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Abstract
The completeness of eigenfunctions for linearized equations is critical for many appli-
cations, such as the study of stability of solitary waves. In this thesis, we work with the
Nonlinear Schrödinger (NLS) equation, associated with the Zakharov-Shabat spectral
problem. Firstly, we construct a complete set of eigenfunctions for the spectral prob-
lem. Our method involves working with an adjoint spectral problem and deriving
completeness and orthogonality relations between eigenfunctions and adjoint eigen-
functions. Furthermore, we prove completeness of squared eigenfunctions, which are
used to represent solutions of the linearized NLS equation. For this, we find relations
between the variation of potential and the variation of scattering data. Moreover,
we show the connection between the squared eigenfunctions of the Zakharov-Shabat
spectral problem and solutions of the linearized NLS equation.
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Chapter 1

Introduction

This thesis is devoted to the question of completeness of eigenfunctions for linearized
equations associated with integrable nonlinear PDEs. We consider one particular
integrable nonlinear PDE given by the Nonlinear Schrödinger equation (NLS)

iut + uxx + 2|u|2u = 0, u(x, t) : R2 → C. (1.1)

The key property which leads to the integrability of (1.1) is the existence of a pair of
linear equations for v(x, t) : R2 → C2 with a potential u(x, t) : R2 → C and spectral
parameter k ∈ C:

vx =
−ik u

−u ik

 v, (1.2)

vt =
−2ik2 + i|u|2 iux + 2ku

iux − 2ku 2ik2 − i|u|2

 v. (1.3)

The first equation is a spectral problem and the second one defines the evolution of
eigenfunctions. Compatibility condition vxt = vtx is satisfied if u = u(x, t) is a solution
to the NLS equation (1.1). This pair of linear equations was discovered by Zakharov
and Shabat in [2], and we refer to (1.2) as to the Zakharov-Shabat spectral problem.
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1.1 Applications of NLS

Since waves in the real world are nonlinear, it makes sense to model them with non-
linear partial differential equations. To these days, most of nonlinear PDEs cannot be
solved analytically, with the exception of integrable nonlinear PDEs, to which NLS
belongs. NLS equation has many exact solutions due to its integrability. One of the
basic solutions on the zero background (u → 0 as x → ±∞) is the solitary wave given
by

u(x, t) = u0 sech [u0(x− 2p0t)] ei[p0x+(u2
0−p2

0)t],

where u0 is constant amplitude and p0 is a shift of carrier-wave wave number. This
solution can be found by separation of variables and integration of ODEs. Another
solution on the nonzero background is the rogue wave discovered by D. Peregrine [3]
and given by:

u(x, t) =
[
−1 + 4(1 + it)

1 + 4x2 + t2

]
eit/2.

Other solutions to (1.1) on nonzero background are Akhmediev breather: [4]

u(x, t) =
[
−1 + 2k2 cosh (λkt) + 2iλk sinh (λkt)

cosh (λkt) − λ cos (2kx)

]
eit/2,

where k =
√

1 − λ2 and λ ∈ (0, 1) is a free parameter, and Kuznetsov-Ma breather:
[5]

u(x, t) =
[
−1 + 2β2 cos (λβt) + 2iλβ sin (λβt)

λ cosh (2βx) − cos (λβt)

]
eit/2,

where β =
√
λ2 − 1 and λ ∈ (1,+∞) is a free parameter.

NLS has a wide range of applications such as modeling of the light propagation
in optical fibers [6], [7], wave propagation in oceans and seas [8], and atomic Bose-
Einstein condensate [9].

NLS in the form (1.1) is only the simplest model among NLS-type equations used
in natural sciences. In [10] M. Gedalin, Y. Band and T. Scott used higher order
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NLS as a model for propagation of short light pulses in an optical fiber. They were
able to find bright solitary wave solutions which exists for certain constraints on the
parameters. Similar results were obtained in [11], where authors found dark solitary
wave solutions in higher order NLS equation. Other solutions with nonzero boundary
conditions were found in [12].

Just like in optical fibers, wave propagation in oceans and seas can be modelled by
NLS and its higher-order extensions. One of the applications of NLS is to describe
modulation instability and emergence of rogue waves. Modulational instability was
also analyzed in [13] for dissipative NLS, which is standard NLS modified by linear
dissipation. It was found that dissipation bounds perturbations even in the presence of
strong nonlinearity. Authors of [14] considered modulational instability for standard
NLS without dissipation, however, their main result is that Penrose stability analysis
(analysis performed on an equation after the Wigner Transform) recovers same result
with a better method, since it can be applied for incoherent waves. The same conclu-
sion is also supported in [15] and [16], with further applications of Penrose stability
analysis. Particularly, in [16] the higher-order NLS equation with time-dependent lin-
ear damping (damped Hirota equation) was studied to discuss extreme wave events,
such as emergence of rogue waves.

1.2 Motivations

The main motivation for this thesis is to use the integrability scheme and to express
solutions of the linearized NLS equation in terms of the squared eigenfunctions of the
linear system (1.2) and (1.3). The linearized equations are important in understanding
the linear stability of some particular solutions of the NLS in the time evolution [17],
[18].

Let us show how the linearized NLS can be obtained. Suppose u0(x, t) is a partic-
ular solution of NLS (1.1). Now, by adding a small perturbation v(x, t) we write a

3
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solution to NLS (1.1) in the following form

u(x, t) = u0(x, t) + v(x, t). (1.4)

Since both u(x, t) and u0(x, t) are solutions to NLS, we shall find an equation that
v(x, t) satisfies. By substituting (1.4) into (1.1) we obtain

0 = i(u0 + v)t + (u0 + v)xx + 2(u0 + v)(u0 + v)(u0 + v)
= iu0t + u0xx + ivt + vxx + 2(|u0|2 + u0v + u0v + |v|2)(u0 + v)
= iu0t + u0xx + ivt + vxx + 2(|u0|2u0 + u2

0v + 2|u0|2v + 2u0|v|2 + u0v
2 + |v|2v)

= iu0t + u0xx + 2|u0|2u0︸ ︷︷ ︸
=0

+ivt + vxx + 2u2
0v + 4|u0|2v + 4u0|v|2 + 2u0v

2 + 2|v|2v

= ivt + vxx + 2u2
0v + 4|u0|2v + 4u0|v|2 + 2u0v

2 + 2|v|2v.

Neglecting quadratic and cubic terms in v we obtain the linearized NLS equation

ivt + vxx + 2u2
0v + 4|u0|2v = 0. (1.5)

It is remarkable property of integrability that solutions v(x, t) of (1.5) can be
obtained from squared eigenfunctions of (1.2) and (1.3) associated with the particular
solution of NLS given by u0(x, t). The questions of completeness of eigenfunctions is
the one which we would like to address in this thesis.

1.3 Previous studies

It was realized in [19] that the method of inverse scattering transform (IST) is anal-
ogous to Fourier transform widely used in solving linear PDEs. Particularly, in [19,
section 4] the authors considered direct and inverse scattering problem of the spectral
problem (1.2). Moreover, in appendix 6, they derived the completeness relation for
eigenfunctions of the linear system (1.2) and (1.3).

4
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D. Kaup extended the theory of completeness to squared eigenfunctions of the
spectral problem (1.2) in [20] and derives closure relation, which was used to prove
completeness (with respect to L2) of a set of squared eigenfunctions. Here complete-
ness means that any L2 function can be expressed as a unique linear combination
of squared eigenfunctions from the complete set. To prove completeness of squared
eigenfunctions, D. Kaup used Marchenko equations. Squared eigenfunctions play an
important role in understanding the effect of variation of scattering data due to per-
turbations of the potential. In [21] D. Kaup studied application of the method to one
soliton solution of the NLS equation (1.1). Particularly, he derived a completeness
relation for a linearized NLS operator, the eigenfunctions of this operator were related
to the squared eigenfunctions of (1.2) and (1.3). This completeness relation was used
to study propagation of Raman pumped soliton in an optical fiber.

In [22] D. Kaup and T. Lakoba studied squared eigenfunctions for the massive
Thirring model (MTM) instead of NLS. The difference in the approach is that they
do not find an equation for squared eigenfunctions, and instead start with a general
Wronskian relation between original and adjoint eigenvalue problems. Very similar
procedure was also done for Benjamin-Ono (BO) equation in [23] by D. Kaup, T.
Lakoba and Y. Matsuno. Significant difference here is that unlike in the case of NLS
and MTM, both potential and its variation are assumed to be real-valued functions.
Key tool in establishing completeness of squared eigenfunctions is using Green’s func-
tion for the Lax operator of BO equation. In 2009 D. Kaup and J. Yang revisited
the question on completeness of squared eigenfunctions by studying Sasa-Satsuma
equation in [24]. To derive squared eigenfunctions they followed the same procedure:
computing variation of potential through variation of scattering data with the use of
Riemann-Hilbert problem, and then computing variation of scattering data through
variation of potential.

The above results on completeness have been obtained for zero boundary condi-
tions. In 2019, D. Bilman and P. Miller considered a Cauchy initial-value problem for
NLS (1.1) with nonzero constant boundary conditions [25]. They constructed squared
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eigenfunctions as solutions to the linearized NLS equation at the Peregrine’s rogue
wave in the space of decaying data. P. Grinevich and P. Santini in [26] considered
periodic boundary conditions and provided solutions to linearized NLS at Akhme-
diev breather. They also sketched a proof of completeness of squared eigenfunctions
in the periodic case, leaving detailed proof in the future plans. M. Haragus and D.
Pelinovsky in [18] constructed all possible solutions to linearized NLS equations at
Akhmediev and Kusnetsov-Ma breathers and raised an open question on completeness
of squared eigenfunctions for solutions of the NLS with nonzero (constant or periodic)
boundary conditions at infinity.

1.4 Main Results of this study

Motivated by open questions on completeness of squared eigenfunctions for the po-
tential with nonzero boundary conditions, I have reviewed the proof of completeness
of squared eigenfunctions for the potentials with zero boundary conditions at infin-
ity. These proofs has been summarized by J. Yang in the book [1]. I have followed
his proofs with some modifications. Particularly, I changed notations and kept them
consistent throughout my thesis for better understanding. I also provided proofs that
were skipped, one of which is the orthogonality relations between eigenfunctions and
adjoint eigenfunctions.

Outcomes of this thesis are presented in the following three main results. Firstly,
we prove completeness of single eigenfunctions, which is presented in Theorem 1. Sec-
ondly, by obtaining relations between variation of potential and variation of scattering
data we construct and prove completeness of squared eigenfunctions in Theorem 2.
Both findings mean that we can express any square integrable function as a unique
linear combination of eigenfunctions (squared eigenfunctions) from the complete set,
where coefficients are calculated from adjoint eigenfunctions (squared adjoint eigen-
functions). Lastly, we show that squared eigenfunctions are solutions to the linearized
NLS equation, and adjoint squared eigenfunctions are solutions to the adjoint lin-
earized NLS equation, which are stated in Theorems 3, 4.

6
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1.5 Structure of the thesis

The thesis is structured as follows. In Chapter 2, we formulate a regular Riemann-
Hilbert problem for the spectral system (1.2). We introduce eigenfunctions as a
product of Jost functions and exponential functions. To understand analyticity and
properties of eigenfunctions we derive Jost equations (2.4), (2.5), solutions of which
are matrices of vectors M, M̂, N̂ ,N . Then, in Lemma 2.1 we figure out that solutions
M,N are analytic in upper half-plane, while M̂, N̂ are analytic in the lower half-plane.
These solutions are linearly dependent on R, where they both exist. We relate them
by scattering data (2.22). The next step is proceed in a similar way with adjoint Jost
equation (2.23). One of the key properties of an adjoint equation is that its solution is
an inverse to a solution of spectral problem (2.4). Analyticity of solutions to adjoint
problem is proved in Lemma 2.8, thus, vectors M∗, N∗ are analytic in the lower half-
plane, while M̂∗, N̂∗ are analytic in the upper half-plane. Combining solutions of
spectral and adjoint equations we formulate a Riemann-Hilbert problem (2.42) and
solve it with Plemelj formula (2.46).

