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Abstract. We address justification and solitary wave solutions of the cylindrical
KdV equation which is formally derived as a long wave approximation of radially
symmetric waves in a two-dimensional nonlinear dispersive system. For a regular-
ized Boussinesq equation, we prove error estimates between true solutions of this
equation and the associated cylindrical KdV approximation in the L2-based spaces.
The justification result holds in the spatial dynamics formulation of the regularized
Boussinesq equation. We also prove that the class of solitary wave solutions consid-
ered previously in the literature does not contain solutions in the L2-based spaces.
This presents a serious obstacle in the applicability of the cylindrical KdV equation
for modeling of radially symmetric solitary waves since the long wave approximation
has to be performed separately in different space-time regions.

1. Introduction

Long radially symmetric waves in a two-dimensional nonlinear dispersive system
can be modeled with the cylindrical Korteweg-de Vries (cKdV) equation. The cKdV
equation has been derived in [13, 14, 24, 25] by perturbation theory from the equations
of the water wave problem in cylindrical coordinates to describe radially symmetric
waves going to infinity. See [9, 17] for an overview about the occurrence of this and
other amplitude equations for the shallow water wave problem.

Derivation of the cKdV equation is not straightforward compared to its analog
in rectangular coordinates, the classical KdV equation, and it is still an active area of
research in physics [8, 22, 33, 35]. No mathematically rigorous results have been derived
for the justification of the cKdV equation, compared to the rigorous approximation
results available for the classical KdV equation after the pioneering works [5, 20, 29, 31].
The main objective of this paper is to prove an approximation result for the cKdV
equation and to discuss the validity of this approximation.

Although we believe that our methods can be applied to every nonlinear dispersive
wave system where the cKdV equation can be formally derived we restrict ourselves in
the following to the system given by a regularized Boussinesq equation. The regularized
Boussinesq equation in two spatial dimensions can be written in the normalized form
as

∂2t u−∆u+ σ∂2t ∆u = ∆(u2), (1)
1
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with space variable x = (x1, x2) ∈ R2, time variable t ∈ R, Laplacian ∆ = ∂2x1 + ∂2x2 ,
and a smooth solution u = u(x, t) ∈ R. The normalized parameter σ = ±1 determines
the dispersion relation of linear waves u ∼ eik·x−iωt for k = (k1, k2) ∈ R2 in the form:

ω2 =
|k|2

1− σ|k|2
, k ∈ R2. (2)

It follows from the dispersion relation (2) and the standard analysis of well-posedness
[2, 3] that the initial-value problem for (1) with the initial data

u|t=0 = u0(x), ∂tu|t=0 = u1(x), x ∈ R2, (3)

is locally well-posed in Sobolev spaces of sufficient regularity for σ = −1 and ill-posed
for σ = +1.

Remark 1. To justify the cKdV equation, we shall use the spatial dynamics formu-
lation with the radius r :=

√
x21 + x22 as evolutionary variable. It turns out that due

to the dispersion term σ∂2t ∆u in (1) the spatial dynamics formulation and the tempo-
ral dynamics formulation are not well posed simultaneously. If the temporal dynamics
formulation is well posed, the spatial dynamics formulation is ill posed and vice versa.

The radial spatial dynamics formulation of the regularized Boussinesq equation (1)

is obtained by introducing the radial variable r =
√
x21 + x22 and rewriting (1) for

u = u(r, t) with ∆ = ∂2r + 1
r
∂r in the form:

(∂2r + r−1∂r)(u− σ∂2t u+ u2) = ∂2t u. (4)

The associated spatial dynamics problem is given by

u|r=r0 = u0(t), ∂ru|r=r0 = u1(t), t ∈ R, (5)

for some r0 > 0. It is clear that the spatial evolution of (4) with “initial data” in (5) is
locally well-posed for σ = 1 and ill-posed for σ = −1, see Theorem 3. In Section 2 we
derive the cKdV equation for long waves of the radial Boussinesq equation (4) in case
σ = 1. The cKdV approximation is given by u(r, t) = ε2A(ε3r, ε(t− r)) with ε being a
small parameter and A(ρ, τ) satisfying the following cKdV equation

2∂ρA+ ρ−1A+ ∂3τA = ∂τ (A
2), (6)

where τ := ε(t − r) ∈ R and ρ := ε3r ≥ ρ0 for some ρ0 > 0 are rescaled versions
of the variables (r, t) in the traveling frame and A(ρ, τ) ∈ R is the small-amplitude
approximation for u(r, t) ∈ R. We have to impose the spatial dynamics formulation
for the cKdV equation (6) with the initial data

A|ρ=ρ0 = A0(τ), τ ∈ R. (7)

It follows from the contraction mapping principle applied to the KdV equation [21] and
the boundedness of the linear term ρ−1A for ρ ≥ ρ0 > 0 that the initial-value problem
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for (6) with “initial data” in (7) is locally well-posed for A0 ∈ Hs(R) with any s > 3
4
.

Moreover, if
∫
RA0dτ = 0, then∫

R
A(ρ, τ)dτ = 0, ρ ≥ ρ0, (8)

which implies that the unique local solution of (6)–(7) satisfies

A ∈ C0([ρ0, ρ1], H
s(R)) and ∂−1τ A ∈ C0([ρ0, ρ1], H

s−2(R)) (9)

for some ρ1 > ρ0 if A0 ∈ Hs(R) and ∂−1τ A ∈ Hs−2(R), see Lemma 2.

The main approximation result is given by the following theorem.

Theorem 1. Fix sA > 17
2

, ρ1 > ρ0 > 0, and C1 > 0. Then there exist ε0 > 0 and
C0 > 0 such that for all ε ∈ (0, ε0) the following holds. Let A ∈ C0([ρ0, ρ1], H

sA(R)) be
a solution of the cKdV equation (6) with

sup
ρ∈[ρ0,ρ1]

(‖A(ρ, ·)‖HsA + ‖∂−1τ A(ρ, ·)‖HsA−2) ≤ C1.

Then there are solutions (u, ∂ru) ∈ C0([ρ0ε
−3, ρ1ε

−3], Hs(R) × Hs(R)) of the radial
Boussinesq equation (4) with s > 1

2
satisfying

sup
r∈[ρ0ε−3,ρ1ε−3]

sup
t∈R
|u(r, t)− ε2A(ε3r, ε(t− r))| ≤ C0ε

7/2.

Remark 2. The proof of Theorem 1 goes along the lines of the associated proof for
validity of the KdV approximation in [29, 31]. However, there are new difficulties
which have to be overcome. The major point is that a vanishing mean value as in (8)
is required for the solutions of the cKdV equation (6), a property which fortunately is
preserved by the evolution of the cKdV equation. Subsequently, a vanishing mean value
is also required for the solutions of the radial Boussinesq equation (4). However, this
property is not preserved in the spatial evolution of the radial Boussinesq equation (4).
We use a nonlinear change of variables from u(r, t) to v(r, t) in Section 2 in order to
preserve the vanishing mean value in the spatial evolution.

The cKdV equation (6) admits exact solutions for solitary waves due to its in-
tegrability [4, 6, 27]. These exact solutions have important physical applications
[15, 18, 34, 36, 37], which have continued to stimulate recent research [7, 10, 11].
It was observed that parameters of the exact solutions of the cKdV equation agree
well with the experimental and numerical simulations of solitary waves. However, the
solitary wave solutions of the cKdV equation do not decay sufficiently well at infinity
[16] and hence it is questionable how such solutions can be described in the radial
spatial dynamics of the Boussinesq equation in the mathematically rigorous sense.

