

4.2 Confidence intervals

4.2.1 Preliminaries

Definition: If for a given probability distribution, we have

$$\text{Prob}\{a \leq x \leq b\} = c,$$

the interval $x \in [a, b]$ is called a confidence interval with the confidence level c (measured in %).

Example: Confidence intervals for normal distribution with mean μ and variance σ^2 :

$$\text{Prob}\{\mu - 1.96\sigma \leq x \leq \mu + 1.96\sigma\} = 0.95$$

$$\text{Prob}\{\mu - 2.58\sigma \leq x \leq \mu + 2.58\sigma\} = 0.99$$

Main problem: Given a sample of independent, normally distributed data (x_1, \dots, x_n) and a confidence level, estimate a confidence interval for the mean μ and variance σ^2 .

4.2.2 Recipe # 14: How to estimate a confidence interval for mean μ if variance σ^2 is given

1. Compute sample mean $\bar{x} = \frac{1}{n} \sum_{j=1}^n x_j$
2. Choose a confidence level c
3. Define a standardized normal variable $z = (\bar{x} - \mu)\sqrt{n}/\sigma$ and compute a from probability distribution:

$$\Phi(a) = \frac{1 + c}{2}, \quad \Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^z e^{-\frac{1}{2}z^2} dz$$

4. Compute the confidence interval for μ :

$$\bar{x} - a \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{x} + a \frac{\sigma}{\sqrt{n}}$$

4.2.3 Recipe # 15: How to estimate a confidence interval for mean μ if variance σ^2 is also unknown

Theorem: Let (x_1, \dots, x_n) be distributed normally with mean μ and variance σ^2 . Let \bar{x} be sample mean and s^2 be sample variance. The standardized variable

$$z = \frac{(\bar{x} - \mu)\sqrt{n}}{s}$$

has t -distribution of the $(n - 1)$ -th degree with the density:

$$p_{n-1}(z) = \frac{\Gamma(n/2)}{\sqrt{\pi(n-1)}\Gamma((n-1)/2)} \frac{1}{\left(1 + \frac{z^2}{n-1}\right)^{n/2}}.$$

1. Compute sample mean and variance

$$\bar{x} = \frac{1}{n} \sum_{j=1}^n x_j, \quad s^2 = \frac{1}{n-1} \sum_{j=1}^n (x_j - \bar{x})^2$$

2. Choose a confidence level c

3. Define a standardized variable $z = (\bar{x} - \mu)\sqrt{n}/s$ and compute a from probability distribution:

$$\Phi_{n-1}(a) = \frac{1+c}{2}, \quad \Phi_{n-1}(z) = \int_{-\infty}^z p_{n-1}(z) dz$$

4. Compute the confidence interval for μ :

$$\bar{x} - a \frac{s}{\sqrt{n}} \leq \mu \leq \bar{x} + a \frac{s}{\sqrt{n}}$$

Remark: The confidence interval becomes wider if the variance is unknown and is estimated from the sample variance.

Remark: In the limit $n \rightarrow \infty$, confidence intervals shrink and the point estimates $\mu \approx \bar{x}$ and $\sigma^2 \approx s^2$ become more accurate.

4.2.4 Recipe # 16: How to estimate a confidence interval for variance σ^2

Theorem: Let (x_1, \dots, x_n) be distributed normally with mean μ and variance σ^2 . Let \bar{x} be sample mean and s^2 be sample variance. The standardized variable

$$y = \frac{(n-1)s^2}{\sigma^2}$$

has χ -square distribution of the $(n-1)$ -th degree with the density:

$$p_{n-1}(y) = \frac{y^{(n-3)/2} e^{-y/2}}{2^{(n-1)/2} \Gamma((n-1)/2)}, \quad y > 0.$$

1. Compute sample mean and variance

$$\bar{x} = \frac{1}{n} \sum_{j=1}^n x_j, \quad s^2 = \frac{1}{n-1} \sum_{j=1}^n (x_j - \bar{x})^2$$

2. Choose a confidence level c

3. Define a standardized variable $y = (n-1)s^2/\sigma^2$ and compute a_- and a_+ from probability distribution:

$$\Phi_{n-1}(a_{\pm}) = \frac{1 \pm c}{2}, \quad \Phi_{n-1}(y) = \int_0^y p_{n-1}(y) dy$$

4. Compute the confidence interval for σ^2 :

$$\frac{(n-1)s^2}{a_+} \leq \sigma^2 \leq \frac{(n-1)s^2}{a_-}$$

Remark: If sample data (x_1, \dots, x_n) are not normally distributed, the sample mean \bar{x} is still normally distributed in the limit $n \rightarrow \infty$.

4.2.5 Recipe # 17: How to estimate goodness of a fit

Theorem: Let (x_1, \dots, x_n) be distributed with the probability density $p(x)$. Let the interval for $x \in \mathbb{R}$ is divided into m subintervals for $x_j \leq x \leq x_{j+1}$, $j = 0, 1, \dots, m$. Let ω_j be the relative frequency of data points in the interval $x_j \leq x \leq x_{j+1}$, while p_j be the theoretical probability

$$p_j = \text{Prob}\{x_j \leq x \leq x_{j+1}\} = \int_{x_j}^{x_{j+1}} p(x) dx.$$

The standardized variable

$$\chi^2 = n \sum_{j=1}^m \frac{(\omega_j - p_j)^2}{p_j}$$

has χ -square distribution of the $(m - 1)$ -th degree.

1. Compute the value of χ^2
2. Choose a confidence level c
3. Compute a from probability distribution:

$$\Phi_{m-1}(a) = c, \quad \Phi_{m-1}(y) = \int_0^y p_{m-1}(y) dy$$

4. If $\chi^2 > a$, the probability distribution $p(x)$ is not a good fit to the data points. The opposite holds if $\chi^2 < a$.

Remark: The greater is the value of n , the closer the experimental probabilities $(\omega_1, \dots, \omega_m)$ are expected to match with the theoretical probabilities (p_1, \dots, p_m) . If they are not, the theoretical probability density $p(x)$ is not a good fit to probability distribution of the data points (x_1, \dots, x_n) .