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We revisit the averaged equation, derived in Pelinovskyet al. [Phys. Rev. Lett.91, 240201(2003)] from the
nonlinear Schrödinger(NLS) equation with the nonlinearity management. We show that this averaged equation
is valid only at the initial time interval, while a new Hamiltonian averaged NLS equation can be used at longer
time intervals. Using the new averaged equation, we construct numerically matter-wave solitons in the context
of the Bose-Einstein condensates under the Feshbach resonance management. We show that there is no
threshold on the existence of dark solitons of large amplitudes, whereas such a threshold exists for bright
solitons.
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We address the nonlinear Schrödinger(NLS) equation
with the nonlinearity management, considered in[1,2],

iut = − uxx + Vsxdu + g0uuu2u +
1

e
gS t

e
Duuu2u, s1d

wheree!1, g0 is the averaged nonlinearity coefficient and
gstd , t= t /e is a mean-zero periodic function with the unit
period. The potentialVsxd= 1

2V2x2 corresponds to the para-
bolic magnetic trap for the Bose-Einstein condensates. Al-
though Eq.(1) is written in one spatial dimension(for rea-
sons of simplicity), the generalization of our method and
results to multidimensions is straightforward. Additionally, it
is worth mentioning that the recent development of trapping
and cooling techniques has enabled experimental realizations
of quasi-one-dimensional condensates[3], and, thus, the re-
duction of the fully three-dimensional NLS equation to an
effective one-dimensional(1D) model is relevant[4] (see
also a rigorous derivation in[5]). Importantly, as the regime
of quasi-1D condensates is experimentally tractable, impor-
tant experimental studies on 1D matter-wave dark[6] and
bright [7] solitons have subsequently been performed. Fi-
nally, it should be noticed that the model Eq.(1) is also
relevant in the context of nonlinear optics(in a layered struc-
ture in which Kerr nonlinearity alternates between self-
focusing and self-defocusing) as has been discussed in[8].

In [2], we derived an averaged equation for standing
waves(solitons) under nonlinearity management, based on
the nonlocal transformation that removed the large fast varia-
tions of the nonlinearity coefficientgstd:

usx,td = e−ifsx,tdvsx,td, s2d

where

fsx,td =
1

e
E

0

t

gS t8

e
Duvu2sx,t8ddt8. s3d

There exists an equivalent local transformation that serves
the same purpose,

usx,td = e−ig−1stduvu2sx,tdvsx,td, t =
t

e
, s4d

where g−1std is the mean-zero antiderivative ofgstd. By
eliminating uvut

2 from the problem, the local transformation
(4) reduces the NLS equation(1) to the form

ivt = − vxx + Vsxdv + g0uvu2v + 2ig−1sv2v̄xx + 2uvxu2v + vx
2v̄d

− g−1
2 fsuvux

2d2 + 2uvuxx
2 uvu2gv, s5d

where uvux
2 stands forsuvu2dx and g−1

2 stands forsg−1d2. The
standard averaging method[9] is applied for decomposition
of vsx,td into a slowly varying partwsx,td and a small, fast-
varying partv1sx,td:

vsx,td = wsx,td + ev1„x,t,wsx,td…. s6d

From the condition thatv1sx,t ,wd does not grow int, we
derive a new averaged NLS equation:

iwt = − wxx + Vsxdw + g0uwu2w − mfsuwux
2d2 + 2uwu2uwuxx

2 gw,

s7d

where m is the mean value ofg−1
2 std. The averaged NLS

equation has a standard Hamiltonian form, with the Hamil-
tonian

H =E
R

fuwxu2 + Vsxduwu2 + 1
2g0uwu4 + muwu2suwux

2d2gdx.

s8d

We would like to comment on the validity of the new
Hamiltonian averaged equation(7) in connection to the av-
eraged equation, derived in[2]. Although the averaged equa-
tion (6) in [2] gives the condition that the correction
v1sx,t ,wd does not grow secularly int, the nonlocal term(3)
in the transformation(2) has a nonzero mean value in the
first order of e. The nonzero mean value leads to a linear
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growth int for fsx,td and to a quadratic growth int for the
second-order correction termv2sx,t ,wd in the extended de-
composition:

vsx,td = wsx,td + ev1sx,t,wd + e2v2sx,t,wd. s9d

As a result, the validity of the averaged equation(6) in [2] is
destroyed on the time scale of orderet= t=Os1d. When deal-
ing with nonlocal transformations such as Eq.(2) and hence
with nonlocal integro-differential equations, one cannot use
the scalar decompositions(6) and (9), but rather vector de-
compositions forvsx,td andfsx,td. The modified averaging
procedure for the derivation of the Hamiltonian averaged
NLS equation(7) from the nonlocal transformation(2) and
(3) will be published elsewhere[10].