In Chapter 3, we prove completeness of a set of eigenfunctions {ϕ, ϕ̂}. We intro-
duce functions R+,R− in (3.3), (3.4), which involve ϕ, ϕ̂, ψ, ψ̂. After integrating the
functions R+ and R− via contour integration, we obtain closure relation (3.9). It
is important to note that we assume scattering data a, a to be non-zero. In Lemma
3.3 inner products between eigenfunctions and adjoint eigenfunctions are computed,
which help to prove our first main result in Theorem 1.

In Chapter 4, we construct a complete set of squared eigenfunctions {Z−, Z+}. To
do so, we choose squared eigenfunctions by considering a perturbation of potential u
in the spectral problem (1.2). By expressing variation of scattering data (4.8) in terms
of variation of potential we construct the adjoint squared eigenfunctions {Ω+,Ω−} in
(4.19). Then, to construct squared eigenfunctions (4.43) we introduce new matrices
F± that are linearly related to solutions to the Riemann-Hilbert problem, considering
asymptotics of F± and proving Lemma 4.10 we construct squared eigenfunctions in
Lemma 4.11. We obtain the closure relation in Lemma 4.12 and the inner products

7
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between Ω± and Z± are computed in Lemma 4.13. These Lemmas help us to prove
the second main result of this thesis, which is stated as Theorem 2.

In Chapter 5, we show that the squared eigenfunctions are solutions to the lin-
earized NLS, and the adjoint squared eigenfunctions are solutions to the adjoint lin-
earized NLS equation. This is the third main result of this thesis, stated as Theorem
3 and 4.

In Chapter 6, we make concluding remarks by restating main results and methods.
Moreover, we discuss possible future extensions of this research.

8



Chapter 2

Riemann-Hilbert Problem

2.1 Lax equations

Lax pair (1.2), (1.3) can be rewritten as

vx = −ikσ3v +Q(u)v, (2.1)

and
vt = −2ik2σ3v +R(u)v, (2.2)

where

Q(u) =
 0 u

−u 0

 , R(u) =
 i|u|2 2ku+ iux

−2ku+ iux −i|u|2

 , σ3 =
1 0
0 −1

 .
Two linearly independent solutions to the system (2.1)-(2.2) exist for u = 0:

v1 =
1
0

 e−ikx−2ik2t,

v2 =
0
1

 eikx+2ik2t.

9
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If u ̸= 0, then two linearly independent solutions can be represented in the matrix
form

V (x, t) = J(x, t)e(−ikx−2ik2t)σ3 , (2.3)

where J(x, t) is supposed to be a non-singular matrix. Substituting (2.3) into (2.1)
and (2.2) leads to the following equations

Jx = −ik[σ3, J ] +Q(u)J, (2.4)

and
Jt = −2ik2[σ3, J ] +R(u)J, (2.5)

where
[σ3, J ] = σ3J − Jσ3.

2.2 Jost functions at t = 0.

Here we write integral expressions for elements of matrix Jost solutions J±, which
satisty the following asymptotics:

J±(x) → I, x → ±∞. (2.6)

Without loss of generality, we set t = 0 and drop t from the list of arguments.
All solutions depend on the spectral parameter k. Following Abel’s identity, for a
fundamental matrix V (x) we have that

detV (x) = detV (x0),

because −ikσ3 +Q(u) has zero trace. Applying this to (2.3) we find that det J(x) is
a constant for all x. Due to large x asymptotics (2.6) we have that

det J±(x) = 1. (2.7)

10
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Define J± as follows
J− :=

[
M M̂

]
, J+ :=

[
N̂ N

]
where

M :=
M1

M2

 , M̂ :=
M̂1

M̂2

 , N̂ :=
N̂1

N̂2

 , N :=
N1

N2

 .
Using (2.4) we can easily find the following integral expressions, which are available
in the literature [27]:

M1(x) = 1 +
∫ x

−∞ u(y)M2(y)dy,

M2(x) = −
∫ x

−∞ u(y)M1(y)e2ik(x−y)dy,
(2.8)

M̂1(x) =
∫ x

−∞ u(y)M̂2(y)e−2ik(x−y)dy,

M̂2(x) = 1 −
∫ x

−∞ u(y)M̂1(y)dy,
(2.9)

N̂1(x) = 1 −
∫+∞

x u(y)N̂2(y)dy,

N̂2(x) =
∫+∞

x u(y)N̂1(y)e−2ik(y−x)dy,
(2.10)

N1(x) = −
∫+∞

x u(y)N2(y)e2ik(y−x)dy,

N2(x) = 1 +
∫+∞

x u(y)N1(y)dy.
(2.11)

The following lemma has been stated and proven in [27].

Lemma 2.1. If u ∈ L1(R), then for every k ∈ R there exist unique bounded solu-
tions M, M̂,N, N̂ . Moreover M,N are analytic functions in k for Im(k) > 0 and
continuous for Im(k) ≥ 0, while M̂, N̂ are analytic functions in k for Im(k) < 0, and
continuous for Im(k) ≤ 0.

11
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Now in the respective planes of analyticity, Jost solutions satisfy J±(x) → I as
|k| → ∞, so then

M →

1
0

 , M̂ →

0
1

 , N̂ →

1
0

 , N →

0
1

 , as |k| → ∞. (2.12)

2.3 Scattering data

By using J− =
[
M M̂

]
and J+ =

[
N̂ N

]
we can define two sets of linearly inde-

pendent solutions of (2.1) as follows:

Φ =
[
ϕ ϕ̂

]
=
[
M M̂

] e−ikx 0
0 eikx

 =
[
e−ikxM eikxM̂

]
, (2.13)

Ψ =
[
ψ̂ ψ

]
=
[
N̂ N

] e−ikx 0
0 eikx

 =
[
e−ikxN̂ eikxN

]
. (2.14)

It follows from (2.6) that ϕ, ϕ̂, ψ, ψ̂ satisfy the following boundary conditions:

ϕ →

1
0

 e−ikx, ϕ̂ →

0
1

 eikx, as x → −∞, (2.15)

ψ →

0
1

 eikx, ψ̂ →

1
0

 e−ikx, as x → +∞. (2.16)

Since Φ is linearly dependent of Ψ, we introduce a scattering matrix S, entries of
which depend on a spectral parameter k,

S :=
a c

b d

 ,

12
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from the following scattering relation

[ϕ, ϕ̂] = [ψ̂, ψ]
a c

b d

 , or Φ = ΨS. (2.17)

Proposition 2.2. Let Ψ,Φ be solutions of (2.1) defined in (2.13)-(2.14). Then we
have the following properties

J− = J+ESE
−1, detS = 1, (2.18)

where

E = e−ikxσ3 =
e−ikx 0

0 eikx


Proof. Substituting (2.13), (2.14) into (2.17) we have the following

J−E = J+ES.

Since E is invertible, this yields

J− = J+ESE
−1.

Using (2.7) we get

1 = det(J−) = det(J+) det(E) det(S) det(E−1) = det(S).

Equation (2.17) can be also rewritten as
ϕ = bψ + aψ̂

ϕ̂ = dψ + cψ̂.
(2.19)

13
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From (2.13), (2.14) and (2.19) we can obtain relations between M, M̂, N̂ ,N :


M = aN̂ + be2ikxN,

M̂ = dN + ce−2ikxN̂ ,

N = aM̂ − ce−2ikxM,

N̂ = dM − be2ikxM̂,

(2.20)

Lemma 2.3. Entries of scattering matrix S satisfy the following expressions


a = 1 +
∫
R u(y)M2(y)dy,

b = −
∫
R u(y)M1(y)e−2ikydy,

c =
∫
R u(y)M̂2(y)e2ikydy,

d = 1 −
∫
R u(y)M̂1(y)dy.

. (2.21)

Moreover, if u ∈ L1(R), then a is analytic in C+ and d is analytic in C−.

Proof. Consider the first equation in (2.20) but write it using equations (2.8), (2.9),
(2.10), (2.11)

 1 +
∫ x

−∞ u(y)M2(y)dy
−
∫ x

−∞ u(y)M̂1(y)e2ik(x−y)dy

 =a
 1 −

∫+∞
x u(y)N̂2(y)dy∫+∞

x u(y)N̂1(y)e−2ik(y−x)dy


+ be2ikx

−
∫+∞

x u(y)N2(y)e2ik(y−x)dy,

1 +
∫+∞

x u(y)N1(y)dy


Take the limit of x → +∞ to obtain 1 +

∫
R u(y)M2(y)dy

−
∫
R u(y)M1(y)e2ik(x−y)dy

 = a

1
0

+ be2ikx

0
1

 ,
from where we can conclude expressions for a, b as in (2.21). To find c, d we follow
the same procedure, i.e. we take the limit of x → +∞ in the second equation in

14
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(2.20). Now we are left to explain analyticity of scattering data. Consider integral
expressions for a, d a = 1 +

∫
R u(y)M2(y)dy,

d = 1 −
∫
R u(y)M̂1(y)dy,

where M2, M̂1 are analytic in C± respectively by Lemma 2.1. Since u ∈ L1(R), a, d
are analytic in the domains of analyticity of M2, M̂1.

Remark 2.4. Consider integral expression for b

b = −
∫
R
u(y)M1(y)e−2ikydy,

where M1 is analytic in C+. The exponential term in the integral expression is given
by

e−2i(Re(k)+iIm(k))y = e−2iRe(k)ye2Im(k)y.

If Im(k) > 0, it diverges when y → +∞, thus, b is not analytic in C+. If Im(k) < 0,
then it diverges when y → −∞, then b is not analytic in C−. Therefore, the integral
expression for b is only defined for k ∈ R. Analogously, c is not analytic in C and is
only defined for k ∈ R.

Lemma 2.5. Columns of Φ,Ψ satisfy the following symmetry:
ϕ1

ϕ2

 =
 ϕ̂2

−ϕ̂1

 ,
ψ̂1

ψ̂2

 =
 ψ2

−ψ1

 , for every x ∈ R.

Moreover, scattering matrix S can be written as

S =
a −b
b a

 . (2.22)

15
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Proof. From (2.1) we have
ϕ̂

′
1 + ikϕ̂1 = uϕ2,

ϕ̂′
2 − ikϕ̂2 = −uϕ1.

Taking complex conjugation we obtain
ϕ̂

′
2 + ikϕ̂2 = −uϕ̂1,

ϕ̂
′
1 − ikϕ̂1 = uϕ̂2,

which shows that (ϕ̂2,−ϕ̂1) solves the same problem as (ϕ1, ϕ2) and satisfy the same
boundary conditions. By Lemma 2.1, the solution (ϕ1, ϕ2) is uniquely defined, hence
ϕ1 = ϕ̂2, ϕ2 = −ϕ̂1. Similarly, we obtain ψ1 = −ψ̂2, ψ2 = ψ̂1.

To show relation between entries of scattering data, we combine symmetry of el-
ements of Φ,Ψ with (2.13), (2.14) to obtain the following symmetry between Jost
solutions M1

M2

 =
 M̂2

−M̂1

 ,
N̂1

N̂2

 =
 N2

−N1

 .
Using the above we can rewrite (2.21) as



a = 1 +
∫
R u(y)M2(y)dy,

b = −
∫
R u(y)M1(y)e−2ikydy,

c =
∫
R u(y)M1(y)e2ikydy,

d = 1 +
∫
R u(y)M2(y)dy,

from where we can conclude the relation

a = d,

b = −c,

16
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which yields (2.22).

