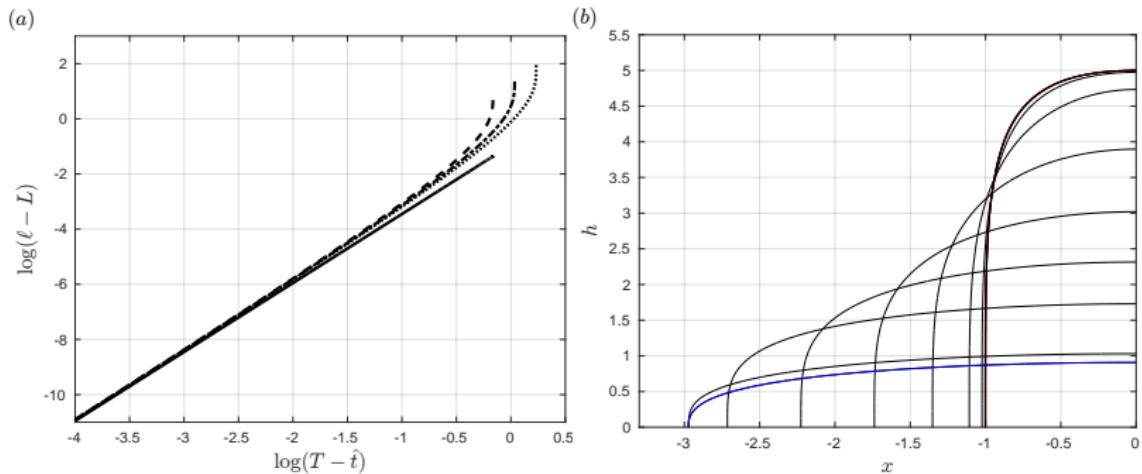
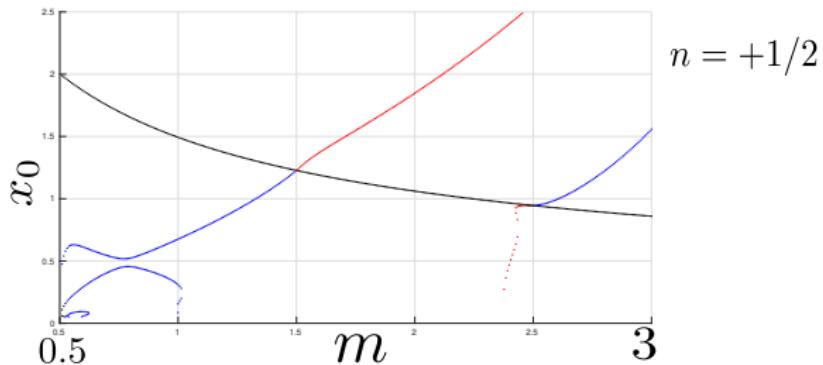
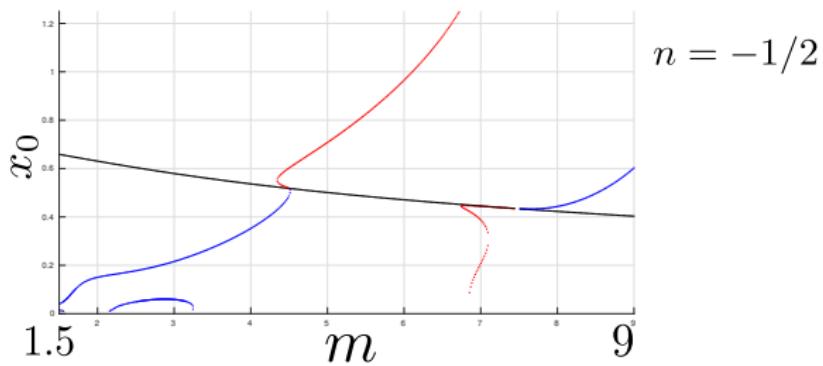


Figure: Panel (a) shows a comparison between the predictions on the behaviour of $\ell(t)$ as given by: (i) the self-similar theory (solid line) and (ii) direct numerical simulation, for $m = 4$ and $n = 0$. The dashed, dash-dotted and dotted curves show the results from direct numerical simulation with $\lambda = 5, 10, 20$ and $\ell_0 = -1$. Panel (b) shows representative plots of $h(x, t)$ for the choice $\lambda = 5$ at 10 equally spaced values of t . The blue curve show the solution immediately prior to the reversing event, *i.e.*, when the simulation was terminated.