We address the solitary wave solutions of the cKdV equation (6) in Section 3, where
we will use the theory of Airy functions and give a more complete characterization of
the solitary wave solutions compared to previous similar results, e.g. in Appendix A
of [16]. The following theorem presents the corresponding result.
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Theorem 2. Consider solutions of the cKdV equation (6) in the class of solitary waves
given by

A(ρ, τ) = −6∂2τ log

[
1 +

1

(6ρ)1/3
F

(
τ

(6ρ)1/3

)]
, (10)

with some F ∈ C∞(R,R). All bounded solutions in the form (10) satisfy the decay
condition

A(ρ, τ)→ 0 as |τ | → ∞
and the zero-mean constraint ∫

R
A(ρ, τ)dτ = 0

but fail to be square integrable, that is, A(ρ, ·) /∈ L2(R) for every ρ > 0.

Remark 3. The result of Theorem 2 is due to the slow decay of solitary wave solutions
(10) with

A(ρ, τ) ∼ |τ |−1/2 as τ → −∞.
We note that such solitary wave solutions satisfy A ∈ C0((0,∞), Ḣs(R)) for any s > 0
but we are not aware of the local well-posedness for the cKdV equation (6) in Ḣs(R)
with s > 0. Consequently, the justification result of Theorem 1 does not apply to the
solitary waves of the cKdV equation (6) and one needs to use matching techniques in
different space-time regions in order to consider radial solitary waves diverging from
the origin, cf. [14, 15, 16].

Similar questions arise for the long azimuthal perturbations of the long radial waves.
A cylindrical Kadomtsev-Petviashvili (cKP) equation was also proposed as a relevant
model in [14, 17]. Motivated from physics of fluids and plasmas, problems of transverse
stability of ring solitons were studied recently in [23, 11, 38]. Other applications of the
KP approximation are interesting in the context of dynamics of square two-dimensional
lattices based on the models of the Fermi-Pasta-Ulam type [12, 19, 28]. Radially
propagating waves with azimuthal perturbations are natural objects in lattices, see,
e.g., [26, 32], and clarification of the justification of the cKdV equation is a natural
first step before justification of the cKP equation in nonlinear two-dimensional lattices.
We discuss further implication of the results of Theorems 1 and 2 for the cKdV and
cKP equations in Section 4.

Notation. Throughout this paper different constants are denoted with the same
symbol C if they can be chosen independently of the small parameter 0 < ε� 1. The
Sobolev space Hs(R), s ∈ N of s-times weakly differentiable functions is equipped with
the norm

‖u‖Hs =

(
s∑
j=0

∫
R
|∂jxu(x)|2dx

)1/2

.
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The weighted Lebesgue space L2
s(R), s ∈ R is equipped with the norm

‖û‖L2
s

=

(∫
R
|û(k)|2(1 + k2)sdk

)1/2

.

Fourier transform is an isomorphism between Hs(R) and L2
s(R) which allows us to

extend the definition of Hs(R) to all values of s ∈ R.

Acknowledgement. The work of G. Schneider was partially supported by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Project-ID
258734477 - SFB 1173. D. E. Pelinovsky acknowledges the funding of this study pro-
vided by the grant No. FSWE-2023-0004 and grant No. NSH-70.2022.1.5.

2. Justification of the cKdV equation

Here we prove Theorem 1 which states the approximation result for the cKdV
equation. The plan is as follows. In Section 2.1 we derive the cKdV equation (6) for
the radial Boussinesq equation (4) in case σ = 1. In Section 2.2 we estimate the residual
terms, i.e., the terms which remain after inserting the cKdV approximation into the
radial Boussinesq equation. In Section 2.3 we prove a local existence and uniqueness
result for the radial spatial dynamics formulation. In Section 2.4–2.5 we estimate the
error made by this formal approximation in the radial spatial dynamics by establishing
L2- and H1-energy estimates. The argument is completed in Section 2.6 by using the
energy to control the approximation error and by applying Gronwall’s inequality.

2.1. Derivation of the cKdV equation. We rewrite the radial Boussinesq equation
(4) with σ = 1 as

(∂2r + r−1∂r)(u− ∂2t u+ u2) = ∂2t u. (11)

The cKdV approximation can be derived if r ≥ r0 > 0 is considered as the evolutionary
variable with the initial data (5). However, this evolutionary system has the disadvan-
tage that

∫
R u(r, t)dt is not preserved in r, see Remarks 4 and 5. In order to overpass

this technical difficulty, we rewrite (11) as

∂2t (1 + ∂2r + r−1∂r)u = (∂2r + r−1∂r)(u+ u2) (12)

and make the change of variables v := u + u2. For small v this quadratic equation
admits a unique solution for small u given by

u = v − v2 +N(v)

with analytic N(v) = O(v3). In variable v, the radial spatial evolution problem is

(∂2r + r−1∂r)v = ∂2t (1 + ∂2r + r−1∂r)(v − v2 +N(v)). (13)

The local existence and uniqueness of solutions of the initial-value problem{
(∂2r + r−1∂r)v = ∂2t (1 + ∂2r + r−1∂r)(v − v2 +N(v)), r > r0,
v|r=r0 = v0, ∂rv|r=r0 = v1
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can be shown for (v0, v1) ∈ Hs(R)×Hs(R) for every s > 1
2
, see Theorem 3.

We make the usual ansatz for the derivation of the KdV equation, namely

ε2ψcKdV(r, t) := ε2A(ε3r, ε(t− cr)), (14)

with τ := ε(t− cr) and ρ := ε3r, where c is the wave speed. Defining the residual

Res(v) := −(∂2r + r−1∂r)v + ∂2t (1 + ∂2r + r−1∂r)(v − v2 +N(v)) (15)

we find

Res(ε2ψcKdV) = −c2ε4∂2τA+ 2cε6∂ρ∂τA− ε8∂2ρA
+ cε6ρ−1∂τA− ε8ρ−1∂ρA
+ ε4∂2τA+ c2ε6∂4τA− 2cε8∂ρ∂

3
τA+ ε10∂2ρ∂

2
τA

− cε8ρ−1∂3τA+ ε10ρ−1∂ρ∂
2
τA

− ε6∂2τ (A2)− c2ε8∂4τ (A2) + 2cε10∂ρ∂
3
τ (A

2)− ε12∂2τ∂2ρ(A2)

+ cε10ρ−1∂3τ (A
2)− ε12ρ−1∂ρ∂2τ (A2)

+ ε2∂2τ (1 + (−cε∂τ + ε3∂ρ)
2 + ε3ρ−1(−cε∂τ + ε3∂ρ))N(ε2A)

where the last line is at least of order O(ε8). We eliminate the terms of O(ε4) by
choosing c2 = 1. The radial waves diverge from the origin if c = 1 and converge
towards the origin if c = −1. It makes sense to consider only outgoing radial waves, so
that we set c = 1 in the following.

With c = 1, the terms of O(ε6) are eliminated in Res(ε2ψcKdV) by choosing A to
satisfy the cKdV equation (6) rewritten here as

2∂ρA+ ρ−1A+ ∂3τA− ∂τ (A2) = 0. (16)

By this choice we formally have

Res(ε2ψcKdV) = O(ε8).

We will estimate the residual terms rigorously in Section 2.2.

Remark 4. In our subsequent error estimates ∂−1t has to be applied to Res(v) in
(15). However, this is only possible if the nonlinear change of variables v = u + u2

is applied. This change of variables also allows us to use the variable ∂−1t ∂ru which
played a fundamental role in the justification of the KdV equation in [29, 31] and which
is necessary to obtain an L2-bound for the approximation error.