2.4 Adjoint spectral problem

Lemma 2.6. Let J satisfy the spectral problem in (2.4). The adjoint spectral problem
is given by

Kx = −ik[σ3, K] −KQ(u), (2.23)

where the adjoint equation is defined with respect to the inner product (without complex
conjugation)

f, g ∈ L2(R) : ⟨f, g⟩ :=
∫
R
f(x)g(x)dx. (2.24)

Proof. Let J be written in the component form:

J =
J11 J12

J21 J22

 . (2.25)

Thus, using (2.25) we can write (2.4) explicitly
J ′

11 J ′
12

J ′
21 J ′

22

 =
 0 −2ikJ12

2ikJ21 0

+
 uJ21 uJ22

−uJ11 −uJ12

 .
This results in following equations:



J ′
11 = uJ21,

J ′
21 = 2ikJ21 − uJ11,

J ′
12 = −2ikJ12 + uJ22,

J ′
22 = −uJ12.

(2.26)

17
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We write entries of K similar to (2.25):

K =
K11 K12

K21 K22

 .
Then KJ ′ is the followingK11J

′
11 +K12J

′
21 K11J

′
12 +K12J

′
22

K21J
′
11 +K22J

′
21 K21J

′
12 +K22J

′
22

 (2.27)

Using first two equations of (2.26) in (2.27) and integrating both sides we can see that
∫
R

(
K11J

′
11 +K12J

′
21

)
dx =

∫
R

(
uK11J21 + 2ikK12J21 − uK12J11

)
dx.

Using integration by parts we obtain the following

−
∫
R

(
K ′

11J11 +K ′
12J21

)
dx =

∫
R

[(
2ikK21 + uK11

)
J21 − uK12J11

]
dx.

From above we can derive equations for K11 and K12:K
′
11 = uK12,

K ′
12 = −2ikK12 − uK11.

(2.28)

Using last two equations of (2.26) in (2.27) and integrating both sides we can see that
∫
R

(
K21J

′
12 +K22J

′
22

)
dx =

∫
R

[(
− 2ikK21 − uK22

)
J12 + uK21J22

]
dx.

Using integration by parts as before we obtain

−
∫
R

(
K ′

21J12 +K ′
22J22

)
dx =

∫
R

[(
− 2ikK21 − uK22

)
J12 + uK21J22

]
dx,

18
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from which the following equations can be derived:
K

′
21 = 2ikK21 + uK22

K ′
22 = −uK21.

(2.29)

Now combining (2.28) and (2.29) we can finally write the adjoint equation for K in
the form (2.23).

Corollary 2.7. Solution to the adjoint spectral problem (2.23) can be expressed as
K = J−1.

Proof. Using (2.4) and the following property

(JJ−1)x = 0

we can see that J−1 satisfy

(J−1)x = −ik[σ3, J
−1] − J−1Q, (2.30)

hence K = J−1 up to constant multiplication.

Let us define inverse matrices for J− and J+ as follows

J−1
− :=

M∗
1 M∗

2

M̂∗
1 M̂∗

2

 , J−1
+ :=

N̂∗
1 N̂∗

2

N∗
1 N∗

2

 .
Using (2.30) we can find integral expressions for entries of J−1

− and J−1
+ :

M
∗
1 (x) = 1 +

∫ x
−∞ u(y)M∗

2 (y)dy,

M∗
2 (x) = −

∫ x
−∞ u(y)M∗

1 (y)e−2ik(x−y)dy,
(2.31)
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M̂
∗
1 (x) =

∫ x
−∞ u(y)M̂∗

2 e
2ik(x−y)dy,

M̂∗
2 (x) = 1 −

∫ x
−∞ u(y)M̂∗

1 (y)dy,
(2.32)

N̂
∗
1 = 1 −

∫+∞
x u(y)N̂∗

2 (y)dy,

N̂∗
2 =

∫+∞
x u(y)N̂∗

1 (y)e2ik(y−x)dy,
(2.33)

N
∗
1 = −

∫+∞
x u(y)N∗

2 (y)e−2ik(y−x)dy,

N∗
2 = 1 +

∫+∞
x u(y)N∗

1 (y)dy.
(2.34)

Comparing systems of equations (2.8) and (2.31), it is not hard to see that solution of
(2.31) is complex conjugate of the solution of (2.8) for k ∈ R. The same is true for the
systems (2.9) and (2.32), (2.10) and (2.33), (2.11) and (2.34). Hence, the asterisk is
equivalent to complex conjugation for M∗

1,2 = M1,2, M̂
∗
1,2 = M̂1,2, N

∗
1,2 = N1,2, N̂

∗
1,2 =

N̂1,2. Therefore we can say that the asterisk denotes Hermite conjugation.

We denote rows of J−1
− and J−1

+ as follows

M∗ :=
[
M∗

1 M∗
2

]
, M̂∗ :=

[
M̂∗

1 M̂∗
2

]
,

N̂∗ :=
[
N̂∗

1 N̂∗
2

]
, N∗ =

[
N∗

1 N∗
2

]
.

Using Lemma 2.1 and looking at the integral equations (2.31), (2.32), (2.33) and
(2.34) we arrive to the following result

Lemma 2.8. If u ∈ L1(R), then for every k ∈ R there exist unique bounded solu-
tions M∗, M̂∗, N̂∗, N∗. Moreover M∗, N∗ are analytic functions for Im(k) < 0 and
continuous for Im(K) ≤ 0, while M̂∗, N̂∗ are analytic functions for Im(k) > 0 and
continuous for Im(k) ≥ 0.

Hence the large k asymptotics ofM∗, M̂∗, N̂∗, N∗ are similar to those forM, M̂,N, N̂ :

M∗ →
[
1 0

]
, M̂∗ →

[
0 1

]
, N̂∗ →

[
1 0

]
, N∗ →

[
0 1

]
. (2.35)
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Similarly to (2.20) with d = a and c = −b, we can derive adjoint relations by applying
complex conjugation. These are only true for k ∈ R since b, b do not extend to a
complex plane. 

M∗ = be−2ikxN∗ + aN̂∗,

M̂∗ = aN∗ − be2ikxN̂∗,

N∗ = be2ikxM∗ + aM̂∗,

N̂∗ = aM∗ − be−2ikxM̂∗.

(2.36)

Remark 2.9. From Corollary 2.7 we can deduce relations between Φ,Ψ and solutions
of adjoint spectral problem:

Ψ−1 = (J+E)−1 = E−1J−1
+ = E−1

N̂∗

N∗

 =
 N̂∗eikx

N∗e−ikx

 =
ψ̂∗

ψ∗

 ,
and

Φ−1 = (J−E)−1 = E−1J−1
− = E−1

M∗

M̂∗

 =
M∗eikx

M̂∗e−ikx

 =
ϕ∗

ϕ̂∗

 , (2.37)

where Ψ−1,Φ−1 satisfy the following adjoint problem

(Ψ−1)x = ikΨ−1σ3 − Ψ−1Q, (2.38)

which is easily obtained from (2.30).

Proposition 2.10. The sets of solutions of (2.8)-(2.11) and (2.31)-(2.34) satisfy for
k ∈ R:

M
∗M = M̂∗M̂ = 1,

M̂∗M = M∗M̂ = 0
(2.39)
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and N̂
∗N̂ = N∗N = 1,

N̂∗N = N∗N̂ = 0.
(2.40)

Proof. It follows from J−1
− J− = I that

M∗

M̂∗

 [M M̂
]

=
M∗M M∗M̂

M̂∗M M̂∗M̂

 =
1 0
0 1

 .
From above we obtain (2.39). It follows from J−1

+ J+ = I that
N̂∗

N∗

 [N̂ N
]

=
N̂∗N̂ N̂∗N

N∗N̂ N∗N

 =
1 0
0 1

 ,
from which we obtain (2.40).

2.5 Riemann-Hilbert problem

A classical Riemann-Hilbert problem aims to find a pair of functions that are analytic
in two regions separated by a simple contour. Since our functions M,N and their
adjoints M∗, N∗ are analytic in C+ and C−, respectively, we can formulate a Riemann-
Hilbert problem in the following way by introducing new matrices P−, P+:

P− :=
M∗

N∗

 , P+ :=
[
M N

]
. (2.41)

Proposition 2.11. Matrices P− and P+ satisfy the following property:

detP− = a, detP+ = a.
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Proof. Using first equation from (2.36) we proceed as follows

detP− = det
be−2ikxN∗ + aN̂∗

N∗


= det

be−2ikxN∗
1 + aN̂∗

1 be−2ikxN∗
2 + aN̂∗

2

N∗
1 N∗

2


= be2ikx(N∗

1N
∗
2 −N∗

2N
∗
1 ) + a(N̂∗

1N
∗
2 −N∗

1 N̂
∗
2 )

= a det J−1
+ = a.

Using first equation of (2.20) and following the same computations we get detP+ =
a.

Riemann Hilbert problem is defined by the conditions for k ∈ R:

P−P+ = G. (2.42)

From (2.41) we find that (2.42) can be written as
M∗M M∗N

N∗M N∗N

 = G.

From (2.20), (2.39), (2.40) we obtain
 1 be−2ikx

be2ikx 1

 = G, (2.43)

which can be rewritten as

G = I +
 0 be−2ikx

be2ikx 0

 = I + ∆.
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Combining above with (2.42) we obtain

P−P+ = I + ∆

If a, a do not have zeros on R, P+, P− are invertible on R. Multiplying both sides of
the equation by (P−)−1 leads to Riemann-Hilbert problem for k ∈ R:

P+ − (P−)−1 = (P−)−1∆. (2.44)

The jump condition (2.44) defines analytic continuation of P+ in the upper half-plane
and (P−)−1 in the lower half-plane, provided that a, a do not have zeros in the upper,
lower half-planes. We denote the two half-planes by C+,C−.

2.6 Solution to the regular Riemann-Hilbert prob-
lem

The Riemann-Hilbert problem accosiated with the jump condition (2.44) is considered
regular if detP± ̸= 0 in the regions of C, where they are analytically extended.

Lemma 2.12. The regular Riemann-Hilbert problem (2.42) has a unique solution
subject to the boundary conditions P± → I as |k| → ∞ in their domains of analyticity.

Proof. Suppose (2.42) has two solutions P±, P̃±. Then we have that

P−P+ = P̃−P̃+.

Multiplying both sides by (P−)−1 from the left and by (P̃+)−1 from the right we
obtain

P+(P̃+)−1 = (P−)−1P̃−. (2.45)

Since Riemann Hilbert problem is regular, detP±, det P̃± are nonzero in their domains
of analyticity. Left hand side of (2.45) is analytic in C+, while right hand side of (2.45)
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is analytic in C−. Hence, they are equal to each other on the real line. This means
that they are equal and analytic in C. Due to the boundary conditions P± → I as
|k| → ∞ and Liouville’s theorem, both sides are equal to I in C, which means that
P+ = P̃+ and P− = P̃−. Thus, solution to the regular Riemann-Hilbert problem
(2.42) is unique.

The solution of the Riemann Hilbert problem (2.44) can be written by using Plemelj
formula. Suppose that Γ is a line dividing the complex plane to D+, D− and f

is continuous on Γ. Also suppose that ϕ is sectionally analytic in D+, D− and is
vanishing at infinity. If ϕ+ − ϕ− = f on Γ, then Plemelj formula yields

ϕ(k) = 1
2πi

∫
Γ

f(ξ)
ξ − k

dξ. (2.46)

The regular Riemann-Hilbert problem (2.44) satisfies all the conditions stated above
with ϕ+ = P+ − I, ϕ− = (P−)−1 − I, and f = (P−)−1∆. Since P± is analytic
sectionally (P+ on C+ and P− on C−), Γ is R and (P−)−1∆ is continuous on Γ we
have that (P−)−1 − I = 1

2πi

∫
R

(P −)−1∆
ξ−(k−i0)dξ,

P+ − I = 1
2πi

∫
R

(P −)−1∆
ξ−(k+i0)dξ.