Self-similar solutions for other values of n



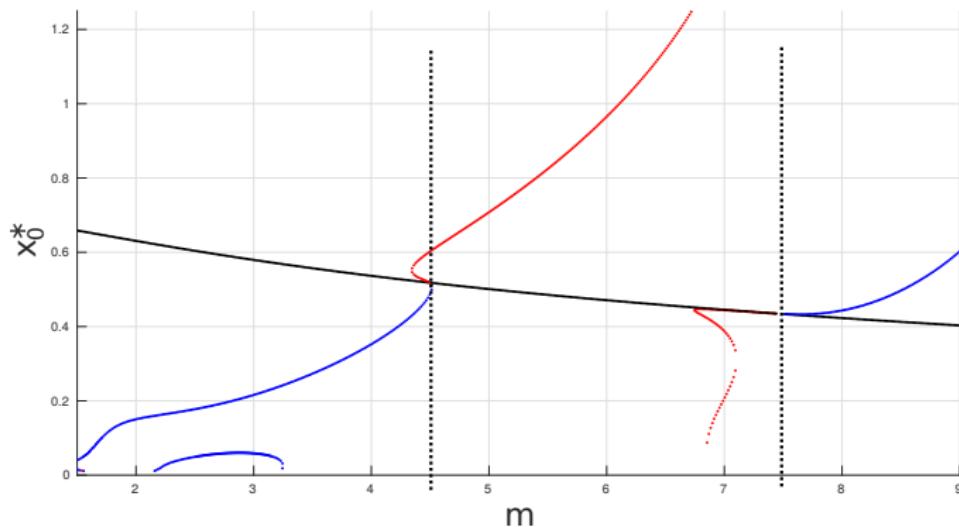
Location of Bifurcations

The black curve corresponds to the exact solution with $A_+ = A_- = 0$:

$$H_{\pm}(\phi) = \left(\frac{\phi}{x_Q} \right)^{\frac{2}{m+1-n}}, \quad x_Q^2 = \frac{2(m+1+n)}{(m+1-n)^2}.$$

After substituting self-similar variables, it is a static solution $h(x, t) = h(x)$. New self-similar solutions bifurcate from the static solutions at

$$m = m_k = (1-n)(2k-1), \quad k = 1, 2, 3, \dots$$



Analysis of Bifurcations ($n = 0$)

Write H_- as a perturbation to the exact solution

$$H_- = x^{\frac{2}{m+1}} + u(x), \quad x = \frac{\phi}{x_Q}, \quad x_Q^2 = \frac{2}{m+1}.$$

The bifurcation problem is related to the linear equation $Lu = 0$, where

$$Lu = \frac{m+1}{2} \frac{d^2}{dx^2} \left(x^{\frac{2m}{m+1}} u(x) \right) - \frac{m+1}{2} x \frac{du}{dx} + u(x) = 0, \quad x \in (0, \infty).$$

The boundary conditions for admissible self-similar solutions are

$$u(x) \sim x^{\frac{2}{m+1}} \quad \text{as} \quad x \rightarrow \infty$$

At the bifurcation point $m = m_k$, the self-similar solutions must satisfy the other boundary condition

$$u(x) \sim x^{\frac{1-m}{1+m}} \quad \text{as} \quad x \rightarrow 0,$$

related to the derivative of $x^{2/(m+1)}$ in x .

