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Abstract. The cubic nonlinear Schrödinger equation (NLS) in one dimension is considered
in the presence of an intensity-dependent dispersion term. We study bright solitary waves
with smooth profiles which extend from the limit where the dependence of the dispersion
coefficient on the wave intensity is negligible to the limit where the solitary wave becomes
singular due to vanishing dispersion coefficient. We analyze and numerically explore the
stability for such smooth solitary waves, showing with the help of numerical approximations
that the family of solitary waves becomes unstable in the intermediate region between the
two limits, while being stable in both limits. This bistability, that has also been observed in
other NLS equations with the generalized nonlinearity, brings about interesting dynamical
transitions from one stable branch to another stable branch, that are explored in direct
numerical simulations of the NLS equation with the intensity-dependent dispersion term.

1. Introduction

The cubic nonlinear Schrödinger (NLS) equation in one dimension is one of the basic
models of nonlinear optics, photonics, physics of plasma, and hydrodynamics [8, 17]. The
NLS equation can be modified by the inclusion of the intensity-dependent dispersion in the
form

i∂tψ + d(|ψ|2)∂2
xψ + γ|ψ|2ψ = 0, (1)

where γ is the coefficient of the Kerr nonlinearity, d : (0,∞)→ R is the intensity-dependent
dispersion coefficient, and ψ = ψ(t, x) is the wave function in (t, x) ∈ R× R. If d(|ψ|2) = 1,
then the cubic NLS equation (1) is focusing for γ > 0 and defocusing for γ < 0. It admits
bright solitons at the zero background in the former case and dark solitons at the nonzero
background in the latter case.

The NLS equation with nonconstant d(|ψ|2) has been used in physics literature to model
the coherently prepared multistate atoms [9], quantum well waveguides [13], and fiber-optics
communication systems [14], as well as quantum harmonic oscillators in the presence of
nonlinear effective masses [4]. The dispersion coefficient d(|ψ|2) may both decrease and
increase with respect to the light intensity [9]. Both cases can be modeled in a prototypical
form through the dependence d(|ψ|2) = 1− b|ψ|2 with b being a constant parameter of either
b > 0 or b < 0 [14].
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The mathematical study of the intensity-dependent NLS models started with [24], where
we addressed the model (1) with d(|ψ|2) = 1 − b|ψ|2 and γ = 0. We proved that no
bright solitary waves exist for b < 0 and a continuous family of bright solitary waves with
the singular profiles exist for b > 0. The continuous family can be parameterized by the
distance between the two singularities where the wave profile is bounded and the derivative
is unbounded. Energetic stability of the entire family of singular solitary waves was proven
in [21] by using minimization of the mass functional at fixed energy and fixed distance
between the two singularities. The stability was obtained for perturbations to the soliton
profile in Sobolev space H1(R) within a weak formulation where the distance between the
two singularities is kept fixed.

Another relevant study was done in [19], where the dark solitary waves were obtained in
the case d(|ψ|2) = 1/(1 − |ψ|2) and γ = 0. The profiles of dark solitary waves are smooth
but the time evolution of the NLS equation is singular. In the particular case of the black
solitary waves, it was shown in [19] that the stability spectrum of the black solitons consisted
of isolated eigenvalues and no continuous spectrum. Similar studies of stability of bright and
dark solitary waves were performed in [1, 20] for the regularized NLS equation proposed
earlier in [6] and studied in [2]. It was suggested in [20] that one can combine the intensity-
dependent dispersion term from [19] and the regularization term from [6] into the unifying
model given by the modified NLS equation.

Here we consider a different unifying model, where the intensity-dependent dispersion
term from [24] is combined with the Kerr cubic focusing term. In other words, we address
the NLS-IDD equation in the form:

i∂tψ + (1− |ψ|2)∂2
xψ + γ|ψ|2ψ = 0, (2)

with γ > 0. Such a model is intrinsically of interest in its own right as a setting presenting
the competition of the above mentioned IDD terms with the standard cubic nonlinearity
of relevance to optical and atomic systems [12, 22]. Additionally, it is also of interest as
a continuum limit of the well-known Salerno model first proposed in [25]. The latter has
been used extensively for exploring the breaking of integrability, the evolution of conserved
quantities, the dynamics of solitary waves, among many other topics [3, 16]. The Salerno
model is written as the lattice differential equation

i∂tψn + (1− |ψn|2)(ψn+1 + ψn−1) + µ|ψn|2ψn = 0, (3)

