
1.3 Laurent series and the Residue Theorem

1.3.1 Taylor series for analytic functions

Theorem: Assume that the function f (z) is analytic near a point

z = z0 in the disk |z − z0| < R. Then, the function f (z) can be

represented by the Taylor series for any z ∈ C : |z − z0| < R:

f (z) = f (z0) + f ′(z0)(z − z0) +
1

2
f ′′(z0)(z − z0)

2 + ...

=

∞∑
k=0

1

k!
f (k)(z0) (z − z0)

k.

Examples:

f (z) =
1

z2 + 1
, f (z) = e−z2

Remarks:

1. The radius R of convergence of the Taylor series can be esti-

mated from the D’Alembert ratio test:

R = lim
n→∞

∣∣∣∣ an

an+1

∣∣∣∣ ,

where an is the coefficient of the Taylor series.

2. Taylor series for entire functions have R = ∞

f (z) = Pn(z), f (z) = ez, cos z, sin z

3. Taylor series for singular functions at z = z0 have R = 0

f (z) =
cos z

z
, f (z) = e1/z



1.3.2 Laurent series

Theorem: Assume that the function f (z) is analytic in the annu-

lus R1 < |z−z0| < R2. Then, the function f (z) can be represented

by the Laurent series:

f (z) =

∞∑
k=−∞

ck(z − z0)
k,

where

ck =
1

2πi

∫
γ

f (ζ)dζ

(ζ − z0)k+1
,

and γ is any contour in the annulus.

Examples:

f (z) =
1

z2 + 1
, f (z) =

1

(z − 1)(z − 2)

Remarks:

1. The Laurent series converges absolutely in the annulus R1 <

|z − z0| < R2, where R1 and R2 can be estimated from the

D’Alembert ratio test:

R2 = lim
n→∞

∣∣∣∣ cn

cn+1

∣∣∣∣ , R1 = lim
n→∞

∣∣∣∣c−n−1

c−n

∣∣∣∣ .

2. When R1 > 0, the function f (z) may have non-isolated singu-

larities at z = z0 Taylor series for entire functions have R = ∞

f (z) =
1√

1− z2

3. When all cn = 0 for n ≤ −1, the function f (z) is regular

at z = z0. When all cn = 0 for n ≥ 1, the function f (z) is

regular at infinity z = ∞.

4. When R1 = 0, the point z = z0 is either regular or isolated

singularity for f (z). When R2 = ∞, the point z = ∞ is either

regular or isolated singularity.



1.3.3 Properties of isolated singularities

1. Pole singularity

• The point z = z0 is a pole of order N for the function

f (z) if

f (z) =
φ(z)

(z − z0)N

where φ(z) is analytic at z = z0.

• If the function f (z) has a pole of order N at z = z0, the

Laurent series at z = z0 has all cn = 0 for n ≤ −N − 1.

• If the function f (z) has only pole singularities in z ∈ C,

it is called a meromorphic function

2. Essential singularity

• If the point z = z0 is an isolated (non-removable) sin-

gularity of f (z) and it is not a pole, it is an essential

singularity.

• If the function f (z) has an essential singularity at z = z0,

the Laurent series at z = z0 has some or all cn 6= 0 for

n ≤ −N − 1.

• If the function f (z) has an essential singularity at z = z0,

then f (z) pass arbitrary close to any complex number in

the neighborhood of z = z0.

Examples:

f (z) =
z

sin z
, f (z) = e1/z



1.3.4 The Residue Theorem

The coefficient c−1 in the Laurent series of f (z) at z = z0 is called

the residue of f (z) at z = z0:

Res[f (z); z0] =
1

2πi

∫
γ

f (ζ)dζ

Theorem: Let f (z) be analytic inside a closed contour γ, except

for isolated singularities at z = {z1, z2, ..., zn}. Then,∫
γ

f (z)dz = 2πi

n∑
k=1

Res[f (z); zk]

Examples: ∫
γ

zne1/zdz,

∫
γ

dz

1 + 4z2



1.3.5 Recipe #3: Evaluation of contour integrals with calculus of residues∫
γ

f (z)dz

where f (z) has isolated singularities inside γ.

1. Find all isolated singularities of f (z) inside γ. Check that no

non-isolated singularities of f (z) inside γ exist.

2. For each isolated singularity, find the residue term of f (z).

(a) Let z = z0 be a simple zero of Q(z) and f (z) = P (z)
Q(z). Then

Res[f (z); z0] =
P (z0)

Q′(z0)

(b) Let z = z0 be a simple pole. Then

Res[f (z); z0] = lim
z→z0

(z − z0)f (z)

(c) Let z = z0 be a pole of order N . Then

Res[f (z); z0] =
1

(N − 1)!
lim
z→z0

dN−1

dzN−1

[
(z − z0)

Nf (z)
]

(d) Let z = z0 be a point of essential singularity. Then, com-

pute the Laurent series of f (z) at z = z0 and find c−1.

3. Sum all residue terms.

Examples:

f (z) = cot z, f(z) =
z2 + 2z

(z − 1)3
, f (z) = sin

(
1

z

)
.




