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Background and motivations
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Background and motivations

We study traveling Stokes waves in the irrotational motion of an
incompressible fluid:

These traveling waves are approximated in the shallow limit
a� h� λ by the following local evolution equations.
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Background and motivations

We study traveling Stokes waves in the irrotational motion of an
incompressible fluid:

These traveling waves are approximated in the shallow limit
a� h� λ by the following local evolution equations.

The Korteweg–de Vries (KdV) equation:

ut + ux + uxxx + u ux = 0

[Boussinesq, 1872] [Korteweg & de Vries, 1895]
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Background and motivations

We study traveling Stokes waves in the irrotational motion of an
incompressible fluid:

These traveling waves are approximated in the shallow limit
a� h� λ by the following local evolution equations.

The Benjamin–Bona–Mahony (BBM) equation

ut + ux − utxx + u ux = 0

[Peregrine, 1966] [Benjamin–Bona–Mahony, 1972]
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Background and motivations

We study traveling Stokes waves in the irrotational motion of an
incompressible fluid:

These traveling waves are approximated in the shallow limit
a� h� λ by the following local evolution equations.

The Camassa–Holm (CH) equation

ut + ux − utxx + 3 u ux = 2 uxuxx + u uxxx

[Camassa & Holm, 1993] [Johnson, 2000] [Constantin & Lannes, 2009]
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Traveling waves (decaying or periodic profiles)

Common features of the KdV and BBM equations:

. Solutions of the initial-value problem exist in Sobolev space H1

. Energy, momentum, and mass are defined in H1 and conserved

. Traveling waves u(t, x) = U(x− ct) have smooth profiles U in
the admissible range of the wave speed c

. Traveling waves are orbitally stable in H1 as constrained
minimizers of energy subject to fixed momentum and/or mass.
Consequently, they are linearly and spectrally stable.
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Traveling waves (decaying or periodic profiles)

The CH equation (and CH-related models) have different properties:

. Solutions of the initial-value problem exist in H1 ∩W1,∞

[De Lellis–Kappeler-Topalov (2007)] [Linares–Ponce–Sideris (2019)]

. Traveling waves u(t, x) = U(x− ct) are smooth only in a subset
of parameters and either peaked or cusped outside the subset
[Lennels (2005)] [Geyer–Martins–Natali–P (2022)]

. Smooth and peaked waves are constrained minimizers of energy
[Constantin & Strauss, 2000] [Constantin & Molinet, 2001] [Lennels, 2005]

. Waves with smooth profiles are stable in the time evolution
[Constantin & Strauss, 2002] [Lennels, 2006]

. Waves with peaked profiles are unstable in the time evolution
[Natali & P., 2020] [Madiyeva & P., 2021] [Lafortune & P., 2022]
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Traveling waves (decaying or periodic profiles)

Summary on the smooth versus peaked waves
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Smooth and peaked traveling Stokes waves

Stokes (1880) suggested existence of the peaked wave in the family of
traveling waves:

Existence of such solutions was proven by Toland (1978) and the
2π/3-peaked singularity was proven by Plotnikov (1982).
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Smooth and peaked traveling Stokes waves

More recently, numerical results were developed for approximation of
nearly-peaked periodic waves.
[Dyachenko–Lushnikov–Korotkevich, 2016] [Lushnikov, 2016]

Instability of smooth Stokes waves was explored numerically:
[Dyachenko-Semenova, 23] [Korotkevich-Lushnikov-Semenova-Dyachenko, 23]
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Smooth and peaked traveling Stokes waves

Modulation instability of small-amplitude Stokes waves was studied
in a recent invasion:

. Berti–Masrepo–Ventura, 2022: by using expansions of
Dirichlet-to-Neumann operator

. Creedon–Deconinck, 2023: by using expansions of the
Ablowitz-Fokas-Musslimani integral formulation

. Hur–Yang, 2023: by using rescaling of the finite-depth fluid and
expansions

. Nguyen–Strauss, 2023: by using complex variables and
transformations
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Smooth and peaked traveling Stokes waves

The objectives of our work:

. To explore a closed system of nonlinear evolution equations
(similar to CH) obtained by using conformal transformations

. To investigate transition from smooth to peaked traveling waves

. To prove analytically the stability of smooth waves and the
instability of peaked traveling periodic waves with respect to
co-periodic perturbations.
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Section 2

A closed system of nonlinear evolution equations
based on Babenko equaton
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Euler equations in physical coordinates

. η(x, t) - the free surface profile.