where µ ∈ R is the coefficient of the onsite nonlinearity, ψn = ψn(t) is the wave function
in (t, n) ∈ R × Z, and we have normalized the coefficient of the intersite nonlinearity to
unity. In the continuum limit where ψn(t) = e2itψ(h2t, hn) with small stepsize h and smooth
ψ = ψ(t, x), we can pick µ = 2 + h2γ and obtain (2) from (3) at the truncated order of
O(h2). Hence, the NLS-IDD equation also describes the continuum dynamics of the Salerno
model with the competing onside and intersite nonlinearity.
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Similarly to other NLS equations with the IDD terms, the NLS-IDD equation (2) is a
Hamiltonian system with three basic conserved quantitites for the energy

H(ψ) =

∫
R
|∂xψ|2 + γ|ψ|2 + γ log(1− |ψ|2) dx, (4)

mass

Q(ψ) = −
∫
R

log(1− |ψ|2) dx, (5)

and momentum

P (ψ) = i

∫
R

ψ̄∂xψ − ψ∂xψ̄
|ψ|2

dx, (6)

where H(ψ) and Q(ψ) are well defined in the set of functions in

X :=
{
ψ ∈ H1(R) : ‖ψ‖L∞ < 1

}
(7)

and P (ψ) is well defined for any solution for which ψ(x) 6= 0 on x ∈ R.

The energy, mass, and momentum are conserved in the time evolution of the NLS-IDD
equation (2) due to the basic symmetries of translations given by

ψ(t, x) 7→ ψ(t+ t0, x+ x0)eiθ0 , t0, x0, θ0 ∈ R. (8)

Conservation of E(ψ) in (4) follows from writing (2) in the Hamiltonian form

i∂tψ = (1− |ψ|2)
δE

δψ̄
,

δE

δψ̄
= −∂2

xψ −
γ|ψ|2ψ
1− |ψ|2

,

from which we obtain

d

dt
E(ψ) =

∫
R

(
δE

δψ̄
∂tψ +

δE

δψ̄
∂tψ̄

)
dx = 0.

Conservation of Q(ψ) in (5) follows from the following balance equation obtained from (2):

i∂t log(1− |ψ|2) = ∂x
(
ψ̄∂xψ − ψ∂xψ̄

)
.

Conservation of P (ψ) in (6) can be checked directly as

d

dt
P (ψ) =

∫
R

(
∂xψ∂

2
xψ

ψ2
− ∂3

xψ

ψ
+
∂xψ̄∂

2
xψ̄

ψ̄2
− ∂3

xψ̄

ψ̄

)
dx

+

∫
R

(
ψ̄∂3

xψ + ∂xψ̄∂
2
xψ + ψ∂3

xψ̄ + ∂xψ∂
2
xψ̄
)
dx

− 2γ

∫
R
∂x|ψ|2dx = 0.

The momentum P (ψ) corresponds to the renormalized momentum, which is the only momentum-
type conserved quantity in the NLS equation with the IDD terms, see [19].
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Bright solitons of the NLS-IDD equation (2) are the standing wave solutions of the form

ψ(x, t) = eiωtϕω(x)

with the frequency ω > 0 and the profile ϕω being a real, spatially decaying solution of the
second-order differential equation

d2ϕ

dx2
=

(ω − γϕ2)

1− ϕ2
ϕ = −dV

dϕ
(9)

associated with the potential energy

V (ϕ) :=
ω − γ

2
log |1− ϕ2| − γ

2
ϕ2. (10)

The existence of bright solitons with the smooth profile ϕω is given by the following theorem.

Theorem 1. Fix γ > 0. There exists the solitary wave solution with ϕω ∈ H∞(R) to the
second-order equation (9) if and only if ω ∈ (0, γ). Moreover, the family {ϕω}ω∈(0,γ) is also
smooth with respect to ω.

Remark 1. In the limit ω → 0, the size of ϕω is small according to the formal asymptotic
expansion

ϕω(x) = εφΩ(εx) +O(ε3), ω = ε2Ω,

where the profile φΩ is found from the second-order equation

φ′′ = Ωφ− γφ3

for every fixed Ω > 0, e.g. in the explicit form

φΩ(x) =

√
2Ω
√
γ

sech(
√

Ωx).

In the limit ω → γ, the second-order equation (9) becomes linear, e.g. ϕ′′ = γϕ, with the
formal peakon solution

ϕγ(x) = e−
√
γ|x|.