These are solutions of the regular Riemann Hilbert problem (2.44) with detP± ̸= 0
in C± subject to the boundary conditions P± → I as |k| → ∞ in C±.
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Chapter 3

Completeness of eigenfunctions

In this section we present a complete set of eigenfunctions for the Zakharov-Shabat
spectral problem (1.2). The corresponding result is given by the following theorem.

Theorem 1. The set of eigenfunctions {ϕ, ϕ̂} defined by (2.13) is complete, i.e. every
f(x) ∈ L2(R) can be written as follows:

f(x) =
∫
R

[
c̃(k)ϕ(x, k) + d̃(k)ϕ̂(x, k)

]
dk, (3.1)

where c̃(k), d̃(k) are given by

c̃(k) = 1
2πa(k)

∫
R
ψ̂∗(y, k)σ3f(y)dy, d̃(k) = − 1

2πa(k)

∫
R
ψ∗(y, k)σ3f(y)dy, (3.2)

where we use adjoint eigenfunctions {ψ∗, ψ̂∗} defined by (2.37)

To prove the above Theorem 1 we proceed as follows:

• Introduce special functions R+,R− that consists of eigenfunctions ϕ and ϕ̂.

• Integrate R+ + R− using contour integration to obtain completeness relation
for the set of eigenfunctions {ϕ, ϕ̂}.

• Compute inner products between eigenfunctions and adjoint eigenfunctions.
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Let us introduce matrix functions

R+(x, y, k) := χ+(x, k)diag
[
θ(y − x),−θ(x− y)

]
(χ+)−1(y, k), (3.3)

R−(x, y, k) := χ−(x, k)diag
[
θ(x− y),−θ(y − x)

]
(χ−)−1(y, k) (3.4)

where χ± are
χ+ =

[
M N

]
E, (3.5)

χ− =
[
N̂ M̂

]
E, (3.6)

and θ(x) is a Heavyside step function,

θ(x) =

1, x ≥ 0

0, x < 0
.

Proposition 3.1. Let χ± be defined as in (3.5), (3.6), then the following is true

detχ+ = a, (3.7)

detχ− = a. (3.8)

Proof. We obtain from (3.5) that

detχ+ = det
[
M N

]
· detE = det

[
aN̂ + be2ikxN N

]
· 1

= det
aN̂1 + be2ikxN1 N1

aN̂2 + be2ikxN2 N2


= aN̂1N2 + be2ikxN1N2 − (aN̂2N1 + be2ikxN2N1)
= a(N̂1N2 − N̂2N1) = a det

[
N̂ N

]
= a det J+ = a,

where we used (2.7) and (2.20). Proof for (3.8) is analogous.
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Lemma 3.2. Let R± be defined as in (3.3), (3.4) and suppose that detχ± ̸= 0. Then
the set of eigenfunctions {ϕ, ϕ̂} satisfies the following completeness relation:

δ(x− y)σ3 = 1
2π

∫
R

[
1
a
ϕ(x, k)ψ̂∗(y, k) − 1

a
ϕ̂(x, k)ψ∗(y, k)

]
dk. (3.9)

Proof. Due to large-k asymptotics of (2.12) of M,N, M̂, N̂ we have the following
boundary conditions for χ±

χ±(x, k) → E.

Thus, we have the following asymptotics for R± in C± as |k| → ∞:

R+(x, y, k) → diag
[
θ(y − x)eik(y−x),−θ(x− y)eik(x−y)

]
= ρ+(x, y, k),

R−(x, y, k) → diag
[
θ(x− y)eik(y−x),−θ(y − x)eik(x−y)

]
= ρ−(x, y, k),

which are bounded in C± as |k| → ∞. Let C±
R be semi-circles of radius R in C±.

We define two contours: one is [−R,R] ∪ C+
R in C+, the other is [−R,R] ∪ C−

R in C−

as shown in Fig 3.1. Let us begin with integrating R+(x, y, k) on the closed contour
[−R,R] ∪C+

R . By Cauchy theorem, since R+(k) is analytic in this closed contour, we
have the following ∫

[−R,R]∪(C+
R )

R+(x, y, k)dk = 0. (3.10)

We can rewrite the integral from (3.10) in the limit R → ∞ as follows:
∫
R

R+(x, y, k)dk + lim
R→∞

∫
CR+

R+(x, y, k)dk = 0.

Using the limiting asymptotics R± → ρ± as |k| → ∞ we obtain that
∫
R

R+(x, y, k)dk = − lim
R→∞

∫
C+

R

diag
[
θ(y − x)eik(y−x),−θ(x− y)eik(x−y)

]
dk.
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Im(k)

R−R Re(k)−→

↖↙

↖ ↙

C+
R

C−
R

Figure 3.1: Contours of integration for R±.

Using the fact that diag
[
θ(y − x)eik(y−x),−θ(x − y)eik(x−y)

]
is analytic in C+, the

relation above can be rewritten by integrating this quantity on the real line:
∫
R

R+(x, y, k)dk =
∫
R
diag

[
θ(y − x)eik(y−x),−θ(x− y)eik(x−y)

]
dk.

Analogously, for R−(x, y, k) we have
∫
R

R−(x, y, k)dk =
∫
R
diag

[
θ(x− y)eik(y−x),−θ(y − x)eik(x−y)

]
dk.

Adding above integrals to each other we have the following
∫
R

(
R+(x, y, k) + R−(x, y, k)

)
dk =

∫
R
diag

[
eik(y−x),−eik(x−y)

]
dk = 2πδ(x− y)σ3.

(3.11)

29



Master of Science - Al-Tarazi Assaubay - McMaster University

Now, to conclude a closure relation, we just need to rewrite R+,R− using defini-
tions (3.3), (3.4)

R+(x, y, k) = χ+(x, k)diag[1, 0](χ+)−1(y, k) − θ(x− y)χ+(x, k)(χ+)−1(y, k)

and

R−(x, y, k) = −χ−(x, k)diag[0, 1](χ−)−1(y, k) + θ(x− y)χ−(x, k)(χ−)−1(y, k).

Since on the real axis both χ+(x, k) and χ−(x, k) are fundamental solutions of system
(2.1), χ+ and χ− are linear combinations of each other so that

χ+(x, k)(χ+)−1(y, k) = χ−(x, k)(χ−)−1(y, k).

Therefore, the left hand side of (3.11) is
∫
R

(
R+(x, y, k) + R−(x, y, k)

)
dk (3.12)

=
∫
R

[
χ+(x, k)diag[1, 0](χ+)−1(y, k) − χ−(x, k)diag[0, 1](χ−)−1(y, k)

]
dk.

To simplify the latter equation, we use solutions of adjoint equation in Lemma 2.8
and Corollary 2.7. Since χ+ is a solution to equation (2.1), then (χ+)−1 is a solution
of the corresponding adjoint equation (2.38).

We claim that

(χ+)−1 =
 1

a
N̂∗eikx

1
a
M̂∗e−ikx

 =
 1

a
ψ̂∗

1
a
ϕ̂∗

 . (3.13)

To confirm (3.13), let us multiply it by its inverse from the right

(χ+)−1(χ+) =
 N̂∗

a
eikx

M̂∗

a
e−ikx

 [Me−ikx Neikx
]

= 1
a

 N̂∗M N̂∗Ne2ikx

M̂∗Me−2ikx M̂∗N

 . (3.14)
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Using (2.39) and (2.40) we see that (3.14) is now

(χ+)−1(χ+) = 1
a

N̂∗M 0
0 M̂∗N

 .
Substituting second and fourth equations from (2.36) in the above, we can see the
following

1
a

aM∗M − be−2ikxM̂∗M 0
0 aN∗N − be2ikxN̂∗N

 = 1
a

a 0
0 a

 = I.

Thus, the claim (3.13) has been proved.

Analogously, we can prove that

(χ−)−1 =
 1

a
M∗eikx

1
a
N∗e−ikx

 =
 1

a
ϕ∗

1
a
ψ∗

 . (3.15)

Substituting (3.13), (3.15) (3.5), (3.6) into (3.12) we obtain a closure relation (3.9).

Lemma 3.3. The sets of eigenfunctions {ϕ, ϕ̂} and the adjoint eigenfunctions {ψ∗, ψ̂∗}
are orthogonal according to the following orthogonality conditions

∫
R
ψ̂∗(x, k)σ3ϕ(x, k′)dx = 2πa(k)δ(k − k′), (3.16)∫

R
ψ∗(x, k)σ3ϕ̂(x, k′)dx = −2πa(k)δ(k − k′), (3.17)∫

R
ψ̂∗(x, k)σ3ϕ̂(x, k′)dx = 0, (3.18)∫

R
ψ∗(x, k)σ3ϕ(x, k′)dx = 0. (3.19)

Proof. Let us prove (3.16) as an example. Firstly, we write the equation (2.1) for
ϕ(x, k′)

ϕx(x, k′) = −ik′σ3ϕ(x, k′) +Q(u)ϕ(x, k′).
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Multiply the above by ψ̂∗(x, k) and integrate over R
∫
R
ψ̂∗(x, k)ϕx(x, k′)dx = − ik′

∫
R
ψ̂∗(x, k)σ3ϕ(x, k′)dx

+
∫
R
ψ̂∗(x, k)Q(u)ϕ(x, k′)dx. (3.20)

Integrating by parts the left hand side gives us the following
∫
R
ψ̂∗(x, k)ϕx(x, k′)dx =

[
ψ̂∗(x, k)ϕ(x, k′)

]x→+∞

x→−∞

−
∫
R
ψ̂∗

x(x, k)ϕ(x, k′)dx. (3.21)

Since ψ̂∗ is a solution to the adjoint equation (2.38), we have the following

ψ̂∗
x(x, k) = ikψ̂∗(x, k)σ3 − ψ̂∗(x, k)Q(u).

Inserting this into the integral on the right hand side of (3.21) we obtain that

∫
R
ψ̂∗(x, k)ϕx(x, k′)dx =

[
ψ̂∗(x, k)ϕ(x, k′)

]x→+∞

x→−∞

−
∫
R

[
ikψ̂∗(x, k)σ3 − ψ̂∗(x, k)Q(u)

]
ϕ(x, k′)dx.

Substituting the above back into (3.20) we have that
[
ψ̂∗(x, k)ϕ(x, k′)

]x→+∞

x→−∞
− ik

∫
R
ψ̂∗(x, k)σ3ϕ(x, k′)dx = −ik′

∫
R
ψ̂∗(x, k)σ3ϕ(x, k′)dx,

which can be rewritten as[
ψ̂∗(x, k)ϕ(x, k′)

]x→+∞

x→−∞
= i(k − k′)

∫
R
ψ̂∗(x, k)σ3ϕ(x, k′)dx. (3.22)
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The left-hand side of (3.22) can be simplified as follows
[
ψ̂∗(x, k)ϕ(x, k′)

]x→+∞

x→−∞
=
[
N̂∗eikxMe−ik′x

]x→+∞

x→−∞
=
[
N̂∗Mei(k−k′)x

]x→+∞

x→−∞
,

where we can use last equation of (2.36) to obtain
[
ψ̂∗(x, k)ϕ(x, k′)

]x→+∞

x→−∞
=
[(
aM∗ − be−2ikxM̂∗

)
Mei(k−k′)x

]x→+∞

x→−∞

=
[(
aM∗M − be−2ikxM̂∗M

)
ei(k−k′)x

]x→+∞

x→−∞
.

Using equalities from (2.39) we finally find the following
[
ψ̂∗(x, k)ϕ(x, k′)

]x→+∞

x→−∞
= a(k)

[
ei(k−k′)x

]x→+∞

x→−∞
.

