

4 Partial Differential Equations

4.1 Wave and heat equations in one dimension

$$u_{tt} = c^2 u_{xx}, \quad 0 \leq x \leq l, \quad t \geq 0$$

or

$$u_t = k u_{xx}, \quad 0 \leq x \leq l, \quad t \geq 0$$

subject to homogeneous boundary conditions at $x = 0$ and $x = l$ and some initial conditions at $t = 0$.

4.1.1 Recipe # 12: Solution with method of separation of variables

1. Look for product solutions by separating the variables:

$$u(x, t) = X(x)T(t)$$

and find two coupled differential equations for $X(x)$ and $T(t)$

2. Solve the Sturm–Liouville eigenvalue problem for $X(x)$ on $0 \leq x \leq l$, subject to the homogeneous boundary conditions at $x = 0$ and $x = l$. Obtain the set of all eigenvalues $\{\lambda_n\}_{n=1}^{\infty}$ and eigenfunctions $X(x) = \{u_n(x)\}_{n=1}^{\infty}$
3. Find a general solution of the differential equation for $T(t)$ for a particular value of $\lambda = \lambda_n$: $T(t) = c_n(t)$. The general solution will have constants of integrations.
4. By the Linear Superposition Principle, represent the general solution $u(x, t)$ with series of eigenfunctions:

$$u(x, t) = \sum_{n=1}^{\infty} c_n(t) e_n(x),$$

where $(e_m(x), e_n(x)) = \delta_{n,m}$ and $c_n(t) = (u(x, t), e_n(x))$.

5. By the projection formula over the ortho-normal basis in $L^2([0, l])$, find the unique solution $u(x, t)$ from the initial conditions at $t = 0$.

4.1.2 Recipe # 13: Solution with the Fourier series method

1. Represent the initial condition at $t = 0$ with the Fourier series, which suits to the homogeneous boundary conditions, e.g.

$$u(x, 0) = f(x) = \sum_{n=1}^{\infty} b_n \sin \frac{\pi n x}{l} : \quad f(0) = f(l) = 0,$$

where

$$b_n = \frac{2}{l} \int_0^l f(x) \sin \frac{\pi n x}{l} dx$$

2. Represent the solution $u(x, t)$ with the same Fourier series with time-dependent Fourier coefficients:

$$u(x, t) = \sum_{n=1}^{\infty} c_n(t) \sin \frac{\pi n x}{l} : \quad u(0, t) = u(l, t) = 0,$$

such that $c_n(0) = b_n$.

3. Obtain the initial-value problem for Fourier coefficients $c_n(t)$.
4. Find a unique solution for $c_n(t)$ and $u(x, t)$.

Example: (heat equation)

$$u_t = u_{xx}, \quad 0 \leq x \leq 1, \quad t \geq 0$$

such that

$$u(0, t) = u(1, t) = 0$$

and

$$u(x, 0) = f(x) = 1, \quad 0 \leq x \leq 1$$

Eigenfunctions $e_n(x) = \sqrt{2} \sin(\pi n x)$, $n \geq 1$ are referred to as the normal modes (harmonics) of a string $0 \leq x \leq 1$.