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Background

Introduction

Density waves in cigar–shaped Bose–Einstein condensates with repulsive
inter-atomic interactions and a harmonic potential are modeled by the
Gross-Pitaevskii equation

ivτ = −1
2
∇2

ξv +
1
2
|ξ|2v + |v |2v − µv ,

where µ is the chemical potential, ξ ∈ R
d , and ∇2

ξ is the Laplacian in ξ.

Using the scaling transformation,

v(ξ, t) = µ1/2u(x , t), ξ = (2µ)1/2x , τ = 2t ,

the Gross–Pitaevskii equation is transformed to the semi-classical form

i ε ut + ε2 ∇2
xu + (1 − |x |2 − |u|2)u = 0,

where ε = (2µ)−1 is a small parameter.
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Background

Ground state

Limit µ→ ∞ or ε→ 0 is referred to as the semi-classical or Thomas–Fermi
limit. Physically, it is the limit of large density of the atomic cloud.

The ground state ηε is the real positive solution of the stationary equation,

ε2 ∇2
xηε + (1 − |x |2 − η2

ε)ηε = 0, x ∈ R
2.

Theorem (Ignat & Milot, JFA (2006))

For sufficiently small ε > 0, there exists a global minimizer of the
Gross–Pitaevskii energy

Eε(u) =

∫

R2

(

ε2 |∇xu|2 + (|x |2 − 1)|u|2 +
1
2
|u|4

)

dx

in the energy space

H1 =
{

u ∈ H1(R2) : |x |u ∈ L2(R2)
}

.
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Background

Ground state in the asymptotic theory

For small ε > 0, the ground state ηε ∈ C∞(R) decays to zero as |x | → ∞
faster than any exponential function

0 < ηε(x) ≤ C ε1/3 exp
(

1 − |x |2
4 ε2/3

)

, for all |x | ≥ 1.

The Thomas–Fermi approximation is

η0(x) := lim
ε→0

ηε(x) =

{

(1 − |x |2)1/2, for |x | < 1,
0, for |x | > 1,

Theorem (Gallo & D.P., AA (2011))

For sufficiently small ε > 0, there is C > 0 such that

‖ηε − η0‖L∞ ≤ C ε1/3, ‖∇xηε‖L∞ ≤ C ε−1/3 .
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Background

Vortices

The vortex uε is a complex-valued solution of the stationary equation,

ε2 ∇2
xuε + (1 − |x |2 − |uε|2)uε = 0, x ∈ R

2.

The product representation

u(x , t) = ηε(x)v(x , t)

brings the Gross–Pitaevskii equation to the equivalent form

i ε η2
εvt + ε2 ∇x

(

η2
ε∇xv

)

+ η4
ε(1 − |v |2)v = 0,

where lim|x|→∞ |v(x)| = 1.

Symmetric vortex of charge m ∈ N corresponds to the choice v = ψ(r/ ε)eimθ,
where (r , θ) are polar coordinates on R

2 and ψ(r/ ε) → 1 as r → ∞.
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Background

Vortices in harmonic potentials

Earlier results in physics literature:

Castin & Dum (1999) and Aftalion & Du (2001) - rotating vortices can
become local and later global minimizers of energy for larger frequencies

Fetter & Svidzinksy (2001) - vortex configurations can be understood
through effective energy

Ovchinnikov & Sigal (2004) - vortex interaction is determined by the
logarithmic Kirchhoff–Onsager energy

Möttönen et al. (2005) - computations of the interaction energy for two
and four vortices; prediction of stationary dipoles and quadrupoles

Li et al. (2008) - dynamics of a vortex–antivortex pair on a phase plane

Middelkamp et al. (2010) - numerical computations of eigenvalues for
single vortices, dipoles and quadrupoles by using relaxation methods

Kollar & Pego (2011) - numerical computations of eigenvalues for
charge-one and charge-two vortices by using Evans functions
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Background

1. Spectral stability of charge-one vortices
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Left: ground state ηε. Right: charge-one vortex.
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Background

2. Existence of dipole configurations
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Background

3. Steady precession of charge-one vortices
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Spatial contour plots of the amplitude (left) and phase (right) of a rotating
charge-one vortex.

D.Pelinovsky (McMaster University) Vortices in a harmonic potential 9 / 22



Variational results

Variational construction of vortices

The equivalent Gross–Pitaevskii equation

i ε η2
εvt + ε2 ∇x

(

η2
ε∇xv

)

+ η4
ε(1 − |v |2)v = 0,

is the Euler–Lagrange equation for the Lagrangian L(v) = K (v) + Λ(v) with
the kinetic energy

K (v) =
i
2
ε

∫

R2
η2

ε(vv̄t − v̄vt)dx

and the potential energy

Λ(v) = ε2
∫

R2
η2

ε |∇xv |2dx +
1
2

∫

R2
η4

ε(1 − |v |2)2dx .