Substituting it back to (3.22) to get

i(k − k′)
∫
R
ψ̂∗(x, k)σ3ϕ(x, k′)dx = a(k)

[
ei(k−k′)x

]x→+∞

x→−∞
. (3.23)

Lastly, we can use generalized formula for δ(k − k′):

2πδ(k − k′) =
∫
R
ei(k−k′)xdx = 1

i(k − k′)

[
ei(k−k′)x

]x→+∞

x→−∞
.

From which we see that (3.23) yields (3.16). The orthogonality relations (3.17), (3.18)
and (3.19) can be proved using analogous strategy.

Proof of Theorem 1 follows from Lemma 3.2 and 3.3 and is explained below.

Proof of Theorem 1. To justify (3.2) we multiply (3.1) by ψ̂∗σ3 and integrate over R
∫
R
ψ̂∗(y, k)σ3f(y)dy =

∫
R
ψ̂∗(y, k)σ3

∫
R

[
c̃(h)ϕ(y, h) + d̃(h)ϕ̂(y, h)

]
dhdy

=
∫
R
ψ̂∗(y, k)σ3

∫
R
c̃(h)ϕ(y, h)dhdy +

∫
R
ψ̂∗(y, k)σ3

∫
R
d̃(h)ϕ̂(y, h)dhdy
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=
∫
R

∫
R
ψ̂∗(y, k)σ3c̃(h)ϕ(y, h)dhdy +

∫
R

∫
R
ψ̂∗(y, k)σ3d̃(h)ϕ̂(y, h)dhdy

=
∫
R
c̃(h)

∫
R
ψ̂∗(y, k)σ3ϕ(y, h)dydh+

∫
R
d̃(h)

∫
R
ψ̂∗(y, k)σ3ϕ̂(y, h)dydh,

Using (3.16) and (3.18) we can rewrite the above as
∫
R
ψ̂∗(y, k)σ3f(y)dy =

∫
R
c̃(h)2πa(k)δ(k − h)dh = 2πa(k)c̃(k),

which is equivalent to the expression for c̃ in (3.2). To prove the expression for d̃ the
same procedure suffices with the exception that (3.1) needs to be multiplied by ψ∗σ3

and (3.17) and (3.19) are used.

Let us illustrate that (3.9) is the completeness relation between eigenfunctions
{ϕ, ϕ̂} and the adjoint eigenfunctions {ψ∗, ψ̂∗}. Inserting both integrals from (3.2)
into (3.1) we obtain the following

f(x) =
∫

R

[ 1
2πa(k)

∫
R
ψ̂∗(y, k)σ3f(y)dy

]
ϕ(x, k)

−
[

1
2πa(k)

∫
R
ψ∗(y, k)σ3f(y)dy

]
ϕ̂(x, k)

dk
=
∫
R

[ ∫
R

1
2πa(k) ψ̂

∗(y, k)ϕ(x, k)dk
]
σ3f(y)

−
[ ∫

R

1
2πa(k)ψ

∗(y, k)ϕ̂(x, k)dk
]
σ3f(y)

dy
=
∫
R

∫
R

1
2πa(k) ψ̂

∗(y, k)ϕ(x, k)dk −
∫
R

1
2πa(k)ψ

∗(y, k)ϕ̂(x, k)dk
σ3f(y)dy

=
∫
R
δ(x− y)σ3σ3f(y)dy =

∫
R
δ(x− y)f(y)dy = f(x),

where the completeness relation (3.9) has been used. Thus, (3.9) represents the de-
composition of an identity operator.
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Chapter 4

Completeness of squared
eigenfunctions

In this section we present a complete set of squared eigenfunctions for the Zakharov-
Shabat spectral problem (1.2). The corresponding result is given by the following
theorem.

Theorem 2. The set of squared eigenfunctions {Z+, Z−} defined by (4.43) is com-
plete, i.e. every f ∈ L2(R) can be written as follows:

f(x) =
∫
R

[
C̃(k)Z−(x, k) + D̃(k)Z+(x, k)

]
dk, (4.1)

where

C̃(k) = − 1
πa2(k)

∫
R

Ω−(y, k)f(y)dy, D̃(k) = − 1
πa2(k)

∫
R

Ω+(y, k)f(y)dy, (4.2)

where we use adjoint squared eigenfunctions {Ω+,Ω−} defined by (4.19)

To prove Theorem 2, we proceed as follows:

• Construct adjoint squared eigenfunctions by expressing variation of scattering
data in terms of variation of potential.
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• Construct squared eigenfunctions by expressing variation of potential in terms
of variation of scattering data.

• Obtain a completeness relation and orthogonality conditions for squared eigen-
functions.

4.1 Adjoint squared eigenfunctions

In this section perturbation of the potential δu in the spectral problem (2.1) is used
to define the adjoint squared eigenfunctions. We consider a perturbed solution of the
NLS equation (1.1) in the form:

u(x, t) + δu(x, t), (4.3)

where u(x, t) is a solution of NLS and δu is its perturbation.

Substituting u+ δu instead of u into

Φx = −ikσ3Φ +Q(u)Φ, (4.4)

and writing Φ + δΦ, Q(u+ δu) = Q+ δQ we obtain

(Φ + δΦ)x = −ikσ3(Φ + δΦ) + (Q+ δQ)(Φ + δΦ)
= −ikσ3Φ − ikσ3δΦ +QΦ +QδΦ + δQΦ + (δQ)(δΦ)
= (−ikσ3Φ +QΦ) − ikσ3δΦ +QδΦ + δQΦ + (δQ)(δΦ)
= Φx − ikσ3δΦ +QδΦ + δQΦ + (δQ)(δΦ).

Neglecting quadratic term δQδΦ yields

(δΦ)x = −ikσ3δΦ +QδΦ + (δQ)Φ, (4.5)
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where

δQ =
 0 δu

−δu 0


is a variation of potential.

Proposition 4.1. Let Φ be a solution to spectral problem (2.1) subject to boundary
conditions (2.15), then solution to (4.5) is

δΦ(x) = Φ(x)
∫ x

−∞
Φ−1(y)δQ(y)Φ(y)dy. (4.6)

Proof. Recall that Φ(x) = J−(x)E. This implies that Φ(x) → E and δΦ(x) → 0 as
x → −∞. We solve (4.5) by method of variation of parameters. Thus, we write

δΦ(x) = Φ(x)C(x). (4.7)

Inserting (4.7) into (4.5) we obtain the following

ΦxC + ΦCx = −ikσ3ΦC +QΦC + δQΦ,

where we use (4.4) and obtain
ΦCx = δQΦ,

Since Φ−1 exists, we can apply it here to have

Cx = Φ−1δQΦ,

which if we integrate leads to

C(x) =
∫ x

−∞
Φ−1(y, k)δQ(y)Φ(y, k)dy,

returning to (4.7) we obtain (4.6).
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Lemma 4.2. Let δΦ be defined as in (4.6) and let Φ and Ψ satisfy boundary conditions
(2.15)-(2.16), then we have the following

δS =
∫ +∞

−∞
Ψ−1(x)δQ(x)Φ(x)dx, (4.8)

δS−1 = −
∫ +∞

−∞
Φ−1(x)δQ(x)Ψ(x)dx. (4.9)

Proof. Recall that Φ = ΨS and Ψ(x) → E as x → +∞, therefore Φ(x) → ES and
δΦ(x) → E(δS) as x → +∞. Hence, applying the limit of x → +∞ to the solution
(4.6) we have the following

E(δS) = lim
x→+∞

δΦ(x) = ES
∫ +∞

−∞
Φ−1(x)δQ(x)Φ(x)dx

Cancelling exponential parts we continue as follows

δS = S
∫ +∞

−∞
Φ−1(x)δQ(x)Φ(x)dx

= S
∫ +∞

−∞
S−1Ψ−1(x)δQ(x)Φ(x)dx

= SS−1
∫ +∞

−∞
Ψ−1(x)δQ(x)Φ(x)dx

=
∫ +∞

−∞
Ψ−1(x)δQ(x)Φ(x)dx.

Proceeding similarly as x → −∞, we obtain (4.9)

The formulae (4.8), (4.9) represent the variations of the scattering data S(k) due to
variation of the potential δQ. Let us write each entry of δS and δS−1 from (4.8)-(4.9)
below.
Entries of δS:

δa =
∫ +∞

−∞
ψ̂∗δQϕdx, δa =

∫ +∞

−∞
ψ∗δQϕ̂dx,
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−δb =
∫ +∞

−∞
ψ̂∗δQϕ̂dx, δb =

∫ +∞

−∞
ψ∗δQϕdx.. (4.10)

Entries of δS−1:

δa = −
∫ +∞

−∞
ϕ∗δQψ̂dx, δa = −

∫ +∞

−∞
ϕ̂∗δQψdx,

−δb = −
∫ +∞

−∞
ϕ̂∗δQψ̂dx, δb = −

∫ +∞

−∞
ϕ∗δQψdx. (4.11)

Remark 4.3. The formulae (4.10), (4.11) suggest that b, b are given by products of
eigenfunctions which are not analytic in the same region of C, whereas a, a are given
by products of eigenfunctions, which are analytic in the same regions of C, namely
C+ for a and C− for a. Since our aim is to obtain adjoint squared eigenfunctions
that are analytic in either of the half-planes, we want variation of scattering data to
be expressed in terms of product of eigenfunctions that are analytic in C+ or C−.

Lemma 4.4. Let ρ and ρ̃ be defined as

ρ = b

a
, ρ̃ = b

a
. (4.12)

Also let δρ, δρ̃ be variations of ρ, ρ̃, then we can express variation of scattering data
in terms of variation of potential in the following way

δρ = 1
a2

〈
Ω−,

δu
δu

〉, δρ̃ = 1
a2

〈
Ω+,

δu
δu

〉, (4.13)

where

Ω− =
 ψ∗

1ψ̂2

−ψ∗
2ψ̂1

 , Ω+ =
−ψ̂∗

1ψ2

ψ̂∗
2ψ1

 . (4.14)

Proof. Taking variation of ρ we obtain:

δρ = δ
(
b

a

)
= δba− δab

a2 = 1
a2

(
aδb− bδa

)
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= 1
a2

(
a
∫ +∞

−∞
ϕ̂∗δQψ̂dx+ b

∫ +∞

−∞
ϕ∗δQψ̂dx

)
= 1
a2

( ∫ +∞

−∞
aϕ̂∗δQψ̂dx+

∫ +∞

−∞
bϕ∗δQψ̂dx

)
= 1
a2

∫ +∞

−∞
(aϕ̂∗ + bϕ∗)δQψ̂dx (4.15)

To proceed further we take the inverse of (2.17) to get Φ−1 = S−1Ψ−1, which can be
rewritten as ϕ

∗ = aψ̂∗ + bψ∗

ϕ̂∗ = −bψ̂∗ + aψ∗
, (4.16)

Using (4.16) in (4.15) we get

δρ = 1
a2

∫ +∞

−∞

(
a(−bψ̂∗ + aψ∗) + b(aψ̂∗ + bψ∗)

)
δQψ̂dx

= 1
a2

∫ +∞

−∞
(aaψ∗ + bbψ∗)δQψ̂dx,

where we can use (2.18) and obtain

δρ = 1
a2

∫ +∞

−∞
ψ∗δQψ̂dx, (4.17)

where a, ψ∗, ψ̂ are all analytic in C−. Analogously, by taking variation of ρ̃ and
following the same procedure we have that

δρ̃ = − 1
a2

∫ +∞

−∞
ψ̂∗δQψdx, (4.18)

where a, ψ̂∗, ψ are all analytic in C+. Now rewriting (4.17) in a more convenient form
we get

δρ = 1
a2

∫ +∞

−∞

[
ψ∗

1 ψ∗
2

]  0 δu

−δu 0

ψ̂1

ψ̂2

 dx
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= 1
a2

∫ +∞

−∞

[
−ψ∗

2δu ψ∗
1δu

] ψ̂1

ψ2

 dx
= 1
a2

∫ +∞

−∞
(ψ∗

1ψ̂2δu− ψ∗
2ψ̂1δu)dx

= 1
a2

〈 ψ∗
1ψ̂2

−ψ∗
2ψ̂1

 ,
δu
δu

〉,
which is equivalent to (4.13) with (4.14) Performing the same with (4.18) we obtain

δρ̃ = 1
a2

〈−ψ̂∗
1ψ2

ψ̂∗
2ψ1

 ,
δu
δu

〉,
which is equivalent to the second equation in (4.13) with (4.14).

