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The rogue wave of the cubic NLS equation

The focusing nonlinear Schrédinger (NLS) equation

, 1
bt + 5 + |24 = 0
admits the exact solution

4(1 + 2it) ol

Rl Ly ey

It was discovered by H. Peregrine (1983) and was labeled as the rogue wave.

Properties of the rogue wave:
@ ltis related to modulational instability of CW background vy (x, t) = .
@ It comes from nowhere: | (x,t)] — 1 as |x| + |t] = oo.
@ It is magnified at the center: M, := |¢(0,0)| = 3.
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Definitions and properties of rogue waves

The rogue wave of the cubic NLS equation

Possible developments:
@ To generate higher-order rational solutions for multiple rogue waves...
@ To extend constructions in other basic integrable PDEs...
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Definitions and properties of rogue waves

Periodic wave background
The focusing nonlinear Schrédinger (NLS) equation
b+ e+ [0 = 0
admits other wave solutions, e.g. the periodic waves of trivial phase

ban(X, 1) = dn(x; k)T, /Dt (x, 1) = ken(x; k)e/k —1/2)1t
where k € (0, 1) is elliptic modulus.
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Definitions and properties of rogue waves

Double-periodic wave background

Double-periodic solutions (Akhmediev, Eleonskii, Kulagin, 1987):

en(t; K)en(V1 + kx; k) + iv1 + ksn(t; K)dn(vV1 + kx; k) ot
V14 kdn(v1 4 kx; k) — dn(t; K)en(V1 + kx; k) ’

V(x, 1) = dn(t; k)en(vV2x; k) + ir/k(1 + k)sn(t; k) okt V1—k
. V14 k — Vken(t; k)en(v2x; k) ’ V2

where k € (0, 1) is elliptic modulus.

v(x, )=k
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Main question

Can we obtain a rogue wave on the background g such that

inf _sup ’1/1(X, t) — tho(X — Xo, t — 1)€°| -0 as t— +oo 277

X0,f0,0ER xcR

This rogue wave appears from nowhere and disappears without trace.

Further questions:
@ Magnification factors for rogue waves
@ Spectral representation and inverse scattering
@ Robustness (stability) in the time evolution.
@ Extensions to quasi-periodic background.
@ Extensions to multi-soliton background.
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Main question and background

Darboux transformation as the main tool

Let u be a solution of the NLS. It is a potential of the compatible Lax system

A u

=t vo=( 2 4

and

24 1yl2 1
pr= V(A U)p, V(/\,u)_i<>‘ +luf pux+u )

O — AT —X2—L|uf?

so that v = Y-

Let ¢ = (p1, 1) be a nonzero solution of the Lax system for A = A\ € C. The
following one-fold Darboux transformation (DT):

2(M 4+ M)p1 G

b=u+
P12 + |2

)

provides another solution & of the same NLS equation.
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Main question and background

Preliminary literature

@ Numerical computations of eigenfunctions for DT on dn-, ¢n-, and
double-periodic backgrounds:
(Kedziora—Ankiewicz—Akhmediev, 2014) (Calini—-Schober, 2017)

@ Emergence of rogue waves in simulations of modulation instability of
dn-periodic waves:
(Agafontsev—Zakharov, 2016)

@ Magnification factors of quasi-periodic solutions from analysis of
Riemann’s Theta functions:
(Bertola—Tovbis, 2017) (Wright, 2019)

@ Rogue waves from superpositions of nearly identical solitons:
(Bilman—Buckingham, 2018) (Slunyaev, 2019)
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Algebraic method - Step 1

Consider the spectral problem

px = U\, u)g, Ui ) = ( —A’:’ . )

Fix A\ = A1 € C with ¢ = (py, g1) € C? and set

{u—p12+<‘712,
T — P2 2
Uu=pi+a.

The spectral problem becomes the Hamiltonian system of degree two
generated by the Hamiltonian function

- - - 1 —oy =
H= X p1gi + Mp1gs + E(,D12 + @) (5 + ).