2.2. Estimates for the residual. For estimating the residual Res(ε2ψcKdV) we con-
sider a solution A ∈ C([ρ0, ρ1], H

sA(R,R)) of the cKdV equation (16) with some sA ≥ 0
suitably chosen below. Let

CA := sup
ρ∈[ρ0,ρ1]

‖A(ρ, ·)‖HsA <∞. (17)
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With c = 1 and A satisfying the cKdV equation (16), the residual is rewritten as

Res(ε2ψcKdV) = −ε8∂2ρA− ε8ρ−1∂ρA− 2ε8∂ρ∂
3
τA+ ε10∂2ρ∂

2
τA

− ε8ρ−1∂3τA+ ε10ρ−1∂ρ∂
2
τA− ε8∂4τ (A2) + 2ε10∂ρ∂

3
τ (A

2)

− ε12∂2τ∂2ρ(A2) + ε10ρ−1∂3τ (A
2)− ε12ρ−1∂ρ∂2τ (A2)

+ ε2∂2τ (1 + (−ε∂τ + ε3∂ρ)
2 + ε3ρ−1(−ε∂τ + ε3∂ρ))N(ε2A)

We can express ρ-derivatives of A by τ -derivatives of A through the right-hand side
of the cKdV equation (16). Hence for replacing one ρ-derivative we need three τ -
derivatives. In this way, the term ε10∂2ρ∂

2
τA loses most derivatives, namely eight τ -

derivatives. Due to the scaling properties of the L2-norm w.r.t. the scaling τ = ε(t−r),
we are loosing ε−1/2 in the estimates, e.g., see [30]. As a result of the standard analysis,
we obtain the following lemma.

Lemma 1. Let s ≥ 0. Assume (17) with sA = s + 8 and CA > 0. There exists a
Cres > 0 such that for all ε ∈ (0, 1] we have

sup
r∈[ρ0ε−3,ρ1ε−3]

‖Res(ε2ψcKdV)(r, ·)‖Hs ≤ Cresε
15
2 .

In the subsequent error estimates we also need estimates for ∂−1t applied to Res(ε2ψcKdV).
The only terms in the residual which have no ∂t in front are the ones collected in

ε8R1 = −ε8∂2ρA− ε8ρ−1∂ρA.
When ∂ρA is replaced by the right-hand side of the cKdV equation (16), we find

R1 =
1

2
(∂ρ + ρ−1)(ρ−1A+ ∂3τA− ∂τA2)

=
1

2
∂τ (∂ρ + ρ−1)(∂2τA− A2) +

1

2
ρ−1∂ρA

=
1

4
∂τ (2∂ρ + ρ−1)(∂2τA− A2)− 1

4
ρ−2A.

Therefore, all terms in the residual can be written as derivatives in τ except of the
term −(4ρ2)−1A. The operator ∂−1τ , respectively a multiplication with 1

ik
in the Fourier

space, can be applied to −(4ρ2)−1A only if A has a vanishing mean value and its Fourier
transform decays as O(|k|) for k → 0. This is why we enforce the vanishing mean value
as in (8) and consider solutions of the cKdV equation in the class of functions (9). Such
solutions are given by the following lemma.

Lemma 2. Fix sA >
3
4
, ρ0 > 0, and pick A0 ∈ HsA(R) such that ∂−1τ A0 ∈ HsA−2(R).

There exist C > 0 and ρ1 > ρ0 such that the cKdV equation (16) possesses a unique
solution A ∈ C0([ρ0, ρ1], H

sA(R)) with A|ρ=ρ0 = A0 satisfying

sup
ρ∈[ρ0,ρ1]

(‖A(ρ, ·)‖HsA + ‖∂−1τ A(ρ, ·)‖HsA−2) ≤ C.
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Proof. The cKdV equation (16) possesses a unique solution A ∈ C0([ρ0, ρ1], H
sA(R))

for sA >
3
4
, see [21]. To obtain the estimate on B := ∂−1τ A, we rewrite (16) in the form:

2∂ρB + ρ−1B + ∂2τA− A2 = 0.

SinceB0 := ∂−1τ A0 ∈ HsA−2(R), integration of this equation withA ∈ C0([ρ0, ρ1], H
sA(R))

yields B ∈ C0([ρ0, ρ1], H
sA−2(R)). �

For estimating the residual Res(ε2ψcKdV) we consider a solutionA ∈ C0([ρ0, ρ1], H
sA(R))

of the cKdV equation (16) with

CA,B := sup
ρ∈[ρ0,ρ1]

(‖A(ρ, ·)‖HsA + ‖∂−1τ A(ρ, ·)‖HsA−2) <∞, (18)

and with sA >
3
4

being sufficiently large. Due to the correspondence ∂−1t = ε−1∂−1τ we
have the following lemma.

Lemma 3. Let s ≥ 0. Assume (18) with sA = s + 8 and CA,B > 0. There exists a
Cres > 0 such that for all ε ∈ (0, 1] we have

sup
r∈[ρ0ε−3,ρ1ε−3]

‖∂−1t Res(ε2ψcKdV )(r, ·)‖Hs ≤ Cresε
13
2 .

Remark 5. Without the transformation v = u+ u2 which converts (12) into (13), the
terms in the residual Res(u) constructed similarly to (15) which have no ∂t in front
would be

−ε8∂2ρA− ε8ρ−1∂ρA− ε10∂2ρ(A2)− ε10ρ−1∂ρ(A2).

As above by replacing ∂ρA by the right-hand side of the cKdV equation (16) we gain
derivatives in τ . However, due to the ρ−1A term in (16) among other terms we would
produce terms of the form ε8ρ−2A and ε10ρ−2A2. The operator ∂−1τ can only be applied
to these terms if A and A2 have a vanishing mean value. However, A2 can only have
a vanishing mean value if A vanishes identically. Moreover, it doesn’t help to consider
∂2ρ∂

−1
τ (A2) and ρ−1∂ρ∂

−1
τ (A2) directly since the cKdV equation (16) does not preserve

the L2-norm of the solutions. Therefore, the transformation v = u+ u2 is essential for
our justification analysis.

2.3. Local existence and uniqueness. Here we prove the local existence and unique-
ness of the solutions of the second-order evolution equation (13), which we rewrite as

(∂2r + r−1∂r)(1− ∂2t )v = ∂2t v + ∂2t (1 + ∂2r + r−1∂r)(−v2 +N(v)).
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By using B2 := ∂2t (1− ∂2t )−1, we rewrite the evolution problem in the form:

(∂2r + r−1∂r)v = B2v + B2(1 + ∂2r + r−1∂r)(−v2 +N(v))

= B2v + B2(−v2 +N(v)) + r−1B2(−2v +N ′(v))∂rv

+ B2
[
(−2v +N ′(v))∂2rv + (−2 +N ′′(v))(∂rv)2

]
. (19)

The operator B2 is bounded in Sobolev space Hs(R) for every s ∈ R. The second-
order evolution equation (19) can be rewritten as a first-order system by introducing
w := ∂rv such that {

∂rv = w,
∂rw = f(v, w),

(20)

where

f(v, w) = −r−1w +
[
1− B2(−2v +N ′(v))·

]−1 B2
[
v − v2 +N(v) + (−2 +N ′′(v))w2

]
.

Since N(v) = O(v3) for small v, the right hand side of system (20) for sufficiently small
v is locally Lipschitz-continuous in Hs(R) × Hs(R) for every s > 1

2
due to Sobolev’s

embedding theorem. The following local existence and uniqueness result holds due to
the Picard-Lindelöf theorem.