The entries of Ω± are a products between Jost solutions to the Zakharov-Shabar
system (2.1) and their adjoints. Note that superscript "±" denotes the plane of ana-
lyticity. From Remark 2.9

Ψ−1 =
ψ̂1 ψ1

ψ̂2 ψ2

−1

= 1
detΨ

 ψ2 −ψ1

−ψ̂2 ψ̂1

 =
 ψ2 −ψ1

−ψ̂2 ψ̂1

 =
ψ̂∗

1 ψ̂∗
2

ψ∗
1 ψ∗

2

 ,
since by Abel’s identity det Ψ(x) = limx→+∞ det Ψ(x0) = det J+ detE = 1. Hence,
ψ̂∗

1 = ψ2, ψ̂
∗
2 = −ψ1, ψ

∗
1 = −ψ̂2, ψ

∗
2 = ψ̂1, so that we can rewrite Ω± by using Jost

solutions only

Ω− = −

ψ̂2
2

ψ̂2
1

 , Ω+ = −

ψ2
2

ψ2
1

 . (4.19)

4.2 Squared eigenfunctions

In the previous section we considered the variation of the scattering data via variation
of the potential of the Zakharov-Shabat spectral problem (2.1). Now we are following
the opposite direction, and the main idea is to take variation of Riemann-Hilbert
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problem (2.42). We see from (2.43) that scattering data b, b are part of the Riemann-
Hilbert problem on the real axis k ∈ R. In order to extend variation of scattering
data in C±, just as before, we will use some manipulations to transform the Riemann-
Hilbert problem with ρ, ρ̂ instead of b, b. To do so, we firstly introduce new matrices

F+ = P+

1 0
0 1/a

 , F− = (P−)−1

1 0
0 a

 . (4.20)

Lemma 4.5. Let F± be defined as above in (4.20) and assume that a, a do not have
zeros in C± ∪R, then F± are analytic in C± and can be explicitly written in terms of
Jost solutions and scattering data

F+ =
[
M N/a

]
, F− =

[
N̂∗/a M̂∗

]T
. (4.21)

with the following large k asymptotics

F± → I, as |k| → ∞ in C±. (4.22)

Proof. We obtain from (4.20) that

P+ = F+

1 0
0 a

 , (P−)−1 = F−

1 0
0 1/a

 . (4.23)

Thus, writing (2.42) as
P+ = (P−)−1G.

Then, using (4.23) we have the following

F+

1 0
0 a

 = F−

1 0
0 1/a

G,
which can be rewritten as

F+ = F−G̃, (4.24)
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where

G̃ =
1 0
0 1/a

G
1 0
0 1/a

 =
 1 ρ̃e−2ikx

ρe2ikx 1 + ρρ̃

 . (4.25)

In the latter we used (2.18), (2.43) and (4.12). Concerning analyticity of F±, both
are analytic in C± as long as a, a are nonzero. To find the large k asymptotics, we
should rewrite F± in the form (4.21). From definition for F+ and P± it is easy to see
that first equation in (4.21) is true. For the second one, we proceed as follows:

F− = (P−)−1

1 0
0 a

 =
M∗

N∗

−1 1 0
0 a

 =
M∗

1 M∗
2

N∗
1 N∗

2

−1 1 0
0 a


= 1

detP−

 N∗
2 −M∗

2

−N∗
1 M∗

1

 1 0
0 a

 = 1
a

 N∗
2 −M∗

2

−N∗
1 M∗

1

1 0
0 a


=
 N∗

2/a −M∗
2

−N∗
1/a M∗

1

 =
N̂∗

1/a M̂∗
1

N̂∗
2/a M̂∗

2

 =
[
N̂∗/a M̂∗

]T
.

Using (2.12), (2.35) we find (4.22).

Proposition 4.6. Let δF± be variations of F±, then

(
δFF−1

)
(x) = 1

2πi

∫
R

Π(x, ξ)
ξ − k

dξ, (4.26)

where
Π(x, ξ) = F−(x)δG̃(x, ξ)(F+)−1(x), ξ ∈ R. (4.27)

Proof. Take variation of F+ in (4.24) to have the following

δF+ = δF−G̃+ F−δG̃ = δF−(F−)−1F+ + F−δG̃.
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Multiplying both sides by F+ we have

δF+(F+)−1 = δF−(F−)−1 + F−δG̃(F+)−1,

rewriting which we obtain

δF+(F+)−1 − δF−(F−)−1 = F−δG̃(F+)−1.

By applying Plemelj formula (2.46) for F+, F− we get (4.26) as desired.

To consider large-k asymptotics for F± we need to analyze asymptotics of P±.
Expanding solution to Riemann Hilbert problem as below

P± = I + 1
k
P±

1 (x) +O( 1
k2 ) (4.28)

allows us work with spectral problems, since entries of P± are Jost solutions.

Lemma 4.7. Let P± be expanded as in (4.28), then

P+
1 = 1

2i

∫ x
−∞ |u(y)|2dy u

u
∫+∞

x |u(y)|2dy

 (4.29)

P−
1 = − 1

2i

∫ x
−∞ |u(y)|2dy u

u
∫+∞

x |u(y)|2dy

 (4.30)

Proof. Substitute (4.28) into first equation of (2.4) to obtain the following

1
k

(P+
1 )x = −i

(
σ3P

+
1 − P+

1 σ3

)
+Q+ 1

k
QP+

1 .

From which we have the following equations
(P+

1 )x = QP+
1

Q = i[σ3, P
+
1 ].

(4.31)
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Let’s write P+
1 in a matrix form

P+
1 =

(P+
1 )11 (P+

1 )12

(P+
1 )21 (P+

1 )22.

 (4.32)

This allows us to use second equation in (4.31) and obtain relations between u and
entries of P+

1 , which are (P+
1 )12 = u

2i

(P+
1 )21 = u

2i
.

(4.33)

Then, solving first equation in (4.31) we have the following
(P+

1 )11 = 1
2i

∫ x
−∞ |u(y)|2dy

(P+
1 )22 = 1

2i

∫+∞
x |u(y)|2dy

(4.34)

Now substituting (4.33), (4.34) into (4.32) we have (4.29) as needed. In a similar way
one can prove (4.30).

Corollary 4.8. F+ can be expanded as

F+ =
1 + 1

2ik

∫ x
−∞ |u|2dy +O( 1

k2 ) u
2ik

+O( 1
k2 )

u
2ik

+O( 1
k2 ) 1 + 1

2ik

∫+∞
x |u|2dy +O( 1

k2 )


Proof. We can write expansion of P±

P± = I ± 1
2ik

∫ x
−∞ |u(y)|2dy u

u
∫+∞

x |u(y)|2dy

+O
( 1
k2

)
.

From (3.7) it is obvious that detP+ = a. Now, calculating determinant in 2 × 2
matrix P+ we can find expansion for a

a =
(

1 + 1
2ik

∫ +∞

x
|u(y)|2dy

)(
1 + 1

2ik

∫ x

−∞
|u(y)|2dy

)
+ |u|2

4k2 +O
( 1
k2

)
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= 1 + 1
2ik

∫ +∞

x
|u(y)|2dy + 1

2ik

∫ x

−∞
|u(y)|2dy +O

( 1
k2

)
= 1 + 1

2ik

∫
R

|u(y)|2dy +O
( 1
k2

)
.

Substituting expansions of P+ and a in (4.20) we have expansion of F+ as needed.

Lemma 4.9. Variation of potentials at O( 1
k
) are

δu = − 1
π

∫
R Π12(x, ξ)dξ

δu = − 1
π

∫
R Π21(x, ξ)dξ.

(4.35)

Proof. For simplicity, let us write expansion of F+ as follows

F+ =
 1 +O( 1

k
) u

2ik
+O( 1

k2 )
u

2ik
+O( 1

k2 ) 1 +O( 1
k
)

 .
Taking variation of the above we have

δF+ =
 O( 1

k
) δu

2ik
+O( 1

k2 )
δu
2ik

+O( 1
k2 ) O( 1

k
)

 .
Now, substituting the above expansions into (4.26) we have the following

1
2πi

∫
R

Π(x, ξ)
ξ − k

dξ =
 O( 1

k
) δu

2ik
+O( 1

k2 )
δu
2ik

+O( 1
k2 ) O( 1

k
)

 . (4.36)

We can also rewrite the left hand side of the above as follows

1
2πi

∫
R

1
ξ − k

Π(x, ξ)dξ = 1
2πi

∫
R

1
k

1
(ξ/k − 1)Π(x, ξ)dξ

= − 1
2πi

∫
R

1
k

∞∑
n=0

(
ξ

k

)n

Π(x, ξ)dξ

= − 1
2πik

∫
R

Π(x, ξ)dξ +O( 1
k2 )
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= − 1
2πik

∫R Π11(x, ξ)dξ
∫
R Π12(x, ξ)dξ∫

R Π21(x, ξ)dξ
∫
R Π22(x, ξ)dξ

+O
( 1
k2

)

combining it with (4.36) we obtain (4.35) as desired.

Lemma 4.10. Given Π(x, ξ) is defined as in (4.27) we have the following

Π = Φ
 0 δρ̃

δρ 0

Φ−1. (4.37)

Proof. Firstly, we take variation of (4.25) and rewrite it to get

δG̃ =
 0 δρ̃e−2ikx

δρe2ikx δρρ̃+ ρδρ̃

 = E

 0 δρ̃

δρ δρρ̃+ ρδρ̃

E−1,

where

E = e−ikxσ3 =
e−ikx 0

0 eikx


Now, substituting equation for δG̃ into (4.27) we have the following

Π = F−E

 0 δρ̃

δρ δρρ̃+ ρδρ̃

E−1(F+)−1

= (P−)−1

1 0
0 a

E
 0 δρ̃

δρ δρρ̃+ ρδρ̃

E−1

1 0
0 a

 (P+)−1, (4.38)

where we used definitions of F± in (4.20). Let us rewrite P± in a matrix form
explicitly. Before that, for the sake of simplicity of the proof, let’s define the following
matrices

H1 =
1 0
0 0

 , H2 =
0 0
0 1

 .

47



Master of Science - Al-Tarazi Assaubay - McMaster University

Then, we proceed as

P− =
M∗

N∗

 = H1J
−1
− +H2J

−1
+ = H1J

−1
− +H2J

−1
+ J−J

−1
−

= (H1 +H2J
−1
+ J−)J−1

− = (H1 +H2J
−1
+ J+ESE

−1)J−1
−

= (H1 +H2ESE
−1)J−1

− .