Analysis of Bifurcations

After a coordinate transformation, the homogeneous equation $Lu = 0$ becomes the Kummer's differential equation (1837),

$$z \frac{d^2 w}{dz^2} + (b - z) \frac{dw}{dz} + aw(z) = 0, \quad z \in (0, \infty),$$

where

$$a := -\frac{m+1}{2}, \quad b := \frac{m+3}{2}.$$

The only solution with the correct boundary condition at infinity was characterized by Tricomi (1947). The set of bifurcating solutions at $m = m_k$, $k \in \mathbb{N}$ with the correct boundary condition at zero is found by truncating the power series into a polynomial.

These solutions of the linear equation $Lu = 0$ are incorporated in the construction of self-similar solutions with a two-scale (inner and outer) matched asymptotic expansion.

Numerical confirmations

Bifurcation at $m = 5$ and $n = 0$:

$$A_- = -\frac{40}{9}(x_0 - x_Q) + \dots$$

and

$$5 - m = \frac{27\sqrt{3}}{4}A_- + \dots$$

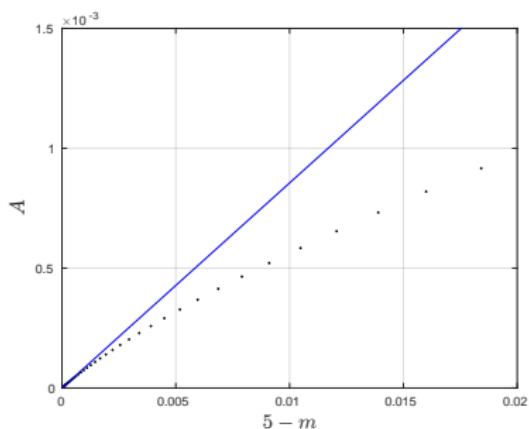
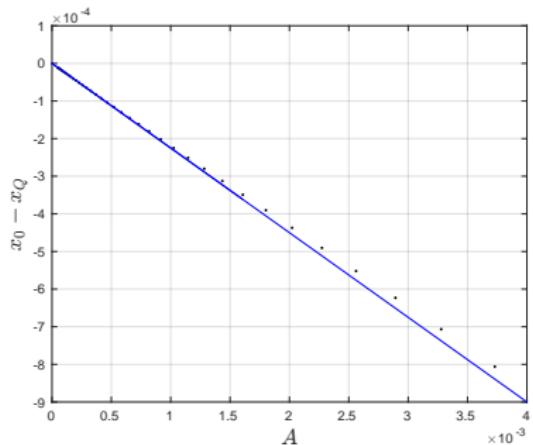


Figure: Left: The variation of the parameter A_- with $5 - m$, and; right: the variation of $x_0 - x_Q$ with A_- local to $m = 5$. The black dots are numerics, the blue lines are asymptotics.

Conclusion

- ▶ For every $m > 0$, $n < 1$ and $m + n > 1$ a pair of solutions H_+ and H_- can be constructed numerically and then converted to $h(x, t)$
 - ▶ Solutions with $A_{\pm} > 0$ correspond to reversing interfaces
 - ▶ Solutions with $A_{\pm} < 0$ correspond to anti-reversing interfaces
- ▶ The behaviour of the self-similar solution at zero and infinity was justified by dynamical system theory
- ▶ Bifurcations of self-similar solutions are predicted from analysis of the classical differential equations
- ▶ Relevance of the self-similar solutions for the slow diffusion equations is confirmed numerically and from weak solutions.

References

1. J. M. Foster, P. Gysberg, J.R. King, and D. E. Pelinovsky, *Bifurcations of self-similar solutions for reversing interfaces in the slow diffusion equation*, in preparation (2016)
2. J. M. Foster and D. E. Pelinovsky, *Self-similar solutions for reversing interfaces in the slow diffusion equation with strong absorption*, arXiv:1506.05058 (2015)
3. J. M. Foster, C. P. Please, A. D. Fitt, and G. Richardson, *The reversing of interfaces in slow diffusion processes with strong absorption*, SIAM J. Appl. Math. 72 (2012), pp. 144-162