Theorem 3. Fix s > 1
2

and r0 > 0. There exists a δ0 > 0 such that for all δ ∈ (0, δ0)
and (v0, w0) ∈ Hs(R) × Hs(R) with ‖v0‖Hs ≤ δ, there exists r1 > r0 and a unique
solution (v, w) ∈ C0([r0, r1], H

s(R)×Hs(R)) of system (20) with (v, w)|r=r0 = (v0, w0).

Corollary 1. There exists a unique solution (v, ∂rv) ∈ C0([r0, r1], H
s(R)×Hs(R)) of

the second-order evolution equation (13) for the corresponding (v, ∂rv)|r=r0 = (v0, w0) .

Remark 6. A combination of the local existence and uniqueness result of Theorem 3
with the subsequent error estimates, used as a priori estimates, guarantees the existence
and uniqueness of the solutions of equations for the error terms, see equation (21), as
long as the error is estimated to be small.

2.4. The L2-error estimates. We introduce the error function R through the decom-
position

v = ε2ψcKdV + εβR

with ψcKdV(r, t) = A(ρ, τ) and β := 7
2

to be obtained from the energy estimates, see
Section 2.6. The error function R satisfies

0 = (∂2r + r−1∂r)R− ∂2t (1 + ∂2r + r−1∂r)R

+ 2ε2∂2t (1 + ∂2r + r−1∂r)(AR) + εβ∂2t (1 + ∂2r + r−1∂r)(R
2)

− ε−β∂2t (1 + ∂2r + r−1∂r)(N(ε2A+ εβR)−N(ε2A))

− ε−βRes(ε2A). (21)

Before we start to estimate the error we note that there is no problem with regularity
of solutions of equation (21) in the following sense. Rewriting (21) as (19) and (20) in
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Section 2.3 shows that if (R, ∂rR) ∈ C0([r0, r1], H
s(R)×Hs(R)), then ∂2rR(r, ·) has the

same regularity. In particular, we have the estimate:

Lemma 4. There exist constant Cl and a smooth monotone function Cn such that for
all ε ∈ (0, 1) we have

‖∂2rR(r, ·)‖L2 ≤ ε
15
2
−βCres + Cl(1 + ε2CA)(‖R(r, ·)‖L2 + ‖∂rR(r, ·)‖L2) (22)

+ εβCn(‖R(r, ·)‖L∞ + ‖∂rR(r, ·)‖L∞)(‖R(r, ·)‖L2 + ‖∂rR(r, ·)‖L2),

where Cres is defined in Lemma 1 and CA is defined in (17).

Remark 7. The difficulty in estimating the error R comes from fact that the error
equation (21) contains the linear terms of order O(ε2) while we have to bound the
error on the interval [ε−3r0, ε

−3r1] of length O(ε−3). We get rid of this mismatch of
powers in ε by writing the terms of order O(ε2) as derivatives in r such that these can
be either included in the balance of energy or be written as terms where derivatives fall
on A which allows us to estimate these terms to be of order O(ε3).

We follow the approach used in the energy estimates for the KdV approximation
for obtaining an H1-estimate for R [29, 31]. To obtain first the L2-estimates for R, we
multiply (21) with −∂r∂−2t R and integrate it w.r.t. t. The term −∂r∂−2t R is defined via

its Fourier transform w.r.t. t, i.e., with abuse of notation, by ∂−1t R = F−1((ik)−1R̂).
All integrals in t are considered on R and Parseval’s equality is used when it is neces-
sary. We report details of computations as follows.

i) From the linear terms in R we then obtain

s1 = −
∫

(∂2rR)(∂r∂
−2
t R)dt =

1

2

d

dr

∫
(∂r∂

−1
t R)2dt,

s2 = −
∫

(r−1∂rR)(∂r∂
−2
t R)dt = r−1

∫
(∂r∂

−1
t R)2dt,

s3 =

∫
(∂2tR)(∂r∂

−2
t R)dt =

1

2

d

dr

∫
R2dt,

s4 =

∫
(∂2t ∂

2
rR)(∂r∂

−2
t R)dt =

1

2

d

dr

∫
(∂rR)2dt,

s5 =

∫
(r−1∂2t ∂rR)(∂r∂

−2
t R)dt = r−1

∫
(∂rR)2dt.

ii) From the mixed terms in AR we obtain

smixed = −2ε2
∫

(∂2t (1 + ∂2r + r−1∂r)(AR))(∂r∂
−2
t R)dt

= −2ε2
∫

((1 + ∂2r + r−1∂r)(AR))(∂rR)dt = s6 + s7 + s8,
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where

s6 := −2ε2
∫

(AR)(∂rR)dt,

s7 := −2ε2
∫

(∂2r (AR))(∂rR)dt,

s8 := −2ε2
∫

(r−1∂r(AR))(∂rR)dt.

We find

s6 = −ε2 d
dr

∫
AR2dt+ ε2

∫
(∂rA)R2dt,

where the second term is estimated by∣∣∣∣ε2 ∫ (∂rA)R2dt

∣∣∣∣ ≤ ε2‖∂rA‖L∞‖R‖2L2

which is O(ε3) since ∂rA = −ε∂τA+ ε3∂ρA by the chain rule. Next we have

s7 = −2ε2
∫

(∂2rA)R(∂rR)dt− 3ε2
∫

(∂rA)(∂rR)2dt− ε2 d
dr

∫
A(∂rR)2dt,

which are estimated by∣∣∣∣2ε2 ∫ (∂2rA)R(∂rR)dt

∣∣∣∣ ≤ 2ε2‖∂2rA‖L∞‖R‖L2‖∂rR‖L2 ,∣∣∣∣3ε2 ∫ (∂rA)(∂rR)2dt

∣∣∣∣ ≤ 3ε2‖∂rA‖L∞‖∂rR‖2L2 .

These terms are at least of order O(ε3) since ∂rA = O(ε) and ∂2rA = O(ε2) by the
chain rule. For the last term, we obtain the estimate

|s8| ≤ 2ε2r−1‖∂rA‖L∞‖R‖L2‖∂rR‖L2 + 2ε2r−1‖A‖L∞‖∂rR‖2L2

which is of order O(ε5) since r ∈ [r0ε
−3, ρ1ε

−3].

iii) From the quadratic terms in R we obtain

squad = −εβ
∫

(∂2t (1 + ∂2r + r−1∂r)(R
2))(∂r∂

−2
t R)dt

= −εβ
∫

((1 + ∂2r + r−1∂r)(R
2))(∂rR)dt = s9 + s10 + s11,



12 JAMES HORNICK, DMITRY E. PELINOVSKY, AND GUIDO SCHNEIDER

where

s9 := −εβ
∫
R2(∂rR)dt = −1

3
εβ
d

dr

∫
R3dt,

s10 := −εβ
∫

(∂2r (R
2))(∂rR)dt = −εβ d

dr

∫
R(∂rR)2dt− εβ

∫
(∂rR)3dt,

s11 := −εβ
∫

(r−1∂r(R
2))(∂rR)dt.

