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CHAPTER 22

Data Analysis.
Probability Theory

We first show how to handle data numerically or graphically (in terms of figures), in
order to see what properties they may have and what kind of information we can extract
from them. If data are influenced by chance effect (e.g., weather data, properties of
steel, stock prices, etc.), they may suggest and motivate concepts and rules of probability
theory because this is the theoretical counterpart of the observable reality whenever
“chance” is at work. This theory gives us mathematical models of such chance processes
(briefly called “experiments”; Sec, 22.2). In any such experiment we observe a “random
variable” X, a function whose values in the experiment occur “by chance” (Sec. 22.5),
which is characterized by a probability distribution (Secs. 22.5-22.8). Or we observe
more than one random variable, for example, height and weight of persons, hardness
and tensile strength of copper. This is discussed in Sec. 22.9, which will also give the
basis for the mathematical justification of statistical methods in Chap. 23.

Prerequisite for this chapter: Calculus.

References: Appendix 1, Part G.

Answers to problems: Appendix 2.

22.1 Data: Representation, Average, Spread

Data can be represented numerically or graphically in various ways. For instance, your

" %. _daily newspaper may contain tables of stock prices and money exchange rates, curves or
bar charts illustrating economical or political developments, or pie charts showing how
your tax dollar is spent. And there are numerous other representations of data for special
purposes.

In this section we discuss the use of standard representations of data in statistics. (For
these, software packages, such as DATA DESK and MINITAB, are available, and MAPLE
or MATHEMATICA may also be helpful.) We explain corresponding concepts and
methods in terms of typical examples, beginning with

(1) 59 8 87 81 89 86 91 S0 73 89 B7 99 83 89

These are n = 14 measurements of the tensile strength of sheet steel in kg/mm?, recorded
in the order obtained and rounded to integer values. To see what is going on, we sort
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these data, that is, we order them by size,
(2) 78 81 83 84 86 87 87 89 B89 89 89 90 91 99.

Sorting is a standard process on the computer; see Ref. [E13], Chap. 8, listed in Appendix 1.

Graphicdl Representation of Data

We shall now discuss standard graphical representations used in statistics for obtaining
information on properties of data.

Stem-and-Leaf Plot

This is one of the simplest but most useful representations of data. For (1) it is shown in
Fig. 475. The numbers in (1) range from 78 to 99 [see (2)]. We divide these numbers into
5 groups, 75-79, 8084, 85-89, 90-94, 95-99. The integers in the tens position of the
groups are 7, 8, 8, 9, 9. These form the stem in Fig. 475. The first leaf is 8 (representing
78). The second leaf is 134 (representing 81, 83, 84), and so on.

Leaf unit = 1.0

1 718

4 8| 134
11 8 | 6779999
13 9101
14 919

Fig. 475. Stem-and-leaf plot of the data in (1) and (2)

The number of times a value occurs is called its absolute frequency. Thus 78 has
absolute frequency 1, the value 89 has absolute frequency 4, etc. The column to the extreme
left in Fig. 475 shows the cumulative absolute frequencies, that is, the sum of the absolute
frequencies of the values up to the line of the leaf. Thus, the number 4 in the second line
on the left shows that (1) has 4 values up to and including 84. The number 11 in the next
line shows that there are 11 values not exceeding 89, etc. Dividing the cumulative absolute
frequencies by n (= 14 in Fig. 475) gives the cumulative relative frequencies.

Histogram
For large sets of data, histograms are better in displaying the distribution of data than

§}§m_-§nd—leaf plots. The principle is explained in Fig. 476. (An application to a larger

Fre®) A
0.5+ B
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77 B2 8f 92 97 x

Fig. 476. Histogram of the data in (1) and (2)
(grouped as in Fig. 475)
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data set is shown in Sec. 23.7). The bases of the rectangles in Fig. 476 are the x-intervals
(known as class intervals) 74.5-79.5, 79.5-84.5, 84.5-89.5, 89.5-94.5. 04.5-99.5, whose
midpoints (known as class marks) are x = 77, 82, 87, 92, 97, respectively. The height
of a rectangle with class mark x is the relative class frequency fre1(x), defined as the
number of data values in that class interval, divided by n (= 14 in our case). Hence the
areas of the rectangles are proportional to these relative frequencies, so that histograms
give a good impression of the distribution of data.