. φ(x, y, t) - velocity potential satisfying the Laplace equation in

Dη(t) := {(x, y) : −π ≤ x ≤ π, −h0 ≤ y ≤ η(x, t)}

. Periodic boundary conditions at x = ±π.

. Neumann boundary condition ϕy|y=−h0 = 0.

. Nonlinear evolution equatons at the free surface:

ηt + ϕxηx − ϕy = 0,

ϕt +
1
2

(ϕx)
2 +

1
2

(ϕy)
2 + η = 0,

}
at y = η(x, t),

. For unique definition of h0, we use the zero-mean constraint∮
ηdx = 0.
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Conformal transformation
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Conformal transformation

Cauchy–Riemann equations for z = x + iy:

∂x
∂u

=
∂y
∂v
,

∂x
∂v

= −∂y
∂u

in D := {(u, v) : −π ≤ u ≤ π, −h ≤ v ≤ 0}

subject to Neumann condition ∂vx|v=−h = 0 due to y(u,−h, t) = −h0.
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Conformal transformation

Fourier series solution:

x(u, v, t) = u +
∑
n∈Z

x̂n(t)einu cosh(n(v + h))

cosh(nh)
,

y(u, v, t) = v + h− h0 +
∑
n∈Z

x̂n(t)einu i
sinh(n(v + h))

cosh(nh)
.
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Conformal transformation

The velocity potential is then uniquely represented by

ϕ(u, v, t) =
∑
n∈Z

ξ̂n(t)einu cosh(n(v + h))

cosh(nh)
,

where ξ̂n(t) is the Fourier coefficient for ξ(u, t) = ϕ(u, v = 0, t).
The other canonical variable is η(u, t) = y(u, v = 0, t).
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Evolution equations for ξ(u, t) and η(u, t)

The closed system of two evolution equations is{
(1 + Khη)ηt − ηuT−1

h ηt + Thξu = 0,
ξtηu − ξuηt + ηηu + Th

[
(1 + Khη)ξt − ξuT−1

h ηt + (1 + Khη)η
]

= 0,

where skew-adjoint operators Th and T−1
h are defined by

(̂Th)n = i tanh(hn), n ∈ Z,
(̂
T−1

h

)
n =

{
−i coth(hn), n ∈ Z\{0},

0, n = 0,

whereas the self-adjoint operator Kh = T−1
h ∂u is defined by

(̂Kh)n =

{
n coth(hn), n ∈ Z\{0},

0, n = 0.

[Dyachenko-elder–Kuznetsov–Spector–Zakharov, 1996]

[Dyachenko-junior–Lushnikov–Korotkevich, 2016]
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Evolution equations for ξ(u, t) and η(u, t)

The closed system of two evolution equations is{
(1 + Khη)ηt − ηuT−1

h ηt + Thξu = 0,
ξtηu − ξuηt + ηηu + Th

[
(1 + Khη)ξt − ξuT−1

h ηt + (1 + Khη)η
]

= 0,

Since ∂ux(u, 0, t) = 1 + Khη, the original constraint
∮
ηdx = 0

becomes ∮
η(1 + Khη)du = 0.

Additional constants of motion are∮
ξηudu,

∮
ξ(1 + Khη)du,

∮ [
η2(1 + Khη)− ξThξu

]
du.