The remaining terms can be estimated by∣∣∣∣εβ ∫ (∂rR)3dt

∣∣∣∣ ≤ εβ‖∂rR‖L∞‖∂rR‖2L2 ,∣∣∣∣εβ ∫ (r−1∂r(R
2))(∂rR)dt

∣∣∣∣ ≤ 2εβr−1‖R‖L∞‖∂rR‖2L2 .

iv) For the terms collected in N we have

sN = ε−β
∫

(∂2t (1 + ∂2r + r−1∂r)(N(ε2A+ εβR)−N(ε2A)))(∂r∂
−2
t R)dt

= ε−β
∫

((1 + ∂2r + r−1∂r)(N(ε2A+ εβR)−N(ε2A)))(∂rR)dt

Since N(v) is analytic in v we have the representation N(v) =
∑∞

n=3 anv
n, with coeffi-

cients an ∈ R, and so we find

ε−β(N(ε2A+ εβR)−N(ε2A)) = ε−β
∞∑
n=3

an

n∑
j=1

(
n
j

)
(ε2A)n−j(εβR)j.

such that these terms are at least of orderO(ε4) and make no problems for the estimates
w.r.t. powers of ε. However, we have to be careful about the regularity of these terms.
As a an example, we look at the terms with most time derivatives, namely∫

∂2r (A
n−jRj)(∂rR)dt = s12 + s13 + s14,

where

s12 :=

∫
(∂2r (A

n−j))Rj(∂rR)dt,

s13 := 2

∫
(∂r(A

n−j))(∂r(R
j))(∂rR)dt,

s14 :=

∫
An−j(∂2r (R

j))(∂rR)dt

= j(j − 1)

∫
An−jRj−2(∂rR)3dt+ j

∫
An−jRj−1(∂2rR)(∂rR)dt.
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The second derivatives ∂2rR is controlled in terms of R and ∂rR by means of (22). As
a result, there exists a constant Cl and a smooth monotone function Cn such that for
all ε ∈ (0, 1) we have

|sN | ≤ ε4Cl(‖R‖2L2 + ‖∂rR‖2L2)

+ ε2+βCn(‖R‖L∞ + ‖∂rR‖L∞)(‖R‖2L2 + ‖∂rR‖2L2).

v) The residual term gives

s15 = ε−β
∫

(Res(ε2A))(∂r∂
−2
t R)dt = −ε−β

∫
∂−1t (Res(ε2A))(∂r∂

−1
t R)dt.

It is estimated by

|s15| ≤ Cresε
13
2
−β‖∂r∂−1t R‖L2 ,

where Cres is defined in Lemma 3.

Remark 8. Without the change of variables v = u+ u2 we would get additionally the
following mixed terms

−2ε2
∫

(∂2r (AR))(∂r∂
−2
t R)dt− 2ε2

∫
(r−1∂r(AR))(∂r∂

−2
t R)dt

which cannot be written in an obvious manner as sums of a derivative w.r.t. r and
higher order terms. Without the change of variables v = u+ u2 according to Remark 5
we cannot estimate ∂−1t (Res(ε2A)) nor the counterpart to s15. This emphasizes again
the necessity of the change of variables v = u+ u2 in order to replace (12) with (13).

2.5. The H1-error estimates. The energy quantity will be constructed in Section
2.6 based on the derivative formulas for s1, s3, s4, and other terms. It will be used for
estimating the terms which we were not able to write as derivatives w.r.t. r. Since we
need estimates for ‖R‖L∞ we will use Sobolev’s embedding

‖f‖L∞ ≤ C‖f‖H1 , ∀f ∈ H1(R) (23)

and hence we have to extend the energy by additional terms involving ‖∂tR‖2L2 . To
do so, we proceed here as in Section 2.4 but now for the L2-error estimates of the
t-derivatives.

Based on the product rule

‖∂t(uv)‖L2 ≤ ‖u‖L∞‖∂tv‖L2 + ‖v‖L∞‖∂tu‖L2 . (24)

we have the following generalization of the bound (22) in Lemma 4.

Lemma 5. There exist constant Cl, Ct,res and a smooth monotone function Cn such
that for all ε ∈ (0, 1) we have

‖∂2rR(r, ·)‖H1 ≤ ε
15
2
−βCres + Cl(1 + ε2CA)(‖R(r, ·)‖H1 + ‖∂rR(r, ·)‖H1) (25)

+ Cn(‖R(r, ·)‖L∞ + ‖∂rR(r, ·)‖L∞)εβ(‖R(r, ·)‖H1 + ‖∂rR(r, ·)‖H1),

where Cres is defined in Lemma 1 and CA is defined in (17).
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To get the H1-error estimates, we multiply (21) by ∂rR and then integrate w.r.t. t.
We report details of computations as follows.

i) From the linear terms in R we obtain

r1 =

∫
(∂2rR)(∂rR)dt =

1

2

d

dr

∫
(∂rR)2dt,

r2 =

∫
(r−1∂rR)(∂rR)dt = r−1

∫
(∂rR)2dt,

r3 = −
∫

(∂2tR)(∂rR)dt =
1

2

d

dr

∫
(∂tR)2dt,

r4 = −
∫

(∂2t ∂
2
rR)(∂rR)dt =

1

2

d

dr

∫
(∂r∂tR)2dt,

r5 = −
∫

(∂2t r
−1∂rR)(∂rR)dt = r−1

∫
(∂r∂tR)2dt.

ii) From the mixed terms in AR we obtain

rmixed = 2ε2
∫

(∂2t (1 + ∂2r + r−1∂r)(AR))(∂rR)dt

= −2ε2
∫

((1 + ∂2r + r−1∂r)∂t(AR))(∂r∂tR)dt = r6 + r7 + r8,

where

r6 := −2ε2
∫

(∂t(AR))(∂r∂tR)dt,

r7 := −2ε2
∫

(∂2r∂t(AR))(∂r∂tR)dt,

r8 := −2ε2
∫

(r−1∂r∂t(AR))(∂t∂rR)dt.

We find

r6 = −2ε2
∫

(∂tA)R(∂r∂tR)dt− ε2 d
dr

∫
A(∂tR)2dt+ ε2

∫
(∂rA)(∂tR)2dt,

which can be estimated as∣∣∣∣2ε2 ∫ (∂tA)R(∂r∂tR)dt

∣∣∣∣ ≤ 2ε2‖∂tA‖L∞‖R‖L2‖∂r∂tR‖L2 ,∣∣∣∣ε2 ∫ (∂rA)(∂tR)2dt

∣∣∣∣ ≤ ε2‖∂rA‖L∞‖∂tR‖2L2 .
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These terms are at least of order O(ε3) since ∂rA and ∂tA are of order O(ε) by the
chain rule. Next we estimate r7 for which we note that

d

dr

∫
A(∂r∂tR)2dt =

∫
(∂rA)(∂r∂tR)2dt+ 2

∫
A(∂r∂tR)(∂2r∂tR)dt

and

∂2r∂t(AR) = A∂2r∂tR + 2(∂rA)∂r∂tR + (∂tA)∂2rR

+ 2(∂t∂rA)∂rR + (∂2rA)∂tR + (∂2r∂tA)R.

As a result, we obtain

r7 = −ε2 d
dr

∫
A(∂r∂tR)2dt+ r7,a + r7,b + r7,c + r7,d + r7,e

with

r7,a := −3ε2
∫

(∂rA)(∂r∂tR)2dt,

r7,b := −2ε2
∫

(∂tA)(∂2rR)(∂r∂tR)dt,

r7,c := −4ε2
∫

(∂t∂rA)(∂rR)(∂r∂tR)dt,

r7,d := −2ε2
∫

(∂2rA)(∂tR)(∂r∂tR)dt,

r7,e := −2ε2
∫

(∂2r∂tA)R(∂r∂tR)dt.