Center and Spread of Data: Median, Quartiles

As a center of the location of data values we can simply take the median, the data value
that falls in the middle when the values are ordered. In (2) we have 14 values. The seventh
of them is 87, the eighth is 89, and we split the difference, obtaining the median 88. (In
general, we would get a fraction.)

The spread (variability) of the data values can be measured by the range
R = Xmax — Xmin» the largest minus the smallest data values, R = 99 — 78 = 21 in (2).

Better information gives the interquartile range IQR = ¢ — ¢;. Here the upper
quartile g, is the middle value among the data values above the median. The lower
quartile g, is the middle value among the data values below the median. Thus in (2) we
have q; = 89 (the fourth value from the end), g, = 84 (the fourth value from the
beginning), and IQR = 89 — 84 = 5. The median is also called the middle quartile and
is denoted by g,,. The rule of “splitting the difference” (just applied to the middle quartile)
is equally well used for the other quartiles if necessary.

Boxplot

The boxplot of (1) in Fig. 477 is obtained from the five numbers x,,i.., 41 9m» Gu» Xmax
just determined. The box extends from g, to gy;. Hence it has the height IQR. The position
of the median in the box shows that the data distribution is not symmetric. The two lines
extend from the box to x,,;, below and to x,,,, above. Hence they mark the range R.

Boxplots are particularly suitable for making comparisons. For example, Fig. 477 shows
boxplots of the data sets (1) and

(3) 91 89 93 91 87 94 92 85 91 90 96 93 89
4
9,

AR H p
Gy L

Data set (3)

Fig. 477. Boxplots of data sets {1) and (3)
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(consisting of n = 13 values). Ordering gives
(4) B5 47 89 89 9 91701 9] 92 93 93 .94 94

(tensile strength, as before). From the plot we immediately see that the box of (3) is shorter
than the box of (1) (indicating the higher quality of the sheets!) and that g, is located in
the middle of the box (showing the more symmetric form of the distribution). Finally,
Xmax 18 closer to gy for (3) than for (1), a fact that we shall discuss later.

For plotting the box of (3) we took from (4) xp,;, = 85, g1, = 89, gy = 91, gy = 93,
Xmax = 96.

Outliers

An outlier is a value that appears to be uniquely different from the rest of the data set. It
might indicate that something went wrong with the data collection process. In connection
with quartiles an outlier is conventionally defined as a value more than a distance of
1.5IQR from either end of the box.

For the data in (1) we have IQR = 5, g;, = 84, gy = 89. Hence outliers are smaller
than 84 — 7.5 or larger than 89 + 7.5, so that 99 is an outlier [see (2)]. The data (3) have
no outliers, as you can readily verify.

Mean. Standard Deviation. Variance

Medians and quartiles are easily obtained by ordering and counting, practically without
calculation. But they do not give full information on data: you can move data values
around to some extent without changing the median. Similarly for the quartiles.

The average size of the data values can be measured in a more refined way by the mean

1 o 1 |
Tl ey |
(5) X HZJC . (x; + x5 + +,rn).!

il
J=1

This is the arithmetic mean of the data values, obtained by taking their sum and dividing
by the data size n. Thus in (1),

Xx=:-(89+84+ --+89 =8l=8g73
Every data value contributes, and changing one of them will change the mean.

Si;l}l’i_lk_ll'ly, the spread (variability) of the data values can be measured in a more refined
way by the standard deviation s or by its square, the variance

n

‘ ! | . g
(6) 5% = B T e E e e
A e =1 i

Thus, to obtain the variance of the data, take the difference x; — X of each data value from
the mean, square it, take the sum of these n squares, and divide it by n — 1 (not n, as we
motivate in Sec. 23.2). To get the standard deviation s, take the square root of s2.