By taking inverse of the above we obtain

(P−)−1 = J−(H1 +H2ESE
−1)−1

= J−

1 0
0 0

+
0 0
0 1

 e−ikx 0
0 eikx

a −b
b a

 eikx 0
0 e−ikx

−1

= J−

1 0
0 0

+
0 0
0 1

  a −be−2ikx

be2ikx a

−1

= J−

1 0
0 0

+
 0 0
be2ikx a

−1

= J−

 1 0
be2ikx a

−1

= J−

 1 0
−ρe2ikx 1/a

 = ΦE−1

 1 0
−ρe2ikx 1/a

 , (4.39)

where we used (2.13), (2.18) and (4.12). Performing the same manipulations with P+

we have

(P+)−1 =
1 −ρ̃e−2ikx

0 1/a

EΦ−1. (4.40)

Inserting (4.39), (4.40) back into (4.38) we have

Π = ΦE−1

 1 0
ρe2ikx 1/a

1 0
0 a

E
 0 δρ̃

δρ δρρ̃+ ρδρ̃

E−1

1 0
0 a

 1 −ρ̃e−2ikx

0 1/a

EΦ−1

= ΦE−1

 1 0
−ρe2ikx 1

E
 0 δρ̃

δρ δρρ̃+ ρδρ̃

E−1

1 −ρ̃e−2ikx

0 1

EΦ−1
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= ΦE−1

E
 1 0
−ρ 1

E−1

E
 0 δρ̃

δρ δρρ̃+ ρδρ̃

E−1

E
1 −ρ̃
0 1

E−1

EΦ−1

= Φ
 1 0
−ρ 1

 0 δρ̃

δρ δρρ̃+ ρδρ̃

 1 −ρ̃
0 1

Φ−1 = Φ
 0 δρ̃

δρ 0

Φ−1,

which concludes the proof.

Lemma 4.11. Perturbation δu of spectral problem (2.1) is expressed in terms of δρ
as follows δu

δu

 = 1
π

∫
R

(
Z−(x, ξ)δρ(ξ) + Z+(x, ξ)δρ̃(ξ)

)
dξ, (4.41)

where

Z− =
−ϕ̂1ϕ

∗
2

−ϕ̂2ϕ
∗
1

 , Z+ =
−ϕ1ϕ̂

∗
2

−ϕ2ϕ̂
∗
1

 . (4.42)

Proof. Writing (4.37) explicitly results in

Π =
ϕ1 ϕ̂1

ϕ2 ϕ̂2

 0 δρ̃

δρ 0

ϕ∗
1 ϕ∗

2

ϕ̂∗
1 ϕ̂∗

2

 =
ϕ̂1δρ ϕ1δρ̃

ϕ̂2δρ ϕ2δρ̃

ϕ∗
1 ϕ∗

2

ϕ̂∗
1 ϕ̂∗

2


=
ϕ̂1ϕ

∗
1δρ+ ϕ1ϕ̂

∗
2δρ̃ ϕ̂1ϕ

∗
2δρ+ ϕ1ϕ̂

∗
2δρ̃

ϕ̂2ϕ
∗
1δρ+ ϕ2ϕ̂

∗
2δρ̃ ϕ̂2ϕ

∗
2δρ+ ϕ2ϕ̂

∗
2δρ̃

 =
Π11 Π12

Π21 Π22


Combining this with results of Lemma 4.9 we have the following

δu = − 1
π

∫
R

(
ϕ̂1ϕ

∗
2δρ+ ϕ1ϕ̂

∗
2δρ̃

)
dξ,

δu = − 1
π

∫
R

(
ϕ̂2ϕ

∗
1δρ+ ϕ2ϕ̂

∗
1δρ̃

)
dξ,

from which (4.41) follows directly.
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Note that from linear relation between Φ and Φ−1 we haveϕ∗
1 ϕ∗

2

ϕ̂∗
1 ϕ̂∗

2

 = Φ−1 =
ϕ1 ϕ̂1

ϕ2 ϕ̂2

−1

=
 ϕ̂2 −ϕ̂1

−ϕ2 ϕ1

 .
Using the above we can rewrite (4.42) as follows

Z− =
 ϕ̂2

1

−ϕ̂2
2

 , Z+ =
−ϕ2

1

ϕ2
2

 . (4.43)

Lemma 4.12. The sets {Ω+,Ω−} and {Z+, Z−} introduced in (4.19) and (4.43) sat-
isfy the following completeness relation if a, a ̸= 0:

δ(x− y)I = 1
π

∫
R

[
1

a2(ξ)Z
−(x, ξ)Ω−(y, ξ) + 1

a2(ξ)Z
+(x, ξ)Ω+(y, ξ)

]
dξ. (4.44)

Proof. For completeness relation, we adopt both formulas connecting variation of
potential and variation of scattering data: (4.17)-(4.18) and (4.41). Then, we obtain
δu(x)
δu(x)

 = 1
π

∫
R

Z−(x, ξ) 1
a2(ξ)

〈
Ω−,

δu
δu

〉+ Z+(x, ξ) 1
a2(ξ)

〈
Ω+,

δu
δu

〉dξ
= 1
π

∫
R

Z−(x, ξ) 1
a2(ξ)

∫
R

Ω−(y, ξ)
δu(y)
δu(y)

 dy
+ Z+(x, ξ) 1

a2(ξ)

∫
R

Ω+(y, ξ)
δu(y)
δu(y)

 dy
dξ

= 1
π

∫
R

 ∫
R

1
a2(ξ)Z

−(x, ξ)Ω−(y, ξ)
δu(y)
δu(y)

 dy
+
∫
R

1
a2(ξ)Z

+(x, ξ)Ω+(y, ξ)
δu(y)
δu(y)

 dy
dξ
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= 1
π

∫
R

∫
R

 1
a2(ξ)Z

−(x, ξ)Ω−(y, ξ)
δu(y)
δu(y)

+ 1
a2(ξ)Z

+(x, ξ)Ω+(y, ξ)
δu(y)
δu(y)

dydξ

= 1
π

∫
R

∫
R

 1
a2(ξ)Z

−(x, ξ)Ω−(y, ξ) + 1
a2(ξ)Z

+(x, ξ)Ω+(y, ξ)
dξ

δu(y)
δu(y)

 dy,
which implies (4.44)

Lemma 4.13. The squared eigenfunctions {Z+, Z−} and the adjoint squared eigen-
functions {Ω+,Ω−} satisfy the following orthogonality relations:

〈
Ω−(x, ξ), Z−(x, ξ′)

〉
= πa2(ξ)δ(ξ − ξ′),〈

Ω+(x, ξ), Z+(x, ξ′)
〉

= πa2(ξ)δ(ξ − ξ′),〈
Ω−(x, ξ), Z+(x, ξ′)

〉
= 0,〈

Ω+(x, ξ), Z−(x, ξ′)
〉

= 0.

Proof. For inner products, we substitute (4.41) into (4.17) and (4.18). Then

δρ = 1
a2(ξ)

∫
R

Ω−(x, ξ)
[

1
π

∫
R

(
Z−(x, ξ′)δρ(ξ′) + Z+(x, ξ′)δρ̃(ξ′)

)
dξ′
]
dx

= 1
πa2(ξ)

∫
R

∫
R

(
Ω−(x, ξ)Z−(x, ξ′)δρ(ξ′) + Ω−(x, ξ)Z+(x, ξ′)δρ̃(ξ′)

)
dξ′dx

= 1
πa2(ξ)

∫
R

∫
R

[
Ω−(x, ξ)Z−(x, ξ′) Ω−(x, ξ)Z+(x, ξ′)

] δρ(ξ′)
δρ̃(ξ′)

 dξ′dx

= 1
πa2(ξ)

∫
R

∫
R

[
Ω−(x, ξ)Z−(x, ξ′) Ω−(x, ξ)Z+(x, ξ′)

]
dx

δρ(ξ′)
δρ̃(ξ′)

 dξ′.

Performing the same for δρ̃ we have

δρ̃ = 1
πa2(ξ)

∫
R

∫
R

[
Ω+(x, ξ)Z−(x, ξ′) Ω+(x, ξ)Z+(x, ξ′)

]
dx

δρ(ξ′)
δρ̃(ξ′)

 dξ′.
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Hence, we have δρ(ξ)
δρ̃(ξ)

 =
∫
R
B(ξ, ξ′)

δρ(ξ′)
δρ̃(ξ′)

 dξ′

with

B(ξ, ξ′) =
 1

πa2(ξ)

〈
Ω−(x, ξ), Z−(x, ξ′)

〉
1

πa2(ξ)

〈
Ω−(x, ξ), Z+(x, ξ′)

〉
1

πa2(ξ)

〈
Ω+(x, ξ), Z−(x, ξ′)

〉
1

πa2(ξ)

〈
Ω+(x, ξ), Z+(x, ξ′)

〉
 .

These relations imply B(ξ, ξ′) = δ(ξ − ξ′)I, which are equivalent to the four orthogo-
nality relations.

Proof of Theorem 2 follows from Lemmas 4.12-4.13 and is provided below.

Proof. To justify the choice of coefficients (4.2) we multiply (4.1) by Ω−(y, k) and
integrate over y ∈ R. We obtain the following:

∫
R
Ω−(y, k)f(y)dy =

∫
R

Ω−(y, k)
∫
R

[
C̃(k′)Z−(y, k′) + D̃(k′)Z+(y, k′)

]
dk′dy

=
∫
R

∫
R
C̃(k′)Ω−(y, k)Z−(y, k′)dk′dy +

∫
R

∫
R
D̃(k′)Ω−(y, k)Z+(y, k′)dk′dy

=
∫
R
C̃(k′)

∫
R

Ω−(y, k)Z−(y, k′)dydk′ +
∫
R
D̃(k′)

∫
R

Ω−(y, k)Z+(y, k′)dydk′

=
∫
R
C̃(k′)

[
πa2(k)δ(k − k′)

]
dk′ = πa2(k)

∫
R
C̃(k′)δ(k − k′)dk′

= πa2(k)C̃(k),

where orthogonality relations from Lemma 4.13 were used. This yields (4.2) for C̃(k).
In the similar way we justify (4.2) for D̃(k), by multiplying (4.1) by Ω+(y, k) and
integrating over y ∈ R.

Now inserting both coefficients (4.2) into (4.1) we have the following illustration
that (4.44) is the completeness relation between squared eigenfunctions {Z+, Z−} and
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adjoint squared eigenfunctions {Ω+,Ω−}:

f(x) =
∫
R

[(
1

πa2(k)

∫
R

Ω−(y, k)f(y)dy
)
Z−(x, k)

+
(

1
πa2(k)

∫
R

Ω+(y, k)f(y)dy
)
Z+(x, k)

]
dk

=
∫
R

[
1
π

∫
R

1
a2(k)Ω−(y, k)Z−(x, k)f(y)dy

+ 1
π

∫
R

1
a2(k)Ω+(y, k)Z+(x, k)f(y)dy

]
dk

=
∫
R

[
1
π

∫
R

1
a2(k)Ω−(y, k)Z−(x, k)dk

]
f(y)dy

+
∫
R

[
1
π

∫
R

1
a2(k)Ω+(y, k)Z+(x, k)dk

]
f(y)dy

=
∫
R

 1
π

∫
R

[
1

a2(k)Ω−(y, k)Z−(x, k) + 1
a2(k)Ω+(y, k)Z+(x, k)

]
dk

f(y)dy

=
∫
R
δ(x− y)If(y)dy = f(x),

where the completeness relation (4.44) has been used.

53



Chapter 5

Relation of squared eigenfunctions
to the linearized NLS equation

In this section we explicitly show that the squared eigenfunctions of the linear system
(1.2)-(1.3) solve the linearized NLS equation (1.5) and the adjoint squared eigenfunc-
tions solve the corresponding adjoint linearized NLS equation. To do so, we follow
the procedure below:

• Show dependence of squared eigenfunctions and adjoint squared eigenfunctions
on t.

• Show that the time-dependent squared eigenfunctions are solution to the lin-
earized NLS equation.

• Find an adjoint linearized NLS equation and prove that time-dependent adjoint
squared eigenfunctions solve it.