The case ω > γ gives a family of bright solitons with the singular profiles and the singularity
is the same as the one considered in [21, 24] for γ = 0.

The main motivation for our work is to establish the energetic stability of the bright
solitons with the smooth profile ϕω for ω ∈ (0, γ) under the presence of the intensity–
dependent dispersion. The following theorem presents the main result.

Theorem 2. Let ϕω ∈ H∞(R) be the spatial profile satisfying (9) for ω ∈ (0, γ), according
to Theorem 1. Then, it is a local nondegenerate (up to two symmetries) minimizer of the
augmented energy Λω := H+ωQ subject to fixed mass Q in H1(R) if and only if the mapping
ω 7→ Q(ϕω) is monotonically increasing.
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Remark 2. If local well-posedness of the NLS-IDD equation (2) can be established in the
function set X in (7), then Theorem 2 yields the orbital stability of bright solitons along the
orbit {ϕω(· − ξ)eiθ}ξ,θ∈R in H1(R). However, the quasilinear NLS equation of the class (2)
is locally well-posed in H∞(R), see [7, 11, 23], whereas the result of Theorem 2 allows us to
control perturbations to the bright soliton profile in the H1(R) norm only.

Remark 3. We show numerically that there exist ω1, ω2 satisfying 0 < ω1 < ω2 < γ such that
the mapping ω 7→ Q(ϕω) is monotonically increasing if ω ∈ (0, ω1)∪(ω2, γ) and monotonically
decreasing if ω ∈ (ω1, ω2). The former is energetically stable and the latter is energetically
unstable. Stability of smooth solitary waves in the limits ω → 0 and ω → γ agree with the
stability of bright solitons in the cubic NLS equation and the energetic stability of singular
solitary waves in the NLS-IDD equation for γ = 0 proven in [21].

Remark 4. The spectral instability of solitary waves for ω ∈ (ω1, ω2) has also been observed
in various models involving a modification of the standard dispersion and cubic nonlinearity.
Such examples involve the discrete NLS equations with a long-range dispersion [10], as well
as the generalized NLS equation where the nonlinearity term features a non-cubic (higher
order) power [15].

The paper is organized as follows. Existence of bright solitons with smooth profiles is
considered in Section 2 with the phase plane analysis, where the proof of Theorem 1 is
given. Stability of bright solitons with the proof of Theorem 2 is developed in Section 3 with
analysis of the Hessian operator for the augmented energy Λω = H +ωQ. Numerical results
are described in Section 4, where we approximate the mapping ω 7→ Q(ϕω), eigenvalues of
the spectral stability problem, and the time-dependent evolution of the NLS equation (2)
suggesting that spectrally stable bright solitons are also dynamically (nonlinearly) stable.
An outlook of open directions of study is given in Section 5.

2. Existence of bright solitons with smooth profiles

Here we fix γ > 0 and consider solutions of the second-order equation (9) on the phase
plane (ϕ, ϕ′) ∈ R2. First we consider the case ω > 0, for which there exist three local

extrema of V at 0 and ±
√
ω/γ as well as two singularities at ±1, see (10). For convenience,

we denote ϕ∗ :=
√
ω/γ. Since

V ′′(ϕ) = −ω(1 + ϕ2) + γϕ2(ϕ2 − 3)

(1− ϕ2)2
.

we obtain

V ′′(ϕ∗) =
2ωγ

ω − γ
.

Hence ±ϕ∗ are minima of V for ω ∈ (0, γ) and maxima of V for ω ∈ (γ,∞), whereas 0 is
always a maximum of V if ω > 0. Different cases are considered next.
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(1) ω ∈ (0, γ). Since ϕ∗ ∈ (0, 1), there are three equilibrium points in the vertical strip

[−1, 1]×R for (ϕ, ϕ′). The origin (0, 0) is a saddle point and (±ϕ∗, 0) are the center
points since V is similar to a double-well potential in [−1, 1] with V (ϕ) → +∞ as
ϕ → ±1. The phase portrait of the planar Hamiltonian system described by the
second-order equation (9) is shown on Figure 1 from the level curves of the function

E(ϕ, ϕ′) :=
1

2
(ϕ′)2 + V (ϕ),

which is x-independent on every smooth solution of (9). Periodic orbits exist in the
vertical strip [−1, 1] × R for every E ∈ (V (ϕ∗), 0) ∪ (0,∞) either inside or outside
the homoclinic orbits for E = 0. The homoclinic orbits with E = 0, correspond to
the bright soliton with the smooth profile ϕω ∈ H∞(R) of Theorem 1. Its maximum
value is the unique zero ϕ0 ∈ (0, 1) of V (ϕ) = 0. All orbits outside [−1, 1]×R diverge
to infinity and do not give the solitary wave profiles decaying to zero at infinity. Since
V is smooth in ω and ϕω is bounded away from 1 for every ω ∈ (0, γ), the spatial
profile ϕω is smooth with respect to ω. Smooth profiles ϕω are shown on Figure 2.
The slopes grow as the values of ω increase towards the value of γ = 1.