For example, using X = 611/7, we get for the data (1) the variance

s = A [(89 — L)% + (84 — L)% 4+ ... + (39 — SLLP] = 118 ~ 2514,
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Hence the standard deviation is s = V' 176 /7 = 5.014. Note that the standard deviation
has the same dimension (kg/mmz) as the data values. On the other hand, the variance is
more advantageous than the standard deviation in developing statistical methods.

Caution! Your CAS (MAPLE, for instance) may use 1/n instead of 1/(n — 1) in (6),
but the latter is better when n is small (see Sec. 23.2).

PROBLEM SET 22.1

Representation of Data
Represent the following data by a stem-and-leaf plot, a histogram, and a boxplot.

12 119 5 12 6 7 9 11 11

.17 18 17 16 17 16 18 16

46 48 44 23 31 20 34 27 41 36 46 28 28 39 29

-0.51 012 —-047 095 025 -0.18 -0.54

506 509 49.1 513 505 497 515 498 51.1 489 503 492 512 504 528
. 131 11.0 134 115 102 182 124 128 157 109

. Release time [sec] of a relay

Ne e w -

13 1.2 14 15 13 13 14 11 15 14
16 13 15 11 14 1.2 13 15 14 14

8. Carbon content (%] of coal

86 87 8 81 77 8 87 86 85 87
82 84 83 79 82 73 8 84 83 83

9. Miles per gallon of gasoline required by six cars of the same make
150 155 145 150 155 150
10. Weight of filled bags [grams] in an automatic filling process

203 199 198 201 200 201 201

... . Average and Spread

*-Fird the mean and compare it with the median. Find the standard deviation and compare it with the
interquartile range.

11. The data in Prob. 1

12. The data in Prob. 2

13. The data in Prob. 5

14.5 22 7 23 6. Why is [t — gy so large?

. 15. Construct the simplest possible data with X = 100 but gy = 0.

" 16. (Mean) Prove that ¥ must always lie between the smallest and the largest data values.

17. (Outlier, reduced data) Calculate s for the data 4, 1, 3, 10, 2. Then reduce the data by deleting
the outlier and calculate s. Comment.

18. WRITING PROJECT. Average and Spread. Compare Qy, IQR and ¥, s, illustrating the
advantages and disadvantages with examples and plots of your own.
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22.2

Experiments, Outcomes, Events

EXAMPLES 1-6

EXAMPLE 7

r"{_. &

We now turn to probability theory. This theory has the purpose of providing mathematical
models of situations affected or even governed by “chance effects,” for instance, in weather
forecasting, life insurance, quality of technical products (computers, batteries, steel sheets,
etc.), traffic problems, and, of course, games of chance with cards or dice. And the accuracy
of these models can be tested by suitable observations or experiments—this is the purpose
of statistics in Chap. 23.

We begin by defining some standard terms. An experiment is a process of measurement
or observation, in a laboratory, in a factory, on the street, in nature, or wherever; so
“experiment” is used in a rather general sense. Our interest is in experiments that involve
randomness, chance effects, so that we cannot predict a result exactly. A trial is a single
performance of an experiment. Its result is called an outcome or a sample point. » trials
then give a sample of size n consisting of n sample points. The sample space S of an
experiment is the set of all possible outcomes. Examples are

(1) Inspecting a lightbulb. S = {Defective, Nondefective}.

(2) Rolling a die. § = {1, 2, 3, 4, 5, 6}.

(3) Measuring tensile strength of wire. § the numbers in some interval.

(4) Measuring copper content of brass. S: 50% to 90%, say.

(5) Counting daily traffic accidents in New York. S the integers in some interval.
(6) Asking for opinion about a new car model. § = {Like, Dislike, Undecided}.

The subsets of S are called events and the outcomes simple events.