We estimate

|r7,a| ≤ 3ε2‖∂rA‖L∞‖∂r∂tR‖2L2 ,

|r7,b| ≤ 2ε2‖∂tA‖L∞‖∂2rR‖L2‖∂r∂tR‖L2 ,

|r7,c| ≤ 4ε2‖∂t∂rA‖L∞‖∂rR‖L2‖∂r∂tR‖L2 ,

|r7,d| ≤ 2ε2‖∂2rA‖L∞‖∂tR‖L2‖∂r∂tR‖L2 ,

|r7,e| ≤ 2ε2‖∂2r∂tA‖L∞‖R‖L2‖∂r∂tR‖L2 .

All these terms are at least of order O(ε3) because of the derivatives on A in r and t.
Moreover, we can use (22) for estimating ‖∂2rR‖L2 . The last mixed term is decomposed
with the product rule as

r8 = r8,a + r8,b + r8,c + r8,d,
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where

r8,a := −2ε2
∫
r−1(∂r∂tA)R(∂r∂tR)dt,

r8,b := −2ε2
∫
r−1(∂tA)(∂rR)(∂r∂tR)dt,

r8,c := −2ε2
∫
r−1(∂rA)(∂tR)(∂r∂tR)dt,

r8,d := −2ε2
∫
r−1A(∂r∂tR)2dt.

We estimate

|r8,a| ≤ 2ε2r−1‖∂r∂tA‖L∞‖R‖L2‖∂r∂tR‖L2 ,

|r8,b| ≤ 2ε2r−1‖∂tA‖L∞‖∂rR‖L2‖∂r∂tR‖L2 ,

|r8,c| ≤ 2ε2r−1‖∂rA‖L∞‖∂tR‖L2‖∂r∂tR‖L2 ,

|r8,d| ≤ 2ε2r−1‖A‖L∞‖∂r∂tR‖2L2 .

iii) From the quadratic terms in R we obtain

rquad = εβ
∫

(∂2t (1 + ∂2r + r−1∂r)(R
2))(∂rR)dt

= −εβ
∫

((1 + ∂2r + r−1∂r)∂t(R
2))(∂r∂tR)dt = r9 + r10 + r11,

where

r9 := −2εβ
∫
R(∂tR)(∂r∂tR)dt,

r10 := −εβ
∫

(∂2r∂t(R
2))(∂r∂tR)dt,

r11 := −εβ
∫
r−1(∂r∂t(R

2))(∂r∂tR)dt.

The first term is estimated by

|r9| ≤ 2εβ‖R‖L∞‖∂tR‖L2‖∂r∂tR‖L2 .

The second term is rewritten by using

d

dr

∫
R(∂r∂tR)2dt =

∫
(∂rR)(∂r∂tR)2dt+ 2

∫
R(∂r∂tR)(∂2r∂tR)dt

and
∂2r∂t(R

2) = 2R∂2r∂tR + 4(∂rR)∂r∂tR + 2(∂tR)∂2rR

in the form

r10 = −εβ d
dr

∫
R(∂r∂tR)2dt+ r10,a + r10,b
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with

r10,a := −3εβ
∫

(∂rR)(∂r∂tR)2dt,

r10,b := −2εβ
∫

(∂tR)(∂2rR)(∂r∂tR)dt.

The remainder terms are estimated as follows

|r10,a| ≤ 3εβ‖∂rR‖L∞‖∂r∂tR‖2L2 ,

|r10,b| ≤ 2εβ‖∂2rR‖L∞‖∂tR‖L2‖∂r∂tR‖L2 ,

where we can use (25) and Sobolev’s embedding (23) to estimate ‖∂rR‖L∞ and ‖∂2rR‖L∞ .
The last quadratic term is decomposed with the product rule as

r11 = r11,a + r11,b,

where

r11,a := −2εβ
∫
r−1R(∂r∂tR)2dt,

r11,b := −2εβ
∫
r−1(∂rR)(∂tR)(∂r∂tR)dt,

which we estimate by

|r11,a| ≤ 2εβr−1‖R‖L∞‖∂r∂tR‖2L2 ,

|r11,b| ≤ 2εβr−1‖∂rR‖L∞‖∂tR‖L2‖∂r∂tR‖L2 .

iv) For the terms collected in N we have

rN = −ε−β
∫

(∂2t (1 + ∂2r + r−1∂r)(N(ε2A+ εβR)−N(ε2A)))(∂rR)dt

= ε−β
∫

((1 + ∂2r + r−1∂r)∂t(N(ε2A+ εβR)−N(ε2A)))(∂r∂tR)dt

Proceeding as for the L2-estimate and using the bound (25) on the second derivative
∂2rR in terms of R and ∂rR yields the existence of a constant C14,l and a smooth
monotone function C14,n such that for all ε ∈ (0, 1) we have

|rN | ≤ C14,lε
4(‖R‖2H1 + ‖∂rR‖2H1)

+ C14,n(‖R‖L∞ + ‖∂rR‖L∞)ε2+β(‖R‖2H1 + ‖∂rR‖2H1).

v) The residual term

r12 = −ε−β
∫

(Res(ε2A))(∂rR)dt

is estimated by

|r12| = Cresε
15
2
−β‖∂rR‖L2 ,
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where Cres is defined in Lemma 1.

2.6. Energy estimates. We use the terms s1, s3, s4, r1, r3, r4, and the parts of s6,
s7, s9, s10, r6, r7, and r10 with derivatives in r to define the following energy

E = E0 + E1

with

E0 =
1

2

∫
R2dt+

1

2

∫
(∂r∂

−1
t R)2dt+

1

2

∫
(∂rR)2dt

+
1

2

∫
(∂tR)2dt+

1

2

∫
(∂rR)2dt+

1

2

∫
(∂r∂tR)2dt,

E1 = −ε2
∫
AR2dt− ε2

∫
A(∂rR)2dt− 1

3
εβ
∫
R3dt− εβ

∫
R(∂rR)2dt

− ε2
∫
A(∂tR)2dt− ε2

∫
A(∂r∂tR)2dt− εβ

∫
R(∂r∂tR)2dt.

The energy part E0 is an upper bound for the squared H1-norm of R, ∂−1t R, and ∂rR.
Moreover, for all M > 0 there exists an ε1 > 0 such that for all ε ∈ (0, ε1) we have

1

2
E0 ≤ E1 ≤

3

2
E0

as long as E1/2 ≤ M . All other linear terms which are not contained in the energy E
have either a r−1 = ε3ρ−1 in front, namely s2, s5, s8, r2, r5, and r8, or contain a time
or space derivative of A, as parts of s6, s7, r6, and r7, and so all other linear terms
are at least of order O(ε3). All nonlinear terms have at least a ε4 or εβ in front. The
residual terms s15 and r16 are of order O(ε3) if β is chosen as β = 7

2
. As a result, we

estimate the rate of change of energy E from the following inequality

d

dr
E ≤ Cε3E + Cε7/2E3/2 + Cε3E1/2

≤ 2Cε3E + Cε7/2E3/2 + Cε3, (26)

with a constant C independent of ε ∈ (0, ε1) as lomg as E1/2 ≤ M . Under the
assumption that Cε1/2E1/2 ≤ 1 we obtain

d

dt
E ≤ (2C + 1)ε3E + Cε3.