The algebraic technique is called the “nonlinearization” of Lax pair
(Cao—Geng, 1990) (Cao—Wu—-Geng, 1999) (R.Zhou, 2009)
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Algebraic method with one eigenvalue

Hamiltonian system and constraints

The Hamiltonian system is integrable with two constants of motion:

H = Mpigi+Mpigi + 5 (P1+Q1)(P1+Q1)
F = i(p1gr — 1)

The constraints between u and (py, g1) are extended as:

u = P12+EI127
du i O
w7t 2iFu = 2(Mps—\3?),
d2u 5 adu 2.2  32=2
et u+2/Fd——4Hu = 4\TPF +AT).

Compatible potentials u(x) satisfy the closed second-order ODE:

u" + 2|ufPu + 2icu’ — 4bu = 0,

where ¢ := F 4 i(A\ — A1) and b := H + iF(\ — \) + |\ ]2
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Algebraic method with one eigenvalue

Integrability of the Hamiltonian system

The Hamiltonian system is a compatibility condition of the Lax equation
W0 = U W) - WU, 1),
where U(\, u) is the same as in the Lax system and
Wi1(N\) Wiz()) >
W) = : ,
2 ( Wia(=)) —Whi(—))

with
P1G P14
Wi(\) = 1- P A
1Y) A*/\1+)\+)\1
%] a9
Wis(\) = ——— + ———.
12(3) NS VL Wy

Simple algebra shows
N2 +icA + b+ F|uf?
()\ — )\1)(/\4-/_\1) ’

U\ + icu + tu
Wia()) = 2

Wir(%) = T A=A+
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Closure relations

The (1, 2)-element of the Lax equation,

d

ox Wia(X) = 2AWi2(X) — 2uWi1(N),

yields the second-order equation on u:

u" + 2|ujPu + 2icy’ — 4bu = 0.

detW()\) is constant in (x, t) and has simple poles at A\; and —\1:

P(Y)

det[W(A)] = ~[Wii ()] — Wiz(\) Wiz(—)) = TS MO T M)

so that P()\) is constant in (x, t) and has roots at Ay and —\+:

1 . 1 _ S
P(A) = (X2 +icA + b+ 5[uf?)? — (U + icu + Su') (A + icll — 5 T)

N
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Algebraic method with one eigenvalue

Conserved quantities

The second-order equation on u
U’ + 2|ufPu + 2icu’ — 4bu =0
is now closed with the conserved quantities

(VT — ull) — 2clul? = 4a,
|U')? + |u|* + 4b|u|? = 8d.

These equations describe a general class of traveling wave solutions:
W(x,t) = u(x + ct)e 2P,
The polynomial P()) in detW(\) is given by
P()\) = \* + 2icA® + (2b — ¢®)\® + 2i(a+ be)\ + b? — 2ac + 2d,

with roots at Ay and —X4. (Another pair also exists.)
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Algebraic method with one eigenvalue

Periodic waves of trivial phase

For traveling wave solutions:
@ ¢ = 0 can be set without loss of generality.
@ a = 0is set for waves with trivial phase.

The real function u(x) is determined by the quadrature:

2
(g‘;) +u* + 4bu? = 8d

with two parameters b,d. Parameterizing V(u) = u* + 4bu? — 8d by two pairs
of roots:
—4b = U2 + U3,
—8d = u2us.
we get two families of traveling wave solutions:
9 0 < U < ur: u(x) = urdn(uy x; k)

@ U = ivp: u(x) = usen(ax; K), o = (/U2 + V3
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Lax spectrum of dn-periodic waves

Polynomial P()) simplifies in terms of the turning points uy, us:

1 1
P(A) = A" = S(Uf + )N + ﬁ(U? — )
with two pairs of roots

uy — U

Imaginary Part
°

-1 -0.5 o 0.5 1
Real Part
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Algebraic method with one eigenvalue

Lax spectrum of cn-periodic waves

If uo = ivo, there is one quadruplet of roots:

g + ivo

Uy — ivo
2 7 '

A=+ 5

A=+

04r 04

[
\

Imaginary Part
o

\
/

04F 04

o, = . - 1 i

Real Part
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En route to rogue waves

Let ¢ = (p1, 1) be a nonzero solution of the Lax system for A = A1 € C.
The one-fold Darboux transformation

2(M + M)p1a
lp112 + (g1 2

gives another solution & of the same NLS equation.