. Events
In (2), events are A = (1, 3, 5} (“Odd number”), B = {2, 4, 6} (“Even number™), C = {5, 6}, etc. Simple
events are {1}, {2}, -+, {6]. -

If in a trial an outcome @ happens and a € A (a is an element of A), we say that A
happens. For instance, if a die turns up a 3, the event A: Odd number happens. Similarly,
if C happens (meaning 5 or 6 turns up), then D = {4, 5, 6} happens. Also note that S
happens in each trial, meaning that some event of S always happens. All this is quite
natural,

Unions, Intersections, Complements of Events

I, connection with basic probability laws we shall need the following concepts and facts

about events (subsets) A, B, C, - - - of a given sample space S.
The union A U B of A and B consists of all points in A or B or both.
The intersection A N B of A and B consists of all points that are in both A and B.
If A and B have no points in common, we write

ANB=O

&

where J is the empty set (set with no elements) and we call A and B mutually exclusive
(or disjoint) because the occurrence of A excludes that of B (and conversely)—if your
die turns up an odd number, it cannot turn up an even number in the same trial. Similarly,
a coin cannot turn up Head and Tail at the same time.
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The complement® A® of A consists of all the points of S rot in A. Thus,
ANA® =g, AUA® =S5

In Example 7 we have A® = B, hence A U A® = {1,2,3,4,5,6} =5.

Unions and intersections of more events are defined similarly. The union

m
jL__‘JlAj:AIUA2U...UAm

of events A, *  + , A, consists of all points that are in at least one A;. Similarly for the
union A; U A, U - - - of infinitely many subsets A, Ay, - - - of an infinite sample space
S (that is, S consists of infinitely many points). The intersection

jaAj:f‘HﬁAzﬂ-HﬂAm

of Ay, "+, A,, consists of the points of § that are in each of these events. Similarly for
the intersection A; M Ay N - - - of infinitely many subsets of S.

Working with events can be illustrated and facilitated by Venn diagrams? for showing
unions, intersections, and complements, as in Figs. 478 and 479, which are typical
examples that give the idea.

Union A w B Intersection A ~ B

Fig. 478. Venn diagrams showing two events A and B
in a sample space S and their union A U B (colored)
and intersection A N B (colored)

Fig. 479. Venn diagram for the experiment of rolling a die,
showing S, A =1{1, 3,5}, C= 15,6}, AU C=1{1, 3,5, 6},
AN C = {5}

10r A, but we shall not use this because in set theory it is used to denote the closure of A.
2JOHN VENN (1834—1923), English mathematician.
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EXAMPLE 8 Unions and intersections of 3 events

In rolling a die, consider the events
A Number greater than 3, B:  Number less than 6, C:  Even number,

ThenANB={45},BNC={2,4),CNA={46},ANBNC = {4}. Can you sketch a Venn diagram
of this? Furthermore, A U B = §, hence A U B U C = § (why?), etc.

PROBLEM SET 22.2

Sample Spaces, Events
Graph a sample space for the following experiments.

. Drawing three screws from a lot of right-handed and left-handed screws

. Rolling two dice

. Tossing two coins

. Rolling a die until the first 6 appears

Drawing bolts from a lot of 10, containing 1 defective D, until D is drawn, assuming sampling
without replacement, that is, bolts drawn are not returned to the lot.

6. In Prob. 1 let A, B, C, D mean 1 right-handed, 1 left-handed, 2 right-handed, 2 left-handed,
respectively, among the 3 screws drawn. Are A and B mutually exclusive? C and D?

L R S

7. Inrolling two dice, are A: Sum divisible by 3, B: Sum divisible by 5 mutually exclusive? Answer
the same question for rolling three dice.
8. In Prob. 2 circle and mark the events A: Faces are equal, B: Sum of faces less than 5, A U B,
AN B, A, B®.
9. List all eight subsets of § = {a, b, c}.
10. In Prob. 4 list the outcomes that make up the event E: First “Six” in rolling at most 5 times.
Describe E°.

Venn Diagrams

11. In connection with a trip to Europe by some students, consider the events P that they see Paris,
G that they have a good time, and M that they run out of money, and describe in words the
events 1, + - -+, 7 in the diagram.