Gronwall’s inequality immediately gives the bound

sup
t∈[0,T0/ε3]

E(t) = CT0e
(2C+1)T0 =: M = O(1)

and so sup
t∈[0,T0/ε3]

‖R(t)‖H1 = O(1). Finally choosing ε2 > 0 so small that Cε
1/2
2 M1/2 ≤ 1

gives the required estimate for all ε ∈ (0, ε0) with ε0 = min(ε1, ε2) > 0. Therefore, we
have proved Theorem 1.
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3. Solitary wave solutions of the cKdV equation

Here we prove Theorem 2. We look for solutions of the cKdV equation (6) in the
class of solitary waves represented in the form

A(ρ, τ) = −6∂2τ log f(ρ, τ), (27)

which tranforms (6) to the following bilinear equation [27]:

2 [f∂ρ∂τf − (∂ρf)(∂τf)] + ρ−1f∂τf + f∂4τf − 4(∂τf)(∂3τf) + 3(∂2τf)2 = 0. (28)

To prove Theorem 2, we analyze solutions of (28) in the self-similar form [10, 11, 38]:

f(ρ, τ) = 1 +
1

(6ρ)1/3
F (z), z =

τ

(6ρ)1/3
(29)

with some F ∈ C∞(R,R). The form (27) and (29) yields (10). We give a complete
characterization for all possible solutions for F (z) and prove that there exist no square
integrable function A(ρ, τ) w.r.t. τ . The proof is based on the three results obtained
in the following three lemmas.

The first result gives the most general expression for F (z) in (29).

Lemma 6. The most general solution f(ρ, τ) of the bilinear equation (28) in the self-
similar form (29) with F ∈ C∞(R,R) is given by

F (z) = α
[
(w′1)

2 − zw2
1

]
± 2
√
αβ [w′1w

′
2 − zw1w2] + β

[
(w′2)

2 − zw2
2

]
, (30)

where α, β ∈ R are arbitrary such that αβ ≥ 0 and w1(z) := Ai(z), w2(z) := Bi(z) are
two linearly independent solutions of the Airy equation

w′′(z)− zw(z) = 0. (31)

Proof. Substituting (29) into (28) shows that the variables are separated and F (z)
satisfies an overdetermined system of two (linear and quadratic) differential equations:

F ′′′′(z)− 4zF ′′(z)− 2F ′(z) = 0 (32)

and
4F ′(z)[zF ′(z) + F (z)− F ′′′(z)] + 3[F ′′(z)]2 = 0. (33)

Let G(z) := −F ′(z). Then (32) reduces to the third-order equation

G′′′(z)− 4zG′(z)− 2G(z) = 0,

the general solution of which is known (see 10.4.57 in [1]):

G(z) = α[Ai(z)]2 + β[Bi(z)]2 + γAi(z)Bi(z), (34)

where α, β, γ are arbitrary. Denoting w1(z) := Ai(z) and w2(z) := Bi(z), we confirm
that

d

dz
[(w′1,2)

2 − zw2
1,2] = 2w′1,2(w

′′
1,2 − zw1,2)− w2

1,2 = −w2
1,2



20 JAMES HORNICK, DMITRY E. PELINOVSKY, AND GUIDO SCHNEIDER

and

d

dz
[w′1w

′
2 − zw1w2] = (w′′1 − zw1)w

′
2 + w′1(w

′′
2 − zw2)− w1w2 = −w1w2

Hence, F ′(z) = −G(z) is integrated to the form

F (z) = C + α
[
(w′1)

2 − zw2
1

]
+ β

[
(w′2)

2 − zw2
2

]
+ γ [w′1w

′
2 − zw1w2] , (35)

where C is an integration constant. The same constant C appears in the integration
of (32) to the form

F ′′′(z)− 4zF ′(z) + 2F (z) = 2C. (36)

It remains to verify if the general solution (35) satisfies the quadratic equation (33).
Multiplying (36) by F ′′(z) and integrating, we obtain

[F ′′(z)]2 − 4z[F ′(z)]2 + 4F (z)F ′(z) = 4CF ′(z) +D, (37)

where D is another integration constant. On the other hand, substituting (36) into
(33) yields

[F ′′(z)]2 − 4z[F ′(z)]2 + 4F (z)F ′(z) =
8

3
CF ′(z). (38)

Comparison of (37) and (38) yields C = D = 0. Finally, we substitute (35) into (38)
with C = 0 and obtain

0 = [F ′′(z)]2 − 4z[F ′(z)]2 + 4F (z)F ′(z)

= (γ2 − 4αβ)(w1w
′
2 − w′1w2)

2,

where the Wronskian of two linearly independent solutions is nonzero, w1w
′
2−w′1w2 6= 0.

Hence, the system (32)-(33) is compatible for the solution (35) if and only if C = 0
and γ = ±2

√
αβ with only two arbitrary constants α, β ∈ R. �

The solution F (z) in (30) is real if and only αβ ≥ 0. The next result shows that the
expression (29) with this F is sign-definite (positive) if and only if α ≥ 0 and β = 0.

Lemma 7. Let F be given by (30) with αβ ≥ 0. For every k > 0, we have k+F (z) > 0
for every z ∈ R if and only if α ≥ 0 and β = 0.

Proof. We shall make use the asymptotic expansion of the Airy functions, see 10.4.59-60
and 10.4.63-64 in [1]:

Ai(z) ∼ 1

2
√
π 4
√
z
e−

2
3
z3/2
[
1 +O(z−3/2)

]
,

Bi(z) ∼ 1√
π 4
√
z
e

2
3
z3/2
[
1 +O(z−3/2)

]
,

as z → +∞



LONG-WAVE APPROXIMATION IN CYLINDRICAL COORDINATES 21

and 
Ai(z) ∼ 1

√
π 4
√
|z|

[
sin

(
2

3
|z|3/2 +

π

4

)
+O(|z|−3/2)

]
,

Bi(z) ∼ 1
√
π 4
√
|z|

[
cos

(
2

3
|z|3/2 +

π

4

)
+O(|z|−3/2)

]
,

as z → −∞

Due to cancelations, it is not convenient to use the expression (30) directly as z → ±∞.
Instead, we use (34) with γ = ±2

√
αβ and obtain

F ′(z) ∼ − α

4π
√
z
e−

4
3
z3/2
[
1 +O(z−3/2)

]
− β

π
√
z
e

4
3
z3/2
[
1 +O(z−3/2)

]
∓
√
αβ

π
√
z

[
1 +O(z−3/2)

]
as z → +∞

and

F ′(z) ∼ − α

2π
√
|z|

[
1 + sin

(
4

3
|z|3/2

)
+O(|z|−3/2)

]
− β

2π
√
|z|

[
1− sin

(
4

3
|z|3/2

)
+O(|z|−3/2)

]
±
√
αβ

π
√
|z|

[
cos

(
4

3
|z|3/2

)
+O(|z|−3/2)

]
as z → −∞

Integrating these expressions and recalling that C = 0 in (35), we obtain

F (z) ∼ α

8πz
e−

4
3
z3/2
[
1 +O(z−3/2)

]
− β

2πz
e

4
3
z3/2
[
1 +O(z−3/2)

]
∓ 2
√
αβ

π

√
z
[
1 +O(z−3/2)

]
as z → +∞

and

F (z) ∼ α

π

√
|z|
[
1 +O(|z|−3/2)

]
+
β

π

√
|z|
[
1 +O(|z|−3/2)

]
∓
√
αβ

2π|z|

[
sin

(
4

3
|z|3/2

)
+O(|z|−3/2)

]
as z → −∞

If β 6= 0, then F (z) → −sgn(β)∞ as z → +∞. Since αβ ≥ 0, we also get F (z) →
sgn(β)∞ as z → −∞. Hence for every k ≥ 0, k + F (z) is not sign-definite for every
β 6= 0.