Since in all previous computations, we have set t = 0 and omitted t from argu-
ments of the fundamental solutions Φ,Φ−1. Let us now augment all expressions by
explicitly writing their dependence on t. In particular, the time-dependent squared
eigenfunctions and the adjoint squared eigenfunctions similar to (4.19) and (4.43) are
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denoted as follows:

Z−(t) =
 (ϕ̂(t)

1 )2

−(ϕ̂(t)
2 )2

 , Z+(t) =
−(ϕ(t)

1 )2

(ϕ(t)
2 )2

 ,

Ω−(t) = −

(ψ̂(t)
2 )2

(ψ̂(t)
1 )2

 , Ω+(t) = −

(ψ(t)
2 )2

(ψ(t)
1 )2

 .
Proposition 5.1. Let u be a solution of the NLS equation (1.1). Then, variation
(δu, δu) is a solution of the following linearized NLS equation:

L

δu(x, t)
δu(x, t)

 =
0
0

 ,
where

L =
i∂t + ∂xx + 4|u|2 2u2

−2u2 i∂t − ∂xx − 4|u|2

 (5.1)

is the linearization operator.

Proof. Substitute (4.3) into (1.1) and proceeding as in (1.5) we obtain the linearized
NLS for (δu, δu):

iδut + δuxx + 2u2δu+ 4|u|2δu = 0, (5.2)

The complex conjugate equation is given by

0 = iδut + δuxx + 2u2δu+ 4|u|2δu

= −iδut + δuxx + 2u2δu+ 4|u|2δu = 0.

Multiplying the above by −1 we obtain

iδut − δuxx − 4|u|2δu− 2u2δu = 0, (5.3)

Combining (5.2) and (5.3) yields (5.1).
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Theorem 3. The time-dependent squared eigenfunctions Z−(t), Z+(t) satisfy the lin-
earized NLS equation:

LZ−(t)(x, k, t) = LZ+(t)(x, k, t) = 0. (5.4)

Proof. We will prove the result for Z−(t), since the proof for Z+(t) is identical. For
simplicity, we denote v1 = ϕ̂

(t)
1 , v2 = ϕ̂

(t)
2 . Substituting these into (5.4) and using

(5.2), (5.3) we want to show

LZ−(t) =



[
i∂t + ∂xx + 4|u|2, 2u2

] v2
1

−v2
2


[
−2|u|2, i∂t − ∂xx − 4|u|2

] v2
1

−v2
2



 = 0.

Consider the following

[
i∂t + ∂xx + 4|u|2, 2u2

] v2
1

−v2
2

 = i∂t(v2
1) + ∂xx(v2

1) + 4|u|2(v2
1) − 2u2v2

2

= 2iv1(v1)t + 2v1(v1)xx + 2(v1)2
x + 4|u|2v2

1 − 2u2v2
2. (5.5)

Since
v1

v2

 is a solution to (1.2) and (1.3) we have the following

(v1)xx = (v1x)x = (−ikv1 + uv2)x = −ik(v1)x + uxv2 + u(v2)x,

(v2)x = −uv1 + ikv2

(v1)t = −2ik2v1 + i|u|2v1 + iuxv2 + 2kuv2.

Substituting the above into (5.5) we have the following

2iv1

{
− 2ik2v1 + i|u|2v1 + iuxv2 + 2kuv2

}
+ 2v1

{
− ik(v1)x + uxv2 + u(v2)x

}
+ 2(−ikv1 + uv2)2 + 4|u|2v2

1 − 2u2v
2
2

56



Master of Science - Al-Tarazi Assaubay - McMaster University

= 4k2v2
1 − 2|u|2v2

1 − 2uxv1v2 + 4ikuv1v2 + 2v1

{
− k2v1 + uxv2 − |u|2v1

}
− 2k2v2

1 + 2u2v2
2 − 4ikuv1v2 + 4|u|2v2

1 − 2u2v2
2

=
{

4k2 − 2|u|2 − 2k2 − 2|u|2 − 2k2 + 4|u|2
}
v2

1 +
{

2u2 − 2u2
}
v2

2

+
{

− 2ux + 4iku+ 2ux − 4iku
}
v1v2 = 0

Following the same procedure, we have
[
−2|u|2, i∂t − ∂xx − 4|u|2

] v2
1

−v2
2

 = 0.

Proposition 5.2. The adjoint linearized NLS equation is written as

L∗

δv(x, t)
δv(x, t)

 =
0
0

 ,
where

L∗ =
−i∂t + ∂xx + 4|u|2 −2u2

2u2 −i∂t − ∂xx − 4|u|2

 .
Proof. Adjoint operator satisfies the following

⟨Lu, v⟩ = ⟨u,L∗v⟩.

Using (2.24) we write above as

⟨Lu, v⟩ =
∫
R

∫
R

i∂t + ∂xx+ 4|u|2 2u2

−2u2 i∂t − ∂xx − 4|u|2

 u1

u2

 ·

v1

v2

 dxdt
=
∫
R

∫
R

(
i(u1)tv1 + (u1)xxv1 + 4|u|2u1v1 + 2u2u2v1

− 2u2u1v2 + i(u2)tv2 − (u2)xxv2 − 4|u|2u2v2

)
dxdt
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=
∫
R

∫
R

(
i(u1)tv1 + i(u2)tv2

)
dtdx︸ ︷︷ ︸

=1

+
∫
R

∫
R

(
(u1)xxv1 − (u2)xxv2

)
dxdt︸ ︷︷ ︸

=2

+
∫
R

∫
R

(
4|u|2u1v1 + 2u2u2v1 − 2u2u1v2 − 4|u|2u2v2

)
dxdt

Integrating first integral by parts once, and second integral by parts twice we obtain
the following

∫
R

∫
R

(
− iu1(v1)t − iu2(v2)t

)
dtdx+

∫
R

∫
R

(
u1(v1)xx − u2(v2)xx

)
dxdt

+
∫
R

∫
R

(
4|u|2u1v1 + 2u2u2v1 − 2u2u1v2 − 4|u|2u2v2

)
dxdt

=
∫
R

∫
R

(
− iu1(v1)t + u1(v1)xx + 4|u|2u1v1 + 2u2u2v1

− 2u2u1v2 − iu2(v2)t − u2(v2)xx − 4|u|2u2v2

)
dxdt

=
∫
R

∫
R

u1

u2

 −i∂tv1 + ∂xxv1 + 4|u|2v1 −2u2v2

2u2v1 −i∂tv2 − ∂xxv2 − 4|u|2v2

 dxdt
=
∫
R

∫
R

u1

u2

 −i∂t + ∂xx + 4|u|2 −2u2

2u2 −i∂t − ∂xx − 4|u|2

 v1

v2

 dxdt = ⟨u,L∗v⟩,

which yields the result.

Theorem 4. The time-dependent adjoint squared eigenfunctions Ω−(t),Ω+(t) satisfy
the adjoint linearized NLS equation:

L∗Ω−(t)(x, k, t) = L∗Ω+(t)(x, k, t) = 0.

Proof. We will prove for Ω−(t), since Ω+(t) case is identical. For simplicity, let’s use the
following notation within our proof w1 = ψ̂

(t)
1 , w2 = ψ̂

(t)
2 . Now, consider the following

[
−i∂t + ∂xx + 4|u|2 −2u2

]−w2
2

−w2
1

 = −i(−w2
2)t + (−w2

2)xx − 4|u|2w2
2 + 2u2w2

1
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= 2iw2(w2)t − 2w2(w2)xx − 2(w2)2
x − 4|u|2w2

2 + 2u2w2
1 (5.6)

Since
w1

w2

 is a solution to (1.2) and (1.3), then w1, w2 satisfy the following

(w2)xx = (w2x)x = (−uw1 + ikw2)x = −uxw1 − u(w1)x + ik(w2)x

(w1)x = −ikw1 + uw2

(w2)t = iuxw1 − 2kuw1 + 2ik2w2 − i|u|2w2

Using this in (5.6) we obtain

2iw2

{
iuxw1 − 2kuw1 + 2ik2w2 − i|u|2w2

}
− 2w2

{
− ux − u(w1)x + ik(w2)x

}
− 2(−uw1 + ikw2)2 − 4|u|2w2

2 + 2u2w2
1

= −2uxw1w2 − 4ikuw1w2 − 4k2w2
2 + 2|u|2w2

2 − 2w2

{
− uxw1 − |u|2w2 − k2w2

}
− 2u2w2

1 + 2k2
2w

2
2 + 4ikuw1w2 − 4|u|2w2

2 + 2u2w2
1

=
{

− 2u2 + 2u2
}
w2

1 +
{

− 4k2 + 2|u|2 + 2|u|2 + 2k2 + 2k2 − 4|u|2
}
w2

2

+
{

− 2ux − 4iku+ 2ux + 4iku
}
w1w2 = 0.

Following the same procedure, we have
[
2u2, −i∂t − ∂xx − 4|u|2

]−w2
2

−w2
1

 = 0.
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Chapter 6

Conclusion and future directions

This thesis is centered around completeness of eigenfunctions of the spectral prob-
lem (1.2). In this study, a complete set of eigenfunctions is a basis in the L2 space.
We proved completeness of eigenfunctions of (1.2) in Chapter 3. To do so, we in-
tegrated special functions R± and obtained a completeness relation in Lemma 3.2,
then we found orthogonality relations between eigenfunctions and adjoint eigenfunc-
tions in Lemma 3.3. These results lead to Theorem 1, where we provided a proof of
completeness of a set {ϕ, ϕ̂}.

We extend our study to completeness of squared eigenfunctions in Chapter 4.
First, we perturb our potential by adding a vartiation to it in (4.3). To derive ad-
joint squared eigenfunctions Ω± in (4.19), we express variation of potential in terms
of variation of scattering data. Then, by expressing variation of scattering data in
terms of variation of potential we derive squared eigenfunctions Z± in (4.43). We
obtain orthogonality relations between squared eigenfunctions and adjoint squared
eigenfunctions in Lemma 4.13 that helps us to prove completeness of a set {Z−, Z+}
in Theorem 2.

In Chapter 5 we explain a connection between the squared eigenfunctions and the
linearized NLS equation (1.5). Precisely, we manually show that squared eigenfunc-
tions Z± are solutions to the linearized NLS equation in Theorem 3 and that adjoint
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squared eigenfunctions Ω± are solutions to the adjoint linearized NLS equation in
Theorem 4.

It is crucial to note that throughout the whole thesis we assumed that scattering
data a and a are nonzero in C+ and C−, respectively. Allowing these to have simple
or multiple zeros complicate the problem to the next level. In particular, when inte-
grating special functions R± we see that this creates poles in C± , simple or multiple
depending on the assumption. This means that the completeness relation would have
contribution from residues. In the case of squared eigenfunctions, by looking at the
completeness relation (4.1) we see that simple zeros of a, a are automatically double
zeros because of the exponent of a, a. In this case, we can expect that contribution
from residues would involve derivatives of squared eigenfunctions with respect to k.

The case with the simple zeros of a, ā was considered and discussed in [1]. In ad-
dition to continuous eigenfunctions {ϕ(x, k), ϕ̂(x, k)} for k ∈ R , a new complete set
includes discrete eigenfunctions {ϕ(x, kj), ϕ̂(x, k̂j)} at the zeros kj, k̂j of a, a respec-
tively. For squared eigenfunctions, the complete set {Z−, Z+} is modified by addition
of four additional eigenfunctions at the zeros kj, k̂j of a, a, respectively.

In this thesis all our computations were done for the zero background, i.e. the
decay of the potential u to zero. Even though the results of this study are not novel,
we present detailed proofs and thorough explanations that could act as a literature
review and a good foundation for further research. In particular, this thesis may be
used to tackle an open problem on completeness of the squared eigenfunctions for the
potentials at the nonzero background (constant and/or periodic boundary conditions
at x → ±∞).
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