Problem 11

12. In a lot of 20 gaskets, 7 have no defect, 3 have a T-defect (too thin), 6 have an L-defect (too
large), and 4 have both defects. Show this in a Venn diagram, also giving the number in each
set,

13. (De Morgan’s laws) Using Venn diagrams, graph and check De Morgan's laws

(AU B =A4°nN B°
(A N B)°=A°U BS,
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14. Using Venn diagrams, graph and check the rules

AUBNC)=(AUB)NAUCQC)

ANBUC)=ANBUMANC).
15. Show that, by the definition of complement, for any subset A of a sample space S,

(AS)° = A, o= =5 AUA® =S, ANAS=0Q.

22.3 Probability

The “probability” of an event A in an experiment is supposed to measure how frequently
A is about to occur if we make many trials. If we flip a coin, then heads H and tails T
will appear about equally often—we say that H and T are ‘“‘equally likely.” Table 22.1
confirms this. Similarly, for a regularly shaped die of homogeneous material (“fair die”)
each of the six outcomes 1,---,6 will be equally likely. These are examples of
experiments in which the sample space S consists of finitely many outcomes (points) that
for reasons of some symmetry can be regarded as equally likely. This suggests the
following definition.

Definition 1. Probability
If the sample space S of an experiment consists of finitely many outcomes (points) that
are equally likely, then the probability P(A) of an event A is

[ Number of points in A
(D | PA) = |
: Number of points in § |

e )

Thus, in particular,

(2) l P(S) =_l—j!

as follows directly from (1).

EXAMPLE 1 Fair die

“ws. . . In rolling a fair die, what is the probability P(4) of A of obtaining at least a 57 The probability of B: “Even

-mumber”'

Solution. The six outcomes are equally likely, so that each has probability 1/6. Thus P(A) = 2/6 = 1/3 because
A =[5, 6} has 2 points, and P(B) = 3/6 = 1/2. k]

1Table 22.1
¢Coin Tossing

Experiments Number of Number of Relative Frequency
by Throws Heads of Heads
" BUFFON 4,040 2,048 0.5069
K. PEARSON 12,000 6,019 0.5016

K. PEARSON 24,000 12,012 0.5005
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Definition 1 takes care of many games as well as some practical applications, as we
shall see, but certainly not of all experiments, simply because in many problems we do
not have finitely many equally likely outcomes. To arrive at a more general definition of
probability, we regard probability as the counterpart of relative frequency. Recall from
Sec. 22.1 that the absolute frequency f(A) of an event A in # trials is the number of times
A occurs, and the relative frequency of A in these trials is f(4)/n; thus

(3) Jratel) —

f(A)  Number of times A occurs
Number of trials

Now if A did not occur, then f(A) = 0. If A always occurred, then f(A) = n. These are
the extreme cases. Division by n gives

(4%) 0= frad) = 1.

In particular, for A = § we have f(S) = n because § always occurs (meaning that some
event always occurs; if necessary, see Sec. 22.2, after Example 7). Division by n gives

5% Frail3) =1

Finally, if A and B are mutually exclusive, they cannot occur together. Hence the absolute
frequency of their union A U B must equal the sum of the absolute frequencies of A and
B. Division by n gives the same relation for the relative frequencies,

(6%) freilA U B) = fre1(A) + fra(B) (AN B = ).

We are now ready to extend the definition of probability to experiments in which equally
likely outcomes are not available. Of course, the extended definition should include
Definition 1. Since probabilities are supposed to be thé theoretical counterpart of relative
frequencies, we choose the properties in (4%), (5%), (6*) as axioms. (Historically, such a
choice is the result of a long process of gaining experience on what might be best and
most practical.)

Definition 2. Probability

Given a sample space S, with each event A of S (subset of §) there is associated a number
P(A), called the probability of A, such that the following axioms of probability are
satisfied.

or. % 1. For every A in §,

(4) 0=PA) =1.

2. The entire sample space S has the probability

(5} [ P(S) = 1.