Setting β = 0, we get F ′(z) = −α[Ai(z)]2 and since Ai(z) → 0 as z → +∞
sufficiently fast, we can define

F (z) = α

∫ ∞
z

[Ai(z′)]2dz′, (39)
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where the constant of integration is uniquely selected since C = 0 in (35). Hence,
F (z) is sign-definite for every z ∈ R and sgn(F ) = sgn(α). We also have F (z)→ 0 as
z → +∞ and F (z)→ sgn(α)∞ as z → −∞. Hence, for every k > 0, k + F (z) > 0 for
every z ∈ R if and only if α ≥ 0 in (39). �

Finally, we use the solution F (z) in (39) with α > 0 and show that the solution
A(ρ, ·) in (27) and (29) decay to zero at infinity, satisfies the zero-mean constraint, but
is not square integrable for every ρ > 0.

Lemma 8. Let F be given by (39) with α > 0 and let A be given by (27) with (29). For
every ρ > 0, we have A(ρ, τ)→ 0 as |τ | → ∞,

∫
RA(ρ, τ)dτ = 0, and A(ρ, ·) /∈ L2(R).

Proof. By chain rule, we have from (27) and (29)

A(ρ, τ) = − 6

(6ρ)2/3
∂2z log[(6ρ)1/3 + F (z)],

where z = τ/(6ρ)1/3. Since k + F (z) > 0 for every k > 0 and z ∈ R, we have
A(ρ, ·) ∈ L2

loc(R). It remains to consider square integrability of A(ρ, ·) at infinity.

It follows from (39), see the proof of Lemma 7, that

F (z) ∼ α

8πz
e−

4
3
z3/2
[
1 +O(z−3/2)

]
as z → +∞

and

F (z) ∼ α

π

√
|z|
[
1 +O(|z|−3/2)

]
as z → −∞.

Since F (z), F ′(z)→ 0 as z → +∞, we have

A(ρ, τ) ∼ −6

ρ
F ′′(z)

[
1 +O(|z|−3/2)

]
∼ − α

2πρ
e−

4
3
z3/2
[
1 +O(|z|−3/2)

]
as z → +∞, (40)

hence, A(ρ, ·) ∈ L2(τ0,∞) for any τ0 � 1 and ρ > 0. However, since F (z) → ∞ and
F ′(z)→ 0 as z → −∞, we have

A(ρ, τ) ∼ − 6

(6ρ)2/3
F ′′(z)

(6ρ)1/3 + F (z)

[
1 +O(|z|−3/2)

]
∼ −

√
6√
ρ|τ |

[
cos

(
4

3
|z|3/2

)
+O(|z|−3/2)

]
as z → −∞, (41)

where we have used the expansion

F ′′(z) ∼ α

π

[
cos

(
4

3
|z|3/2

)
+O(|z|−3/2)

]
as z → −∞.
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Hence, A(ρ, ·) /∈ L2(−∞, τ0) for any τ0 � −1 and ρ > 0. At the same time, A(ρ, τ)→ 0
as τ → ±∞ and the zero-mean constraint is satisfied due to∫

R
A(ρ, τ)dτ = − 6

(6ρ)1/3
F ′(z)

(6ρ)1/3 + F (z)

∣∣∣∣z→+∞

z→−∞
= 0,

due to the decay of F ′(z)→ 0 as z → ±∞. �

Figure 1 shows a representative example of the solitary wave in the cKdV equation
(6), where A is plotted versus τ for four values of ρ = 1, 20, 100, 500. The oscillatory
tail behind the solitary wave ruins localization of the solitary wave in L2(R). Similar
to [10, 11], we use very large value of α to detach the solitary wave from the oscillatory
tail. For larger values of ρ, the solitary wave departs even further from the oscillatory
tail but its amplitude also decays to zero.
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Figure 1. The soliton solution in the form (27) with (29) and (39) for
α = 108 versus τ for ρ = 1 (top left), ρ = 20 (top right), ρ = 100 (bottom
left), and ρ = 500 (bottom right).
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4. Discussion

We have addressed here the justification of the cKdV equation (6) in the context of
the radial waves diverging from the origin in the 2D regularized Boussinesq equation
(1). We have shown that the spatial dynamics and temporal dynamics formulations
of (1) are not well posed simultaneously. If the temporal dynamics formulation is
well posed, the spatial dynamics formulation is ill posed and vice versa. We have
justified the cKdV equation (6) in the case of the spatial dynamics formulation (4)–
(5). The main result of Theorem 1 relies on the existence of smooth solutions of the
cKdV equation (6) with the zero-mean constraint (8) in the class of functions (9) with
Sobolev exponent s > 17

2
. However, we have also showed in Theorem 2 that the class of

solitary wave solutions decaying at infinity satisfies the zero-mean constraint but fails
to be square integrable due to the oscillatory, weakly decaying tail as τ → −∞.

This work calls for further study of the applicability of the cKdV equation for the
radial waves in nonlinear dispersive systems. We will list several open directions.
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Figure 2. The soliton solution in the form (42) with (39) for α = 108

and ε = 0.1 versus t for t = 50 (left) and t = 100 (right).

First, the solitary waves of the cKdV equation (6) can be written as the approximate
solutions of the radial Boussinesq equation (4) in the form:

u(r, t) = − 6

(6r)2/3

 F ′′
(

t−r
(6r)1/3

)
(6r)1/3ε+ F

(
t−r

(6r)1/3

) −
[
F ′
(

t−r
(6r)1/3

)]2
[
(6r)1/3ε+ F

(
t−r

(6r)1/3

)]2
 , (42)

where F (z) is given by (39) with α > 0 and ε > 0 is the small parameter of asymptotic
expansions. These solitary waves can be considered for fixed t > 0 as functions of r on
(0,∞), see Figure 2 for ε = 0.1. The solitary waves decay very fast as r → 0 and decay
as O(r−1) as r → ∞, see (40) and (41). However, they are still not square integrable
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in the radial variable because
∫∞
0
ru(r, t)2dr diverges for every t > 0. In addition, the

cKdV equation (6) is ill-posed as the temporal dynamics formulation from t = 0 to
t > 0.

Second, it might be possible to consider the temporal formulation of the cKdV
equation (6) and to justify it in the framework of the temporal dynamics formulation
of the Boussinesq equation (1) with σ = −1. One needs to construct a stable manifold
for the cKdV equation (6) and to prove the error estimates on the stable manifold.
The stable part of the linear semigroup for the cKdV equation (6) has a decay rate
of t−3 for t → ∞ due to λ = −|k|1/3, which could be sufficient for the construction
of the stable manifold. However, one needs to combine the linear estimates with the
nonlinear estimates.

Third, one can consider a well-posed 2D Boussinesq equation (1) with σ = −1 and to
handle the ill-posed radial spatial dynamics formulation (4)–(5) with the justification
of the cKdV approximation as in Theorem 1 by using the approach from [20, 29].
This would involve working in spaces of functions which are analytic in a strip in the
complex plane. The oscillatory tails of the cKdV approximation, see Figure 2, would
now accumulate towards r → 0 for the well-posed 2D Boussinesq equation, see Figure
4 in [11], with the rate of O(r−1/2) as r → 0 which is sufficient for

∫∞
0
ru(r, t)2dt to

converge for every t > 0.

We conclude that the most promising problem for future work is to justify the
temporal formulation of the cKdV equation (6) for the temporal formulation of the
2D Boussinesq equation (1) with σ = −1, for which the solitary waves are admissible
in the L2-based function spaces. If this justification problem can be solved, one can
then consider the transverse stability problem of cylindrical solitary waves under the
azimuthal perturbations within the approximation given by the cKP equation with the
exact solutions found in [11, 38].
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