These are the horizontal and vertical momenta and the energy.
[Benjamin–Olver, 1982]
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Evolution equations for ξ(u, t) and η(u, t)

The closed system of two evolution equations is{
(1 + Khη)ηt − ηuT−1

h ηt + Thξu = 0,
ξtηu − ξuηt + ηηu + Th

[
(1 + Khη)ξt − ξuT−1

h ηt + (1 + Khη)η
]

= 0,

Traveling waves η(u, t) = η(u− ct) satisfy ξ = cT−1
h η, where the

profile η is a solution of Babenko’s equation [Babenko, 1987]

(c2Kh − 1)η =
1
2

Khη
2 + ηKhη.

Both smooth and peaked traveling waves are solutions of this scalar
equation. Their linear stability is related to the linearized operator

Lhv := (c2Kh − 1)v− Khηv− vKhη − ηKhv

which is self-adjoint in L2
per(T).
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Section 3

Existence results for the deep water: h→∞
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Babenko’s equation

Traveling waves η(u, t) = η(u− ct) satisfy Babenko’s equation:

(c2Kh − 1)η =
1
2

Khη
2 + ηKhη,

where

(̂Kh)n =

{
n coth(hn), n ∈ Z\{0},

0, n = 0.
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Babenko’s equation

Traveling waves η(u, t) = η(u− ct) satisfy Babenko’s equation:

(c2Kh − 1)η =
1
2

Khη
2 + ηKhη,

where

(̂Kh)n =

{
n coth(hn), n ∈ Z\{0},

0, n = 0.

In the deep water limit h→∞, Kh → ∂uH, where H is the Hilbert
transform on 2π-periodic functions:

f =
∑
n∈Z

fneinu ⇒ Hf =
∑
n∈Z

(−i)sgn(n)fneinu.
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Babenko’s equation in the deep water limit

We have the main model:

c2H∂uη − η = H(η∂uη) + ηH∂uη,
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Babenko’s equation in the deep water limit

We have the main model:

c2H∂uη − η = H(η∂uη) + ηH∂uη,

Small-amplitude (Stokes) expansions are algorithmically computed:

η(u) = a cos(u) + a2
[
cos(2u)− 1

2

]
+

3
2

a3 cos(3u) +O(a4)

and

c2 = 1 + a2 +O(a4),

where a > 0 is a small parameter for the wave amplitude.
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Babenko’s equation in the deep water limit

We have the main model:

c2H∂uη − η = H(η∂uη) + ηH∂uη,
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Babenko’s equation in the deep water limit

Near the singular waves, it makes sense to use η(u) = c2

2 − ζ(u) with
ζ satisfying the fixed-point equation

ζ = T(ζ) := H(ζ∂uζ) + ζH∂uζ +
c2

2
,

with the “boundary" conditions ζ(0) = 0 and ∂uζ(±π) = 0.
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Babenko’s equation in the deep water limit

ζ = H(ζ∂uζ) + ζH∂uζ +
c2

2

Theorem (Locke–P, 2024)

If the solution of ζ = T(ζ) is singular at u = 0 with the singularity of
the type

ζ(u) = A|u|α +O(|u|2α), α ∈ (0, 1],

with some A > 0, then necessarily, α = 2
3 .

In agreement with Stokes (1880), Toland (1978), Plotnikov (1982).
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Babenko’s equation in the deep water limit

Theorem (Locke–P, 2024)

If the solution of ζ = T(ζ) is singular at u = 0 with the singularity of
the type

ζ(u) = A|u|2/3 + B|u|β +O(|u|2/3+β), β ∈
(

2
3
, 2
)
,

with some A > 0 and B 6= 0, then necessarily, β ≈ 1.46 is a root of
the transcendental equation(

β +
2
3

)
cot

(
π

2
(β − 1

3
)

)
− β tan

(
πβ

2

)
=

2√
3
.

In agreement with Grant (1973).

Parameters c, A, B are not defined by the local expansion.
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Towards stability analysis

The linearized Babenko’s operator is

L∞ϕ := (c2H∂u − 1)ϕ− H∂u(ηϕ)− (H∂uη)ϕ− ηH∂uϕ.
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Towards stability analysis

The linearized Babenko’s operator is

L∞ϕ := (c2H∂u − 1)ϕ− H∂u(ηϕ)− (H∂uη)ϕ− ηH∂uϕ.

