

Projections: Let \mathbf{d} be a nonzero vector, and let \mathbf{u} be any vector.

The **projection** of \mathbf{u} on \mathbf{d} , denoted by $\text{proj}_{\mathbf{d}}(\mathbf{u})$, is the vector, which is parallel to \mathbf{d} with the length given by $\|\mathbf{u}\| \cos \theta$, where θ is the angle between \mathbf{u} and \mathbf{d} .

Properties

1. The vector $\text{proj}_{\mathbf{d}}(\mathbf{u})$ is parallel to \mathbf{d} .
2. The vector $\mathbf{v} := \mathbf{u} - \text{proj}_{\mathbf{d}}(\mathbf{u})$ is orthogonal to \mathbf{d} .
3. The vector \mathbf{u} is decomposed as $\mathbf{u} = \text{proj}_{\mathbf{d}}(\mathbf{u}) + \mathbf{v}$.

Example:

$$\mathbf{d} = \begin{pmatrix} 4 \\ 0 \\ -1 \end{pmatrix}, \quad \mathbf{u} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$

Theorem: Given \mathbf{u} and $\mathbf{d} \neq \mathbf{0}$. Then

$$\text{proj}_{\mathbf{d}}(\mathbf{u}) = \frac{\mathbf{u} \cdot \mathbf{d}}{\|\mathbf{d}\|^2} \mathbf{d}.$$

Example: Calculate the distance from a point $P(3, 2, -1)$ to the line

$$x = 2 + 3t,$$

$$y = 1 - t$$

$$z = 3 - 2t$$