The comments above explain why the averaged equations
(8) and (11) in [2] have no obvious Hamiltonian structure,
while the original NLS equation(1) is a Hamiltonian system.

Since the numerical approximations of the bound states,
shown in Figs. 1–3 of[2], are only valid for the initial time
interval, it is important to revisit the numerical approxima-
tions of the bound states within the new Hamiltonian aver-
aged NLS equation(7), which is valid on longer time inter-
vals. In the context of Bose-Einstein condensates under the
Feshbach resonance management[1], the standing waves
correspond to matter-wave bright and dark solitons.

Using the standard standing wave ansatzwsx,td
=fsxdeivt, we find the ODE problem forfsxd:

− f9 + vf + Vsxdf + g0f3 − 4mf2f3sf8d2 + f4f9g = 0.

s10d

For the time-dependent nonlinearity coefficient, we use
the sinusoidal functiongstd=g1sins2ptd, such that m
=g1

2/ s8p2d. Figure 1(a) shows the profile of the dark soliton

FIG. 1. (a) Example of a dark soliton solution forv=−0.5,V2=0.02,g0=0.1, andg1=2.5Îg0. The dashed curve shows the result from
Eq. (10) and the solid curve shows the result from Eq.(11) of [2]. The potential is shown by the dashed-dotted line.(b) Continuation branch
of dark soliton solutions as a function ofg0 for the same parameters.

FIG. 2. Same as in Fig. 1, but for a bright soliton solution branch. The case ofv=0.5, V2=0.4, g0=−0.32, andg1=1 is shown in the left
panel.
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fsxd from Eq. (10) (dashed curve) for v=−0.5,V2

=0.02,g0=0.1, andg1=2.5Îg0. The solid line shows the
bound state of Eq.(11) in [2] for the same parameters. So-
lution families of these two equations are continued on Fig.
1(b) as a function ofg0 for the same parameter set.

It is clearly seen from Figs. 1(a) and 1(b) that the dark
soliton solutions remain structurally very close to the ones
obtained in[2]. However, there is a nontrivial difference oc-
curing for large amplitudes of the dark solitons asg0→0. In
that case, contrary to what was numerically predicted on the
basis of Eq.(11) of [2], there isno thresholdfor the existence
of dark solitons of large amplitudes, i.e., such solutions may
exist for arbitrarily smallg0. It should be noted that in all the
numerical results of[2], g1 was scaled byÎg0 (e.g., g1
=0.5 in [2] should be readg1=0.5Îg0).

Figures 2(a) and 2(b) show similar results for the bright
soliton profilefsxd for v=0.5, V2=0.4, g0=−0.32, andg1

=1. The difference between solutions of Eq.(10) (dashed
curve) and of Eq.(11) in [2] (solid curve) is, again, only
observable for bright solitons of large amplitudes asg0→0.
Contrary to the dark soliton case, there exists athresholdon

the amplitudes of the bright soliton solutions in the new av-
eraged equation(10), i.e., the solution family terminates at a
nonzero value ofg0.

We conclude that the new Hamiltonian averaged NLS
equations(7) and (10) improve the averaging results of[2]
for longer time intervals. Additionally, there is, typically, no
threshold for the existence of dark soliton solutions of large
amplitudes, whereas such a threshold typically exists for
bright soliton solutions. Nevertheless, the differences be-
tween previous averaged equations in[2] and new averaged
equations(7) and(10) are not observable in the case of mod-
erate values of the average nonlinearity coefficient. This fact
justifies the very good agreement between the direct numeri-
cal simulations of the NLS equation(1) and the results of the
averaging approximation(see Figs. 4 and 5 in[2]).
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