

4.2 Laplace equation in two dimensions

4.2.1 Typical domains in $(x, y) \in \mathbb{R}^2$

- rectangle in rectangular coordinates (x, y)

$$\Delta u = u_{xx} + u_{yy}$$

in

$$D = \{(x, y) : 0 \leq x \leq a, 0 \leq y \leq b\}$$

- disc in polar coordinates (r, θ)

$$\Delta u = u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta}$$

in

$$D = \{(r, \theta) : 0 \leq r \leq a, 0 \leq \theta \leq 2\pi\}$$

where $x = r \cos \theta$ and $y = r \sin \theta$

4.2.2 Modified recipe #12: for time-dependent problems

$$u_{tt} = c^2 \Delta u, \quad (x, y) \in D, \quad t \geq 0$$

$$u_t = k \Delta u, \quad (x, y) \in D, \quad t \geq 0$$

1. Use the product form by separating time t from space (x, y) :

$$u(x, y, t) = \phi(x, y)T(t)$$

where $\phi(x, y)$ solves the Helmholtz equation:

$$\Delta \phi + \lambda \phi = 0$$

2. Use the product form for separating one space variable from another space variables:

$$\phi(x, y) = X(x)Y(y), \quad \phi(r, \theta) = R(r)\Theta(\theta)$$

3. Solve two Sturm–Liouville problems with two eigenvalue parameters λ and μ and two sets of eigenfunctions.

4. Apply steps 3–5 of recipe # 11 by replacing series of eigenfunctions with double series of eigenfunctions.

4.2.3 Important theorems for cylindrical harmonics

Theorem: Let $f(\theta)$ be a periodic continuously differentiable function with period 2π . The function $f(\theta)$ can be replaced by the complex Fourier series:

$$f(\theta) = \sum_{n \in \mathbb{Z}} c_n e^{in\theta},$$

where

$$c_n = \frac{1}{2\pi} \int_0^{2\pi} f(\theta) e^{-in\theta} d\theta, \quad n \in \mathbb{Z},$$

such that the series converges uniformly to $f(\theta)$ on $0 \leq \theta \leq 2\pi$.

Theorem: Let $g(r)$ be continuously differentiable function on $0 \leq r \leq a$, such that $g(0)$ exists and $g(a) = 0$. The function $g(r)$ can be replaced by the Bessel series:

$$g(r) = \sum_{m=1}^{\infty} d_m J_n \left(\frac{z_{n,m} r}{a} \right), \quad \forall n \in \mathbb{Z},$$

where

$$d_m = \frac{2}{a^2 J_{n+1}^2(z_{n,m})} \int_0^a r g(r) J_n \left(\frac{z_{n,m} r}{a} \right) dr, \quad m \geq 1,$$

such that the series converges uniformly to $g(r)$ on $0 \leq r \leq a$, where $z_{n,m}$ are roots of $J_n(z) = 0$.

Eigenfunctions $u_{n,m}(r, \theta) = J_n \left(\frac{z_{n,m} r}{a} \right) e^{in\theta}$, $n \in \mathbb{Z}$, $m \geq 1$ are referred to as the cylindric harmonics in a disc $0 \leq r \leq a$ and $0 \leq \theta \leq 2\pi$.