

n -dimensional vector space \mathbf{R}^n

\mathbf{R}^n is a set of all **n -vectors** ($n \times 1$ -column matrices) \mathbf{v} with coordinates (components) (v_1, v_2, \dots, v_n) , where all numbers are real.

Example:

\mathbf{R}^1

\mathbf{R}^2

\mathbf{R}^3

Example: Generalize a straight line in \mathbf{R}^n for $n \geq 2$.

Subspace

A set U of vectors of \mathbf{R}^n is called a **subspace** of \mathbf{R}^n if it has the following three properties:

- S1. The zero vector $\mathbf{0}$ belongs to U .
- S2. If \mathbf{u} and \mathbf{v} are in U , then $\mathbf{u} + \mathbf{v}$ belongs to U .
- S3. If \mathbf{u} is in U and k is a real number, then $k\mathbf{u}$ belongs to U .

Trivial subspaces:

$$U = \mathbf{R}^n$$

$$U = \{\mathbf{0}\}$$

Proper subspaces:

- $U = \{\text{all lines in } \mathbf{R}^n \text{ through the origin}\}$
- $U = \{\text{all planes in } \mathbf{R}^3 \text{ through the origin}\}$
- $U = \{\text{all solutions of } AX = O\} = \text{null}(A)$, where A is a $m \times n$ matrix and X is a $n \times 1$ matrix.

Example

$$x_1 + x_3 + x_4 = 0$$

$$2x_1 + x_2 - x_4 = 0$$