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We address the existence of global solutions to the derivative nonlinear Schrödinger

(DNLS) equation without the small-norm assumption. By using the inverse scattering

transform method without eigenvalues and resonances, we construct a unique global

solution in H2(R)∩H1,1(R) which is also Lipschitz continuous with respect to the initial

data. Compared to the existing literature on the spectral problem for the DNLS equation,

the corresponding Riemann–Hilbert problem is defined in the complex plane with the

jump on the real line.

1 Introduction

We consider the Cauchy problem for the derivative nonlinear Schrödinger (DNLS)

equation {
iut + uxx + i(|u|2u)x = 0, t > 0,

u|t=0 = u0,
(1.1)

where the subscripts denote partial derivatives and u0 is defined in a suitable func-

tion space, for example, in Sobolev space Hm(R) of distributions with square integrable

derivatives up to the order m.
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5664 D. E. Pelinovsky and Y. Shimabukuro

Local existence of solutions for u0 ∈ Hs(R) with s > 3
2 was established by Tsut-

sumi & Fukuda [32] by using a parabolic regularization. Later, the same authors [33]

used the first five conserved quantities of the DNLS equation and established the global

existence of solutions for u0 ∈ H2(R) provided the initial data is small in theH1(R) norm.

Using a gauge transformation of the DNLS equation to a system of two semi-

linear NLS equations, for which a contraction argument can be used in the space L2(R)

with the help of the Strichartz estimates, Hayashi [15] proved local and global existence

of solutions to the DNLS equation for u0 ∈ H1(R) provided that the initial data are small

in the L2(R) norm. More specifically, the initial data u0 are required to satisfy

‖u0‖L2 <
√
2π . (1.2)

The space H1(R) is referred to as the energy space for the DNLS equation because its

first three conserved quantities having the meaning of the mass, momentum, and energy

are well defined in the space H1(R):

I0 =
∫

R

|u|2dx, (1.3)

I1 = i
∫

R

(ūux − uūx)dx −
∫

R

|u|4dx, (1.4)

I2 =
∫

R

|ux|2dx + 3i

4

∫
R

|u|2(uūx − uxū)dx + 1

2

∫
R

|u|6dx. (1.5)

Using the gauge transformation u = ve− 3i
4
∫ x−∞ |v(y)|2dy and the Gagliardo–Nirenberg

inequality [35]

‖u‖6
L6 ≤ 4

π2
‖u‖4

L2‖ux‖2
L2 , (1.6)

one can obtain

I2 = ‖vx‖2
L2 − 1

16
‖v‖6

L6 ≥
(
1 − 1

4π2
‖v‖4

L2

)
‖vx‖2

L2 .

Under the small-norm assumption (1.2), the H1(R) norm of the function v (and hence,

the H1(R) norm of the solution u to the DNLS equation) is controlled by the conserved

quantities I0 and I2, once the local existence of solutions in H1(R) is established.

Developing the approach based on the gauge transformation and a priori energy

estimates,Hayashi&Ozawa [16, 17, 28] considered global solutions to theDNLS equation

in weighted Sobolev spaces under the same small-norm assumption (1.2), for example,
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Existence of Global Solutions 5665

for u0 ∈ Hm(R) ∩ L2,m(R), where m ∈ N. Here and in what follows, L2,m(R) denotes the

weighted L2(R) space with the norm

‖u‖L2,m :=
(∫

R

(1 + x2)m|u|2dx
)1/2

=
(∫

R

〈x〉2m|u|2dx
)1/2

,

where 〈x〉 := (1 + x2)1/2.

More recently, localwell-posedness of solutions to theDNLS equationwas estab-

lished in spaces of lower regularity, for example, for u0 ∈ Hs(R) with s ≥ 1
2 by Takaoka

[30] who used the Fourier transform restriction method. This result was shown to be

sharp in the sense that the flow map fails to be uniformly continuous for s < 1
2 [4].

Global existence under the constraint (1.2) was established in Hs(R) with subsequent

generations of the Fourier transform restriction method and the so-called I-method, for

example, for s > 32
33 by Takaoka [31], for s > 2

3 and s > 1
2 by Colliander et al. [7] and [8],

respectively, and finally for s = 1
2 by Miao et al. [26].

The key question, which goes back to the paper of Hayashi &Ozawa [16], is to find

out if the bound (1.2) is optimal for existence of global solutions to the DNLS equation.

By analogy with the quintic NLS and Korteweg–de Vries (KdV) equations, one can ask if

solutions with the L2(R) norm exceeding the threshold value in the inequality (1.2) can

blow up in a finite time.

The threshold value
√
2π for the L2(R) norm corresponds to the constant value

of the L2(R) norm of the stationary solitary wave solutions to the DNLS equation. These

solutions can be written in the explicit form:

u(x, t) = φω(x)e
iω2t− 3i

4
∫ x−∞ |φω(y)|2dy , φω(x) =

√
4ω sech(2ωx), ω ∈ R

+ (1.7)

fromwhichwe have ‖φω‖L2 = √
2π for every ω ∈ R

+. Although the solitarywave solutions

are unstable in the quintic NLS and KdV equations, it was proved by Colin &Ohta [6] that

the solitary wave of the DNLS equation is orbitally stable with respect to perturbations

inH1(R). This result indicates that there exist global solutions to the DNLS equation (1.1)

in H1(R) with the L2(R) norm exceeding the threshold value in (1.2).

Moreover, Colin & Ohta [6] proved that the moving solitary wave solutions of

the DNLS equation are also orbitally stable in H1(R). Since the L2(R) norm of the mov-

ing solitary wave solutions is bounded from above by 2
√
π , the orbital stability result

indicates that there exist global solutions to the DNLS equation (1.1) if the initial data

u0 satisfy the inequality

‖u0‖L2 < 2
√
π . (1.8)
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5666 D. E. Pelinovsky and Y. Shimabukuro

These orbital stability results suggest that the inequality (1.2) is not sharp for the global

existence in the DNLS equation (1.1). Furthermore, recent numerical explorations of the

DNLS equation (1.1) indicate no blow-up phenomenon for initial data with any large

L2(R) norm [24, 25]. The same conclusion is indicated by the asymptotic analysis in the

recent work [5].

Towards the same direction, Wu [36] proved that the solution to the DNLS equa-

tionswith u0 ∈ H1(R) does not blow up in a finite time if the L2(R) norm of the initial data

u0 slightly exceed the threshold value in (1.2). The technique used in [36] is a combination

of a variational argument together with the mass, momentum and energy conservation

in (1.3)–(1.5). On the other hand, the solution to the DNLS equation restricted on the half

line R
+ blows up in a finite time if the initial data u0 ∈ H2(R+)∩L2,1(R+) yield the negative

energy I2 < 0 given by (1.5) [36]. Proceeding further with sharper Gagliardo–Nirenberg-

type inequalities, Wu [37] proved very recently that the global solutions to the DNLS

equation exists in H1(R) if the initial data u0 ∈ H1(R) satisfy the inequality (1.8), which

is larger than the inequality (1.2).

Our approach to address the same question concerning global existence in the

Cauchy problem for the DNLS equation (1.1) without the small L2(R)-norm assumption

relies on a different technique involving the inverse scattering transform theory [2, 3].

As was shown by Kaup & Newell [18], the DNLS equation appears to be a compatibility

condition for suitable solutions to the linear system given by

∂xψ = [−iλ2σ3 + λQ(u)
]
ψ (1.9)

and

∂tψ = [−2iλ4σ3 + 2λ3Q(u)+ iλ2|u|2σ3 − λ|u|2Q(u)+ iλσ3Q(ux)
]
ψ , (1.10)

where ψ ∈ C
2 is assumed to be a C2 function of x and t, λ ∈ C is the (x, t)-independent

spectral parameter, and Q(u) is the (x, t)-dependent matrix potential given by

Q(u) =
[

0 u

−u 0

]
. (1.11)

The Pauli matrices that include σ3 are given by

σ1 =
[
0 1

1 0

]
, σ2 =

[
0 i

−i 0

]
, σ3 =

[
1 0

0 −1

]
. (1.12)
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Existence of Global Solutions 5667

A long but standard computation shows that the compatibility condition ∂t∂xψ =
∂x∂tψ for eigenfunctions ψ ∈ C2(R × R) is equivalent to the DNLS equation

iut +uxx + i(|u|2u)x =0 for classical solutions u. The linear equation (1.9) is usually

referred to as the Kaup–Newell spectral problem.

In a similar context of the cubic NLS equation, it is well known that the inverse

scattering transform technique applied to the linear system (associated with the so-

called Zakharov–Shabat spectral problem) provides a rigorous framework to solve the

Cauchy problem in weighted L2 spaces, for example, for u0 ∈ H1(R) ∩ L2,1(R) [11, 12, 40]

or for u0 ∈ H1(R)∩ L2,s(R) with s > 1
2 [10]. In comparison with the spectral problem (1.9),

the Zakharov–Shabat spectral problem has nomultiplication of matrix potentialQ(u) by

λ. As a result, Neumann series solutions for the Jost functions of the Zakharov–Shabat

spectral problem converge if u belongs to the space L1(R), see, for example, Chapter 2

in [1]. As was shown originally by Deift & Zhou [12, 40], the inverse scattering problem

based on the Riemann–Hilbert problem of complex analysis with a jump along the real

line can be solved uniquely if u is defined in a subspace of L2,1(R), which is continuously

embedded into the space L1(R). The time evolution of the scattering data is well defined

if u is posed in space H1(R) ∩ L2,1(R) [11, 12].

For the Kaup–Newell spectral problem (1.9), the key feature is the presence of the

spectral parameter λ that multiplies the matrix potential Q(u). As a result, Neumann

series solutions for the Jost functions do not converge uniformly if u is only defined

in the space L1(R). Although the Lax system (1.9) and (1.10) appeared long ago and was

used many times for formal methods, such as construction of soliton solutions [18],

temporal asymptotics [19, 34], and long-time asymptotic expansions [38, 39], no rigorous

results on the function spaces for the matrix Q(u) have been obtained so far to ensure

bijectivity of the direct and inverse scattering transforms for the Kaup–Newell spectral

problem (1.9).

In this connection, we mention the works of Lee [20, 21] on the local solvability

of a generalized Lax system with λn dependence for an integer n ≥ 2 and generic small

initial data u0 in Schwarz class. In the follow-up paper [22], Lee also claimed existence

of a global solution to the Cauchy problem (1.1) for large u0 in Schwarz class, but the

analysis of [22] relies on a “Basic Lemma", where the Jost functions are claimed to be

defined for u0 in L2(R). However, equation (1.9) shows that the condition u0 ∈ L2(R) is

insufficient for construction of the Jost functions uniformly in λ.

We address the bijectivity of the direct and inverse scattering transform for the

Lax system (1.9) and (1.10) in this work. We show that the direct scattering transform for

the Jost functions of the Lax system (1.9)–(1.10) can be developed under the requirement
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5668 D. E. Pelinovsky and Y. Shimabukuro

u0 ∈ L1(R) ∩ L∞(R) and ∂xu0 ∈ L1(R). This requirement is satisfied if u0 is defined in the

weighted Sobolev space H1,1(R) defined by

H1,1(R) = {u ∈ L2,1(R), ∂xu ∈ L2,1(R)
}
. (1.13)

Note that it is quite common to use notation H1,1(R) to denote H1(R) ∩ L2,1(R) [12, 40],

which is not what is used here in (1.13).

Furthermore, we show that asymptotic expansions of the Jost functions are

well defined if u0 ∈ H2(R) ∩ H1,1(R), which also provide a rigorous framework to study

the inverse scattering transform based on the Riemann–Hilbert problem of complex

analysis. Finally, the time evolution of the scattering data is well defined if u0 ∈ H2(R)∩
H1,1(R).

We shall now define eigenvalues and resonances for the spectral problem (1.9)

and present the global existence result for the DNLS equation (1.1).

Definition 1. We say that λ ∈ C is an eigenvalue of the spectral problem (1.9) if the

linear equation (1.9) with this λ admits a solution in L2(R). �

Definition 2. We say that λ ∈ R ∪ iR is a resonance of the spectral problem (1.9) if the

linear equation (1.9) with this λ admits a solution in L∞(R)with the asymptotic behavior

ψ(x) ∼
{
a+e−iλ2xe1, x → −∞,

a−e+iλ2xe2, x → +∞,

where a+ and a− are nonzero constant coefficients, whereas e1 = [1, 0]t and

e2 = [0, 1]t. �

Theorem 1. For every u0 ∈ H2(R) ∩ H1,1(R) such that the linear equation (1.9) admits

no eigenvalues or resonances in the sense of Definitions 1 and 2, there exists a unique

global solution u(t, ·) ∈ H2(R) ∩ H1,1(R) of the Cauchy problem (1.1) for every t ∈ R.

Furthermore, the map

H2(R) ∩ H1,1(R) � u0 �→ u ∈ C(R;H2(R) ∩ H1,1(R))

is Lipschitz continuous. �

Remark 1. A sufficient condition that the spectral problem (1.9) admits no eigenval-

ues was found in [29]. This condition is satisfied under the small-norm assumption
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Existence of Global Solutions 5669

on the H1,1(R) norm of the initial data u0. See Remark 5 below. Although we believe

that there exist initial data u0 with large H1,1(R) norm that yield no eigenvalues in the

spectral problem (1.9), we have no constructive examples of such initial data. Neverthe-

less, a finite number of eigenvalues λ ∈ C in the spectral problem (1.9) can be included

by algebraic methods such as the Backlünd, Darboux, or dressing transformations

[9, 10]. �

Remark 2. The condition that the spectral problem (1.9) admits no resonance is used

to identify the so-called generic initial data u0. The non-generic initial data u0 violating

this condition are at the threshold case in the sense that a small perturbation to u0 may

change the number of eigenvalues λ in the linear equation (1.9). �

Remark 3. Compared to the results of Hayashi & Ozawa [15–17, 28], where global well-

posedness of the Cauchy problem for the DNLS equation (1.1) was established in H2(R)∩
H1,1(R) under the small L2(R) norm assumption (1.2), the inverse scattering transform

theory is developed without the smallness assumption on the initial data u0. �

Remark 4. An alternative proof of Theorem 1 is developed in [23] by a different version

of the inverse scattering transform for the Lax system (1.9) and (1.10). The results of [23]

are formulated in space H2(R)∩L2,2(R), which is embedded into the space H2(R)∩H1,1(R)

used in ourwork. The advantage of ourwork is that global solutions are obtainedwithout

assuming a strong decay condition in L2,2(R). �

The article is organized as follows. Section 2 reports the solvability results on

the direct scattering transform for the spectral problem (1.9). Section 3 gives equivalent

formulations of theRiemann–Hilbert problemassociatedwith the spectral problem (1.9).

Section 4 is devoted to the solvability results on the inverse scattering transform for the

spectral problem (1.9). Section 5 incorporates the time evolution of the linear equation

(1.10) and contains the proof of Theorem 1.

2 Direct Scattering Transform

The direct scattering transform is developed for the Kaup–Newell spectral problem (1.9),

which we rewrite here for convenience:

∂xψ = [−iλ2σ3 + λQ(u)
]
ψ , (2.1)

where ψ ∈ C
2, λ ∈ C, and the matrices Q(u) and σ3 are given by (1.11) and (1.12).
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5670 D. E. Pelinovsky and Y. Shimabukuro

The formal construction of the Jost functions is based on the construction of

the fundamental solution matrices 	±(x; λ) of the linear equation (2.1), which satisfy

the same asymptotic behavior at infinity as the linear equation (2.1) with Q(u) ≡ 0:

	±(x; λ) → e−iλ2xσ3 as x → ±∞, (2.2)

where parameter λ is fixed in an unbounded subset of C. However, the standard fixed

point argument for Volterra’s integral equations associatedwith the linear equation (2.1)

is not uniform in λ as |λ| → ∞ if Q(u) ∈ L1(R). Integrating by parts, it was suggested

in [29] that uniform estimates on the Jost functions of the linear equation (2.1) can be

obtained under the condition

‖u‖L1(‖u‖L∞ + ‖∂xu‖L1) < ∞.

Here we explore this idea further and introduce a transformation of the linear equation

(2.1) to a spectral problem of the Zakharov–Shabat type. This will allow us to adopt the

direct and inverse scattering transforms, which were previously used for the cubic NLS

equation [12, 40] (see also [10, 11] for review). Note that the pioneer idea of a transfor-

mation of the linear equation (2.1) to a spectral problem of the Zakharov–Shabat type

can be found already in the formal work of Kaup & Newell [18].

Let us define the transformation matrices for any u ∈ L∞(R) and λ ∈ C,

T1(x; λ) =
[

1 0

−u(x) 2iλ

]
and T2(x; λ) =

[
2iλ −u(x)
0 1

]
. (2.3)

If the vector ψ ∈ C
2 is transformed by ψ1,2 = T1,2ψ , then straightforward computations

show that ψ1,2 satisfy the linear equations

∂xψ1 = [−iλ2σ3 +Q1(u)
]
ψ1, Q1(u) = 1

2i

[
|u|2 u

−2iux − u|u|2 −|u|2
]

(2.4)

and

∂xψ2 = [−iλ2σ3 +Q2(u)
]
ψ2, Q2(u) = 1

2i

[
|u|2 −2iux + u|u|2
−u −|u|2

]
. (2.5)

Note that Q1,2(u) ∈ L1(R) if u ∈ L1(R) ∩ L3(R) and ∂xu ∈ L1(R). The linear equations

(2.4) and (2.5) are of the Zakharov–Shabat-type, after we introduce the complex variable

z = λ2. In what follows, we study the Jost functions and the scattering coefficients for

the linear equations (2.4) and (2.5).
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Existence of Global Solutions 5671

2.1 Jost functions

Let us introduce the normalized Jost functions from solutionsψ1,2 of the linear equations

(2.4) and (2.5) with z = λ2 in the form

m±(x; z) = ψ1(x; z)e
ixz, n±(x; z) = ψ2(x; z)e

−ixz, (2.6)

according to the asymptotic behavior

m±(x; z) → e1,

n±(x; z) → e2,

}
as x → ±∞, (2.7)

where e1 = [1, 0]t and e2 = [0, 1]t. The normalized Jost functions satisfy the following

Volterra’s integral equations

m±(x; z) = e1 +
∫ x

±∞

[
1 0

0 e2iz(x−y)

]
Q1(u(y))m±(y; z)dy (2.8)

and

n±(x; z) = e2 +
∫ x

±∞

[
e−2iz(x−y) 0

0 1

]
Q2(u(y))n±(y; z)dy. (2.9)

The next two lemmas describe properties of the Jost functions, which are analogues to

similar properties of the Jost functions in the Zakharov–Shabat spectral problem (see,

e.g., Lemma 2.1 in [1]).