Substituting a vortex ansatz for v and computing Euler–Lagrange equations
for parameters of the ansatz yield the system of equations that captures
qualitative dynamics of vortices and dipoles.
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Variational results

Free vortex of the defocusing NLS equation

As the variational ansatz, we substitute a single vortex of charge m from the
defocusing NLS equation (ηε ≡ 1),

Vm(x) = Ψm(R)eimθ, R =
r
ε

where m ∈ N and Ψm(R) is a solution of

Ψ′′
m + R−1Ψ′

m − m2R−2Ψm + (1 − Ψ2
m)Ψm = 0, R > 0,

such that Ψm(0) = 0, Ψm(R) > 0 for all R > 0, and limR→∞ Ψm(R) = 1.

The short-range asymptotics is

Ψm(R) = αmRm + O(Rm+2) as R → 0

The long-range asymptotics is

Ψ2
m(R) = 1 − m2

R2 + O
(

1
R4

)

as R → ∞.
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Variational results

Kinetic energy

We can use variables

x = x0 + εX , y = y0 + εY ,

and write the kinetic energy as

K (Vm) = −ẋ0Kx(Vm) − ẏ0Ky (Vm),

where

Kx(Vm) = −m ε2
∫

R2
η2

ε(x)
YΨ2

m

R2 dXdY , Ky (Vm) = m ε2
∫

R2
η2

ε(x)
XΨ2

m

R2 dXdY .

Lemma (D.P. & P.Kevrekidis, Nonlinearity (2011))

For small ε > 0 and small (x0, y0) ∈ R
2, the kinetic energy of a single vortex is

represented by

K (Vm) = πm ε(x0ẏ0 − y0ẋ0)
(

1 + O(ε) + O(x2
0 + y2

0 )
)

.
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Variational results

Potential energy

We write the potential energy as

Λ(Vm) = ε2
∫

R2
η2

ε(x)

[

(

dΨm

dR

)2

+
m2

R2 Ψ2
m

]

dXdY +
ε2

2

∫

R2
η4

ε(x)(1 − Ψ2
m)2dXdY .

Lemma (D.P. & P.Kevrekidis, Nonlinearity (2011))

For small ε > 0 and small (x0, y0) ∈ R
2, the potential energy of a single vortex

is represented by

Λ(Vm) − Λ(Vm)|x0=y0=0 = −π εmωm(x2
0 + y2

0 )
(

1 + O(ε1/3) + O(x2
0 + y2

0 )
)

,

where ωm is given by

ωm = εm

[

2 log(1/ ε) + 1 +
2

m2

∫ ∞

0

[

(

dΨm

dR

)2

+
m2

R2

(

Ψ2
m − R2

1 + R2

)

]

RdR

]

.
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Variational results

Eigenfrequencies of the charge-one vortex

Euler–Lagrange equations for the leading part of L(Vm) = K (Vm) + Λ(Vm) give

−ẋ0 = ωmy0, ẏ0 = ωmx0,

where ωm = 2 εm| log(ε)| + O(ε).
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Here µ = 1
2 ε and Im(λ) = ω

2 .
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Rigorous results

From variational to rigorous results

A vortex of charge one has frequency ω1(ε),

ω1(ε) = 2 ε | log(ε)| + O(ε),

which corresponds to its periodic precession around the origin (0,0) ∈ R
2 with

an infinitesimal displacement from the origin.

Q: Can we find a steadily rotating vortex displaced from the origin at a small
but finite distance?

Q: If we can, is this steadily rotating vortex more stable or less stable than the
symmetric vortex at the origin?
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Rigorous results

Steadily rotating vortices

In the rotating coordinate frame,
[

x
y

]

=

[

cos(ωt) sin(ωt)
− sin(ωt) cos(ωt)

] [

ξ
η

]

, ω ∈ R,

the Gross–Pitaevskii equation takes the form,

i εut + ε2(uξξ + uηη) + (1 − ξ2 − η2 − |u|2)u + i ε ω(ξuη − ηuξ) = 0.