U=u+

)

0.8

0.6

0.4

0.2

0.2t

Imaginary Part
o

0.4

-0.6 |

-0.8 1

-1 -0.5 o 0.5 1
Real Part

Question: which value of )\ to use?
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Algebraic method - Step 2

Evaluating the matrix elements at simple poles A\ and — )4

P1Gi [_)1a1 _)\2+IC)\+b+1§|U‘2
A=A A+A A=A)A+XN) ]
p3 @  ulticu+ ju

+ 5= =
A= A+EXN A=A+ )

Wii(A) = 1-

Wia(A) =

we can derive the inverse relations between the potential v and the squared
eigenfunctions:

1 1
2 / :
= — | U +icu+ \u ),
P A1+ A (2 1 )

2 = 1 (—1u’—|—icu+)\ u)

@ = )\1-1-5\1 2 ! ’

1 1
= - — [ b+ =|uf? +ir c+/\2>.

P13y >\1+)\1<+2||+ 1 1

The eigenfunction ¢ = (p1, g1) is periodic if u is periodic.
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Algebraic method with one eigenvalue

Second linearly independent solution

Let us define the second solution » = (py, §1) by

2q

1 2py
P12+ |1 [

R T
D=@ot o g

p1 = p1g1 —
such that p1§; — p1g1 = 2 (Wronskian is constant). Then, scalar function
o1(x, t) satisfies B
Op1 A4\ + M)P1a

ax (P2 + ¢ [2)2

and _ -
Do1 __SI0F = X)PiGr | 20\ + M) (uPf + UGR)

at (PP +|@f?)? (Ip1[2 + |g112)2
The system is compatible as it is obtained from Lax equation.
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Algebraic method with one eigenvalue

Second solutions for periodic waves

For periodic waves with the trivial phase, variables are separated by

u(x, t) = Ux)e 22, py(x,t) = Pi(x)e ™, ai(x,1) = Qi (x)e™,

where U is real, either U(x) = dn(x; k) or U(x) = Kken(x; k),
whereas |p1|? + |g1|2 = dn(x; k) in both cases.

Integrating linear equations for ¢1(x, t) yields

d1(x, 1) = 2x + 2i(1 £ /1 — K2)t £ 21/1 —kz/

dn? yk

and

dn?(y; k)

p1(x, t):2k2/ en’(y: K)dy + 2ik+/1 k2/ ) + 2ikt
0 dn? y

from which it is obvious that |¢1| — oo as t — +oo.
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Algebraic method - Step 3

Rogue waves on the background u are generated by the DT:

2(M + M)P a1

b=u+—3 =
P17 + [1]2
where o o5
a _ 1 P P1
p1 = P11 PE+ IR q q1¢1+7\p1|2+|q1|2’
As t — +oo, ~
N 2(M +M)p1G
o(x,t o =U+
Ut Ol P [P
which is a translation of the periodic wave u, e.g.
. Vi—K?
(X, gy 00 = m = dn(x + K(k); k)
or

kv/1 — k2sn(x; k)
dn(x; k)

UX, ) jgy |00 = — = ken(x + K(k); k).
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Magnification factor

Rogue waves on the background u are generated by the DT:

. 2 A)P1Q
B—udt (M + XM)P1g1

P1[2 +[Gn 2
where o o
A ai A P
= -7, = + — 5,
p1 = P19+ FACESEAE Q1 = Q11 EACESEAE
At the center of the rogue wave,
(X, t)] gy—0 = U — 2(M +A)pig =2u—10,