Lemma 1. Let u ∈ L1(R) ∩ L3(R) and ∂xu ∈ L1(R). For every z ∈ R, there exist unique

solutions m±(·; z) ∈ L∞(R) and n±(·; z) ∈ L∞(R) satisfying the integral equations (2.8)

and (2.9). Moreover, for every x ∈ R, m−(x; ·) and n+(x; ·) are continued analytically in

C
+, whereas m+(x; ·) and n−(x; ·) are continued analytically in C

−. Finally, there exists

a positive z-independent constant C such that

‖m∓(·; z)‖L∞ + ‖n±(·; z)‖L∞ ≤ C z ∈ C
±. (2.10)

�

Proof. It suffices to prove the statement for one Jost function, for example, form−. The

proof for other Jost functions is analogous. Let us define the integral operator K by

(Kf )(x; z) := 1

2i

∫ x

−∞

[
1 0

0 e2iz(x−y)

][
|u(y)|2 u(y)

−2i∂yu(y)− u(y)|u(y)|2 −|u(y)|2
]
f (y)dy. (2.11)
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5672 D. E. Pelinovsky and Y. Shimabukuro

For every z ∈ C
+ and every x0 ∈ R, we have

‖(Kf )(·; z)‖L∞(−∞,x0) ≤ 1

2

⎡⎣ ‖u‖2
L2(−∞,x0)

‖u‖L1(−∞,x0)

2‖∂xu‖L1(−∞,x0)
+ ‖u‖3

L3(−∞,x0)
‖u‖2

L2(−∞,x0)

⎤⎦ ‖f (·; z)‖L∞(−∞,x0).

The operator K is a contraction from L∞(−∞,x0) to L∞(−∞,x0) if the two eigenvalues of

the matrix

A = 1

2

⎡⎣ ‖u‖2
L2(−∞,x0)

‖u‖L1(−∞,x0)

2‖∂xu‖L1(−∞,x0)
+ ‖u‖3

L3(−∞,x0)
‖u‖2

L2(−∞,x0)

⎤⎦
are located inside the unit circle. The two eigenvalues are given by

λ± = 1

2
‖u‖2

L2(−∞,x0)
± 1

2

√
‖u‖L1(−∞,x0)

(2‖∂xu‖L1(−∞,x0)
+ ‖u‖3

L3(−∞,x0)
),

so that |λ−| < |λ+|. Hence, the operator K is a contraction if x0 ∈ R is chosen so that

1

2
‖u‖2

L2(−∞,x0)
+ 1

2

√
‖u‖L1(−∞,x0)

(2‖∂xu‖L1(−∞,x0)
+ ‖u‖3

L3(−∞,x0)
) < 1. (2.12)

By the Banach fixed point theorem, for this x0 and every z ∈ C
+, there exists a unique

solution m−(·; z) ∈ L∞(−∞,x0) of the integral equation (2.8). To extend this result to

L∞(R), we can split R into a finite number of subintervals such that the estimate (2.12) is

satisfied in each subinterval. Unique solutions in each subinterval can be glued together

to obtain the unique solution m−(·; z) ∈ L∞(R) for every z ∈ C
+.

Analyticity of m−(x; ·) in C
+ for every x ∈ R follows from the absolute and uni-

form convergence of the Neumann series of analytic functions in z. Indeed, let us denote

the L1 matrix norm of the 2-by-2 matrix function Q as

‖Q‖L1 :=
2∑

i,j=1

‖Qi,j‖L1 .

If u ∈ H1,1(R), then u ∈ L1(R) ∩ L3(R) and ∂xu ∈ L1(R) so that Q1(u) ∈ L1(R), where

the matrix Q1(u) appears in the integral kernel K given by (2.11). For every f (x; z) ∈
L∞(R × C

+), we have

‖(Knf )‖L∞ ≤ 1

n! ‖Q1(u)‖nL1‖f ‖L∞ . (2.13)

As a result, the Neumann series for Volterra’s integral equation (2.8) for m− converges

absolutely and uniformly for every x ∈ R and z ∈ C
+ and contains analytic functions
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Existence of Global Solutions 5673

of z for z ∈ C
+. Therefore, m−(x; ·) is analytic in C

+ for every x ∈ R and it satisfies the

bound (2.10). �

Remark 5. If u is sufficiently small so that the estimate

1

2
‖u‖2

L2 + 1

2

√
‖u‖L1(2‖∂xu‖L1 + ‖u‖3

L3
) <

1

2
(2.14)

holds on R, then Banach Fixed Point Theorem yields the existence of the unique solution

m−(·; z) ∈ L∞(R) of the integral equation (2.8) such that ‖m−(·; z) − e1‖L∞ < 1. This is in

turn equivalent to the conditions that the linear equation (2.1) has no L2(R) solutions for

every λ ∈ C and the linear equation (2.1) has no resonances for every λ ∈ R ∪ iR in the

sense of Definitions 1 and 2. Therefore, the small-norm constraint (2.14) is a sufficient

condition that the assumptions of Theorem 1 are satisfied. �

Lemma 2. Under the conditions of Lemma 1, for every x ∈ R, the Jost functions

m±(x; z) and n±(x; z) satisfy the following limits along a contour in the domains of their

analyticity extended to |Im(z)| → ∞:

lim
|z|→∞

m±(x; z) = m∞
± (x)e1, m∞

± (x) := e
1
2i
∫ x±∞ |u(y)|2dy (2.15)

and

lim
|z|→∞

n±(x; z) = n∞
± (x)e2, n∞

± (x) := e− 1
2i
∫ x±∞ |u(y)|2dy . (2.16)

If in addition, u ∈ C1(R), then for every x ∈ R, the Jost functions m±(x; z) and n±(x; z)

satisfy the following limits along a contour in the domains of their analyticity extended

to |Im(z)| → ∞:

lim
|z|→∞

z
[
m±(x; z)−m∞

± (x)e1
] = q(1)± (x)e1 + q(2)± (x)e2 (2.17)

and

lim
|z|→∞

z
[
n±(x; z)− n∞

± (x)e2
] = s(1)± (x)e1 + s(2)± (x)e2, (2.18)
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5674 D. E. Pelinovsky and Y. Shimabukuro

where

q(1)± (x) := −1

4
e

1
2i
∫ x±∞ |u(y)|2dy

∫ x

±∞

[
u(y)∂yū(y)+ 1

2i
|u(y)|4

]
dy,

q(2)± (x) :=
1

2i
∂x

(
ū(x)e

1
2i
∫ x±∞ |u(y)|2dy

)
,

s(1)± (x) := − 1

2i
∂x

(
u(x)e− 1

2i
∫ x±∞ |u(y)|2dy

)
,

s(2)± (x) :=
1

4
e− 1

2i
∫ x±∞ |u(y)|2dy

∫ x

±∞

[
ū(y)∂yu(y)− 1

2i
|u(y)|4

]
dy. �

Proof. Again, we prove the statement for the Jost functionm− only. The proof for other

Jost functions is analogous. Letm− = [m(1)
− ,m(2)

− ]t and rewrite the integral equation (2.8)

in the component form:

m(1)
− (x; z) = 1 + 1

2i

∫ x

−∞
u(y)

[
ū(y)m(1)

− (y; z)+m(2)
− (y; z)

]
dy (2.19)

and

m(2)
− (x; z) = − 1

2i

∫ x

−∞
e2iz(x−y) [(2i∂yū(y)+ |u(y)|2ū(y))m(1)

− (y; z)+ |u(y)|2m(2)
− (y; z)

]
dy.

(2.20)

Recall that for every x ∈ R, m−(x; ·) is analytic in C
+. By bounds (2.10) in Lemma 1,

for every u ∈ L1(R) ∩ L3(R) and ∂xu ∈ L1(R), the integrand of the second equation

(2.20) is bounded for every z ∈ C
+ by an absolutely integrable z-independent func-

tion. Also, the integrand converges to zero for every y ∈ (−∞,x) as |z| → ∞ in C
+.

By Lebesgue’s dominated convergence theorem, we obtain lim|z|→∞ m(2)
− (x; z) = 0, hence

m∞
− (x) := lim|z|→∞ m(1)

− (x; z) satisfies the inhomogeneous integral equation

m∞
− (x) = 1 + 1

2i

∫ x

−∞
|u(y)|2m∞

− (y)dy (2.21)

with the unique solution m∞
− (x) = e

1
2i
∫ x−∞ |u(y)|2dy . This proves the limit (2.15) for m−.

We now add the condition u ∈ C1(R) and use the technique behind Watson’s

Lemma related to the Laplace method of asymptotic analysis [27]. For every x ∈ R and

every small δ > 0, we split integration in the second equation (2.20) for (−∞,x − δ) and
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Existence of Global Solutions 5675

(x − δ,x), rewriting it in the equivalent form:

m(2)
− (x; z) =

∫ x−δ

−∞
e2iz(x−y)φ(y; z)dy + φ(x; z)

∫ x

x−δ
e2iz(x−y)dy

+
∫ x

x−δ
e2iz(x−y) [φ(y; z)− φ(x; z)

]
dy ≡ I + II + III , (2.22)

where

φ(x; z) := − 1

2i

[
(2i∂xū(x)+ |u(x)|2ū(x))m(1)

− (x; z)+ |u(x)|2m(2)
− (x; z)

]
.

Since φ(·; z) ∈ L1(R), we have

|I | ≤ e−2δIm(z)‖φ(·; z)‖L1 .

Since φ(·; z) ∈ C0(R), we have

|III | ≤ 1

2Im(z)
‖φ(·; z)− φ(x; z)‖L∞(x−δ,x).

On the other hand, we have the exact value

II = − 1

2iz

[
1 − e2izδ

]
φ(x; z).

Let us choose δ := [Im(z)]−1/2 such that δ → 0 as Im(z) → ∞. Then, by taking the limit

along the contour in C
+ such that Im(z) → ∞, we obtain

lim
|z|→∞

zm(2)
− (x; z) = − 1

2i
lim

|z|→∞
φ(x; z) = −1

4
(2i∂xū(x)+ |u(x)|2ū(x))m∞

− (x), (2.23)

which yields the limit (2.17) for m(2)
− . On the other hand, the first equation (2.19) can be

rewritten as the differential equation

∂xm
(1)
− (x; z) = 1

2i
|u(x)|2m(1)

− (x; z)+ 1

2i
u(x)m(2)

− (x; z).

Using m̄∞
− as the integrating factor,

∂x(m
∞
− (x)m

(1)
− (x; z)) = 1

2i
u(x)m∞

− (x)m
(2)
− (x; z),

we obtain another integral equation for m(1)
− :

m(1)
− (x; z) = m∞

− (x)+ 1

2i
m∞

− (x)
∫ x

−∞
u(y)m∞

− (y)m
(2)
− (y; z)dy. (2.24)
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5676 D. E. Pelinovsky and Y. Shimabukuro

Multiplying this equation by z and taking the limit |z| → ∞, we obtain

lim
|z|→∞

z
[
m(1)

− (x; z)−m∞
− (x)

] = −1

4
m∞

− (x)
∫ x

−∞

[
u(y)∂yū(y)+ 1

2i
|u(y)|4

]
dy, (2.25)

which yields the limit (2.17) for m(1)
− . �

We shall now study properties of the Jost functions on the real axis of z.

First, we note that following elementary result from the Fourier theory. For notational

convenience, we use sometimes ‖f (z)‖L2z instead of ‖f (·)‖L2 .

Proposition 1. If w ∈ H1(R), then

sup
x∈R

∥∥∥∥∫ x

−∞
e2iz(x−y)w(y)dy

∥∥∥∥
L2z (R)

≤ √
π‖w‖L2 . (2.26)

and

sup
x∈R

∥∥∥∥2iz ∫ x

−∞
e2iz(x−y)w(y)dy +w(x)

∥∥∥∥
L2z (R)

≤ √
π‖∂xw‖L2 . (2.27)

Moreover, if w ∈ L2,1(R), then for every x0 ∈ R
−, we have

sup
x∈(−∞,x0)

∥∥∥∥〈x〉
∫ x

−∞
e2iz(x−y)w(y)dy

∥∥∥∥
L2z (R)

≤ √
π‖w‖L2,1(−∞,x0)

, (2.28)

where 〈x〉 := (1 + x2)1/2. �

Proof. Here we give a quick proof based on Plancherel’s theorem of Fourier analysis.

For every x ∈ R and every z ∈ R, we write

f (x; z) :=
∫ x

−∞
e2iz(x−y)w(y)dy =

∫ 0

−∞
e−2izyw(y + x)dy,

so that

‖f (x; ·)‖2
L2 =

∫ ∞

−∞

∫ 0

−∞

∫ 0

−∞
w̄(y1 + x)w(y2 + x)e2i(y1−y2)zdy1dy2dz

= π

∫ 0

−∞
|w(y + x)|2dy = π

∫ x

−∞
|w(y)|2dy. (2.29)

Bound (2.26) holds if w ∈ L2(R).
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Existence of Global Solutions 5677

If y ≤ x ≤ 0, we have 1 + y2 ≥ 1 + x2, so that equation (2.29) implies

‖f (x; ·)‖2
L2 ≤ π

1 + x2

∫ x

−∞
(1 + y2)|w(y)|2dy ≤ π

1 + x2
‖w‖2

L2,1(−∞,x),

which yields the bound (2.28) for any fixed x0 ∈ R
−.

To get the bound (2.27), we note that ifw ∈ H1(R), thenw ∈ L∞(R) andw(x) → 0

as |x| → ∞. As a result, we have

2izf (x; z)+w(x) =
∫ x

−∞
e2iz(x−y)∂yw(y)dy.

The bound (2.27) follows from the computation similar to (2.29). �

Subtracting the asymptotic limits (2.15) and (2.16) in Lemma 2 from the Jost

functions m± and n± in Lemma 1, we prove that for every fixed x ∈ R
±, the remainder

terms belongs to H1(R) with respect to the variable z if u belongs to the space H1,1(R)

defined in (1.13). Moreover, subtracting also the O(z−1) terms as defined by (2.17) and

(2.18) and multiplying the result by z, we prove that the remainder term belongs to L2(R)

if u ∈ H2(R) ∩ H1,1(R). Note that if u ∈ H1,1(R), then the conditions of Lemma 1 are

satisfied, so that u ∈ L1(R) ∩ L3(R) and ∂xu ∈ L1(R). Also if u ∈ H2(R) ∩ H1,1(R), then the

additional condition u ∈ C1(R) of Lemma 2 is also satisfied.

Lemma 3. If u ∈ H1,1(R), then for every x ∈ R
±, we have

m±(x; ·)−m∞
± (x)e1 ∈ H1(R), n±(x; ·)− n∞

± (x)e2 ∈ H1(R). (2.30)

Moreover, if u ∈ H2(R) ∩ H1,1(R), then for every x ∈ R, we have

z
[
m±(x; z)−m∞

± (x)e1
]− (q(1)± (x)e1 + q(2)± (x)e2) ∈ L2

z(R) (2.31)

and

z
[
n±(x; z)− n∞

± (x)e2
]− (s(1)± (x)e1 + s(2)± (x)e2) ∈ L2

z(R). (2.32)

�

Proof. Again, we prove the statement for the Jost functionm−. The proof for other Jost

functions is analogous. We write the integral equation (2.8) form− in the abstract form

m− = e1 + Km−, (2.33)
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5678 D. E. Pelinovsky and Y. Shimabukuro

where the operator K is given by (2.11). Although equation (2.33) is convenient for ver-

ifying the boundary condition m−(x; z) → e1 as x → −∞, we note that the asymptotic

limit as |z| → ∞ is different by the complex exponential factor. Indeed, for every x ∈ R,

the asymptotic limit (2.15) is written as

m−(x; z) → m∞
− (x)e1 as |z| → ∞, where m∞

− (x) := e
1
2i
∫ x−∞ |u(y)|2dy .

Therefore, we rewrite equation (2.33) in the equivalent form

(I − K)(m− −m∞
− e1) = he2, (2.34)

where we have used the integral equation (2.21) that yields e1 − (I −K)m∞
− e1 = he2 with

h(x; z) =
∫ x

−∞
e2iz(x−y)w(y)dy, w(x) := −∂x

(
u(x)e

1
2i
∫ x−∞ |u(y)|2dy

)
. (2.35)

If u ∈ H1,1(R), thenw ∈ L2,1(R). By the bounds (2.26) and (2.28) in Proposition 1, we have

h(x; z) ∈ L∞
x (R;L2

z(R)) and for every x0 ∈ R
−, the following bound is satisfied:

sup
x∈(−∞,x0)

‖〈x〉 h(x; z)‖L2z (R) ≤ √
π

(
‖∂xu‖L2,1 + 1

2
‖u3‖L2,1

)
≤ C(‖u‖H1,1 + ‖u‖3

H1,1), (2.36)

where C is a positive u-independent constant and the Sobolev inequality ‖u‖L∞ ≤
1√
2
‖u‖H1 is used.