(2) ω = γ. The singularity is canceled for V (ϕ) = −1
2
ϕ2 and all smooth solutions of the

linear equation ϕ′′ = γϕ diverge to infinity. See Remark 1 for a peakon solution with
the profile ϕγ ∈ H1(R). Existence of such weakly singular bright soliton is beyond
the scope of this work.

(3) ω ∈ (γ,∞). Since ±ϕ∗ are now maxima of V outside [−1, 1], we have V (ϕ) → −∞
as ϕ→ ±1. The other maximum is at 0 with V (0) = 0, so that we compute

V∗(γ, ω) := V (ϕ∗) =
ω − γ

2
log

(
ω

γ
− 1

)
− ω

2
, for ω ∈ (γ,∞).

A simple analysis of this function on Figure 3 shows that for each γ > 0 fixed, there
is a unique ω = ω∗(γ) ∈ (γ,∞) such that V∗(γ, ω∗(γ)) = 0 and V∗(γ, ω) ≶ 0 for
ω ≶ ω∗(γ).

Figure 4 shows the phase portraits of the second-order equation (9) for the two
cases: one is for ω ∈ (γ, ω∗(γ)) (left) and the other one is for ω ∈ (ω∗(γ),∞) (right).
In both cases, all smooth solutions of the second-order equation (9) diverge to infinity.
The homoclinic orbits for the level E = 0 are broken at the singularities ±1. The
smooth orbits outside the vertical strip [−1, 1] × R for the same level E = 0 either
diverge to infinity for ω ∈ (γ, ω∗(γ)) or are bounced back to the singularities ±1 for
ω ∈ (ω∗(γ),∞). The latter case resembles the case of γ = 0, for which we constructed
a continuous family of bell-shaped solitary waves with the singular profiles in [24]
within a weak formulation of the second-order equation (9) for γ = 0, see also [21].
Per the consideration of the latter work, we do not examine such waveforms further
herein.
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Figure 1. Phase portrait for the second-order equation (9) with ω ∈ (0, γ)
for γ = 1. The two homoclinic orbits correspond to the smooth profiles ±ϕω
with values in (−1, 1).
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Figure 2. Bright soliton profiles ϕω for various values of the frequency ω.
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Figure 3. The function V∗(γ, ω) vs. ω for fixed γ = 1. The unique zero of
V∗ occurs at ω = ω∗(γ).
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Figure 4. Phase portraits for the second-order equation (9) with γ = 1 for
which ω∗(1) ≈ 4.5. We use ω = 3 for ω ∈ (γ, ω∗(γ)) (left), and ω = 6 for
ω ∈ (ω∗(γ),∞) (right). In both panels, the green vertical lines indicate the
singularities at ϕ = ±1, and the black curves are the level curves E(ϕ, ϕ′) = 0.

For ω ≤ 0, there is only one local extremum of V at 0 and it is a local minimum of V
with V (ϕ) → +∞ as ϕ → ±1. There is a continuous family of smooth periodic orbits of
the second-order equation (9) in the vertical strip [−1, 1] × R and a continuous family of
unbounded orbits outside the strip. There exist no homoclinic orbits for the bright solitons.

Based on the above analysis, the proof of Theorem 1 is complete.
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3. Stability of bright solitons with smooth profiles

To simplify the proof of Theorem 2, here we set γ = 1. This can be considered without
loss of generality since γ can be scaled to unity by a scaling transformation of the (x, t)
variables in the NLS-IDD equation (1).

Let ϕω ∈ H∞(R) be the spatial profile satisfying (9) for ω ∈ (0, 1) with γ = 1, according
to Theorem 1. Adding a perturbation u + iv to the profile ϕω and linearizing yields the
spectral stability problem in the form:(

0 L−
−L+ 0

)(
u
v

)
= λ

(
u
v

)
(11)

where

L− := −(1− ϕ2
ω)∂2

x + ω − ϕ2
ω,

L+ := −(1− ϕ2
ω)∂2

x + ω + 2ϕω∂
2
xϕω − 3ϕ2

ω.