Recall the small-amplitude expansion:

η(u) = a cos(u) + a2
[
cos(2u)− 1

2

]
+

3
2

a3 cos(3u) +O(a4),

c2 = 1 + a2 +O(a4),

where a > 0 is the small-amplitude parameter. Then, we know the
spectrum of L∞ for a = 0 and for small a > 0:

a = 0 : σ(L∞) = {|n| − 1, n ∈ Z} = {−1, 0, 1, 2, . . . }.

The zero EV splits into a zero eigenvalue and a small negative EV
−2a2 +O(a4) in agreement with Dyachenko–Semenova (2023)
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Towards stability analysis

Numerical results from Dyachenko–Semenova (2023)

Work in progress: the stability criterion from the energy
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Towards stability analysis

The splitting of zero eigenvalue of L induces the figure-eight
modulational instability:

in agreement with Berti (2022), Creedon–Deconinck (2023), others.
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Section 4

Toy model for shallow water waves
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Evolution equation for η(u, t)

Full system of evolution equations:{
(1 + Khη)ηt − ηuT−1

h ηt + Thξu = 0,
ξtηu − ξuηt + ηηu + Th

[
(1 + Khη)ξt − ξuT−1

h ηt + (1 + Khη)η
]

= 0,

If η(u, t) = η(u− ct, t) and ξ = cT−1
h η + ζ, the system can be

simplified into the form:

(1 + Khη)ηt − ηuT−1
h ηt + Thζu = 0

and

(1 + Khη)ζt − ζuT−1
h ηt + T−1

h (ζtηu − ζuηt)

+2cT−1
h ηt − c2Khη + (1 + Khη)η +

1
2

Khη
2 = 0.
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Evolution equation for η(u, t)

We consider the scalar evolution equation:

2cT−1
h ηt − c2Khη + (1 + Khη)η +

1
2

Khη
2 = 0.

where(̂
T−1

h

)
n =

{
−i coth(hn),

0,
(̂Kh)n =

{
n coth(hn), n ∈ Z\{0},

0, n = 0.
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Evolution equation for η(u, t)

We consider the scalar evolution equation:

2cT−1
h ηt − c2Khη + (1 + Khη)η +

1
2

Khη
2 = 0.

Recall the intermediate long–wave (ILW) equation (integrable PDE)

∂tη + h−1∂uη + η∂uη = Kh(∂uη)

where

Kh = Kh +
1

2πh

∮
· du, (̂Kh)n =

{
n coth(hn), n ∈ Z\{0},

h−1, n = 0.

As h→ 0, Kh = h−1 − 1
3 h∂2

u +O(h3) and the ILW equation
converges to the KdV equation after rescaling.
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Evolution equation for η(u, t)

We consider the scalar evolution equation:

2cT−1
h ηt − c2Khη + (1 + Khη)η +

1
2

Khη
2 = 0.

This promts us to consider Kh replaced by

(̂
K̃h
)

n =

{
n coth(hn)− h−1, n ∈ Z\{0},

0, n = 0.

As h→ 0, K̃h = −1
3 h∂2

u +O(h3) and the evolution equation for
η(u, t) converges to the new local model after rescaling:

2c∂u∂tη = (c2 − 2η)∂2
uη − (∂uη)2 + η.