By using estimates similar to those in the derivation of the bound (2.13) in Lemma

1, we find that for every f (x; z) ∈ L∞
x (R;L2

z(R)), we have

‖(Knf )(x; z)‖L∞
x L2z

≤ 1

n! ‖Q1(u)‖nL1‖f (x; z)‖L∞
x L2z

. (2.37)

Therefore, the operator I −K is invertible on the space L∞
x (R;L2

z(R)) and a bound on the

inverse operator is given by

‖(I − K)−1‖L∞
x L2z→L∞

x L2z
≤

∞∑
n=0

1

n! ‖Q1(u)‖nL1 = e‖Q1(u)‖L1 . (2.38)

Moreover, the same estimate (2.38) can be obtained in the norm L∞
x ((−∞,x0);L2

z(R)) for

every x0 ∈ R. By using (2.34), (2.36), and (2.38), we obtain the following estimate for every

x0 ∈ R
−:

sup
x∈(−∞,x0)

∥∥〈x〉 (m−(x; z)−m∞
− (x)e1

)∥∥
L2z (R)

≤ Ce‖Q1(u)‖L1
(‖u‖H1,1 + ‖u‖3

H1,1

)
. (2.39)
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Existence of Global Solutions 5679

Next, we want to show ∂zm−(x; z) ∈ L∞
x ((−∞,x0);L2

z(R)) for every x0 ∈ R
−. We

differentiate the integral equation (2.33) in z and introduce the vector v = [v(1),v(2)]t
with the components

v(1)(x; z) := ∂zm
(1)
− (x; z) and v(2)(x; z) := ∂zm

(2)
− (x; z)− 2ixm(2)

− (x; z).

Thus, we obtain from (2.33):

(I − K)v = h1e1 + h2e2 + h3e2, (2.40)

where

h1(x; z) =
∫ x

−∞
yu(y)m(2)

− (y; z)dy,

h2(x; z) =
∫ x

−∞
ye2iz(x−y)(2iuy(y)+ |u(y)|2u(y))(m(1)

− (y; z)−m∞
− (y))dy,

h3(x; z) =
∫ x

−∞
ye2iz(x−y)(2iuy(y)+ |u(y)|2u(y))m∞

− (y)dy.

For every x0 ∈ R
−, each inhomogeneous term of the integral equation (2.40) can be

estimated by Hölder’s inequality and the bound (2.26) of Proposition 1:

sup
x∈(−∞,x0)

‖h1(x; z)‖L2z (R) ≤ ‖u‖L1 sup
x∈(−∞,x0)

‖〈x〉 m(2)
− (x; z)‖L2z (R),

sup
x∈(−∞,x0)

‖h2(x; z)‖L2z (R) ≤ (2‖∂xu‖L1 + ‖u3‖L1
)

sup
x∈(−∞,x0)

∥∥〈x〉 (m(1)
− (x; z)−m∞

− (x)
)∥∥

L2z (R)
,

sup
x∈(−∞,x0)

‖h3(x; z)‖L2z (R) ≤ √
π
(
2‖∂xu‖L2,1 + ‖u3‖L2,1

)
.

The upper bounds in the first two inequalities are finite due to estimate (2.39) and the

embedding of L2,1(R) into L1(R). Using the bounds (2.38), (2.39), and the integral equation

(2.40), we conclude that v(x; z) ∈ L∞
x ((−∞,x0);L2

z(R)) for every x0 ∈ R
−. Since xm(2)

− (x; z) is

bounded in L∞
x ((−∞,x0);L2

z(R)) by the same estimate (2.39), we finally obtain ∂zm−(x; z) ∈
L∞
x ((−∞,x0);L2

z(R)) for every x0 ∈ R
−. This completes the proof of (2.30) for m−.

To prove (2.31) form−, we subtract the O(z−1) term as defined by (2.17) from the

integral equation (2.34) and multiply the result by z. Thus, we obtain

(I − K)
[
z
(
m− −m∞

− e1
)− (q(1)− e1 + q(2)− e2)

] = zhe2 − (I − K)(q(1)− e1 + q(2)− e2), (2.41)
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5680 D. E. Pelinovsky and Y. Shimabukuro

where the limiting values q(1)− and q(2)− are defined in Lemma 2. Using the integral equation

(2.24), we obtain cancelation of the first component of the source term, so that

zhe2 − (I − K)(q(1)− e1 + q(2)− e2) = h̃e2

with

h̃(x; z) = z
∫ x

−∞
e2iz(x−y)w(y)dy + 1

2i
w(x)

− 1

2i

∫ x

−∞
e2iz(x−y) [(2i∂yū(y)+ ū(y)|u(y)|2)q(1)− (y)+ |u(y)|2q(2)− (y)

]
dy,

where w is the same as in (2.35). By using bounds (2.26) and (2.27) in Proposition 1, we

have h̃(x; z) ∈ L∞
x (R;L2

z(Z)) if w ∈ H1(R), that is, if u ∈ H2(R) ∩ H1,1(R). Inverting (I − K)

on L∞
x (R;L2

z(Z)), we finally obtain (2.31) for m−. �

The following result is deduced from Lemma 3 to show that the mapping

H1,1(R) � u → [m±(x; z)−m∞
± (x)e1,n±(x; z)− n∞

± (x)] ∈ L∞
x (R

±;H1
z (R)) (2.42)

is Lipschitz continuous. Moreover, by restricting the potential to H2(R) ∩ H1,1(R), sub-

tracting O(z−1) terms from the Jost functions, and multiplying them by z, we also have

Lipschitz continuity of remainders of the Jost functions in function space L∞
x (R;L2

z(R)).

Corollary 1. Let u, ũ ∈ H1,1(R) satisfy ‖u‖H1,1 , ‖ũ‖H1,1 ≤ U for some U > 0. Denote

the corresponding Jost functions by [m±,n±] and [m̃±, ñ±] respectively. Then, there is a

positive U-dependent constant C(U) such that for every x ∈ R
±, we have

‖m±(x; ·)−m∞
± (x)e1 − m̃±(x; ·)+ m̃∞

± (x)e1‖H1 ≤ C(U)‖u− ũ‖H1,1 (2.43)

and

‖n±(x; ·)− n∞
± (x)e2 − ñ±(x; ·)+ ñ∞

± (x)e2‖H1 ≤ C(U)‖u− ũ‖H1,1 . (2.44)

Moreover, if u, ũ ∈ H2(R)∩H1,1(R) satisfy ‖u‖H2∩H1,1 , ‖ũ‖H2∩H1,1 ≤ U , then for every x ∈ R,

there is a positive U-dependent constant C(U) such that

‖m̂±(x; ·)− ˆ̃m±(x; ·)‖L2 + ‖n̂±(x; ·)− ˆ̃n±(x; ·)‖L2 ≤ C(U)‖u− ũ‖H2∩H1,1 . (2.45)
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Existence of Global Solutions 5681

where

m̂±(x; z) := z
[
m±(x; z)−m∞

± (x)e1
]− (q(1)± (x)e1 + q(2)± (x)e2),

n̂±(x; z) := z
[
n±(x; z)− n∞

± (x)e2
]− (s(1)± (x)e1 + s(2)± (x)e2). �

Proof. Again, we prove the statement for the Jost functionm−. The proof for other Jost

functions is analogous. First, let us consider the limiting values ofm− and m̃− given by

m∞
− (x) := e

1
2i
∫ x−∞ |u(y)|2dy , m̃∞

− (x) := e
1
2i
∫ x−∞ |ũ(y)|2dy

Then, for every x ∈ R, we have

|m∞
− (x)− m̃∞

− (x)| =
∣∣∣e 1

2i
∫ x−∞(|u(y)|2−|ũ(y)|2)dy − 1

∣∣∣
≤ C1(U)

∫ x

−∞
(|u(y)|2 − |ũ(y)|2)dy

≤ 2UC1(U)‖u− ũ‖L2 , (2.46)

where C1(U) is a U-dependent positive constant. Using the integral equation (2.34), we

obtain

(m− −m∞
− e1)− (m̃− − m̃∞

− e1) = (I − K)−1he2 − (I − K̃)−1h̃e2

= (I − K)−1(h− h̃)e2 + [(I − K)−1 − (I − K̃)−1]h̃e2
= (I − K)−1(h− h̃)e2 + (I − K)−1(K − K̃)(I − K̃)−1h̃e2, (2.47)

where K̃ and h̃ denote the same as K and h but with u being replaced by ũ. To estimate

the first term, we write

h(x; z)− h̃(x; z) =
∫ x

−∞
e2iz(x−y) [w(y)− w̃(y)

]
dy, (2.48)

where

w − w̃ =
(
∂x ¯̃u+ 1

2i
|ũ|2 ¯̃u

)
m̃∞

− −
(
∂xū+ 1

2i
|u|2ū

)
m∞

− .

By using (2.46), we obtain ‖w − w̃‖L2,1 ≤ C2(U)‖u − ũ‖H1,1 , where C2(U) is another

U-dependent positive constant. By using (2.48) and Proposition 1, we obtain for every

x0 ∈ R
−:

sup
x∈(−∞,x0)

∥∥∥〈x〉
(
h(x; z)− h̃(x; z)

)∥∥∥
L2z (R)

≤ √
πC2(U)‖u− ũ‖H1,1 . (2.49)
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5682 D. E. Pelinovsky and Y. Shimabukuro

This gives the estimate for the first term in (2.47). To estimate the second term, we

use (2.11) and observe that K is a Lipschitz continuous operator from L∞
x (R;L2

z(R)) to

L∞
x (R;L2

z(R)) in the sense that for every f ∈ L∞
x (R;L2

z(R)), we have

‖(K − K̃)f ‖L∞
x L2z

≤ C3(U)‖u− ũ‖H1,1‖f ‖L∞
x L2z

, (2.50)

where C3(U) is anotherU-dependent positive constant that is independent of f . By using

(2.36), (2.38), (2.47), (2.49), and (2.50), we obtain for every x0 ∈ R
−:

sup
x∈(−∞,x0)

∥∥〈x〉 (m−(x; ·)−m∞
− (x)e1 − m̃−(x; ·)+ m̃∞

− (x)e1
)∥∥

L2z (R)
≤ C(U)‖u− ũ‖H1,1 .

This yields the first part of the bound (2.43) form− and m̃−. The other part of the bound

(2.43) and the bound (2.45) for m− and m̃− follow by repeating the same analysis to the

integral equations (2.40) and (2.41). �

2.2 Scattering coefficients

Let us define the Jost functions of the original Kaup–Newell spectral problem (2.1).

These Jost functions are related to the Jost functions of the Zakharov–Shabat spectral

problems (2.4) and (2.5) by using the matrix transformations (2.3). To be precise, we

define

ϕ±(x; λ) = T−1
1 (x; λ)m±(x; z), φ±(x; λ) = T−1

2 (x; λ)n±(x; z), (2.51)

where the inverse matrices are given by

T−1
1 (x; λ) = 1

2iλ

[
2iλ 0

u(x) 1

]
and T−1

2 (x; λ) = 1

2iλ

[
1 u(x)

0 2iλ

]
. (2.52)

It follows from the integral equations (2.8) and (2.9) and the transformation (2.51) that

the original Jost functions ϕ± and φ± satisfy the following Volterra’s integral equations

ϕ±(x; λ) = e1 + λ

∫ x

±∞

[
1 0

0 e2iλ
2(x−y)

]
Q(u(y))ϕ±(y; λ)dy, (2.53)

and

φ±(x; λ) = e2 + λ

∫ x

±∞

[
e−2iλ2(x−y) 0

0 1

]
Q(u(y))φ±(y; λ)dy. (2.54)
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Existence of Global Solutions 5683

The following corollary is obtained from Lemma 1 and the representations (2.51) and

(2.52).

Corollary 2. Let u ∈ L1(R) ∩ L∞(R) and ∂xu ∈ L1(R). For every λ2 ∈ R\{0}, there exist

unique functions ϕ±(·; λ) ∈ L∞(R) and φ±(·; λ) ∈ L∞(R) such that

ϕ±(x; λ) → e1,

φ±(x; λ) → e2,

}
as x → ±∞. (2.55)

Moreover, ϕ(1)± (x; λ) and φ
(2)
± (x; λ) are even in λ, whereas ϕ

(2)
± (x; λ) and φ

(1)
± (x; λ) are

odd in λ. �

Proof. To the conditions of Lemma 1, we added the condition u ∈ L∞(R), which ensures

that T−1
1,2(x; λ) are bounded for every x ∈ R and for every λ ∈ C\{0}. Then, the existence

and uniqueness of the functions ϕ±(·; λ) ∈ L∞(R) and φ±(·; λ) ∈ L∞(R), as well as the

limits (2.55) follow by the representation (2.51)–(2.52) and by the first assertion of Lemma

1. The parity argument for components of ϕ±(x; λ) and ψ±(x; λ) in λ follow from the

representation (2.51) and (2.52) and the fact thatm±(x; z) and n±(x; z) are even in λ since

z = λ2. �

Remark 6. There is no singularity in the definition of Jost functions at the value

λ = 0. The integral equations (2.53) and (2.54) with λ = 0 admit unique Jost functions

ϕ±(x; 0)= e1 and φ±(x; 0) = e2, which yield unique definitions for m±(x; 0) and n±(x; 0):

m±(x; 0) =
[

1

−ū(x)

]
, n±(x; 0) =

[
−u(x)

1

]
,

which follow from the unique solutions to the integral equations (2.8) and (2.9)

at z = 0. �

Remark 7. The only purpose in the definition of the original Jost functions (2.51) is

to introduce the standard form of the scattering relations, similar to the one used in

the literature [18]. After introducing the scattering data for λ ∈ R ∪ iR, we analyze their

behavior in the complex z-plane, instead of the complex λ-plane, where z = λ2. �

Analytic properties of the Jost functions ϕ±(x; ·) and φ±(x; ·) for every x ∈ R are

summarized in the following result. The result is a corollary of Lemmas 1 and 3.
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5684 D. E. Pelinovsky and Y. Shimabukuro

Corollary 3. Under the same assumption as Corollary 2, for every x ∈ R, the Jost

functions ϕ−(x; ·) and φ+(x; ·) are analytic in the first and third quadrant of the λ plane

(where Im(λ2) > 0), whereas the Jost functions ϕ+(x; ·) and φ−(x; ·) are analytic in the

second and fourth quadrant of the λ plane (where Im(λ2) < 0). Moreover, if u ∈ H1,1(R),

then for every x ∈ R
±, we have

ϕ(1)± (x; λ)−m∞
± (x), 2iλϕ(2)± (x; λ)− ū(x)m∞

± (x), λ
−1ϕ(2)± (x; λ) ∈ H1

z (R) (2.56)

and

λ−1φ(1)± (x; λ), 2iλφ(1)± (x; λ)− u(x)n∞
± (x), φ

(2)
± (x; λ)− n∞

± (x) ∈ H1
z (R), (2.57)

where m∞
± and n∞

± are the same as in Lemma 2. �

Proof. By chain rule, we obtain

∂

∂λ̄
= 2λ̄

∂

∂ z̄
.

As a result, the analyticity result for the Jost functions ϕ± and φ± follows from the

corresponding result of Lemma 1. With the transformation (2.51) and (2.52) and the

result of Lemma 3, we obtain (2.56) and (2.57) for ϕ(1)± , λϕ(2)± , λφ(1)± , and φ(2)± .

It remains to consider λ−1ϕ
(2)
± and λ−1φ

(1)
± . Although the result also follows from

Remark 6, we will give a direct proof. We write explicitly from the integral equation

(2.53):

λ−1ϕ(2)± (x; λ) = −
∫ x

±∞
e2iz(x−y)u(y)m∞

± (y)dy −
∫ x

±∞
e2iz(x−y)u(y)

(
m(1)

± (y; z)−m∞
± (y)

)
dy,

(2.58)

wherem∞
± = e

1
2i
∫ x±∞ |u(y)|2dy and z = λ2 as the same as in Lemma 3. By using Proposition 1

in the same way as it was used in the proof of Lemma 3, we obtain λ−1ϕ
(2)
± (x; λ) ∈ H1

z (R)

for every x ∈ R
±. The proof of λ−1φ

(1)
± (x; λ) ∈ H1

z (R) is similar. �

We note that ψ(x) := ϕ±(x; λ)e−iλ2x and ψ(x) := φ±(x; λ)eiλ
2x satisfies the Kaup–

Newell spectral problem (2.1), see asymptotic limits (2.2) and (2.55). By the ODE theory

for the second-order differential systems, only two solutions are linearly independent.

Therefore, for every x ∈ R and every λ2 ∈ R\{0}, we define the scattering data according

to the following transfer matrix[
ϕ−(x; λ)

φ−(x; λ)

]
=
[

a(λ) b(λ)e2iλ
2x

c(λ)e−2iλ2x d(λ)

][
ϕ+(x; λ)

φ+(x; λ)

]
. (2.59)
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Existence of Global Solutions 5685

By Remark 6, the transfer matrix is extended to λ = 0 with a(0) = d(0) = 1 and b(0) =
c(0) = 0.

Since the coefficient matrix in the Kaup–Newell spectral problem (2.1) has zero

trace, the Wronskian determinant, denoted by W , of two solutions to the differential

system (2.1) for any λ ∈ C is independent of x. As a result, we verify that the scattering

coefficients a, b, c, and d are independent of x:

a(λ) = W(ϕ−(x; λ)e−iλ2x ,φ+(x; λ)e+iλ2x) = W(ϕ−(0; λ),φ+(0; λ)), (2.60)

b(λ) = W(ϕ+(x; λ)e−iλ2x ,ϕ−(x; λ)e−iλ2x) = W(ϕ+(0; λ),ϕ−(0; λ)), (2.61)

where we have used the Wronskian relation W(ϕ+,φ+) = 1, which follows from the

boundary conditions (2.55) as x → +∞.

Now we note the symmetry on solutions to the linear equation (2.1). If ψ is a

solution for any λ ∈ C, then σ1σ3ψ is also a solution for λ̄ ∈ C, where σ1 and σ3 are Pauli

matrices in (1.12). As a result, using the boundary conditions for the normalized Jost

functions, we obtain the following relations:

φ±(x; λ) = σ1σ3ϕ±(x; λ),

where ϕ±(x; λ) means that we take complex conjugation of ϕ± constructed from the

system of integral equations (2.53) for λ̄. By applying complex conjugation to the

first equation in system (2.59) for λ̄, multiplying it by σ1σ3, and using the relations

σ1σ3 = −σ3σ1 and σ 2
1 = σ 2

3 = 1, we obtain the second equation in system (2.59) with

the correspondence

c(λ) = −b(λ), d(λ) = a(λ) λ ∈ R ∪ iR. (2.62)

From theWronskian relationW(ϕ−,φ−) = 1, which can be established from the boundary

conditions (2.55) as x → −∞, we verify that the transfer matrix in system (2.59) has the

determinant equals to unity. In view of the correspondence (2.62), this yields the result

a(λ)a(λ)+ b(λ)b(λ) = 1, λ ∈ R ∪ iR. (2.63)

We now study properties of the scattering coefficients a and b in suitable

function spaces. We prove that

a(λ) → a∞ := e
1
2i
∫
R

|u|2dx as |λ| → ∞, (2.64)
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5686 D. E. Pelinovsky and Y. Shimabukuro

whereas a(λ)− a∞, λb(λ), and λ−1b(λ) are H1
z (R) functions with respect to z if u belongs

to H1,1(R) defined in (1.13). Moreover, we show that λb(λ) is also in L2,1
z (R) if u ∈ H2(R)∩

H1,1(R).