Since the coefficient (1− ϕ2
ω) is sign-definite for the profile ϕω ∈ H∞(R) of Theorem 1, the

weight (1 − ϕ2
ω)−1 is bounded away from 0 and converges to 1 as |x| → ∞. The linear

Schrödinger operators

S± := (1− ϕ2
ω)−1L± : H2(R) ⊂ L2(R)→ L2(R) (12)

are self-adjoint so that we can consider the spectral stability problem (11) in the weighted
Hilbert space H×H, where H := L2(R, (1− ϕ2

ω)−1 dx) is equipped with the inner product

〈·, ·〉H := 〈(1− ϕ2
ω)−1·, ·〉L2 .

This approach is very similar to the study of stability in the regularized NLS equation, see
[19]. Since (1 − ϕ2

±) is bounded away from 0, we can reformulate the spectral stability
problem (11) in the equivalent form(

0 M−
−M+ 0

)(
ũ
ṽ

)
= λ

(
ũ
ṽ

)
, (13)

where (ũ, ṽ) = (1− ϕ2
ω)−1/2(u, v) and

M± := (1− ϕ2
ω)1/2S±(1− ϕ2

ω)1/2 : H2(R) ⊂ L2(R)→ L2(R) (14)

are also self-adjoint operators.

For the proof of the energetic stability of bright solitons with the smooth profile ϕω, we
follow the standard algorithm of placing ϕω in the variational context as a critical point of
the augmented energy Λω := H + ωQ, where H and Q are given by (4) and (5). Then,
we show that S± in (12) are Hessian operators of the variational problem and that their
combined spectra in L2(R) includes a simple negative eigenvalue, a double zero eigenvalue,
and a strictly positive part bounded away from zero. Finally, we show that ϕω is a local
nondegenerate (up to two symmetries) minimizer of Λω subject to fixed mass Q if and only if
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the mapping ω 7→ Q(ϕω) is monotonically increasing. This yields the criterion for energetic
stability of the bright solitons with the smooth profile ϕω given by Theorem 2.

For a linear operator T : D(T ) ⊂ H → H with a dense domain D(T ) in a Hilbert space
H, we denote

n(T ) = dim{v ∈ H : 〈Tv, v〉H < 0},

which is the number of negative eigenvalues of T with the account of their multiplicity.
Similarly, we denote multiplicity of the zero eigenvalue of T by z(T ). The algorithm of the
proof of Theorem 2 is divided into several steps.

Step 1: ϕω is a solution of the Euler–Lagrange equation for Λω = H + ωQ.

To prove Step 1, we compute variational derivative of H and Q with respect to ψ̄:

δH

δψ̄
= −∂2

xψ −
γ|ψ|2ψ
1− |ψ|2

,
δQ

δψ̄
=

ψ

1− |ψ|2
,

so that the second-order equation (9) is written as

δH

δψ̄
+ ω

δQ

δψ̄
= 0.

Hence, ϕω is a critical point of Λω.

Step 2: Operators S± in (12) are Hessian operators of Λω at ϕω.

To prove Step 2, we add perturbation u+ iv to ϕω, use Step 1, and derive

Λω(ϕω + u+ iv)− Λω(ϕω) = 〈S+u, u〉L2 + 〈S−v, v〉L2 +O(‖u+ iv‖3
H1),

where S± are given by (12). Hence, S± are Hessian operators of Λω at ϕω.

Step 3: n(S−) = 0 and z(S−) = 1 in L2(R).

To prove Step 3, we recall that S− = (1 − ϕ2
ω)−1L−. Due to phase rotation symmetry,

we have L−ϕω = 0 with ϕω(x) > 0 and ϕω ∈ H2(R). The essential spectrum of S− in L2(R)
is given by [ω,∞) by Weyl’s theorem. Since it is bounded from zero by a positive constant
ω > 0, positivity of ϕω implies by Sturm’s Theorem that n(S−) = 0 and z(S−) = 1.

Step 4: n(S+) = 1 and z(S+) = 1 in L2(R).