P12 + lan |2

hence the magnification factor does not exceed three in the one-fold
transformation.
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Algebraic method with one eigenvalue

Rogue wave on the dn-periodic wave

The dn-periodic wave is
u(x, t) = dn(x; k)& =K/t
The rogue wave for the larger eigenvalue A1 has the larger magnification:

M(k) =2+ 1 -k, kel[0,1]

o

Amplitude

Imaginary Part
°
o
&

-‘4 05 0 05 1 Space (x) -10 Time (t)
Real Part
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Algebraic method with one eigenvalue

Another rogue wave on the dn-periodic wave

The dn-periodic wave is
u(x, t) = dn(x; k)& =K/t
The rogue wave for the smaller eigenvalue )\ has the smaller magnification

M(k)=2-1—Kke, kel0,1].

o o o o
R 5 @
Amplitude

Imaginary Part
5 o

Rl 05 0
Real Part
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Algebraic method with one eigenvalue

Rogue wave on the cn-periodic wave

The cn-periodic wave is
Yen(X, 1) = ken(x; k)e/k*=1/21t
The rogue wave has the exact magnification factor:
M(k)=2, kel0,1].

[}
°
]
04 E]
£
<
02 ~—
5
&
>
e 0
2
E
02 — T
04
0.6 Space (x)
1 05 0 05 1
Real Part
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Algebraic method with one eigenvalue

Rogue wave on the cn-periodic wave

The cn-periodic wave is
Yen(X, 1) = ken(x; k)e/k*=1/21t
The rogue wave has the exact magnification factor:
M(k)=2, kel0,1].

Amplitude

AN
7N\

Space (x) 20 0 -10
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Algebraic method with one eigenvalue

Relation to modulation instability of the periodic wave

If A belongs to the Lax spectrum and P()) is the polynomial in
PO = M 2( + BN + (4 — B

then I' := +£2i,/P(}) is in the modulation instability spectrum.
(Deconinck—Segal, 2017) (Deconinck—Upsal, 2019)

0.4

03

Imaginary Part
Imaginary Part
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= o = >
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Algebraic method with one eigenvalue

Relation to modulation instability of the periodic wave

Here is an example of the periodic wave with nontrivial phase
( ) R(X) l@(x 2!bt

with X
R(x) = /B — k2sn2(x; k), ©(x) = —2e _ax
o R(x)?
06
04 0.4
02 0.2
E 0\ / E
§ 0 § 0
£ 02 / \ £ 0.2
0.4 0.4
0'6»1 05 0 0.‘5 1 0’!-50.4 03 »(;.2 -0‘.1 E} o.‘w 0‘.2 o.‘3 0.4
Real Part Real Part
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Algebraic method with one eigenvalue

Relation to modulation instability of the periodic wave

Here is an example of the periodic wave with nontrivial phase
U(X) — R(X)eie(x) eZibt

with
R(x) = \/8 — K2sn2(x; k), ©(x) = —2e /0 %.

Amplitude
& v
o - N

> ©°

Space (x) -50 .50 Time (t)
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Towards the double-periodic background

Algebraic method with two eigenvalues

Fix A = A1 € Cwith ¢ = (p1,g1) € C2and A = A\; € C with ¢ = (p2, g2) € C?
such that A\ # +Xs and Ay # £X,. Set

u=pi+a +p5+ 3.
The algebraic method produces the third-order equation
u" +6JulPu’ + 2ic(u” + 2|ulPu) + 4bu’ + 8iau = 0,
with three constants of motion:

d+ 3blufP + fe(U't— ul') + §(ut’ + "t — |U'? + 3|u| )
2e — au|® - %C(|U 2+ |u*) + g(u'T - u'T")

f—ta(u'to—ul')+ 3b(|U']P+ |u*) + L (v + 2|ufPul® — (VT - uu) )

0,
0,
0.