Lemma 4. If u ∈ H1,1(R), then the function a(λ) (and respectively, a(λ)) is continued

analytically in C
+ (and respectively in C

−) with respect to z = λ2, and, in addition,

a(λ)− a∞, λb(λ), λ−1b(λ) ∈ H1
z (R), (2.65)

where a∞ := e
1
2i
∫
R

|u|2dx . Moreover, if u ∈ H2(R) ∩ H1,1(R), then

λb(λ), λ−1b(λ) ∈ L2,1
z (R). (2.66)

�

Proof. We consider the integral equations (2.53) and (2.54). By taking the limit x → +∞,

which is justified due to Corollary 2 and Remark 6 for every λ ∈ R ∪ iR, and using the

scattering relation (2.59) and the transformation (2.51) and (2.52), we obtain

a(λ) = 1 + λ

∫
R

u(x)ϕ(2)− (x; λ)dx (2.67)

and

a(λ) = 1 − λ

∫
R

u(x)φ(1)− (x; λ)dx. (2.68)

It follows from the representations (2.67) and (2.68), as well as Corollary 3, that a(λ) is

continued analytically in C
+ with respect to z, whereas a(λ) is continued analytically in

C
− with respect to z. Using limits (2.15) in Lemma 2 and transformation (2.52), we obtain

the following limit for the scattering coefficient a(λ) along a contour in C
+ extended to

|Im(z)| → ∞:

lim
|z|→∞

a(λ) = 1 + 1

2i

∫
R

|u(x)|2e 1
2i
∫ x−∞ |u(y)|2dydx = e

1
2i
∫
R

|u(x)|2dx =: a∞.

In order to prove that a(λ) − a∞ is a H1
z (R) function, we use the Wronskian

representation (2.60). Recall from the transformation (2.51) and (2.52) that

ϕ(1)± (x; λ) = m(1)
± (x; z) and φ(2)± (x; λ) = n(2)± (x; z).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/2018/18/5663/3078585 by M
cM

aster U
niversity Library , C

ollections - Serials Processing user on 11 O
ctober 2018



Existence of Global Solutions 5687

Subtracting the limiting values for a and the normalized Jost functions m± and n±, we

rewrite the Wronskian representation (2.60) explicitly

a(λ)− a∞ = (m(1)
− (0; z)−m∞

− (0))(n
(2)
+ (0; z)− n∞

+ (0))+m∞
− (0)(n

(2)
+ (0; z)− n∞

+ (0))

+n∞
+ (0)(m

(1)
− (0; z)−m∞

− (0))− ϕ(2)− (0; λ)φ(1)+ (0; λ). (2.69)

By (2.30) in Lemma 3, all but the last term in (2.69) belong to H1
z (R). Furthermore,

λ−1ϕ
(2)
± (0; λ) and 2iλφ(1)± (0; λ) − u(0)n∞

± (0) also belong to H1
z (R) by Corollary 3. Using

the representation (2.69) and the Banach algebra property of H1
z (R), we conclude that

a(λ)− a∞ ∈ H1
z (R).

Next, we analyze the scattering coefficient b. By using the representation (2.51)

and (2.52) and the Wronskian representation (2.61), we write

2iλb(λ) = m(1)
+ (0; z)m

(2)
− (0; z)−m(2)

+ (0; z)m
(1)
− (0; z). (2.70)

By (2.30) in Lemma 3 (after the corresponding limiting values are subtracted from

m(1)
± (0; z)), we establish that λb(λ) ∈ H1

z (R). On the other hand, the same Wronskian

representation (2.61) can also be written in the form

λ−1b(λ) = m(1)
+ (0; z)λ

−1ϕ(2)− (0; λ)−m(1)
− (0; z)λ

−1ϕ(2)+ (0; λ). (2.71)

Recalling that λ−1ϕ
(2)
± (0; λ) belongs to H1

z (R) by Corollary 3, we obtain λ−1b(λ) ∈ H1
z (R).

The first assertion (2.65) of the lemma is proved.

To prove the second assertion (2.66) of the lemma, we note that λ−1b(λ) ∈ L2,1
z (R)

because zλ−1b(λ) = λb(λ) ∈ H1
z (R). On the other hand, to show that λb(λ) ∈ L2,1

z (R), we

multiply equation (2.70) by z and write the resulting equation in the form

2iλzb(λ) = m(1)
+ (0; z)

(
zm(2)

− (0; z)− q(2)− (0)
)−m(1)

− (0; z)
(
zm(2)

+ (0; z)− q(2)+ (0)
)

+q(2)− (0)
(
m(1)

+ (0; z)−m∞
+ (0)

)− q(2)+ (0)
(
m(1)

− (0; z)−m∞
− (0)

)
, (2.72)

where we have used the identity q(2)− (0)m∞
+ (0)−q(2)+ (0)m∞

− (0) = 0 that follows from limits

(2.15) and (2.17). By (2.30) and (2.31) in Lemma 3, all the terms in the representation (2.72)

are in L2
z(R), hence λb(λ) ∈ L2,1

z (R). The second assertion (2.66) of the lemma is proved. �

We show that the mapping

H1,1(R) � u → a(λ)− a∞, λb(λ), λ−1b(λ) ∈ H1
z (R) (2.73)
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5688 D. E. Pelinovsky and Y. Shimabukuro

is Lipschitz continuous. Moreover, we also have Lipschitz continuity of the mapping

H2(R) ∩ H1,1(R) � u → λb(λ), λ−1b(λ) ∈ L2,1
z (R). (2.74)

The corresponding result is deduced from Lemma 4 and Corollary 1.

Corollary 4. Let u, ũ ∈ H1,1(R) satisfy ‖u‖H1,1 , ‖ũ‖H1,1 ≤ U for some U > 0. Denote the

corresponding scattering coefficients by (a,b) and (ã, b̃), respectively. Then, there is a

positive U-dependent constant C(U) such that

‖a(λ)− a∞ − ã(λ)+ ã∞‖H1
z

+ ‖λb(λ)− λb̃(λ)‖H1
z

+ ‖λ−1b(λ)− λ−1b̃(λ)‖H1
z

≤ C(U)‖u− ũ‖H1,1 .

(2.75)

Moreover, if u, ũ ∈ H2(R) ∩ H1,1(R) satisfy ‖u‖H2∩H1,1 , ‖ũ‖H2∩H1,1 ≤ U , then there is a

positive U-dependent constant C(U) such that

‖λb(λ)− λb̃(λ)‖L2,1z + ‖λ−1b(λ)− λ−1b̃(λ)‖L2,1z ≤ C(U)‖u− ũ‖H2∩H1,1 . (2.76)

�

Proof. The assertion follows from the representations (2.69)–(2.72), as well as the

Lipschitz continuity of the Jost functions m± and n± established in Corollary 1. �

Another result, which follows from Lemma 4, is the parity property of the scat-

tering coefficients a and b with respect to λ. The corresponding result is given in the

following corollary.

Corollary 5. The scattering coefficients a and b are even and odd functions in λ,

respectively, for λ ∈ R ∪ iR. Moreover, they satisfy the following scattering relation

{
|a(λ)|2 + |b(λ)|2 = 1, λ ∈ R,

|a(λ)|2 − |b(λ)|2 = 1, λ ∈ iR.
(2.77)

�

Proof. Because a(λ) and λ−1b(λ) are functions of z = λ2, as follows from Lemma 4, we

have a(−λ) = a(λ) and b(−λ) = −b(λ) for all λ ∈ R ∪ iR. For λ ∈ R, the scattering relation
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Existence of Global Solutions 5689

(2.63) yields the first line of (2.77). For λ = iγ with γ ∈ R, the parity properties of a and

b imply

a(λ̄) = a(−iγ ) = a(iγ ) = a(λ) and b(λ) = b(−iγ ) = −b(iγ ) = −b(λ).

Substituting these relations to the scattering relation (2.63), we obtain the second line

of (2.77) �

3 Formulations of the Riemann–Hilbert Problem

We deduce the Riemann–Hilbert problem of complex analysis from the jump condi-

tion for normalized Jost functions on R ∪ iR in the λ plane, which corresponds to

R in the z plane, where z = λ2. The jump condition yields boundary conditions for

the Jost functions extended to sectionally analytic functions in different domains

of the corresponding complex plane. In the beginning, we derive the jump condi-

tion in the λ plane by using the Jost functions of the original Kaup–Newell spectral

problem (2.1).

Let us define the reflection coefficient by

r(λ) := b(λ)

a(λ)
, λ ∈ R ∪ iR. (3.1)

Each zero of a on R ∪ iR corresponds to the resonance, according to Definition 2. By the

assumptions of Theorem 1, the spectral problem (2.1) admits no resonances, therefore,

there exists a positive number A such that

|a(λ)| ≥ A > 0, λ ∈ R ∪ iR. (3.2)

Thus, r(λ) is well-defined for every λ ∈ R ∪ iR.

Under the condition (3.2), the scattering relations (2.59) with (2.62) can be

rewritten in the equivalent form:

ϕ−(x; λ)
a(λ)

− ϕ+(x; λ) = r(λ)e2iλ
2xφ+(x; λ) (3.3)
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5690 D. E. Pelinovsky and Y. Shimabukuro

and

φ−(x; λ)

a(λ̄)
− φ+(x; λ) = −r(λ̄)e−2iλ2xϕ+(x; λ), (3.4)

where λ ∈ R ∪ iR.

By Lemma 4, a(λ) is continued analytically in the first and third quadrants of

the λ plane, where Im(λ2) > 0. Also a(λ) approaches to a finite limit a∞ �= 0 as |λ| → ∞.

By a theorem of complex analysis on zeros of analytic functions, a has at most finite

number of zeros in each quadrant of the λ plane. Each zero of a corresponds to an

eigenvalue of the spectral problem (2.1) with the L2(R) solution ψ(x) decaying to zero

exponentially fast as |x| → ∞. Indeed, this follows from the Wronskian relation (2.60)

between the Jost functions ϕ− and ψ+ extended to the first and third quadrant of the λ

plane by Corollary 3. By the assumptions of Theorem 1, the spectral problem (2.1) admits

no eigenvalues, hence the bound (3.2) is extended to the first and third quadrants of

the λ plane. Therefore, the functions ϕ−(x;λ)
a(λ) and φ−(x;λ)

a(λ̄)
are analytic in the corresponding

domains of the λ plane.

From the scattering relations (3.3) and (3.4), we can define the complex functions

+(x; λ) :=
[
ϕ−(x; λ)
a(λ)

,φ+(x; λ)
]
, −(x; λ) :=

[
ϕ+(x; λ),

φ−(x; λ)

a(λ̄)

]
. (3.5)

By Corollary 3, Lemma 4, and the condition (3.2) on a, for every x ∈ R, the function

+(x; ·) is analytic in the first and third quadrants of the λ plane, whereas the function

−(x; ·) is analytic in the second and fourth quadrants of the λ plane. For every x ∈ R

and λ ∈ R ∪ iR, the two functions are related by the jump condition

+(x; λ)−−(x; λ) = −(x; λ)S(x; λ), (3.6)

where

S(x; λ) :=
[

|r(λ)|2 r(λ)e−2iλ2x

r(λ)e2iλ
2x 0

]
λ ∈ R (3.7)

and

S(x; λ) :=
[

−|r(λ)|2 −r(λ)e−2iλ2x

r(λ)e2iλ
2x 0

]
λ ∈ iR. (3.8)
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Existence of Global Solutions 5691

Note that r(−λ) = −r(λ) by Corollary 5, so that r(0) = 0. By Corollary 3, the functions

±(x; λ) satisfy the limiting behavior as |λ| → ∞ along a contour in the corresponding

domains of their analyticity in the λ plane:

±(x; λ) → ∞(x) :=
[
e

1
2i
∫ x+∞ |u(y)|2dye1, e− 1

2i
∫ x+∞ |u(y)|2dye2

]
as |λ| → ∞. (3.9)

The jump conditions (3.6) and the boundary conditions (3.9) set up a Riemann–

Hilbert problem to find sectionally analytic functions (x; ·) for every x ∈ R. It is quite

remarkable that the matrix S is Hermitian for λ ∈ R. In this case, we can use the theory

of Zhou [41] to obtain a unique solution to the Riemann–Hilbert problem (3.6), (3.7),

and (3.9). However, the matrix S is not Hermitian for λ ∈ iR. Nevertheless, the second

scattering relation (2.77) yields a useful constraint:

1 − |r(λ)|2 = 1

|a(λ)|2 ≥ c20 > 0 λ ∈ iR, (3.10)

where c−1
0 := supλ∈iR |a(λ)|. The constraint (3.10) will be used to obtain a unique solution

to the Riemann–Hilbert problem (3.6), (3.8), and (3.9).

We note that only the latter case (3.8), which is relevant to the imaginary values

of λ, was considered in the context of the Kaup–Newell spectral problem by Kitaev &

Vartanian [19], who studied the long time asymptotic solution of the derivative NLS

equation (1.1), also in the case of no solitons. The smallness condition (3.10) does not

need to be assumed a priori, as it is done in Lemma 2.2 in [19], but appears naturally

from the second scattering relation (2.77). The Hermitian case of real values of λ was

missed in [19].

We also note that the scattering matrix S(x; λ) is analogous to the one known for

the focusing NLS equation if λ ∈ R and the one known for the defocusing NLS equation

if λ ∈ iR. As a result, the inverse scattering transform for the derivative NLS equation

combines elements of the inverse scattering transforms developed for the focusing and

defocusing cubic NLS equations [11, 12, 40].

In the rest of this section, we reformulate the jump condition in the z plane and

introduce two scattering coefficients r±, which are defined on the real line in the function

space H1(R) ∩ L2,1(R). The scattering coefficients r± allow us to recover a potential u in

the function space H2(R) ∩ H1,1(R) (in Section 4).
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5692 D. E. Pelinovsky and Y. Shimabukuro

3.1 Reformulation of the Riemann–Hilbert problem (3.6)

Using transformationmatrices in (2.51) and (2.52),we can rewrite the scattering relations

(3.3) and (3.4) in terms of the z-dependent Jost functions m± and n±:

m−(x; z)
a(λ)

−m+(x; z) = 2iλb(λ)

a(λ)
e2izxp+(x; z) (3.11)

and

p−(x; z)

a(λ̄)
− p+(x; z) = − b(λ̄)

2iλa(λ̄)
e−2izxm+(x; z), (3.12)

where z ∈ R, m± are defined by Lemma 1, and p± are given explicitly by

p±(x; z) = 1

2iλ
T1(x; λ)T

−1
2 (x; λ)n±(x; z) = − 1

4z

[
1 u(x)

−ū(x) −|u(x)|2 − 4z

]
n±(x; z). (3.13)

Properties of the new functions p± are summarized in the following result.

Lemma 5. Under the conditions of Lemma 1, for every x ∈ R, the functions p±(x; z)

are continued analytically in C
± and satisfy the following limits along a contour in the

domains of their analyticity extended to |Im(z)| → ∞:

lim
|z|→∞

p±(x; z) = n∞
± (x)e2, (3.14)

where n∞
± are the same as in the limits (2.16). �

Proof. The asymptotic limits (3.14) follow from the representation (3.13) and the asymp-

totic limits (2.16) for n±(x; z) as |z| → ∞ in Lemma 2. Using the transformation (2.51)

and (2.52), functions p± can be written in the equivalent form

p±(x; z) = n(2)± (x; z)e2 + 1

2iλ

[
1

−ū(x)

]
φ(1)± (x; λ), (3.15)

where both n(2)± (x; z) and λ−1φ
(1)
± (x; λ) are continued analytically in C

± with respect to z

by Lemma 1 and Corollary 3. From the Volterra integral equation (2.54), we also obtain

λ−1φ(1)± (x; λ) =
∫ x

±∞
e−2iz(x−y)u(y)n(2)± (y; z)dy, (3.16)

therefore, p±(x; 0) exists for every x ∈ R. Thus, for every x ∈ R, the analyticity properties

of p±(x; ·) are the same as those of n±(x; ·). �
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Existence of Global Solutions 5693

Let us now introduce the new scattering data:

r+(z) := − b(λ)

2iλa(λ)
, r−(z) := 2iλb(λ)

a(λ)
, z ∈ R. (3.17)

which satisfy the relation

r−(z) = 4zr+(z), z ∈ R. (3.18)

It is worthwhile noting that

{
r+(z)r−(z) = |r(λ)|2, z ∈ R

+, λ ∈ R,

r+(z)r−(z) = −|r(λ)|2, z ∈ R
−, λ ∈ iR.

(3.19)

The scattering data r± satisfy the following properties, which are derived from the

previous results.