To prove Step 4, we recall that S+ = (1−ϕ2
ω)−1L+. Due to spatial translation symmetry,

we have L+∂xϕω = 0 with ∂xϕω ∈ H2(R) having exactly one zero on R. Since

ω + 2ϕω∂
2
xϕω − 3ϕ2

ω = ω
1 + ϕ2

ω

1− ϕ2
ω

− ϕ2
ω

3− ϕ2
ω

1− ϕ2
ω

, (15)
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and ϕω(x)→ 0 as |x| → ∞ exponentially fast, the essential spectrum of S+ in L2(R) is given
by [ω,∞) by Weyl’s theorem. Since it is bounded from zero by a positive constant ω > 0, a
single zero of ∂xϕω on R implies by Sturm’s Theorem that n(S−) = 1 and z(S−) = 1.

Step 5: ϕω is a local nondegenerate (up to two symmetries) minimizer of Λω subject to
fixed mass Q if and only if the mapping ω 7→ Q(ϕω) is monotonically increasing.

To prove Step 5, we need to show n(S+|{vω}⊥) = 0 and z(S+|{vω}⊥) = 1, where

vω :=
ϕω

1− ϕ2
ω

represents the first variation of Q at ϕω as in Step 1 and S+|{vω}⊥ denotes the restriction of
S+ to the constrained L2(R) space with a scalar orthogonality condition 〈·, vω〉L2 = 0. As is
well-known, if n(S+) = 1, n(S−) = 0, and z(S±) = 1 as in Steps 3 and 4 and S± are Hessian
operators for Λω at ϕω as in Step 2, then the assertion is true if and only if

〈S−1
+ vω, vω〉L2 < 0.

Recall by Theorem 1 that ϕω ∈ H∞(R) is also smooth with respect to ω for ω ∈ (0, 1). By
differentiating of equation (9) in ω for ω ∈ (0, 1) and comparing with (15), we get

S+∂ωϕω = −vω.

Hence

〈S−1
+ vω, vω〉L2 = −〈∂ωϕω, vω〉L2 = −1

2
∂ωQ(ϕω),

and the assertion is true if and only if the mapping ω 7→ Q(ϕω) is monotonically increasing.

Based on the above five steps, the proof of Theorem 2 is complete.

Remark 5. If the bright soliton with the profile ϕω is a local nondegenerate (up to two
symmetries) minimizer of Λω subject to fixed mass Q as in Theorem 2, then the linear
spectral problem (

0 S−
−S+ 0

)(
u
v

)
= λ

(
u
v

)
admits no eigenvalues λ ∈ C\{iR} with eigenvectors (u, v) ∈ H2(R) × H2(R). Since the
weight (1− ϕ2

ω)−1/2 is bounded away from 0 and ∞, Sylvester’s inertia law theorem implies
the same counts of negative and zero eigenvalues of M± in L2 for M± given by (14).
This implies the same stability result in the spectral problem (13). Finally, by the same
boundedness of (1− ϕ2

ω)−1/2 and the transformation of eigenvector (u, v) ∈ H2(R)×H2(R)
to (ũ, ṽ) ∈ H2(R)×H2(R), it implies that n(L+) = 1, n(L−) = 0, and z(L±) = 1 in H and
that the same stability result holds in the spectral problem (11).
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4. Numerical results

Here we illustrate numerically the statements in Theorem 2 and Remark 3, regarding
monotonicity changes in the mapping ω 7→ Q(ϕω) and the spectral stability of the bright
solitons in the stability problem (11). In addition, we perform several numerical experiments
which suggest that spectrally stable solitons are also dynamically stable.

Profiles ϕω of bright solitons are obtained numerically in the full range ω ∈ (0, γ)
for γ = 1 via a standard pseudo-arclength continuation, using the continuation package
BifurcationKit.jl in Julia. At each continuation step, the profile is obtained by the
GMRES method with a diagonal (Jacobi) preconditioner.

According to Theorem 2, the bright soliton with the smooth profile ϕω is stable if and only
if the mapping ω 7→ Q(ϕω) is increasing. Numerical computations show that this function
has two extrema at ω1, ω2 ∈ (0, γ). The former is seen to be a maximum while the latter is a
minimum, leading to two switches in the stability of the bright solitons. These are indicated
by the two vertical lines in the bottom panel of Figure 5.