This is the Hunter–Saxton equation derived in a different context.
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Conserved quantities of the toy model

Thus, we can consider the toy model in the form:

2c∂u∂tη = (c2 − 2η)∂2
uη − (∂uη)2 + η

The toy model has the same constraint∮ [
η + (∂uη)2] du = 0

and the same conserved quantities∮
ηdu,

∮
(∂uη)2du,

∮ [
η2 + 2η(∂uη)2] du

as the original system of evolution equations (but local).
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Section 5

Main results on the toy model
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Local well-posedness of the initial-value problem

The toy model

2c∂u∂tη = (c2 − 2η)∂2
uη − (∂uη)2 + η

can be rewritten as the evolution equation

2c∂tη = (c2 − 2η)∂uη + Π0∂
−1
u Π0

[
(∂uη)2 + η

]
subject to the constraint

∮ [
η + (∂uη)2

]
du = 0. The inviscid Burgers

equation
2c∂tη = (c2 − 2η)∂uη

is locally well-posed in H1
per(T) ∩W1,∞(T) and the mapping

Π0∂
−1
u Π0

[
(∂uη)2 + η

]
: H1

per(T) ∩W1,∞(T)→ H1
per(T) ∩W1,∞(T)

is bounded on every bounded subset.
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Local well-posedness of the initial-value problem

The toy model

2c∂u∂tη = (c2 − 2η)∂2
uη − (∂uη)2 + η

can be rewritten as the evolution equation

2c∂tη = (c2 − 2η)∂uη + Π0∂
−1
u Π0

[
(∂uη)2 + η

]
subject to the constraint

∮ [
η + (∂uη)2

]
du = 0.

By standard technique (e.g. via characteristics), we obtain

Theorem
The initial-value problem is locally well-posed in H1

per(T)∩W1,∞(T).
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Existence of the periodic wave solutions

If η(u, t) = η(u) in the traveling wave frame, then η is a solution of
the differential equation

(c2 − 2η)η′′ − (η′)2 + η = 0, u ∈ T.
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Existence of the periodic wave solutions

If η(u, t) = η(u) in the traveling wave frame, then η is a solution of
the differential equation

(c2 − 2η)η′′ − (η′)2 + η = 0, u ∈ T.

Theorem
There exist c∗ := π

2
√

2
and c∞ ∈ (c∗,∞) such that the ODE admits a

unique solution with the profile η ∈ C∞per(T) for every c ∈ (1, c∗) s.t.

‖η‖L∞ → 0 as c→ 1

and a solution with the profile η ∈ C0
per(T) for every c ∈ (c∗, c∞)

satisfying for some A(c) > 0,

η(u) =
c2

2
− A(c)|u|2/3 +O(|u|) as u→ 0.
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Existence of the periodic wave solutions

If η(u, t) = η(u) in the traveling wave frame, then η is a solution of
the differential equation

(c2 − 2η)η′′ − (η′)2 + η = 0, u ∈ T.
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Existence of the periodic wave solutions

If η(u, t) = η(u) in the traveling wave frame, then η is a solution of
the differential equation

(c2 − 2η)η′′ − (η′)2 + η = 0, u ∈ T.

The two continuous families meet at c = c∗, where the profile
η ∈ C0

per(T) ∩W1,∞(T) is explicit:

η(u) =
1

16
(π2 − 4π|u|+ 2u2), u ∈ T.
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Existence of the periodic wave solutions

If η(u, t) = η(u) in the traveling wave frame, then η is a solution of
the differential equation

(c2 − 2η)η′′ − (η′)2 + η = 0, u ∈ T.

Interesting that the highest amplitude

max
u∈T

η(u) = η(0) =
c2

2

follows from laws of hydrodynamics and that the |u|2/3 singularity
corresponds after the conformal transformation to Stokes’ law of the
1200 angle in the physical coordinate.

The peaked profile at c = c∗ might be an artefact of the local model.
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Tools for existence analysis

Smooth solutions of (c2 − 2η)η′′ − (η′)2 + η = 0 are level curves

of E(η, η′) := 1
2(c2 − 2η)(η′)2 + 1

2η
2 on the phase plane (η, η′).

Dmitry Pelinovsky, McMaster University Traveling waves in Babenko equation 20 / 23



Tools for existence analysis

Smooth solutions of (c2 − 2η)η′′ − (η′)2 + η = 0 are level curves

of E(η, η′) := 1
2(c2 − 2η)(η′)2 + 1

2η
2 on the phase plane (η, η′).
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Tools for existence analysis

Smooth solutions of (c2 − 2η)η′′ − (η′)2 + η = 0 are level curves

of E(η, η′) := 1
2(c2 − 2η)(η′)2 + 1

2η
2 on the phase plane (η, η′).