Lemma 6. Assume the condition (3.2) on a. If u ∈ H1,1(R), then r± ∈ H1(R), whereas if

u ∈ H2(R) ∩ H1,1(R), then r± ∈ L2,1(R). Moreover, the mapping

H2(R) ∩ H1,1(R) � u → (r+, r−) ∈ H1(R) ∩ L2,1(R) (3.20)

is Lipschitz continuous. �

Proof. The first assertion on r± follows from Lemma 4. To prove Lipschitz continuity

of the mapping (3.20), we use the following representation for r− and r̃− that correspond

to two potentials u and ũ,

r− − r̃− = 2iλ(b− b̃)

a
+ 2iλ̃b

aã
[(̃a− ã∞)− (a− a∞)] + 2iλ̃b

aã
(̃a∞ − a∞). (3.21)

Lipschitz continuity of the mapping (3.20) for r− follows from the representation (3.21)

and Corollary 4. Lipschitz continuity of the mapping (3.20) for r+ is studied by using a

representation similar to (3.21). �

Remark 8. By Corollary 5, a(−λ) = a(λ) for every λ ∈ R ∪ iR. Therefore, when we

introduce z = λ2 and start considering functions of z, it makes sense to introduce

a(z) :=a(λ) for every z ∈ R. In what follows, we drop the bold notations in the definition

of a(z). �
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5694 D. E. Pelinovsky and Y. Shimabukuro

For every x ∈ R and z ∈ R, we define two matrices P+(x; z) and P−(x; z) by

P+(x; z) :=
[
m−(x; z)
a(z)

, p+(x; z)
]
, P−(x; z) :=

[
m+(x; z),

p−(x; z)
a(z)

]
. (3.22)

By Lemmas 1, 4, and 5, as well as the condition (3.2) on a, the functions P±(x; ·) for every
x ∈ R are continued analytically in C

±. The scattering relations (3.11) and (3.12) are now

rewritten as the jump condition between functions P±(x; z) across the real axis in z for

every x ∈ R:

P+(x; z)− P−(x; z) = P−(x; z)R(x; z), R(x; z) :=
[
r+(z)r−(z) r+(z)e−2izx

r−(z)e2izx 0

]
z ∈ R. (3.23)

By Lemmas 2, 4, and 5, the functions P±(x; ·) satisfy the limiting behavior as |z| → ∞
along a contour in the domain of their analyticity in the z plane:

P±(x; z) → ∞(x) as |z| → ∞, (3.24)

where ∞ is the same as in (3.9). The boundary conditions (3.24) depend on x, which

represents an obstacle in the inverse scattering transform, where we reconstruct the

potential u(x) from the behavior of the analytic continuations of the Jost functions

P±(x; ·) for x ∈ R. Therefore, we fix the boundary conditions to the identity matrix by

defining new matrices

M±(x; z) := [∞(x)]−1 P±(x; z), x ∈ R, z ∈ C
±. (3.25)

As a result, we obtain the Riemann–Hilbert problem for analytic functionsM±(x; ·) in C
±,

which is given by the jump condition equipped with the uniform boundary conditions:{
M+(x; z)−M−(x; z) = M−(x; z)R(x; z), z ∈ R,

M±(x; z) → I as |z| → ∞.
(3.26)

The scattering data r± ∈ H1(R) ∩ L2,1(R) are defined in Lemma 6.

Figure 1 shows the regions of analyticity of functions± in the λ plane (left) and

those of functions M± in the z plane (right).

The scattering matrix R in the Riemann–Hilbert problem (3.26) is not Hermitian.

As a result, it is difficult to use the theory of Zhou [41] in order to construct a unique

solution for M± in the Riemann–Hilbert problem (3.26) without restricting the scatter-

ing data r± to be small in their norms. On the other hand, the original Riemann–Hilbert
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Existence of Global Solutions 5695

Fig. 1. Blue (dark) and red (bright) regions mark domains of analyticity of ± in the λ plane (left)

and those of M± in the z plane (right).

problem (3.6) in the λ plane does not have these limitations. Therefore, in the follow-

ing subsection, we consider two equivalent reductions of the Riemann–Hilbert problem

(3.26) in the z plane to those relatedwith the scatteringmatrix S instead of the scattering

matrix R.

3.2 Two transformations of the Riemann-Hilbert problem (3.26)

For every λ ∈ C\{0}, we denote

τ1(λ) :=
[
1 0

0 2iλ

]
, τ2(λ) :=

[
(2iλ)−1 0

0 1

]
(3.27)

and observe that

τ−1
1 (λ)R(x; z)τ1(λ) = τ−1

2 (λ)R(x; z)τ2(λ) = S(x; λ), z ∈ R, λ ∈ R ∪ iR,

where S(x; λ) is defined in (3.7) and (3.8), whereas R(x; z) is defined in (3.23). Using these

properties,we introduce two formally equivalent reformulations of theRiemann–Hilbert

problem (3.26):

{
G+1,2(x; λ)− G−1,2(x; λ) = G−1,2(x; λ)S(x; λ)+ F1,2(x; λ), λ ∈ R ∪ iR,

lim|λ|→∞ G±1,2(x; λ) = 0,
(3.28)

where

G±1,2(x; λ) := M±(x; z)τ1,2(λ)− τ1,2(λ), F1,2(x; λ) := τ1,2(λ)S(x; λ). (3.29)
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5696 D. E. Pelinovsky and Y. Shimabukuro

Fig. 2. A useful diagram showing transformations of the Riemann–Hilbert problems.

The functions G+1,2(x; λ) are analytic in the first and third quadrants of the λ plane,

whereas the functions G−1,2(x; λ) are analytic in the second and fourth quadrants of

the λ plane. Although the behavior of functions M±(x; z)τ1,2(λ) may become singular as

λ → 0, we prove in Corollary 6 below that G±1,2(x; λ) are free of singularities as λ → 0.

Figure 2 summarizes on the transformations of the Riemann–Hilbert problems.

Solvability of the Riemann–Hilbert problem (3.28) is obtained in Section 4.1. Then, in

Section 4.2, we show that the solution to the two related Riemann-Hilbert problems

(3.28) can be used to obtain the solution to theRiemann-Hilbert problem (3.26). In Section

4.3, we show how this procedure defines the inverse scattering transform to recover the

potential u of the Kaup–Newell spectral problem (2.1) from the scattering data r±.

4 Inverse Scattering Transform

We are now concerned with the solvability of the Riemann-Hilbert problem (3.26) for

the given scattering data r+, r− ∈ H1(R) ∩ L2,1(R) satisfying the constraint (3.18). We are

looking for analytic matrix functionsM±(x; ·) in C
± for every x ∈ R. Let us introduce the

following notations for the column vectors of the matrices M± as

M±(x; z) = [μ±(x; z), η±(x; z)]. (4.1)

Before we proceed, let us inspect regularity of the reflection coefficient r(λ) as a function

of z on R.

Proposition 2. If r±(z) ∈ H1
z (R) ∩ L2,1

z (R), then r(λ) ∈ L2,1
z (R) ∩ L∞

z (R). �
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Existence of Global Solutions 5697

Proof. Since r± ∈ L2,1(R) and |r(λ)|2 = sign(z) r+(z)r−(z) for every z ∈ R, we have

r(λ) ∈ L2,1
z (R) by Cauchy–Schwarz inequality.

To show that r(λ) ∈ L∞
z (R), we notice that r(λ) can be defined equivalently from

(3.17) in the following form:

r(λ) =
{

−2iλr+(z) |λ| ≤ 1

(2iλ)−1r−(z) |λ| ≥ 1.

Since r± ∈ L∞(R) as it follows from r± ∈ H1(R), then we have r(λ) ∈ L∞
z (R). �

Remark 9. We do not expect generally that r(λ) belongs to H1
z (R). For instance, if

h(λ) := λ

(1 + λ4)s
, s >

5

4
,

then λh(λ), λ−1h(λ) ∈ H1
z (R) ∩ L2,1

z (R), h(λ) ∈ L2,1
z (R) ∩ L∞

z (R) but h(λ) /∈ H1
z (R). �

We also note another useful elementary result.

Proposition 3. If r−(z) ∈ H1
z (R) ∩ L2,1

z (R), then ‖λr−(z)‖L∞
z ≤ ‖r−‖H1∩L2,1 . �

Proof. The result follows from the representation

zr−(z)2 =
∫ z

0

(
r−(z)2 + 2zr−(z)r ′

−(z)
)
dz.

Using Cauchy–Schwarz inequality for r−(z) ∈ H1
z (R) ∩ L2,1

z (R), we obtain the desired

bound. �

4.1 Solution to the Riemann–Hilbert problems (3.28)

Let us start with the definition of the Cauchy operator, which can be found in many

sources, e.g., in [12]. For any function h ∈ Lp(R) with 1 ≤ p < ∞, the Cauchy operator

denoted by C is given by

C(h)(z) := 1

2π i

∫
R

h(s)

s− z
ds, z ∈ C \ R. (4.2)

The function C(h) is analytic off the real line such that C(h)(·+iy) is in Lp(R) for each y �=
0. When z approaches to a point on the real line transversely from the upper and lower

half planes, that is, if y → ±0, the Cauchy operator C becomes the Plemelj projection
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5698 D. E. Pelinovsky and Y. Shimabukuro

operators, denoted respectively by P±. These projection operators are given explicitly

by

P±(h)(z) := lim
ε↓0

1

2π i

∫
R

h(s)

s− (z ± εi)
ds z ∈ R. (4.3)

The following proposition summarizes the basic properties of the Cauchy and projection

operators.

Proposition 4. For every h ∈ Lp(R), 1 ≤ p < ∞, the Cauchy operator C(h) is analytic off

the real line, decays to zero as |z| → ∞, and approaches to P±(h) almost everywhere,

when a point z ∈ C
± approaches to a point on the real axis by any non-tangential contour

from C
±. If 1 < p < ∞, then there exists a positive constant Cp (with Cp=2 = 1) such that

‖P±(h)‖Lp ≤ Cp‖h‖Lp . (4.4)

If h ∈ L1(R), then the Cauchy operator admits the following asymptotic limit in either

C
+ or C

−:

lim
|z|→∞

zC(h)(z) = − 1

2π i

∫
R

h(s)ds. (4.5)

�

Proof. Analyticity, decay, and boundary values of C on the real axis follow from Theo-

rem 11.2 and Corollary 2 on pp. 190–191 in [14]. By Sokhotski–Plemelj theorem, we have

the relations

P±(h)(z) = ±1

2
h(z)− i

2
H(h)(z) z ∈ R, (4.6)

where H is the Hilbert transform given by

H(h)(z) := 1

π
lim
ε↓0

(∫ z−ε

−∞
+
∫ ∞

z+ε

)
h(s)

s− z
ds z ∈ R.

By Riesz’s theorem (Theorem 3.2 in [13]), H is a bounded operator from Lp(R) to Lp(R)

for every 1 < p < ∞, so that the bound (4.4) holds with C2 = 1 and Cp → +∞ as p → 1

and p → ∞. Finally, the asymptotic limit (4.5) is justified by Lebesgue’s dominated

convergence theorem if h ∈ L1(R). �

We recall the scattering matrix S(x; λ) given explicitly by (3.7) and (3.8). The

followingproposition states that if r(λ) is boundedand satisfies (3.10), then thequadratic
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Existence of Global Solutions 5699

form associated with the matrix I + S(x; λ) is strictly positive for every x ∈ R and every

λ ∈ R ∪ iR, whereas the matrix I + S(x; λ) is bounded. In what follows, ‖ · ‖ denotes the

Euclidean norm of vectors in C
2.

Proposition 5. For every r(λ) ∈ L∞
z (R) satisfying (3.10), there exist positive constants

C− and C+ such that for every x ∈ R and every column-vector g ∈ C
2, we have

Re gt (I + S(x; λ))g ≥ C−gtg, λ ∈ R ∪ iR (4.7)

and

‖(I + S(x; λ))g‖ ≤ C+‖g‖, λ ∈ R ∪ iR. (4.8)

�

Proof. For λ ∈ R, we use representation (3.7). Since I + S(x; λ) is Hermitian for every

x ∈ R and λ ∈ R, we compute the two real eigenvalues of I + S(x; λ) given by

μ±(λ) = 1 + 1

2
|r(λ)|2 ± |r(λ)|

√
1 + 1

4
|r(λ)|2 =

(√
1 + 1

4
|r(λ)|2 ± 1

2
|r(λ)|

)2

> 0.

Note that

1

(1 + |r(λ)|)2 ≤ μ−(λ) ≤ μ+(λ) ≤ (1 + |r(λ)|)2, λ ∈ R.

It follows from the above inequalities that the bounds (4.7) and (4.8) for λ ∈ R hold with

C− := 1

(1 + supλ∈R
|r(λ)|)2 > 0 and C+ := (1 + sup

λ∈R

|r(λ)|)2 < ∞.

For λ ∈ iR, we use representation (3.8). Since I + S(x; λ) is no longer Hermitian,

we define the Hermitian part of S(x; λ) by

SH (λ) := 1

2
S(x; λ)+ 1

2
S∗(x; λ) =

[
−|r(λ)|2 0

0 0

]
,

where the asterisk denotes Hermite conjugate (matrix transposition and complex con-

jugate). It follows from (3.10) that supλ∈iR |r(λ)|2 ≤ 1− c20 < 1 so that the diagonal matrix
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5700 D. E. Pelinovsky and Y. Shimabukuro

I +SH (λ) is positive definite for every λ ∈ iR. The bound (4.7) for λ ∈ iR follows from this

estimate with C− := 1 − supλ∈iR |r(λ)|2 ≥ c20 > 0. Finally, estimating componentwise

‖(I + S(x; λ))g‖2 ≤ (1 + |r(λ)|2)‖g‖2 + |r(λ)|2
(
r(λ)g(1)g(2) + r(λ)g(1)g(2)

)
≤ (1 + |r(λ)|2) (1 + 1

2
|r(λ)|2

)
‖g‖2,

we obtain the bound (4.8) for λ ∈ iR with C+ := (1 + supλ∈iR |r(λ)|2) < ∞. �

Thanks to the result of Proposition 5,we shall prove solvability of the two related

Riemann–Hilbert problems (3.28) by the method of Zhou [41]. Dropping the subscripts,

we rewrite the two related Riemann–Hilbert problems (3.28) in the following abstract

form {
G+(x; λ)− G−(x; λ) = G−(x; λ)S(x; λ)+ F(x; λ), λ ∈ R ∪ iR,

G±(x, λ) → 0 as |λ| → ∞.
(4.9)

If r± ∈ H1
z (R)∩L2,1(R), then Proposition 2 implies that S(x; λ) ∈ L1

z(R)∩L∞
z (R) and F(x; λ) ∈

L2
z(R) for every x ∈ R. We consider the class of solutions to the Riemann–Hilbert problem

(4.9) such that for every x ∈ R,

• G±(x; λ) are analytic functions of z = λ2 in C
±

• G±(x; λ) ∈ L2
z(R)

• The same columns of G±(x; λ), G−(x; λ)S(x; λ), and F(x; λ) are either even or

odd in λ.

By Proposition 4 with p = 2, for every x ∈ R, the Riemann-Hilbert problem (4.9)

has a solution given by the Cauchy operator

G±(x; λ) = C (G−(x; λ)S(x; λ)+ F(x; λ)) (z), z ∈ C
± (4.10)

if and only if there is a solution G−(x; λ) ∈ L2
z(R) of the Fredholm integral equation:

G−(x; λ) = P− (G−(x; λ)S(x; λ)+ F(x; λ)) (z), z ∈ R. (4.11)

OnceG−(x; λ) ∈ L2
z(R) is found from the Fredholm integral equation (4.11), thenG+(x; λ) ∈

L2
z(R) is obtained from the projection formula

G+(x; λ) = P+ (G−(x; λ)S(x; λ)+ F(x; λ)) (z), z ∈ R. (4.12)
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Existence of Global Solutions 5701

Remark 10. The complex integrals in C and P± over the real line z = λ2 can be

parameterized by λ on R
+ ∪ iR+. Extensions of integral representations (4.10)–(4.12) for

λ ∈ R
− ∪ iR− is performed with the account of parity symmetries of the correspond-

ing columns of G±(x; λ), G−(x; λ)S(x; λ), and F(x; λ). See Proposition 6, Corollary 7, and

Remark 11 below. �

The following lemma relies on the positivity result of Proposition 5 and states

solvability of the integral equation (4.11) in L2
z(R). For simplicity of notations, we drop

dependence of S, F and G± from the variable x.

Lemma 7. For every r(λ) ∈ L2
z(R)∩ L∞

z (R) satisfying (3.10) and every F(λ) ∈ L2
z(R), there

is a unique solution G(λ) ∈ L2
z(R) of the linear inhomogeneous equation

(I − P−
S )G(λ) = F(λ), λ ∈ R ∪ iR, (4.13)

where P−
S G := P−(GS). �

Proof. The operator I−P−
S is known to be a Fredholmoperator of the index zero [2, 3, 41].

By Fredholm’s alternative, a unique solution to the linear integral equation (4.13) exists

forG(λ) ∈ L2
z(R) if and only if the zero solution to the homogeneous equation (I−P−

S )g = 0

is unique in L2
z(R).

Suppose that there exists nonzero g ∈ L2
z(R) such that (I − P−

S )g = 0. Since

S(λ) ∈ L2
z(R) ∩ L∞

z (R), we define two analytic functions in C \ R by

g1(z) := C(gS)(z) and g2(z) := C(gS)∗(z),

where the asterisk denotes Hermite conjugate. We multiply the two functions by each

other and integrate along the semi-circle of radius R centered at zero in C
+. Because g1

and g2 are analytic functions in C
+, the Cauchy–Goursat theorem implies that

0 =
∮
g1(z)g2(z)dz.

Because g(λ),S(λ) ∈ L2
z(R), we have g(λ)S(λ) ∈ L1

z(R), so that the asymptotic limit (4.5)

in Proposition 4 implies that g1,2(z) = O(z−1) as |z| → ∞. Therefore, the integral on arc
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5702 D. E. Pelinovsky and Y. Shimabukuro

goes to zero as R → ∞, so that we obtain

0 =
∫

R

g1(z)g2(z)dz

=
∫

R

P+(gS) [P−(gS)]∗dz

=
∫

R

[P−(gS)+ gS
] [P−(gS)]∗dz,

where we have used the identity P+ − P− = I following from relations (4.6). Since

P−(gS) = g, we finally obtain

0 =
∫

R

g(I + S)g∗dz. (4.14)

By bound (4.7) in Proposition 5, the real part of the quadratic form associated with the

matrix I+S is strictly positive definite for every z ∈ R. Therefore, equation (4.14) implies

that g = 0 is the only solution to the homogeneous equation (I − P−
S )g = 0 in L2

z(R). �

As a consequence of Lemma 7, we obtain solvability of the two related Riemann–

Hilbert problems (3.28).