3. For mutually exclusive events A and B (A N B = J; see Sec. 22.2),

(6) [EA U B) = P(A) + P(B) (AN B =)
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If S is infinite (has infinitely many points), Axiom 3 has to be replaced by?
3’, For mutually exclusive events Ay, Ay, * *
6") PlA; Uds W) =iPA) + Pllg) +7 =
Basic Theorems for Probability
We shall see that the axioms of probability will enable us to build up probability theory
and its application to statistics. We begin with three basic theorems. The first of them is
useful if we can get the probability of the complement A° more easily than P(A) itself.
THEOREM 1 (Complementation rule)
For an event A and its complement A® in a sample space S,
(7) P(A%) = 1 — P(A).
PROOF. By the definition of complement (Sec. 22.2) we have S=AUA°andA N A° =@
Hence by Axioms 2 and 3,
1= P(S) = PA) + PA®), thus P(A®%) = 1 — P(A). «
EXAMPLE 2  Coin tossing
Five coins are tossed simultaneously. Find the probability of the event A: At least one head turns up. Assume
that the coins are fair.
Solution. Since each coin can turn up heads or tails, the sample space consists of 2% = 32 outcomes. Since the
coins are fair, we may assign the same probability (1/32) to each outcome. Then the event A® (No heads turn
up) consists of only 1 outcome. Hence P(A%) = 1/32, and the answer is P(A) = 1 — P(A®) = 31/32. k1
The next theorem is a simple extension of Axiom 3, which you can readily prove by
induction:
THEOREM 2  (Addition rule for mutually exclusive events)
For mutually exclusive events Ay, - -+ , Ay, in a sample space N
i (8) P(A, UAy U - -+ A,) = P(Ay)) + P(4y) + -+ + P(Ap).
EXAMPLE 3 Mutually exclusive events

If the probability that on any workday a garage will get 10-20, 21-30, 3 1-40, over 40 cars to service is 0.20,
0.35. 0.25. 0.12, respectively, what is the probability that on a given workday the garage gets at least 21 cars
to service?

Solution. Since these are mutually exclusive events, Theorem 2 gives the answer 0.35 + 0.25 + 0.12 = 0.72.
Check this by the complementation rule.

3 P , ? s - :
In the infinite case. for a theoretical restriction of the subsets of S, of no practical consequence to
us, see “o-algebra,” for example, in Ref. [8] listed in Appendix 1.
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In many cases, events will not be mutually exclusive. Then we have

(Addition rule for arbitrary events)

For events A and B in a sample space,
(9 PiA'U:B) = P(A) 4+ P(BY = P(A M'B).

C. D, E in Fig. 480 make up A U B and are mutually exclusive (disjoint). Hence by
Theorem 2,

P(A U B) = P(C) + P(D) + P(E).

This gives (9) because on the right P(C) + P(D) = P(A) by Axiom 3 and disjointness;
and P(E) = P(B) — P(D) = P(B) — P(A N B), also by Axiom 3 and disjointness. <

)

A B

lig. 480. Proof of Theorem 3,

Note that for mutually exclusive events A and B we have A N B = J by definition
and, by comparing (9) and (6),

(10) _P{Qf} = U.—‘

(Can you also prove this by (5) and (7)?)

Union of arbitrary events
In tossing a fair die, what is the probability of getting an odd number or a number less than 47

Solution. Let A be the event “Odd number"” and B the event “Number less than 4. Then Theorem 3 gives
the answer

PAUB =E+31-3=%

.NB “Odd number less than 4" = {1, 3}. ‘

Conditional Probability. Independent Events

Often it is required to find the probability of an event B under the condition that an event
A occurs. This probability is called the conditional probability of B given A and is denoted
by P(BJA). In this case A serves as a new (reduced) sample space, and that probability is
the fraction of P(A) which corresponds to A N B. Thus

(an | p@lay = PANB) | [P(A) # 0]
( P(A) : :
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THEOREM 4

EXAMPLE 5

Similarly, the conditional probability of A given B is

(12) P(A|B) = L bl [P(B) # 0]
' Wi = P(B) ‘ '

Solving (11) and (12) for P(A N B), we obtain

(Multiplication rule)
If A and B are events in a sample space S and P(A) # 0, P(B) # 0, then

(13) P(A N B) = P(A)P(B|A) = P(B}P(A|Bﬂw

Multiplication rule

In producing screws, let A mean “screw too slim” and B “screw too short.” Let P(A) = 0.1 and let the conditional
probability that a slim screw is also too short be P(B|A) = 0.2. What is the probability that a screw that we pick
randomly from the lot produced will be both too slim and too short?