The symmetric vortex of charge one is now given by

u(ξ, η) =
√

1 − ε ωψ(R)eiθ,
√

ξ2 + η2 =
√

1 − ε ωR,

where ψ(R) satisfies,

ν2
(

d2ψ

dR2 +
1
R

dψ
dR

− ψ

R2

)

+ (1 − R2 − ψ2)ψ = 0, ν =
ε

1 − ε ω
,

the same equation as in the non-rotating frame.
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Rigorous results

What do we know about vortices of charge one?

Existence U = ψ(R) for any ν ∈ (0,1/4) as a minimizer of

E1(U) =

∫ ∞

0

[

ν2
(

dU
dR

)2

+
ν2U2

R2 + R2U2 +
1
2

(1 − U2)2

]

RdR.

u = ψ(R)eiθ is a saddle point of the full energy

E(u) =

∫

R2

(

ν2|∇xu|2 + |x |2|u|2 +
1
2

(1 − |u|2)2
)

dx

with exactly one direction where E(u) < E(ψeiθ),

E(ψ̃eiθ) − E(ψeiθ) = −πνω1(ν)(x2
0 + y2

0 )
(

1 + O(ν1/3 + x2
0 + y2

0 )
)

,

where ω1(ν) = 2ν log(1/ν) + O(1).

The vortex is spectrally stable for any ν ∈ (0,1/4).
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Rigorous results

Two linearizations

If we substitute u(ξ, η, t) = ψ(r)eiθ + U(ξ, η, t) to the Gross–Pitaevskii
equation with

U(ξ, η, t) =
∑

m∈Z

V (m)(r)eimθeλt , Ū(ξ, η, t) =
∑

m∈Z

W (m)(r)eimθeλt ,

then we end up with the spectral stability problem

H(m)
ω

[

V (m)

W (m−2)

]

= i ε λ
[

1 0
0 −1

] [

V (m)

W (m−2)

]

,

where

H(m)
ω =

[

1 − r2 + ε2 ∆m − ε ωm − 2ψ2 −ϕ2
ω

−ψ2 1 − r2 + ε2 ∆m−2 + ε ω(m − 2) − 2ψ2

]

On the other hand, linearization of the stationary problem is related to the
spectrum of the self-adjoint eigenvalue problem

H(m)
ω

[

V (m)

W (m−2)

]

= ε µ

[

V (m)

W (m−2)

]

.

If µ = 0 is an eigenvalue, then a bifurcation of stationary vortices occurs.
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Rigorous results

Transformation

Adopting new variables r =
√

1 − ε ωR and ν = ε /(1 − ε ω), we transform the
self-adjoint eigenvalue problem to the form,

Hm

[

Vm

Wm−2

]

= νµ

[

Vm

Wm−2

]

+ νω(m − 1)

[

1 0
0 −1

] [

Vm

Wm−2

]

,

where

Hm =

[

1 − R2 + ν2∆m − 2ψ2 −ψ2

−ψ2 1 − R2 + ν2∆m−2 − 2ψ2

]

.

Lemma

For m = 2, there exists a bifurcation µ = 0 at ω = ω1(ε) ≈ 2 ε | log(ε)|.
Moreover, if µ(ω1(ε)) = 0, then µ′(ω1(ε)) < 0.
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Rigorous results

Further facts about rotating vortices

Rotating vortex is born via the supercritical pitchfork bifurcation with radial
symmetry for ω > ω1. Its center is placed at a point on the circle of radius a on
the (ξ, η)-plane, where a ∼

√

ε(ω − ω1).
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Rigorous results

Further facts about rotating vortices

Symmetric vortex of charge one becomes a local minimizer of energy for
ω > ω1. Asymmetric vortex of charge one is a saddle point of energy.
Nevertheless, both vortices are spectrally stable with respect to
time-dependent perturbations.

−1 −0.5 0 0.5 1
−2

−1

0

1

2

λ
i/
(2

 ε
)

λ
r
/(2 ε) −1 −0.5 0 0.5 1

−2

−1

0

1

2

λ
i/
(2

 ε
)

λ
r
/(2 ε)

Left: eigenvalues of symmetric vortex.
Right: eigenvalues of the asymmetric vortex.
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Rigorous results

Conclusion and open questions

We have discussed variational results for oscillations of vortices and dipoles in
the Thomas–Fermi limit and bifurcation results for the birth of stable rotating
asymmetric vortices of charge one.

Symmetric vortices of charge one are minimizers of energy and asymmetric
vortices of charge one are saddle points of energy for large frequencies.

Is the role of these vortices different in the nonlinear dynamics of the
Gross–Pitaevskii equation?

Can we explain surprising spectral stability of vortices of both types?

Can similar bifurcations occur for dipoles and quadrupoles?
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