Corollary 6. Let r± ∈ H1(R) ∩ L2,1(R) such that the inequality (3.10) is satisfied. There

exists a unique solution to the Riemann–Hilbert problems (3.28) for every x ∈ R such

that the functions

G±1,2(x; λ) := M±(x; z)τ1,2(λ)− τ1,2(λ)

are analytic functions of z in C
± and G±1,2(x; λ) ∈ L2

z(R). �

Proof. For every x ∈ R, the two related Riemann–Hilbert problems (3.28) are rewritten

for G±1,2 and F1,2 given by (3.29) in the form (4.9). By Proposition 2, we have S(x; λ) ∈
L1
z(R) ∩ L∞

z (R) and F1,2(x; λ) ∈ L2
z(R), hence P−(F1,2) ∈ L2

z(R). By Lemma 7, equation (4.11)

admits a unique solution for G−1,2(x; λ) ∈ L2
z(R) for every x ∈ R. Then, we define a unique

solution for G+1,2(x; λ) ∈ L2
z(R) by equation (4.12). Analytic extensions of G±1,2(x; λ) as

functions of z in C
± are defined by the Cauchy integrals (4.10). These functions solve the

Riemann–Hilbert problem (4.9) by Proposition 4 with p = 2. �

For further estimates, we modify the method of Lemma 7 and prove that the

operator (I −P−
S )

−1 in the integral Fredholm equation (4.13) is invertible with a bounded

inverse in space L2
z(R).
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Existence of Global Solutions 5703

Lemma 8. For every r(λ) ∈ L2
z(R)∩L∞

z (R) satisfying (3.10), the inverse operator (I−P−
S )

−1

is a bounded operator from L2
z(R) to L2

z(R). In particular, there is a positive constant C

that only depends on ‖r(λ)‖L∞
z such that for every row-vector f ∈ L2

z(R), we have

‖(I − P−
S )

−1f ‖L2z ≤ C‖f ‖L2z . (4.15)

�

Proof. We consider the linear inhomogeneous equation (4.13) with F ∈ L2
z(R). Recalling

that P+ − P− = I , we write G = G+ − G−, where G+ and G− satisfy the inhomogeneous

equations

G− − P−(G−S) = P−(F), G+ − P−(G+S) = P+(F). (4.16)

By Lemma 7, since P±(F) ∈ L2
z(R), there are unique solutions to the inhomogeneous

equations (4.13) and (4.16), so that the decomposition G = G+ −G− is unique. Therefore,

we only need to find the estimates of G+ and G− in L2
z(R).

To deal with G−, we define two analytic functions in C \ R by

g1(z) := C(G−S)(z) and g2(z) := C(G−S + F)∗(z),

similarly to the proof of Lemma 7. By Proposition 4, g1(z) = O(z−1) and g2(z) → 0 as

|z| → ∞, since F ∈ L2
z(R), G− ∈ L2

z(R), and S(λ) ∈ L2
z(R)∩ L∞

z (R). Therefore, the integral on

the semi-circle of radius R > 0 in the upper half-plane still goes to zero as R → ∞ by

Lebesgue’s dominated convergence theorem. Performing the same manipulations as in

the proof of Lemma 7, we obtain

0 =
∮
g1(z)g2(z)dz

=
∫

R

P+(G−S)
[P−(G−S + F)

]∗
dz

=
∫

R

[P−(G−S)+ G−S
] [P−(G−S + F)

]∗
dz

=
∫

R

[
G− − P−(F)+ G−S

]
G∗

−dz,

where we have used the first inhomogeneous equation in system (4.16). By the bound

(4.7) in Proposition 5, there is a positive constant C− such that

C−‖G−‖2
L2 ≤ Re

∫
R

G−(I + S)G∗
−dz = Re

∫
R

P−(F)G∗
−dz ≤ ‖F‖L2‖G−‖L2 ,
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5704 D. E. Pelinovsky and Y. Shimabukuro

where we have used the Cauchy–Schwarz inequality and bound (4.4) with Cp=2 = 1. Note

that the above estimate holds independently for the corresponding row-vectors of the

matrices G− and F . Since G− = (I − P−
S )

−1P−F , for every row-vector f ∈ L2
z(R) of the

matrix F ∈ L2
z(R), the above inequality yields

‖(I − P−
S )

−1P−f ‖L2z ≤ C−1
− ‖f ‖L2z . (4.17)

To deal with G+, we use P+ − P− = I and rewrite the second inhomogeneous

equation in system (4.16) as follows:

G+(I + S)− P+(G+S) = P+(F). (4.18)

We now define two analytic functions in C \ R by

g1(z) := C(G+S)(z) and g2(z) := C(G+S + F)∗(z)

and integrate the product of g1 and g2 on the semi-circle of radius R > 0 in the lower

half-plane. Performing the same manipulations as above, we obtain

0 =
∮
g1(z)g2(z)dz

=
∫

R

P−(G+S)
[P+(G+S + F)

]∗
dz

=
∫

R

[
G+ − P+(F)

]
[G+(I + S)]∗ dz,

where we have used equation (4.18).

By the bounds (4.7) and (4.8) in Proposition 5, there are positive constants C+ and

C− such that

C−‖G+‖2
L2 ≤ Re

∫
R

G+(I + S)∗G∗
+dz = Re

∫
R

P+(F)(I + S)∗G∗
+dz ≤ C+‖F‖L2‖G+‖L2 ,

where we have used the Cauchy–Schwarz inequality and bound (4.4) with Cp=2 = 1.

Again, the above estimate holds independently for the corresponding row-vectors of the

matrices G+ and F . Since G+ = (I − P−
S )

−1P+F , for every row-vector f ∈ L2
z(R) of the

matrix F ∈ L2
z(R), the above inequality yields

‖(I − P−
S )

−1P+f ‖L2z ≤ C−1
− C+‖f ‖L2z . (4.19)

The assertion of the lemma is proved with bounds (4.17), (4.19), and the triangle

inequality. �
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Existence of Global Solutions 5705

4.2 Estimates on solutions to the Riemann-Hilbert problem (3.26)

Using Corollary 6, we obtain solvability of the Riemann–Hilbert problem (3.26). Indeed,

the abstract Riemann–Hilbert problem (4.9) is derived for two versions of G± and F±
given by (3.29). For the first version, we have

G±1(x; λ) := M±(x; z)τ1(λ)− τ1(λ) = [μ±(x; z)− e1, 2iλ (η±(x; z)− e2)
]

(4.20)

and

F1(x; λ) := τ1(λ)S(x; λ) = R(x; z)τ1(λ). (4.21)

By Corollary 6, there is a solution G±1(x; λ) ∈ L2
z(R) of the integral Fredholm equations

G±1(x; λ) = P± (G−1(x; λ)S(x; λ)+ F1(x; λ)) (z), z ∈ R. (4.22)

Using equation (4.22) for the first column of G±, we obtain

μ±(x; z)− e1 = P± (M−(x; ·)R(x; ·))(1) (z), z ∈ R, (4.23)

where we have used the following identities:

(G−1S + F1)
(1) = (M−τ1S)(1) = (M−Rτ1)(1) = (M−R)(1).

For the second version of the abstract Riemann–Hilbert problem (4.9), we have

G±2(x; λ) := M±(x; z)τ2(λ)− τ2(λ) = [(2iλ)−1 (μ±(x; z)− e1), η±(x; z)− e2
]

(4.24)

and

F2(x; λ) := τ2(λ)S(x; λ) = R(x; z)τ2(λ). (4.25)

Again by Corollary 6, there is a solution G±2(x; λ) ∈ L2
z(R) of the integral Fredholm equa-

tions (4.22), where G±1 and F1 are replaced by G±2 and F2. Using equation (4.22) for the

second column of G±2, we obtain

η±(x; z)− e2 = P± (M−(x; ·)R(x; ·))(2) (z), z ∈ R. (4.26)

where we have used the following identities:

(G−2S + F2)
(2) = (M−τ2S)(2) = (M−Rτ2)(2) = (M−R)(2).
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5706 D. E. Pelinovsky and Y. Shimabukuro

Equations (4.23) and (4.26) can be written in the form

M±(x; z) = I + P± (M−(x; ·)R(x; ·)) (z), z ∈ R, (4.27)

which represents the solution to the Riemann–Hilbert problem (3.26) on the real line.

The analytic continuation of functions M±(x; ·) in C
± is given by the Cauchy operators

M±(x; z) = I + C (M−(x; ·)R(x; ·)) (z), z ∈ C
±. (4.28)

The corresponding result on solvability of the integral equations (4.27) is given by the

following lemma.

Lemma 9. Let r± ∈ H1(R) ∩ L2,1(R) such that the inequality (3.10) is satisfied. There is

a positive constant C that only depends on ‖r±‖L∞ such that the unique solution to the

integral equations (4.27) enjoys the estimate for every x ∈ R,

‖M±(x; ·)− I‖L2 ≤ C (‖r+‖L2 + ‖r−‖L2). (4.29)

�

Proof. By Proposition 2, if r± ∈ H1(R) ∩ L2,1(R), then r(λ) ∈ L2(R) ∩ L∞
z (R). Under these

conditions, it follows from the explicit expressions (4.21) and (4.25) that R(x; z)τ1,2(λ)

belong to L2
z(R) for every x ∈ R and there is a positive constant C that only depends on

‖r±‖L∞(R) such that for every x ∈ R,

‖R(x; z)τ1,2(λ)‖L2z ≤ C (‖r+‖L2 + ‖r−‖L2). (4.30)

By derivation above, the integral equation (4.27) for the projection operator P− is

obtained from two versions of the integral equation (4.13) corresponding to F1,2(x; λ) :=
P− (R(x; z)τ1,2(λ)) (z). Therefore, each element of M−(x; z) enjoys the bound (4.15) for the

corresponding row vectors of the two versions of F1,2(x; z). Combining the estimates

(4.15) and (4.30), we obtain the bound (4.29). �

Before we continue, let us discuss the redundancy between solutions to the two

versions of the Riemann–Hilbert problems (3.28). By using equation (4.22) for the second

column of G±1, we obtain

2iλ (η±(x; z)− e2) = P± (2iλ (M−(x; ·)R(x; ·))(2)
)
(z), z ∈ R. (4.31)
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Existence of Global Solutions 5707

By using equation (4.22) for the first column of G±2, we obtain

(2iλ)−1 (μ±(x; z)− e1) = P± ((2iλ)−1 (M−(x; ·)R(x; ·))(1)
)
(z), z ∈ R. (4.32)

Unless equations (4.31) and (4.32) are redundant in view of equations (4.23) and (4.26),

the two versions of the Riemann–Hilbert problems (4.11) may seem to be inconsistent.

In order to show the redundancy explicitly, we use the following result.

Proposition 6. Let f (λ) ∈ L1
z(R) ∩ L∞

z (R) be even in λ for all λ ∈ R ∪ iR. Then

P±
even (λf (λ)) (λ) = λP±

even(f )(λ), λ ∈ R ∪ iR, (4.33)

where

P±
even(f )(λ) :=

(∫ +∞

0
+
∫ i0

+i∞
+
∫ −∞

0
+
∫ i0

−i∞

)
f (λ′)dλ′

λ′ − (λ± i0)
≡ P±(f (λ))(λ2). (4.34)

Similarly, let g(λ) ∈ L1
z(R) ∩ L2

z(R) be odd in λ for all λ ∈ R ∪ iR. Then

P±
odd (λg(λ)) (λ) = λP±

odd(g)(λ), λ ∈ R ∪ iR, (4.35)

where

P±
odd(g)(λ) :=

(∫ +∞

0
+
∫ i0

+i∞
+
∫ 0

−∞
+
∫ −i∞

i0

)
g(λ′)dλ′

λ′ − (λ± i0)
≡ P±(g(λ))(λ2). (4.36)

�

Proof. First, we note the validity of the definition (4.34) if f (−λ) = f (λ):

P±(f (λ))(λ2) =
∫ ∞

−∞

f (λ′)2λ′dλ′

(λ′)2 − (λ2 ± i0)

=
(∫ +∞

0
+
∫ i0

+i∞

)
f (λ′)

[
1

λ′ − (λ± i0)
+ 1

λ′ + (λ± i0)

]
dλ′ =: P±

even(f )(λ).

Then, relation (4.33) is established from the trivial result(∫ +∞

0
+
∫ i0

+i∞
+
∫ −∞

0
+
∫ i0

−i∞

)
f (λ′)dλ′ = 0,

which is justified if f (λ) ∈ L1
z(R) and even in λ. The relation (4.35) is proved similarly,

thanks to the changes in the definition (4.36). �
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5708 D. E. Pelinovsky and Y. Shimabukuro

Fig. 3. The left and right panels show the direction of contours used for P±
even and P±

odd,

respectively.

Figure 3 shows the contours of integration used in the definitions of P±
even and

P±
odd in (4.34) and (4.36). The following corollary of Proposition 6 specifies the redundancy

between the two different versions of the Riemann–Hilbert problems (3.28).

Corollary 7. Consider two unique solutions to the Riemann–Hilbert problems (3.28) in

Corollary 6. Then, for every x ∈ R, we have

G±1(x; λ) = 2iλsign(λ)G±2(x; λ), λ ∈ R ∪ iR, (4.37)

where the sign function returns the sign of either real or imaginary part of λ. �

Proof. We note the relation τ−1
2 (λ)τ1(λ) = 2iλI , where I is the identity 2-by-2 matrix.

From here, the relation (4.37) follows for λ ∈ R
+ ∪ iR+. To consider the continuation of

this relation to λ ∈ R
− ∪ iR−, we apply Proposition 6 with the explicit parametrization of

the contours of integrations as on Figure 3. We choose the even function f and the odd

function g in the form

f (λ) := (M−(x; λ2)R(x; λ2)
)(2)

, g(λ) := (2iλ)−1
(
M−(x; λ2)R(x; λ2)

)(1)
.

Then, equation (4.31) follows from equation (4.26), thanks to the relation (4.33), whereas

equation (4.23) follows from equation (4.32) thanks to the relation (4.35). Thus, the rela-

tion (4.37) is verified for every λ ∈ R∪ iR. To ensure that the integrations (4.34) and (4.36)

returns P± for λf (λ) and λg(λ), the sign function is used in the relation (4.37). �

Remark 11. Corollary 7 shows that the complex integration in the z plane in the integral

equations (4.22) has to be extended in two different ways in the λ plane. For the first

vector columns of the integral equation (4.22), we have to use the definition (4.36) for odd
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Existence of Global Solutions 5709

functions in λ, whereas for the second vector columns of the integral equation (4.22), we

have to use the definition (4.34) for even functions in λ. �

Next, we shall obtain refined estimates on the solution to the integral equations

(4.27). We start with estimates on the scattering coefficients r+ and r− obtained with the

Fourier theory.

Proposition 7. For every x0 ∈ R
+ and every r± ∈ H1(R), we have

sup
x∈(x0,∞)

∥∥〈x〉P+ (r̄+(z)e−2izx
)∥∥

L2z
≤ ‖r+‖H1 (4.38)

and

sup
x∈(x0,∞)

∥∥〈x〉P− (r−(z)e2izx
)∥∥

L2z
≤ ‖r−‖H1 , (4.39)

where 〈x〉 := (1 + x2)1/2. In addition, we have

sup
x∈R

∥∥P+ (r̄+(z)e−2izx
)∥∥

L∞
z

≤ 1√
2

‖r+‖H1 (4.40)

and

sup
x∈R

∥∥P− (r−(z)e2izx
)∥∥

L∞
z

≤ 1√
2

‖r−‖H1 . (4.41)

Furthermore, if r± ∈ L2,1(R), then

sup
x∈R

∥∥P+ (zr̄+(z)e−2izx
)∥∥

L2z
≤ ‖zr+(z)‖L2z , (4.42)

and

sup
x∈R

∥∥P− (zr−(z)e2izx
)∥∥

L2z
≤ ‖zr−(z)‖L2z . (4.43)

�

Proof. Recall the following elementary result from the Fourier theory. For a given

function r ∈ L2(R), we use the Fourier transform r̂ ∈ L2(R) with the definition r̂(k) :=
1
2π

∫
R
r(z)e−ikzdz, so that

‖r‖2
L2 = 2π‖r̂‖2

L2 .
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5710 D. E. Pelinovsky and Y. Shimabukuro

Then, we have r ∈ H1(R) if and only if r̂ ∈ L2,1(R). Similarly, r ∈ L2,1(R) if and only if

r̂ ∈ H1(R).

In order to prove (4.38), we write explicitly

P+ (r̄+(z)e−2izx
)
(z) = 1

2π i
lim
ε↓0

∫
R

r+(s)e−2isx

s− (z + iε)
ds

= 1

2π i

∫
R

r̂+(k)
(
lim
ε↓0

∫
R

ei(k−2x)s

s− (z + iε)
ds
)
dk

=
∫ ∞

2x
r̂+(k)ei(k−2x)zdk, (4.44)

where the following residue computation has been used:

lim
ε↓0

1

2π i

∫
R

eis(k−2x)

s− iε
ds = lim

ε↓0

{
e−ε(k−2x), if k − 2x > 0

0, if k − 2x < 0
= χ(k − 2x) (4.45)

with χ being the characteristic function. The bound (4.38) is obtained from the bound

(2.28) of Proposition 1 for every x0 ∈ R
+:

sup
x∈(x0,∞)

∥∥∥∥〈x〉
∫ ∞

2x
r̂+(k)ei(k−2x)zdk

∥∥∥∥
L2z

≤ √
2π ‖̂r+‖L2,1 = ‖r+‖H1 .

Similarly, we use the representation (4.44) and obtain bound (4.40) for every x ∈ R:

‖P+ (r̄+(z)e−2izx
)
(z)‖L∞

z ≤ ‖r̂+(k)‖L1k ≤ √
π‖r̂+(k)‖L2,1k ≤ 1√

2
‖r+‖H1 . (4.46)

The bounds (4.39) and (4.41) are obtained similarly from the representation

P− (r−(z)e2izx
)
(z) = 1

2π i
lim
ε↓0

∫
R

r−(s)e2isx

s− (z − iε)
ds = −

∫ −2x

−∞
r̂−(k)ei(k+2x)zdk.

The bounds (4.42) and (4.43) follow from the bound (4.4) with Cp=2 = 1 of Proposition 4.