These stability conclusions are corroborated by numerical computations of the spectrum
for the stability problem (11). Figure 6 shows the spectrum for various values of ω near
the first critical point ω = ω1 ≈ 0.592. The condition ∂ωQ(ϕω) = 0 is equivalent to a pair
of eigenvalues crossing from the imaginary axis to the real axis (or vice versa) through the
origin. Therefore we expect such eigenvalue zero-crossings at the critical points ω1, ω2 ∈ (0, γ)
of the map ω 7→ Q(ϕω). These are confirmed numerically, and are indicated by the vertical
lines in the top panel of Figure 5.
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Figure 5. Top: Square of the bifurcating unstable eigenvalue λ2 for the spec-
tral stability problem (11). Bottom: the map ω 7→ Q(ϕω). In the top panel,
the dashed horizontal line is drawn at λ2 = 0 and the solid green curve is the
function ω 7→ −ω2, which is the boundary of the continuous spectrum. In
both panels, the dashed vertical lines are drawn at ω1 and ω2.
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Figure 6. Complex plane (λr, λi) for eigenvalues λ = λr + iλi of the spectral
stability problem (11), for ω values near the first eigenvalue crossing. As
ω increases, the nonzero eigenvalue pair moves towards the origin, crossing
through onto the real axis around ω1 ≈ 0.592. The situation at the second
crossing is reversed, with the same eigenvalue pair crossing from the real axis
back to the imaginary axis as ω increases.

Let us now elaborate the behavior of eigenvalues for the spectral stability problem (11).
From the symmetry (8), we obtain two eigenvectors in the kernel of the stability problem
(11): (

0 L−
−L+ 0

)(
∂xϕω

0

)
=

(
0
0

)
and

(
0 L−
−L+ 0

)(
0
ϕω

)
=

(
0
0

)
.

The zero eigenvalue is generally of the quadruple algebraic multiplicity due to two generalized
eigenvectors in the generalized kernel of the stability problem (11). To obtain the generalized
eigenvectors, we consider a two-parameter family of standing and traveling wave solutions
in the form

ψ(x, t) = eiωtφω,c(x− ct),
where ω ∈ (0, 1), c ∈ (−c0, c0) for a small c0 > 0, and the profile φω,c is a solution of the
complex second-order equation

(1− |φ|2)φ′′ + |φ|2φ = ωφ+ icφ′, (16)
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with γ = 1. The profile ϕω ≡ ψω,c=0 has even parity, so that S+ = (1−ϕ2
ω)−1L+ is invertible

on the subspace of even functions in L2(R) and S− = (1 − ϕ2
ω)−1L− is invertible on the

subspace of odd functions in L2(R). As a result, the family {φω,c}ω∈(0,1),c∈(−c0,c0) of solutions
of the second-order equation (16) is smooth for some c0 > 0. Taking derivatives of (16) in ω
and c, we obtain

L+∂ωϕω = −ϕω, L−∂cφω,c|c=0 = −∂xϕω.
As a result, the generalized eigenvectors of the stability problem (11) are given by(

0 L−
−L+ 0

)(
0

−∂cφω,c|c=0

)
=

(
∂xϕω

0

)
and

(
0 L−
−L+ 0

)(
∂ωϕω

0

)
=

(
0
ϕω

)
.

In addition to the quadruple zero eigenvalue and the continuous spectrum on

{iβ : β ∈ (−∞,−ω] ∪ [ω,∞)},

the spectral problem (11) features a bifurcating eigenvalue pair which is responsible for the
switches in stability of the solitary waves.

This eigenvalue pair, shown in the top panel of Figure 5 and also in Figure 6, emerges
from the continuous spectrum at ω ≈ 0.443 and moves along the imaginary axis towards
the origin as ω increases, eventually crossing through to the real axis at ω = ω1 ≈ 0.592
and rendering the bright solitons unstable. The real eigenvalue pair later crosses back to the
imaginary axis at ω = ω2 ≈ 0.843, and finally at ω ≈ 0.912 the eigenvalue pair disappears
into the continuous spectrum. The bright solitons are thus unstable for ω ∈ (ω1, ω2), and
are spectrally stable for ω ∈ (0, ω1] ∪ [ω2, γ).

Finally, we perform the following experiments to investigate the dynamical stability of
bright solitons. Starting with an initial soliton ϕω0 with ω0 ∈ (0, γ), we make a small
perturbation and evolve the solution up to a large time T = 500. The results shown here
use generic Gaussian perturbations centered at the origin, but we have performed more
experiments using different types of perturbations, including e.g. ones with sign changes,
and the overall conclusions are the same as those below. We do not consider here the critical
points ω1 and ω2 for which ∂ωQ(ϕω) = 0. Bright solitons for such critical cases are known
to be nonlinearly unstable for generic Hamiltonian systems with the U(1) symmetry [5, 18].

