
4.2 Confidence intervals

4.2.1 Preliminaries

Definition: If for a given probability distribution, we have

Prob{a ≤ x ≤ b} = c,

the interval x ∈ [a, b] is called a confidence interval with the con-

fidence level c (measured in %).

Example: Confidence intervals for normal distribution with mean

µ and variance σ2:

Prob{µ− 1.96σ ≤ x ≤ µ + 1.96σ} = 0.95

Prob{µ− 2.58σ ≤ x ≤ µ + 2.58σ} = 0.99

Main problem: Given a sample of independent, normally dis-

tributed data (x1, ..., xn) and a confidence level, estimate a confi-

dence interval for the mean µ and variance σ2.

4.2.2 Recipe # 14: How to estimate a confidence interval for mean µ if
variance σ2 is given

1. Compute sample mean x̄ = 1
n

∑n
j=1 xj

2. Choose a confidence level c

3. Define a standardized normal variable z = (x̄− µ)
√
n/σ and

compute a from probability distribution:

Φ(a) =
1 + c

2
, Φ(z) =

1√
2π

∫ z

−∞
e−

1
2z

2
dz

4. Compute the confidence interval for µ:

x̄− a
σ√
n
≤ µ ≤ x̄ + a

σ√
n



4.2.3 Recipe # 15: How to estimate a confidence interval for mean µ if
variance σ2 is also unknown

Theorem: Let (x1, ..., xn) be distributed normally with mean µ

and variance σ2. Let x̄ be sample mean and s2 be sample variance.

The standardized variable

z =
(x̄− µ)

√
n

s

has t-distribution of the (n− 1)-th degree with the density:

pn−1(z) =
Γ(n/2)√

π(n− 1)Γ((n− 1)/2)

1(
1 + z2

n−1

)n/2 .
1. Compute sample mean and variance

x̄ =
1

n

n∑
j=1

xj, s2 =
1

n− 1

n∑
j=1

(xj − x̄)2

2. Choose a confidence level c

3. Define a standardized variable z = (x̄−µ)
√
n/s and compute

a from probability distribution:

Φn−1(a) =
1 + c

2
, Φn−1(z) =

∫ z

−∞
pn−1(z)dz

4. Compute the confidence interval for µ:

x̄− a
s√
n
≤ µ ≤ x̄ + a

s√
n

Remark: The confidence interval becomes wider if the variance

is unknown and is estimated from the sample variance.

Remark: In the limit n → ∞, confidence intervals shrink and

the point estimates µ ≈ x̄ and σ2 ≈ s2 become more accurate.



4.2.4 Recipe # 16: How to estimate a confidence interval for variance σ2

Theorem: Let (x1, ..., xn) be distributed normally with mean µ

and variance σ2. Let x̄ be sample mean and s2 be sample variance.

The standardized variable

y =
(n− 1)s2

σ2

has χ-square distribution of the (n−1)-th degree with the density:

pn−1(y) =
y(n−3)/2e−y/2

2(n−1)/2Γ((n− 1)/2)
, y > 0.

1. Compute sample mean and variance

x̄ =
1

n

n∑
j=1

xj, s2 =
1

n− 1

n∑
j=1

(xj − x̄)2

2. Choose a confidence level c

3. Define a standardized variable y = (n− 1)s2/σ2 and compute

a− and a+ from probability distribution:

Φn−1(a±) =
1± c

2
, Φn−1(y) =

∫ y

0

pn−1(y)dy

4. Compute the confidence interval for σ2:

(n− 1)s2

a+
≤ σ2 ≤ (n− 1)s2

a−

Remark: If sample data (x1, ..., xn) are not normally distributed,

the sample mean x̄ is still normally distributed in the limit n→∞.



4.2.5 Recipe # 17: How to estimate goodness of a fit

Theorem: Let (x1, ..., xn) be distributed with the probability

density p(x). Let the interval for x ∈ R is divided into m subin-

tervals for xj ≤ x ≤ xj+1, j = 0, 1, ...,m. Let ωj be the relative

frequency of data points in the interval xj ≤ x ≤ xj+1, while pj
be the theoretical probability

pj = Prob{xj ≤ x ≤ xj+1} =

∫ xj+1

xj

p(x)dx.

The standardized variable

χ2 = n

m∑
j=1

(ωj − pj)
2

pj

has χ-square distribution of the (m− 1)-th degree.

1. Compute the value of χ2

2. Choose a confidence level c

3. Compute a from probability distribution:

Φm−1(a) = c, Φm−1(y) =

∫ y

0

pm−1(y)dy

4. If χ2 > a, the probability distribution p(x) is not a good fit

to the data points. The opposite holds if χ2 < a.

Remark: The greater is the value of n, the closer the experi-

mental probabilities (ω1, ..., ωm) are expected to match with the

theoretical probabilities (p1, ..., pm). If they are not, the theoretical

probability density p(x) is not a good fit to probability distribution

of the data points (x1, ..., xn).