�

We shall use the estimates of Lemma 9 and Proposition 7 to derive useful

estimates on the solutions to the Riemann–Hilbert problem (3.26). By Lemma 9, these

solutions on the real line can be written in the integral Fredholm form (4.27). We only

need to obtain estimates on the vector columns μ− −e1 and η+ −e2. From equation (4.23),

we obtain

μ−(x; z)− e1 = P− (r−(z)e2izxη+(x; z)
)
(z), z ∈ R, (4.47)
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Existence of Global Solutions 5711

where we have used the following identities

(M−R)(1) = −1
∞ (P−R)(1) = r−(z)e2izx−1

∞ p+ = r−(z)e2izxM (2)
+ ,

which follow from the representations (3.17), (3.22), and (3.25), as well as the scattering

relation (3.12). From equation (4.26), we obtain

η+(x; z)− e2 = P+ (r̄+(z)e−2izxμ−(x; z)
)
(z), z ∈ R, (4.48)

where we have used the following identities

(M−R)(2) = −1
∞ (P−R)(2) = r̄+(z)e−2izx−1

∞ m+ = r̄+(z)e−2izxM (1)
− ,

which also follow from the representations (3.17), (3.22), and (3.25).

Let us introduce the 2-by-2 matrix

M(x; z) = [μ−(x; z)− e1, η+(x; z)− e2] (4.49)

and write the system of integral equations (4.47) and (4.48) in the matrix form

M − P+(MR+)− P−(MR−) = F , (4.50)

where

R+(x; z) =
[
0 r̄+(z)e−2izx

0 0

]
, R−(x; z) =

[
0 0

r−(z)e2izx 0

]
(4.51)

and

F(x; z) := [e2P−(r−(z)e2izx), e1P+(r̄+(z)e−2izx)
]
. (4.52)

The inhomogeneous term F given by (4.52) is estimated by Proposition 7. The following

lemma estimates solutions to the system of integral equations (4.50).

Lemma 10. For every x0 ∈ R
+ and every r± ∈ H1(R), the unique solution to the system

of integral equations (4.47) and (4.48) satisfies the estimates

sup
x∈(x0,∞)

∥∥〈x〉μ(2)− (x; z)
∥∥
L2z

≤ C‖r−‖H1 (4.53)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/2018/18/5663/3078585 by M
cM

aster U
niversity Library , C

ollections - Serials Processing user on 11 O
ctober 2018



5712 D. E. Pelinovsky and Y. Shimabukuro

and

sup
x∈(x0,∞)

∥∥〈x〉η(1)+ (x; z)
∥∥
L2z

≤ C‖r+‖H1 , (4.54)

where C is a positive constant that depends on ‖r±‖L∞ . Moreover, if r± ∈ H1(R)∩ L2,1(R),

then

sup
x∈R

∥∥∂xμ(2)− (x; z)
∥∥
L2z

≤ C (‖r+‖H1∩L2,1 + ‖r−‖H1∩L2,1) (4.55)

and

sup
x∈R

∥∥∂xη(1)+ (x; z)
∥∥
L2z

≤ C (‖r+‖H1∩L2,1 + ‖r−‖H1∩L2,1) (4.56)

where C is another positive constant that depends on ‖r±‖L∞ . �

Proof. Using the identity P+ − P− = I following from relations (4.6) and the identity

R+ + R− = (I − R+)R,

which follows from the explicit form (3.23), we rewrite the inhomogeneous equation

(4.50) in the matrix form

G − P−(GR) = F , (4.57)

where G := M(I − R+) is given explicitly from (4.49) and (4.51) by

G(x; z) =
[
μ
(1)
− (x; z)− 1 η

(1)
+ (x; z)− r̄+(z)e−2izx(μ

(1)
− (x; z)− 1)

μ
(2)
− (x; z) η

(2)
+ (x; z)− 1 − r̄+(z)e−2izxμ

(2)
− (x; z)

]
. (4.58)

From the explicit expression (4.52) for F(x; z), we can see that the second row

vector of F(x; z) and F(x; z)τ1(λ) remains the same and is given by [P−(r−(z)e2izx), 0]. From
the explicit expressions (4.58), the second row vector of G(x; z)τ1(λ) is given by

[
μ(2)− (x; z), 2iλ

(
η(2)+ (x; z)− 1 − r̄+(z)e−2izxμ(2)− (x; z)

)]
.

Using bound (4.15) for the second row vector of G(x; z)τ1(λ), we obtain the following

bounds for every x ∈ R,

‖μ(2)− (x; z)‖L2z ≤ C‖P−(r−(z)e2izx)‖L2z (4.59)
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Existence of Global Solutions 5713

and

‖2iλ (η(2)+ (x; z)− 1 − r̄+(z)e−2izxμ(2)− (x; z)
) ‖L2z ≤ C‖P−(r−(z)e2izx)‖L2z , (4.60)

where the positive constant C only depends on ‖r±‖L∞ . By substituting bound (4.39) of

Proposition 7 into (4.59), we obtain bound (4.53). Also note that since |2iλr̄+(z)| = |r(λ)|
and r(λ) ∈ L∞

z (R), we also obtain from (4.59) and (4.60) by the triangle inequality,

‖2iλ (η(2)+ (x; z)− 1
) ‖L2z ≤ C‖P−(r−(z)e2izx)‖L2z , (4.61)

where the positive constant C still depends on ‖r±‖L∞ only.

Similarly, from the explicit expression (4.52) for F(x; z), we can see that the first

row vector of F(x; z) and F(x; z)τ2(λ) remains the same and is given by [0,P+(r̄+(z)e−2izx)].
From the explicit expressions (4.58), the first row vector of G(x; z)τ2(λ) is given by

[
(2iλ)−1(μ(1)− (x; z)− 1), η(1)+ (x; z)− r̄+(z)e−2izx(μ(1)− (x; z)− 1)

]
.

Using bound (4.15) for the first row vector ofG(x; z)τ2(λ), we obtain the following bounds

for every x ∈ R,

‖(2iλ)−1(μ(1)− (x; z)− 1)‖L2z ≤ C‖P+(r̄+(z)e−2izx)‖L2z (4.62)

and

‖η(1)+ (x; z)− r̄+(z)e−2izx(μ(1)− (x; z)− 1)‖L2z ≤ C‖P+(r̄+(z)e−2izx)‖L2z , (4.63)

where the positive constant C only depends on ‖r±‖L∞ . Since |2iλr̄+(z)| = |r(λ)| and

r(λ) ∈ L∞
z (R), we also obtain from (4.62) and (4.63) by the triangle inequality,

‖η(1)+ (x; z)‖L2z ≤ ‖(2iλ)r̄+(z)e−2izx(2iλ)−1(μ(1)− (x; z)− 1)‖L2z + C‖P+(r̄+(z)e−2izx)‖L2z
≤ C ′‖P+(r̄+(z)e−2izx)‖L2z , (4.64)

where the positive constant C ′ still depends on ‖r±‖L∞ only. By substituting bound (4.38)

of Proposition 7 into (4.64), we obtain bound (4.54).

In order to obtain bounds (4.55) and (4.56), we take derivative of the inhomoge-

neous equation (4.50) in x and obtain

∂xM − P+ (∂xM)R+ − P− (∂xM)R− = F̃ , (4.65)
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5714 D. E. Pelinovsky and Y. Shimabukuro

where

F̃ := ∂xF + P+M∂xR+ + P−M∂xR−

= 2i
[
e2P−(zr−(z)e2izx), e1P+(−zr̄+(z)e−2izx)

]
+2i

[
zr−(z)η

(1)
+ (x; z)e2izx −zr̄+(z)(μ

(1)
− (x; z)− 1)e−2izx

zr−(z)(η
(2)
+ (x; z)− 1)e2izx −zr̄+(z)μ

(2)
− (x; z)e−2izx

]
.

Recall that λr−(z) ∈ L∞
z (R) by Proposition 3. The second row vector of F̃(x; z)τ1(λ) and

the first row vector of F̃(x; z)τ2(λ) belongs to L2
z(R), thanks to bounds (4.42) and (4.43)

of Proposition 7, as well as bounds (4.29), (4.61), and (4.62). As a result, repeating the

previous analysis, we obtain the bounds (4.55) and (4.56). �

4.3 Reconstruction formulas

We shall now recover the potential u of the Kaup–Newell spectral problem (2.1) from the

matrices M±, which satisfy the integral equations (4.27). This will gives us the map

H1(R) ∩ L2,1(R) � (r−, r+) �→ u ∈ H2(R) ∩ H1,1(R), (4.66)

where r− and r+ are related by (3.18).

Let us recall the connection formulas between the potential u and the Jost func-

tions of the direct scattering transform in Section 2. By Lemma 2, if u ∈ H2(R)∩H1,1(R),

then

∂x

(
ū(x)e

1
2i
∫ x±∞ |u(y)|2dy

)
= 2i lim

|z|→∞
zm(2)

± (x; z). (4.67)

On the other hand, by Lemma 2 and the representation (3.13), if u ∈ H2(R)∩H1,1(R), then

u(x)e− 1
2i
∫ x±∞ |u(y)|2dy = −4 lim

|z|→∞
zp(1)± (x; z). (4.68)

We shall now study properties of the potential u recovered by equations (4.67)

and (4.68) from properties of the matrices M±. The two choices in the reconstruction

formulas (4.67) and (4.68) are useful for controlling the potential u on the positive and

negative half-lines.We shall proceed separatelywith the estimates on the two half-lines.
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Existence of Global Solutions 5715

4.3.1 Estimates on the positive half-line

By comparing (3.22) with (4.1), we rewrite the reconstruction formulas (4.67) and

(4.68) for the choice of m(2)
+ and p(1)+ as follows:

∂x

(
ū(x)e

1
2i
∫ x+∞ |u(y)|2dy

)
= 2ie− 1

2i
∫ x+∞ |u(y)|2dy lim

|z|→∞
zμ(2)− (x; z) (4.69)

and

u(x)e− 1
2i
∫ x+∞ |u(y)|2dy = −4e

1
2i
∫ x+∞ |u(y)|2dy lim

|z|→∞
zη(1)+ (x; z) (4.70)

Since r± ∈ H1(R) ∩ L2,1(R), we have R(x; ·) ∈ L1(R) ∩ L2(R) for every x ∈ R, so that the

asymptotic limit (4.5) in Proposition 4 is justified since M−(x; ·)− I ∈ L2(R) by Lemma 9.

Therefore, we use the solution representation (4.28) and rewrite the reconstruction

formulas (4.69) and (4.70) in the explicit form

e
1
2i
∫ x+∞ |u(y)|2dy∂x

(
ū(x)e

1
2i
∫ x+∞ |u(y)|2dy

)
= − 1

π

∫
R

r−(z)e2izx
[
η(2)− (x; z)+ r̄+(z)e−2izxμ(2)− (x; z)

]
dz

= − 1

π

∫
R

r−(z)e2izxη(2)+ (x; z)dz (4.71)

and

u(x)ei
∫ x+∞ |u(y)|2dy = 2

π i

∫
R

r̄+(z)e−2izxμ(1)− (x; z)dz, (4.72)

where we have used the jump condition (3.26) for the second equality in (4.71).

If r+, r− ∈ H1(R), then the reconstruction formulas (4.71) and (4.72) recover u in

class H1,1(R+). Furthermore, if r+, r− ∈ L2,1(R), then u is in class H2(R+).

Lemma 11. Let r± ∈ H1(R) ∩ L2,1(R) such that the inequality (3.10) is satisfied. Then,

u ∈ H2(R+) ∩ H1,1(R+) satisfies the bound

‖u‖H2(R+)∩H1,1(R+) ≤ C (‖r+‖H1∩L2,1 + ‖r−‖H1∩L2,1), (4.73)

where C is a positive constant that depends on ‖r±‖H1∩L2,1 . �

Proof. We use the reconstruction formula (4.72) rewritten as follows:

u(x)ei
∫ x+∞ |u(y)|2dy = 2

π i

∫
R

r̄+(z)e−2izxdz

+ 2

π i

∫
R

r̄+(z)e−2izx
[
μ(1)− (x; z)− 1

]
dz. (4.74)
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5716 D. E. Pelinovsky and Y. Shimabukuro

The first term is controlled in L2,1(R) because r+ is in H1(R) and its Fourier transform

r̂+is in L2,1(R). To control the second term in L2,1(R+), we denote

I(x) :=
∫ ∞

−∞
r̄+(z)e−2izx

[
μ(1)− (x; z)− 1

]
dz,

use the inhomogeneous equation (4.47), and integrate by parts to obtain

I(x) = −
∫

R

r−(z)η(1)+ (x; z)e
2izxP+ (r+(z)e−2izx

)
(z)dz.

By bounds (4.38) in Proposition 7, bound (4.54) in Lemma 10, and the Cauchy–Schwarz

inequality, we have for every x0 ∈ R
+,

sup
x∈(x0,∞)

|〈x〉2I(x)| ≤ ‖r−‖L∞ sup
x∈(x0,∞)

‖〈x〉η(1)+ (x; z)‖L2z sup
x∈(x0,∞)

∥∥〈x〉P+ (r+(z)e−2izx
)∥∥

L2z

≤ C‖r+‖2
H1 ,

where the positive constant C only depends on ‖r±‖L∞ . By combining the estimates for

the two terms with the triangle inequality, we obtain the bound

‖u‖L2,1(R+) ≤ C (1 + ‖r+‖H1) ‖r+‖H1 . (4.75)

On the other hand, the reconstruction formula (4.71) can be rewritten in the form

e
1
2i
∫ x+∞ |u(y)|2dy∂x

(
ū(x)e

1
2i
∫ x+∞ |u(y)|2dy

)
= − 1

π

∫
R

r−(z)e2izxdz

− 1

π

∫
R

r−(z)e2izx
[
η(2)+ (x; z)− 1

]
dz. (4.76)

Using the same analysis as above yields the bound

∥∥∥∂x (ūe 1
2i
∫ x+∞ |u(y)|2dy

)∥∥∥
L2,1(R+)

≤ C (1 + ‖r−‖H1) ‖r−‖H1 , (4.77)

where C is another positive constant that depends on ‖r±‖L∞ . Combining bounds (4.75)

and (4.77), we set v(x) := u(x)e− 1
2i
∫ x+∞ |u(y)|2dy and obtain

‖v‖H1,1(R+) ≤ C (‖r+‖H1 + ‖r−‖H1), (4.78)
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Existence of Global Solutions 5717

where C is a new positive constant that depends on ‖r±‖H1 . Since |v(x)| = |u(x)| and
H1(R) is embedded into L6(R), the estimate (4.78) implies the bound

‖u‖H1,1(R+) ≤ C (‖r+‖H1 + ‖r−‖H1), (4.79)

where C is a positive constant that depends on ‖r±‖H1 .

In order to obtain the estimate u in H2(R+) and complete the proof of the bound

(4.73), we differentiate I in x, substitute the inhomogeneous equation (4.47) and its x

derivative, and integrate by parts to obtain

I ′(x) = −2i
∫ ∞

−∞
zr̄+(z)e−2izx

[
μ(1)− (x; z)− 1

]
dz +

∫ ∞

−∞
r̄+(z)e−2izx∂xμ

(1)
− (x; z)dz

= 2i
∫ ∞

−∞
r−(z)η(1)+ (x; z)e

2izxP+(zr̄+(z)e−2izx)(z)dz

−2i
∫ ∞

−∞
zr−(z)η(1)+ (x; z)e

2izxP+(r̄+(z)e−2izx)(z)dz

−
∫ ∞

−∞
r−(z)∂xη(1)+ (x; z)e

2izxP+(r̄+(z)e−2izx)(z)dz.

Using bounds (4.38), (4.40), and (4.42) in Proposition 7, bounds (4.54) and (4.56) in Lemma

10, as well as the Cauchy–Schwarz inequality, we have for every x0 ∈ R
+,

sup
x∈(x0,∞)

|〈x〉I ′(x)| ≤ 2‖r−‖L∞ sup
x∈(x0,∞)

‖〈x〉η(1)+ (x; z)‖L2z sup
x∈(x0,∞)

∥∥P+ (zr+(z)e−2izx
)∥∥

L2z

+2‖zr−‖L2 sup
x∈(x0,∞)

‖〈x〉η(1)+ (x; z)‖L2z sup
x∈(x0,∞)

∥∥P+ (r+(z)e−2izx
)∥∥

L∞
z

+‖r−‖L∞ sup
x∈(x0,∞)

‖∂xη(1)+ (x; z)‖L2z sup
x∈(x0,∞)

∥∥〈x〉P+ (r+(z)e−2izx
)∥∥

L2z

≤ C‖r−‖H1∩L2,1‖r+‖H1∩L2,1 (‖r+‖H1∩L2,1 + ‖r−‖H1∩L2,1),

where C is a positive constant that only depends on ‖r±‖L∞ . This bound on

supx∈R+ |〈x〉I ′(x)| is sufficient to control I ′ in L2(R+)normandhence the derivative of (4.74)

in x. Using the same analysis for the derivative of (4.76) in x yields similar estimates.

The proof of the bound (4.73) is complete. �

By Lemma 11, we obtain the existence of the mapping

H1(R) ∩ L2,1(R) � (r−, r+) �→ u ∈ H2(R+) ∩ H1,1(R+). (4.80)

We now show that this map is Lipschitz.
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5718 D. E. Pelinovsky and Y. Shimabukuro

Corollary 8. Let r±, r̃± ∈ H1(R)∩L2,1(R) satisfy ‖r±‖H1∩L2,1 , ‖r̃±‖H1∩L2,1 ≤ ρ for some ρ > 0.

Denote the corresponding potentials by u and ũ respectively. Then, there is a positive

ρ-dependent constant C(ρ) such that

‖u− ũ‖H2(R+)∩H1,1(R+) ≤ C(ρ)
(‖r+ − r̃+‖H1∩L2,1 + ‖r− − r̃−‖H1∩L2,1

)
. (4.81)

�

Proof. By the estimates in Lemma 11, if r± ∈ H1(R) ∩ L2,1(R), then the quantities

v(x) := u(x)ei
∫ x+∞ |u(y)|2dy and w(x) :=

(
∂xu(x)+ i

2
|u(x)|2u(x)

)
ei
∫ x+∞ |u(y)|2dy

are defined in function spaceH1(R+)∩L2,1(R+). Lipschitz continuity of the corresponding

mappings follows from the reconstruction formula (4.74) and (4.76) by repeating the same

estimates in Lemma 11. Since |v| = |u|, we can write

u− ũ = (v − ṽ)e−i ∫ x+∞ |v(y)|2dy + ṽ
(
e−i ∫ x+∞ |v(y)|2dy − e−i ∫ x+∞ |ṽ(y)|2dy

)
.