For smooth periodic solutions, we can introduce the period function

T(E , c) := 2
∫ √2E

−
√

2E

√
c2 − 2η√
2E − η2

dη, E ∈ (0, Ec),

such that η(u + T(E , c)) = η(u).

Theorem
For every c > 0 and E ∈ (0, Ec) with Ec := c4

8 ,

∂cT(E , c) > 0 and ∂ET(E , c) < 0.

There exists a unique root of T(E , c) = 2π for E in (0, Ec).
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Linear stability of periodic waves with smooth profile

Starting with

2c∂tη = (c2 − 2η)∂uη + ∂−1
u
[
(∂uη)2 + η

]
we set η(u) + υ(u, t) and linearize at υ:

2c∂tυ = −∂−1
u Lυ, L = −∂u(c2 − 2η)∂u − 1 + 2η′′.

The constraint
∮ [
η + (∂uη)2

]
du = 0 yields 〈1− 2η′′, υ〉 = 0 on the

perturbation υ. Moreover, the constraints 〈1, υ〉 = 0 and 〈η′′, υ〉 = 0
persist in time t. They correspond to the requirement that the
conserved quantities ∮

ηdu and
∮

(∂uη)2du

do not change under the perturbation υ at the linear order.
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Linear stability of periodic waves with smooth profile

Theorem
Consider the unique solution with the profile η ∈ C∞per(T) for
c ∈ (1, c∗). For every initial data υ0 ∈ H1

per(T) satisfying 〈1, υ0〉 = 0
and 〈η′′, υ0〉 = 0, there exists a unique solution υ ∈ C0(R,H1

per(T))
of the linearized equation

2c∂tυ = −∂−1
u Lυ, L = −∂u(c2 − 2η)∂u − 1 + 2η′′.

with υ|t=0 = υ0 and a unique a ∈ C0(R,R) such that

‖υ(·, t)− a(t)η′‖H1
per
≤ C‖υ0‖H1

per
, |a′(t)| ≤ C‖υ0‖H1

per
, t ∈ R,

where C > 0 is independent of υ0.
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Linear stability of periodic waves with smooth profile

. Linear stability implies spectral stability in the sense that there
exist no solutions of the spectral problem

∂−1
u Lυ0 = λ0υ0, η0 ∈ H1

per(T)

for λ /∈ iR, that is, σ(∂−1
u L) ⊂ iR. Interesting that the spectral

problem Lυ = λ∂uυ has been considered before in
[Stanislovova–Stefanov, 2016] .

. Linear stability does not imply nonlinear stability because we
have no local well-posedness in H1

per(T) but the W1,∞-norm of
the perturbation υ is not controlled in the time evolution.

. The peaked wave at c = c∗ is likely unstable since it is similar to
the other fluid models: [Geyer–P, 2020] [Lafortune–P, 2022].

. Nothing is known on cusped waves.
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Tools for stability analysis

We analyze the linearized equation

2c∂tυ = −∂−1
u Lυ, L = −∂u(c2 − 2η)∂u − 1 + 2η′′

associated with skew-adjoint ∂−1
u and self-adjoint L in L2(T).
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Tools for stability analysis

We analyze the linearized equation

2c∂tυ = −∂−1
u Lυ, L = −∂u(c2 − 2η)∂u − 1 + 2η′′

associated with skew-adjoint ∂−1
u and self-adjoint L in L2(T).

We want to use the energy quadratic form in H1
per(T):

〈Lυ, υ〉 =

∮ [
(c2 − 2η)(∂uυ)2 + (2η′′ − 1)υ2] du,

which is constant in time t under the linear evolution.
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Tools for stability analysis

We analyze the linearized equation

2c∂tυ = −∂−1
u Lυ, L = −∂u(c2 − 2η)∂u − 1 + 2η′′

associated with skew-adjoint ∂−1
u and self-adjoint L in L2(T).

