

5 Integral transforms

5.1 Fourier transform and applications

5.1.1 Theorem on the Fourier transform

Theorem: Let $f(x)$ be a continuously differentiable function on $x \in \mathbb{R}$, which is absolutely integrable, so that

$$\int_{-\infty}^{\infty} |f(x)| dx < \infty.$$

Then, $f(x)$ can be replaced by the Fourier integral:

$$f(x) = \int_{-\infty}^{\infty} \hat{f}(k) e^{ikx} dk,$$

where $\hat{f}(k)$, $k \in \mathbb{R}$ is the Fourier transform:

$$\hat{f}(k) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x) e^{-ikx} dx.$$

The Fourier transform converges uniformly for any $x \in \mathbb{R}$, $k \in \mathbb{R}$.

Examples:

Gaussian pulse:

$$f(x) = \frac{1}{a} \exp\left(-\frac{x^2}{2a^2}\right), \quad \hat{f}(k) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{a^2 k^2}{2}\right)$$

Lorentzian pulse:

$$f(x) = \exp\left(-\frac{|x|}{a}\right), \quad \hat{f}(k) = \frac{a}{\pi(1 + a^2 k^2)}$$

5.1.2 Properties of the Fourier transform

- Fourier transform is a linear operator

$$(i) \quad \mathcal{F}[f(x) + g(x)] = \mathcal{F}[f(x)] + \mathcal{F}[g(x)]$$

$$(ii) \quad \mathcal{F}[\lambda f(x)] = \lambda \mathcal{F}[f(x)]$$

- shift

$$\mathcal{F}[f(x - a)] = e^{-ika} \hat{f}(k)$$

- derivatives

$$\mathcal{F}[f^{(n)}(x)] = (ik)^n \hat{f}(k)$$

- powers

$$\mathcal{F}[x^n f(x)] = i^n \hat{f}^{(n)}(k)$$

- convolution

$$\mathcal{F}[f(x) * g(x)] = \mathcal{F} \left[\int_{-\infty}^{\infty} f(s)g(x - s)ds \right] = 2\pi \hat{f}(k) \hat{g}(k)$$

- Parseval's identity

$$\int_{-\infty}^{\infty} |f(x)|^2 dx = 2\pi \int_{-\infty}^{\infty} |\hat{f}(k)|^2 dk$$

- Dirac delta-function

$$\delta(x) = \begin{cases} 0, & x \neq 0 \\ \infty, & x = 0 \end{cases}$$

such that for any continuous function $f(x)$ on $x \in \mathbb{R}$:

$$\int_{-\infty}^{\infty} f(x)\delta(x)dx = f(0)$$

and

$$\mathcal{F}[\delta(x)] = \frac{1}{2\pi}, \quad \mathcal{F}[1] = \delta(k)$$

5.1.3 Recipe # 14: Solutions of PDEs with the Fourier transform

$$u_t = u_{xx}, \quad x \in \mathbb{R}, \quad t \geq 0$$

such that

$$u(x, 0) = f(x), \quad x \in \mathbb{R}$$

where $f(x)$ is continuously differentiable and absolutely integrable.

1. Represent $f(x)$ with the Fourier transform:

$$u(x, 0) = f(x) = \int_{-\infty}^{\infty} \hat{f}(k) e^{ikx} dk$$

where

$$\hat{f}(k) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x) e^{-ikx} dx$$

2. Represent the solution $u(x, t)$ with the time-dependent Fourier transform:

$$u(x, t) = \int_{-\infty}^{\infty} \hat{u}(k, t) e^{ikx} dk$$

such that $\hat{u}(k, 0) = \hat{f}(k)$.

3. Apply Fourier transform to the PDE and obtain the initial-value problem for $\hat{u}(k, t)$ in t :

$$\mathcal{F}[u_t(x, t)] = \frac{\partial \hat{u}(k, t)}{\partial t}, \quad \mathcal{F}[u_{xx}(x, t)] = (ik)^2 \hat{u}(k, t)$$

4. Find a unique solution for $\hat{u}(k, t)$ and $u(x, t)$:

$$u(x, t) = \int_{-\infty}^{\infty} \hat{f}(k) e^{-k^2 t} e^{ikx} dk$$

5. Apply the convolution formula and rewrite the solution $u(x, t)$:

$$u(x, t) = \frac{1}{4\pi t} \int_{-\infty}^{\infty} f(s) \exp\left(-\frac{(x-s)^2}{4t}\right) ds$$