Therefore, Lipschitz continuity of the mapping (r+, r−) �→ v ∈ H1(R+)∩ L2,1(R+) is trans-

lated to Lipschitz continuity of the mapping (r+, r−) �→ u ∈ H1(R+) ∩ L2,1(R+). Using a

similar representation for ∂xu in terms of v andw, we obtain Lipschitz continuity of the

mapping (4.80) with the bound (4.81). �

4.3.2 Estimates on the negative half-line

Estimates on the positive half-line were found from the reconstruction formulas

(4.69) and (4.70), which only use estimates of vector columns μ− and η+, as seen in (4.71)

and (4.72). By comparing (3.22) with (4.1), we can rewrite the reconstruction formulas

(4.67) and (4.68) for the lower choice of m(2)
− and p(2)− as follows:

∂x

(
ū(x)e

1
2i
∫ x−∞ |u(y)|2dy

)
= 2ie− 1

2i
∫ x+∞ |u(y)|2dya∞ lim

|z|→∞
zμ(2)+ (x; z) (4.82)

and

u(x)e− 1
2i
∫ x−∞ |u(y)|2dy = −4e

1
2i
∫ x+∞ |u(y)|2dyā∞ lim

|z|→∞
zη(1)− (x; z), (4.83)

where a∞ := lim|z|→∞ a(z) = e
1
2i
∫
R

|u(y)|2dy . If we now use the same solution representation

(4.28) in the reconstruction formulas (4.82) and (4.83), we obtain the same explicit expres-

sions (4.71) and (4.72). On the other hand, if we rewrite the Riemann–Hilbert problem
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(3.26) in an equivalent form, we will be able to find nontrivial representation formu-

las for u, which are useful on the negative half-line. To do so, we need to factorize the

scattering matrix R(x; z) in an equivalent form.

Let us consider the scalar Riemann–Hilbert problem

{
δ+(z)− δ−(z) = r̄+(z)r−(z)δ−(z), z ∈ R,

δ±(z) → 1 as |z| → ∞,
(4.84)

and look for analytic continuations of functions δ± in C
±. The solution to the scalar

Riemann–Hilbert problem (4.84) and some useful estimates are reported in the following

two propositions, where we recall from (3.19) that

{
1 + r+(z)r−(z) = 1 + |r(λ)|2 ≥ 1, z ∈ R

+,

1 + r+(z)r−(z) = 1 − |r(λ)|2 ≥ c20 > 0, z ∈ R
−,

where the latter inequality is due to (3.10).

Proposition 8. Let r± ∈ H1(R)∩L2,1(R) such that the inequality (3.10) is satisfied. There

exists unique analytic functions δ± in C
± of the form

δ(z) = eC log(1+r+r−), z ∈ C
±, (4.85)

which solve the scalar Riemann–Hilbert problem (4.84) and which have the limits

δ±(z) = eP± log(1+r+r−), z ∈ R, (4.86)

as z ∈ C
± approaches to a point on the real axis by any non-tangential contour in C

±. �

Proof. First, we prove that log(1 + r+r−) ∈ L1(R). Indeed, since r± ∈ L2,1
z (R) ∩ L∞(R), we

have r+r− ∈ L1(R). Furthermore, it follows from the representation (3.17) as well as from

Propositions 2 and 3 that

〈z〉|r(λ)| ≤ |r(λ)| + 1

2
|λ||r−(z)| ≤ C, z ∈ R,

where C is a positive constant. Therefore,

log(1 + |r(λ)|2) ≤ log(1 + C2〈z〉−2), z ∈ R
+, λ ∈ R,

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/2018/18/5663/3078585 by M
cM

aster U
niversity Library , C

ollections - Serials Processing user on 11 O
ctober 2018



5720 D. E. Pelinovsky and Y. Shimabukuro

so that log(1 + r+r−) ∈ L1(R+). On the other hand, it follows from the inequality (3.10)

that

| log(1 − |r(λ)|2)| ≤ − log(1 − C2〈z〉−2), z ∈ R
−, λ ∈ R,

so that log(1 + r+r−) ∈ L1(R−).

Thus, we have log(1 + r+r−) ∈ L1(R). It also follows from the above estimates

that log(1 + r+r−) ∈ L∞(R). By Hölder inequality, we hence obtain log(1 + r+r−) ∈ L2(R).

By Proposition 4 with p = 2, the expression (4.85) defines unique analytic functions in

C
±, which recover the limits (4.86) and the limits at infinity: lim|z|→∞ δ±(z) = 1. Finally,

since P+ − P− = I , we obtain

δ+(z)δ−1
− (z) = elog(1+r+(z)r−(z)) = 1 + r+(z)r−(z), z ∈ R,

so that δ± given by (4.85) satisfy the scalar Riemann–Hilbert problem (4.84). �

Proposition 9. Let r± ∈ H1(R)∩L2,1(R) such that the inequality (3.10) is satisfied. Then,

δ+δ−r± ∈ H1(R) ∩ L2,1(R). �

Proof. We first note that P+ + P− = −iH due to the projection formulas (4.6), where H
is the Hilbert transform. Therefore, we write

δ+δ− = e−iH log(1+r+r−).

Since log(1+ r+r−) ∈ L2(R), we have H log(1+ r+r−) ∈ L2(R) being a real-valued function.

Therefore, |δ+(z)δ−(z)| = 1 for almost every z ∈ R. Then, δ+δ−r± ∈ L2,1(R) follows from

r± ∈ L2,1(R).

It remains to show that ∂zδ+δ−r± ∈ L2(R). To do so, we shall prove that ∂zH log(1+
r+r−) ∈ L2(R). Due to Parseval’s identity and the fact ‖Hf ‖L2 = ‖f ‖L2 for every f ∈ L2(R),

we obtain

‖∂zH log(1 + r+r−)‖L2 = ‖∂z log(1 + r+r−)‖L2 .

The right-hand side is bounded since ∂z log(1 + r+r−) = ∂z(r+r−)
1+r+r− ∈ L2(R) under the

conditions of the proposition. The assertion ∂zδ+δ−r± ∈ L2(R) is proved. �

Next, we factorize the scattering matrix R(x; z) in an equivalent form:[
δ−(z) 0

0 δ−1
− (z)

]
[I + R(x; z)]

[
δ−1
+ (z) 0

0 δ+(z)

]
=
[

1 δ−(z)δ+(z)r+(z)e−2izx

δ+(z)δ−(z)r−(z)e2izx 1 + r+(z)r−(z)

]
,
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where we have used δ−1
− δ−1

+ = δ−δ+. Let us now define new jump matrix

R̃δ(x; z) :=
[

0 r+,δ(z)e−2ixz

r−,δ(z)e2ixz r+,δ(z)r−,δ(z)

]
,

associated with new scattering data

r±,δ(z) := δ+(z)δ−(z)r±(z).

By Proposition 9, we have r±,δ ∈ H1(R) ∩ L2,1(R) similarly to the scattering data r±.

By using the functions M±(x; z) and δ±(z), we define functions

M±,δ(x; z) := M±(x; z)

[
δ−1
± (z) 0

0 δ±(z)

]
. (4.87)

By Proposition 8, the new functionsM±,δ(x; ·) are analytic in C
± and have the same limit

I as |z| → ∞. On the real axis, the new functions satisfy the jump condition associated

with the jump matrix R̃δ(x; z). All together, the new Riemann–Hilbert problem{
M+,δ(x; z)−M−,δ(x; z) = M−,δ(x; z)R̃δ(x; z), z ∈ R,

lim|z|→∞ M±,δ(x; z) = I ,
(4.88)

follows from the previous Riemann–Hilbert problem (3.26). By Corollary 6 and analysis

preceding Lemma9, theRiemann–Hilbert problem (4.88) admits a unique solution,which

is given by the Cauchy operators in the form:

M±,δ(x; z) = I + C (M−,δ(x; ·)R̃δ(x; ·)
)
(z), z ∈ C

±. (4.89)

Let us denote the vector columns ofM±,δ byM±,δ = [μ±,δ, η±,δ]. What is nice in the

construction of M±,δ that

lim
|z|→∞

zμ(2)±,δ(x; z) = lim
|z|→∞

zμ(2)± (x; z) and lim
|z|→∞

zη(1)±,δ(x; z) = lim
|z|→∞

zη(1)± (x; z).

Since r±,δ ∈ H1(R) ∩ L2,1(R), we have R̃δ(x; ·) ∈ L1(R) ∩ L2(R) for every x ∈ R, so

that the asymptotic limit (4.5) in Proposition 4 is justified for the integral representation

(4.89). As a result, the reconstruction formulas (4.82) and (4.83) can be rewritten in the

explicit form:

e
1
2i
∫ x+∞ |u(y)|2dy∂x

(
ū(x)e

1
2i
∫ x+∞ |u(y)|2dy

)
= − 1

π

∫
R

r−(z)e2izxη
(2)
−,δ(x; z)dz (4.90)
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5722 D. E. Pelinovsky and Y. Shimabukuro

and

u(x)ei
∫ x+∞ |u(y)|2dy = 2

π i

∫
R

r̄+,δ(z)e
−2izx

[
μ
(1)
−,δ(x; z)+ r−,δ(z)e

2izxη
(1)
−,δ(x; z)

]
dz

= 2

π i

∫
R

r̄+,δ(z)e
−2izxμ

(1)
+,δ(x; z)dz, (4.91)

where we have used the first equation of the Riemann–Hilbert problem (4.88) for the

second equality in (4.91).

The reconstruction formulas (4.90) and (4.91) can be studied similarly to the

analysis in the previous subsection. First, we obtain the system of integral equations

for vectors μ+,δ and η−,δ from projections of the solution representation (4.89) to the real

line:

μ+,δ(x; z) = e1 + P+ (r−,δe
2izxη−,δ(x; ·)

)
(z), (4.92)

η−,δ(x; z) = e2 + P− (r̄+,δe
−2izxμ+,δ(x; ·)

)
(z). (4.93)

The integral equations above can be written as

Gδ − P−(GδRδ) = Fδ, (4.94)

where

Gδ(x; z) :=
[
μ+,δ(x; z)− e1, η−,δ(x; z)− e2

] [ 1 0

−r−,δ(z)e2izx 1

]

and

Fδ(x; z) :=
[
e2P+(r−,δ(z)e

2izx), e1P−(r+,δ(z)e
−2izx)

]
.

The estimates of Proposition 7, Lemma 10, Lemma 11, and Corollary 8 apply to the

system of integral equations (4.92) and (4.93) with the only change: x0 ∈ R
+ is replaced

by x0 ∈ R
− because the operators P+ and P− swap their places in comparison with the

system (4.57). As a result, we extend the statements of Lemma 11 and Corollary 8 to the

negative half-line. This construction yields existence and Lipschitz continuity of the

mapping

H1(R) ∩ L2,1(R) � (r−, r+) �→ u ∈ H2(R−) ∩ H1,1(R−). (4.95)
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Lemma 12. Let r± ∈ H1(R) ∩ L2,1(R) such that the inequality (3.10) is satisfied. Then,

u ∈ H2(R−) ∩ H1,1(R−) satisfies the bound

‖u‖H2(R−)∩H1,1(R−) ≤ C
(‖r+,δ‖H1∩L2,1 + ‖r−,δ‖H1∩L2,1

)
, (4.96)

where C is a positive constant that depends on ‖r±,δ‖H1∩L2,1 . �

Corollary 9. Let r±, r̃± ∈ H1(R)∩L2,1(R) satisfy ‖r±‖H1∩L2,1 , ‖r̃±‖H1∩L2,1 ≤ ρ for some ρ > 0.

Denote the corresponding potentials by u and ũ respectively. Then, there is a positive

ρ-dependent constant C(ρ) such that

‖u− ũ‖H2(R−)∩H1,1(R−) ≤ C(ρ)
(‖r+ − r̃+‖H1∩L2,1 + ‖r− − r̃−‖H1∩L2,1

)
. (4.97)

�

5 Proof of Theorem 1

Thanks to the local well-posedness theory in [32, 33] and the weighted estimates in

[16, 17], there exists a local solution u(t, ·) ∈ H2(R) ∩H1,1(R) to the Cauchy problem (1.1)

with an initial data u0 ∈ H2(R) ∩ H1,1(R) for t ∈ [0,T] for some finite T > 0.

For every t ∈ [0,T], we define fundamental solutions

ψ(t,x; λ) := e−i2λ4t−iλ2xϕ±(t,x; λ)

and

ψ(t,x; λ) := ei2λ
4t+iλ2xφ±(t,x; λ)

to the Kaup–Newell spectral problem (1.9) and the time-evolution problem (1.10) asso-

ciated with the potential u(t,x) that belongs to C([0,T],H2(R) ∩ H1,1(R)). By Corollaries

2 and 3, the bounded Jost functions ϕ±(t,x; λ) and ψ±(t,x; λ) have the same analytic

property in λ plane and satisfy the same boundary conditions{
ϕ±(t,x; λ) → e1

φ±(t,x; λ) → e2
as x → ±∞

for every t ∈ [0,T]. From linear independence of two solutions to the Kaup–Newell

spectral problem (1.9), the bounded Jost functions satisfy the scattering relation

ϕ−(t,x; λ) = a(λ)ϕ+(t,x; λ)+ b(λ)e2iλ
2x+4iλ4tφ+(t,x; λ), x ∈ R, λ ∈ R ∪ iR, (5.1)
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5724 D. E. Pelinovsky and Y. Shimabukuro

where the scattering coefficients a(λ) and b(λ) are independent of (t,x) due to the fact

that the matrices of the linear system (1.9) and (1.10) have zero trace. Indeed, in this

case, the Wronskian determinants are independent of (t,x), so that we have

a(λ) = W(ϕ−(t,x; λ)e−i2λ4t−iλ2x ,φ+(t,x; λ)ei2λ
4t+iλ2x) = W(ϕ−(0, 0; λ),φ+(0, 0; λ)),

b(λ) = W(ϕ+(t,x; λ)e−i2λ4t−iλ2x ,ϕ−(t,x; λ)e−i2λ4t−iλ2x) = W(ϕ+(0, 0; λ),ϕ−(0, 0; λ)).

By Lemma 4 and assumptions on zeros of a in the λ plane, we can define the time-

dependent scattering data

r+(t; z) = −b(λ)e4iλ
4t

2iλa(λ)
, r−(t; z) = 2iλb(λ)e4iλ

4t

a(λ)
, z ∈ R, (5.2)

so that the scattering relation (5.1) becomes equivalent to the first scattering relation in

(2.59). Thus, we define

r±(t; z) = r±(0; z)e4iz
2t, (5.3)

where r±(0; ·) are initial spectral data found from the initial condition u(0, ·) and the

direct scattering transform in Section 2. By Lemma4 andCorollary 4, under the condition

that u0 ∈ H2(R)∩H1,1(R) admits no resonances of the linear equation (1.9), the scattering

data r±(0; ·) are defined in H1(R) ∩ L2,1(R) and are Lipschitz continuous functions of u0.

Now the time evolution (5.3) implies that r±(t; ·) remains in H1(R) ∩ L2,1(R) for

every t ∈ [0,T]. Indeed, we have

‖r±(t; ·)‖L2,1 = ‖r±(0; ·)‖L2,1 and ‖∂zr±(t; ·)+ 4itzr±(t; ·)‖L2 = ‖∂zr(0; ·)‖L2 .

Hence, r(t; ·) ∈ H1(R)∩ L2,1(R) for every t ∈ [0,T]. Moreover, the constraint (3.10) and the

relation (3.18) remain valid for every t ∈ [0,T].
The potential u(t, ·) is recovered from the scattering data r±(t; ·)with the inverse

scattering transform in Section 4. By Lemmas 11, 12 and Corollaries 8, 9, the potential

u(t, ·) is defined in H2(R) ∩ H1,1(R) for every t ∈ [0,T] and is a Lipschitz continuous

function of r(t; ·). Thus, for every t ∈ [0,T) we have proved that

‖u(t, ·)‖H2∩H1,1 ≤ C1 (‖r+(t; ·)‖H1∩L2,1 + ‖r−(t; ·)‖H1∩L2,1)

≤ C2 (‖r+(0; ·)‖H1∩L2,1 + ‖r−(0; ·)‖H1∩L2,1)

≤ C3‖u0‖H2∩H1,1 , (5.4)
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Existence of Global Solutions 5725

Fig. 4. The scheme behind the proof of Theorem 1.

where the positive constants C1, C2, and C3 depends on ‖r±(t; ·)‖H1∩L2,1 , (T , ‖r±(0; ·)‖H1∩L2,1),

and (T , ‖u0‖H2∩H1,1) respectively. Moreover, the map H2(R) ∩ H1,1(R) � u0 �→ u ∈
C([0,T],H2(R) ∩ H1,1(R)) is Lipschitz continuous.

Since ‖r(t; ·)‖H1 may grow at most linearly in t and constants C1,C2,C3 in (5.5)

depends polynomially on their respective norms, we have

‖u(t, ·)‖H2∩H1,1 ≤ C(T)‖u0‖H2∩H1,1 , t ∈ [0,T], (5.5)

where the positive constant C(T) (that also depends on ‖u0‖H2∩H1,1 ) may grow at most

polynomially in T but it remains finite for every T > 0. From here, we derive a con-

tradiction on the assumption that the local solution u ∈ C([0,T],H2(R) ∩ H1,1(R)) blows

up in a finite time. Indeed, if there exists a maximal existence time Tmax > 0 such that

limt↑Tmax ‖u(t; ·)‖H2∩H1,1 = ∞, then the bound (5.5) is violated as t ↑ T , which is impossi-

ble. Therefore, the local solution u ∈ C([0,T],H2(R)∩H1,1(R)) can be continued globally

in time for every T > 0. This final argument yields the proof of Theorem 1.

Figure 4 illustrates the proof of Theorem 1 and summarizes themain ingredients

of our results.
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