For the self-adjoint operator L : H2
per(T)→ L2(T).

. The spectrum σ(L) consists of isolated eigenvalues.

. We have 0 ∈ σ(L) because Lη′ = 0 and 0 is a simple eigenvalue
because ∂Eη is not 2π-periodic.

. There exist two negative eigenvalues in σ(L) because
∂ET(E , c) < 0.
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Tools for stability analysis

We analyze the linearized equation

2c∂tυ = −∂−1
u Lυ, L = −∂u(c2 − 2η)∂u − 1 + 2η′′

associated with skew-adjoint ∂−1
u and self-adjoint L in L2(T).

For the constrained self-adjoint operator L|Xc due to two constraints
〈1, υ〉 = 〈η′′, υ〉 = 0, we use L∂cη = 2cη′′ and L1 = 2η′′ − 1 to
compute

A =

[
〈L−11, 1〉 〈L−11, η′′〉
〈L−1η′′, 1〉 〈L−1η′′, η′′〉

]
=

[
c−1〈∂cη, 1〉 − 2π (2c)−1〈∂cη, 1〉
(2c)−1〈∂cη, 1〉 (4c)−1〈∂cη, 1〉

]
.

A has two negative eigenvalues and L|Xc has no negative eigenvalues
and a simple zero eigenvalue if and only if the mapping
c 7→ M(c) :=

∮
ηdu is monotonically decreasing at c ∈ (1, c∗).
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Tools for stability analysis

We analyze the linearized equation

2c∂tυ = −∂−1
u Lυ, L = −∂u(c2 − 2η)∂u − 1 + 2η′′

associated with skew-adjoint ∂−1
u and self-adjoint L in L2(T).
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The mapping c 7→ M(c) :=
∮
ηdu is decreasing (analytical result!).
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Tools for stability analysis

We analyze the linearized equation

2c∂tυ = −∂−1
u Lυ, L = −∂u(c2 − 2η)∂u − 1 + 2η′′

associated with skew-adjoint ∂−1
u and self-adjoint L in L2(T).

Since 〈Lυ, υ〉 is a conserved quantity for the linearized evolution, we
have for υ(·, t) = a(t)η′ + w(·, t) with 〈η′,w(·, t)〉 = 0 that

α‖w(·, t)‖2
H1

per
≤ 〈Lw(·, t),w(·, t)〉

= 〈Lυ(·, t), υ(·, t)〉
= 〈Lυ0, υ0〉
≤ β‖υ0‖2

H1
per
,

which yields ‖υ(·, t)− a(t)η′‖H1
per
≤ C‖υ0‖H1

per
.
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Summary

We have introduced here a new toy model for gravity water waves:

2cT−1
h ηt − c2Khη + (1 + Khη)η +

1
2

Khη
2 = 0,

in the context of Euler equations in holomorphic coordinates.

. It is the exact system of equations for traveling waves.

. It is a first-order reduction of Euler’s equations for the linearized
stability and the nonlinear evolution problems.
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Summary

We have introduced here a new toy model for gravity water waves:

2cT−1
h ηt − c2Khη + (1 + Khη)η +

1
2

Khη
2 = 0,

in the context of Euler equations in holomorphic coordinates.

In the shallow water limit, our principal results are:

. The continuous families of smooth and cusped waves are
connected at a single peaked wave.

. The smooth waves are linearly stable in the time evolution.

. The peaked wave is linearly unstable in the time evolution.

. The initial-value problem is locally well-posed in H1 ∩W1,∞,
which excludes the cusped waves.

Dmitry Pelinovsky, McMaster University Traveling waves in Babenko equation 23 / 23


	Background and motivations
	A closed system of nonlinear evolution equations based on Babenko equaton
	Existence results for the deep water: h 
	Toy model for shallow water waves
	Main results on the toy model