Solution. P(A N B) = P(A)P(B|A) = 0.1 - 0.2 = 0.02 = 2%, by Theorem 4. |

Independent events. If events A and B are such that

—_

(14) P(A N B) = P(A)P(B),

they are called independent events. Assuming P(A) # 0, P(B) # 0, we see from (11)—(13)
that in this case

P(A|B) = P(A), P(B|A) = P(B).

This means that the probability of A does not depend on the occurrence or nonoccurrence I
of B, and conversely. This justifies the term “independent.”

Independence of m events. Similarly, m events A,, - - - , A,, are called independent if
(15a) Pl 0 == N And) = PA;) » - Pl
.« as well as for every k different events A;, A;, - * -, A;
(-I-Shl P(A; NA;, N ---NA;) = P@A;)PA;) - - - P4;)
where £ =2, 3,2+« ,m — 1.

Accordingly, three events A, B, C are independent if

P(A N B) = P(A)P(B),

P(BN C) = P(B)P(C),
(16)

P(C N A) = P(C)P(A),

P(ANBNC)= PAPBPCC).
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Samplin. Our next example has to do with randomly drawing objects, one at a time,
from a gven set of objects. This is called sampling from a population, and there are
two way of sampling, as follows,
1. In ampling with replacement, the object that was drawn at random is placed back
to the gien set and the set is mixed thoroughly. Then we draw the next object at random.
2. In ampling without replacement the object that was drawn is put aside.

Samplingwith and without replacement

10 screws, three of which

A box con!i!
that none of the two screws is defective

e. Two screws are drawn at random. Find the probabili
e e s

Solution. We consider-the events

A: First drawn screw nondefective.

B: Second drawn screw nondefective.
Clearly, P(A) = 15 because 7 of the 10 screws are nondefective and we sample at random, so that each screw
has the same probability (75) of being picked. If we sample with replacement, the situation before the second
drawing is the same as at the beginning, and P(B) = 5. The events are independent, and the answer is

P(A N B) = P(A)P(B) = 0.7 - 0.7 = 0.49 = 49%.

If we sample without replacement, then P(A) = 1%, as before. If A has occurred, then there are 9 screws left

in the box, 3 of which are defective. Thus P(BJ4) = § = 2, and Theorem 4 yields the answer

P(A N B)

e L
i0

1. In rolling two fair dice, what is the probability of obtaining a sum greater than 3 but not
exceeding 67

2. In Prob. 1, what is the probability of obtaining a sum not exceeding 10?7

3. If a box contains 10 left-handed and 20 right-handed screws, what is the probability of obtaining
at least one right-handed screw in drawing 2 screws with replacement?

4. Will the probability in Prob. 3 increase or decrease if we draw without replacement. First guess,
then calculate.

5. Three screws are drawn at random from a lot of 100 screws, 10 of which are defective. Find

«« _the probability of the event that all 3 screws drawn are nondefective, assuming that we draw
(a) with replacement, (b) without replacement.

6. What is the probability of obtaining at least one Six in rolling three fair dice?

7. Under what conditions will it make practically no difference whether we sample with or without
replacement?

8. Two boxes contain ten chips each, numbered from 1 to 10, and one chip is drawn from each
box. Find the probability of the event E that the sum of the numbers on the drawn chips is
greater than 4.

9. If a certain kind of tire has a life exceeding 30 000 miles with probability 0.90, what is the
probability that a set of these tires on a car will last longer than 30 000 miles?

10

A batch of 200 iron rods consists of 50 oversized rods, 50 undersized rods, and 100 rods of the
desired length. If two rods are drawn at random without replacement, what is the probability

'
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