1.3 Laurent series and the Residue Theorem

1.3.1 Taylor series for analytic functions

Theorem: Assume that the function f(z) is analytic near a point
z = zp in the disk |z — 29| < R. Then, the function f(z) can be
represented by the Taylor series for any z € C: |z — 29| < R:

f(z) = flz0) + f'(20)(z = 20) + 5" (20)(2 = 20)" + -

Examples:

Remarks:

1. The radius R of convergence of the Taylor series can be esti-
mated from the D’Alembert ratio test:
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where a,, is the coefficient of the Taylor series.

2. Taylor series for entire functions have R = oo

f(z) = Pu(2), f(z) = e, cos z,sin z

3. Taylor series for singular functions at z = 2y have R =0
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1.3.2 Laurent series

Theorem: Assume that the function f(z) is analytic in the annu-
lus Ry < |z2—2p| < Ry. Then, the function f(2) can be represented
by the Laurent series:
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and -y is any contour in the annulus.

where

Examples:

Remarks:

1. The Laurent series converges absolutely in the annulus R; <
|z — z9| < Ry, where Ry and Ry can be estimated from the
D’Alembert ratio test:
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2. When R; > 0, the function f(z) may have non-isolated singu-
larities at z = 2y Taylor series for entire functions have R = oo
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3. When all ¢, = 0 for n < —1, the function f(z) is regular
at z = zg. When all ¢, = 0 for n > 1, the function f(z) is
regular at infinity z = oo.

4. When Ry = 0, the point z = z; is either regular or isolated
singularity for f(z). When Ry = 0o, the point z = oo is either
regular or isolated singularity.



1.3.3 Properties of isolated singularities
1. Pole singularity

e The point z = 2z is a pole of order N for the function
fz) i
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where ¢(z) is analytic at z = 2.

e If the function f(2) has a pole of order N at z = z, the
Laurent series at 2 = zp has all ¢,, =0 for n < —N — 1.

e If the function f(z) has only pole singularities in z € C,
it is called a meromorphic function

2. Essential singularity

e If the point z = z; is an isolated (non-removable) sin-
gularity of f(z) and it is not a pole, it is an essential
singularity.

e If the function f(z) has an essential singularity at z = z,
the Laurent series at z = zy has some or all ¢, # 0 for
n<-—-N-—1.

e If the function f(z) has an essential singularity at z = 2,
then f(z) pass arbitrary close to any complex number in
the neighborhood of z = z.

Examples:



1.3.4 The Residue Theorem

The coefficient ¢_; in the Laurent series of f(2) at z = z is called
the residue of f(z) at z = zy:
1
Reslf(2)20) = 5. [ FlQ)C
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Theorem: Let f(2) be analytic inside a closed contour v, except
for isolated singularities at z = {z1, 29, ..., 2, }. Then,

/f(z)dz = 2mi Z Res(f(2); zk]
" k=1

Examples:
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1.3.5 Recipe #3: Evaluation of contour integrals with calculus of residues

L f(2)dz

where f(z) has isolated singularities inside +.

1. Find all isolated singularities of f(z) inside . Check that no
non-isolated singularities of f(z) inside ~y exist.

2. For each isolated singularity, find the residue term of f(z).

P(z
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(a) Let z = 2z be a simple zero of Q(z) and f(z) = o)~ Then
Resl ()50 =

(b) Let z = 2 be a simple pole. Then

Res[f(2); z0] = lim (2 — 29) f(2)
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(c) Let z = zy be a pole of order N. Then
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[(z = 20)" f(2)]

(d) Let z = 2y be a point of essential singularity. Then, com-
pute the Laurent series of f(z) at z = 2 and find ¢_;.

3. Sum all residue terms.

Examples:

Flz)=cotz,  flz) =