P(\) = X5 42ich® + (2b— c®)\* + 2i(a+ bc)A® + (b? — 2ac + 2d)\?
+2i(e+ab+ cd)\ + f + 2bd — 2ce — &°.

Eigenvalues Ay and )\, are found among three roots of the polynomial
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Towards the double-periodic background

Double-periodic solutions

Double-periodic solutions (Akhmediev, Eleonskii, Kulagin, 1987)
correspond to ¢ = a = e = 0. The solution takes the explicit form:

u(x, t) = [Q(x, t) + i5(t)] D,
where Q(x, t) and §(t) are found from the first-order quadratures:

__ VZizzsn(pti k)
6(t) B \/23 — Z1Cl’12(ut; k)7

with0 < z; < z» < z3 and

(Q1 — Qu)(Q2 — Qu)

Qlx. 1) = Qa + (@2 — Qu) + (Q — Qo)sn2(vx; k)’

with Qs < Q3 < » < (.
By construction, ++/z1, ++/2Z2, ++/Z3 are roots of P(A):
P(\) = A8 4+ 2bX\* + (b? 4 2d)\2 + f + 2bd.
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Lax spectrum and rogue waves

The double-periodic solution if z; > 3 are real:

B kcn(t; K)en(v1 + kx; k) + iv1 + ksn(t; k)dn(v1 + kx; k) o

u(x,t)

V14 kdn(v1 4+ kx; k) — dn(t; K)en(V1 + kx; k) 7
20 4
15 ms
10 EZ
5 °r 51
§ 0 — el @ ® 0
£, :

-1 -0.5 05 1

o
Real Part
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Lax spectrum and rogue waves

The double-periodic solution if z4 is real and z» 3 are complex:

u(x, ) = dn(t; k)en(v2x; k) + i/k(1 + k)sn(t; k) ok V1-— k.

V1 k —Vken(t; k)en(vV2x; ) ’ V2

A [
o/ S

04

amplitude
Lo =~ N o & o

Imaginary Part

-06 1 5

08

x 100
B 05 0 05 1 10 t
Real Part
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Lax spectrum and rogue waves

The double-periodic solution if z4 is real and z» 3 are complex:

“(X’f)Zdn(t;k)cn(ﬁxm)+i\/msn(f;k)eikt o \/ﬂ.

V1 k —Vken(t; k)en(vV2x; ) ’ V2

1
08
06 2
2
04t \/ 5
£
E 02 ©
>
o o —
g
£-02r
04l / \
06
-0.8
40
-1
Bl 05 0 05 1
Real Part
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Towards the double-periodic background

Summary

Summary:

@ New method is developed for computations of eigenvalues and
eigenfunctions of the Lax system for periodic and double-periodic waves.

@ New exact solutions are obtained for rogue waves on the background of
periodic and double-periodic waves.

@ Magnification factor is computed exactly at the rogue waves.
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Towards the double-periodic background
Summary

Summary:

@ New method is developed for computations of eigenvalues and
eigenfunctions of the Lax system for periodic and double-periodic waves.

@ New exact solutions are obtained for rogue waves on the background of
periodic and double-periodic waves.

@ Magnification factor is computed exactly at the rogue waves.

Further directions:

@ Characterize eigenvalues, eigenfunctions, and rogue waves on general
quasi-periodic solutions.

@ Observe rogue waves on the periodic background in water wave
experiments (Amin Chabchoub, Sydney).
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Towards the double-periodic background
Summary

Summary:

@ New method is developed for computations of eigenvalues and
eigenfunctions of the Lax system for periodic and double-periodic waves.

@ New exact solutions are obtained for rogue waves on the background of
periodic and double-periodic waves.

@ Magnification factor is computed exactly at the rogue waves.

Further directions:

@ Characterize eigenvalues, eigenfunctions, and rogue waves on general
quasi-periodic solutions.

@ Observe rogue waves on the periodic background in water wave
experiments (Amin Chabchoub, Sydney).

Thank you! Questions???
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