If the perturbation to the bright soliton ϕω0 is sufficiently small, we expect the solution
to converge, up to radiation, to a stable bright soliton. Hence the solution is expected to be
of the form

u(x, t) = eiωf tϕωf
(x) + (radiation), (17)

for some final frequency ωf . We now seek to confirm this conjecture.

After sufficient time has passed, the radiation will have dispersed significantly and will
not play any role in the central region near x = 0. Therefore we measure the quantity
c(t) = Re(u(0, t)), which in view of (17) is expected to behave like cos(ωf t), and obtain its
dominant frequency via the fast Fourier transform (FFT). Once ωf is obtained, we match



STABILITY OF SMOOTH SOLITARY WAVES 15

the spatial profile of the evolved final state uf (x) to the bright soliton ϕωf
(x). We find good

agreement between the two in all cases, confirming the decomposition (17).

In the case of small perturbations of the spectrally stable soliton, our computations
indicate that the final frequency does not change much, i.e. ωf ≈ ω0. This suggests that
these bright solitons are also dynamically stable.
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Figure 7. Initial and final frequencies shown in the (ω,Q) plane for the
numerical simulations. The point P represents the bright soliton with the
peaked profile. The dashed line indicates the unstable branch, while the other
two branches are stable.

In the case of large perturbations, we have found that ωf 6= ω0 generically, nevertheless,
the frequency ωf lies on one of the stable branches. In particular, it is possible to transition
between the two stable branches when a large perturbation is added. For a spectrally
unstable bright soliton, the perturbed solution always transforms to one of the states within
the stable branches, confirming their dynamical instability.

Figure 7 summarizes in the (ω,Q) plane the outcomes of the transitions from A0 and
C0 to either A1 and C1 or A2 and C2 in the case of large perturbations of the stable bright
solitons and the transitions from B0 to either B1 or B2 in the case of small perturbations
of the unstable bright solitons. The two transitions are defined by Gaussian perturbations
of two different signs to the initial soliton profile ϕω0 . Furthermore, details of the initial
and final profiles are shown in Figures 8 and 9 (left panels) and the final nearly periodic
oscillations of the soliton amplitude (right panels) for the transitions B0 → B1 and B0 → B2.
Note that the final spatial profiles of the bright soliton at A1, B1, and C1 are closer to the
peaked profiles which occur in the limit ω → γ = 1.
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Figure 8. Left: the initial and final solution profiles of the computations
for the transition B0 → B1 in Figure 7 together with the final soliton profile.
Right: oscillations near the stable profile for the final segment of numerical
computations.
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Figure 9. The same as Figure 8 but for the transition B0 → B2 in Figure 7.

5. Conclusion

In the present work we have considered a new modification of the intensity-dependent
dispersion (IDD) models, where the nonlinearly modified dispersion competes with a local
cubic nonlinearity. We argued that this model is of interest in its own right, but also
as a continuum limit of the Salerno model (3). By using the conservation laws and by
analyzing the stationary and spectral stability problems for this model, we showed that the
bright solitons with smooth profiles exist if the frequency lies within a suitable parametric
interval. We have obtained the stability criterion for such smooth bright solitons from the
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monotonicity of the dependence of the mass on the frequency, in line with the well-known
stability criterion in the NLS-type models. Resorting to numerical computations, we have
shown that the smooth bright solitons are spectrally stable for a wide range of parameters and
unstable in a narrow interval of frequencies. The latter were indeed checked and identified
as pertaining to spectrally unstable solutions. Once the relevant frequency interval and
its stability had been mapped, we explored the nonlinear dynamics, confirming at first our
dynamical instability findings but also examining the dynamical outcomes of stable solitary
waves, upon perturbations of larger amplitudes.

Naturally, these findings raise a number of additional questions that are worthwhile of
further investigation. In the present setting, we only explored individual solitary waves.
Yet, it would be quite interesting to examine how the presence of IDD affects the interaction
between different solitary waves. This would not only be interesting in the standard case of
smooth solitary waves, but also in the limit of ω → γ where the profiles of bright solitons
become peaked.

Furthermore, the vast majority of studies concerning IDD has been limited to one-
dimensional realms. Nevertheless, it would be particularly useful to explore the interplay of
such IDD features with, e.g., radially symmetric solutions in higher dimensions and indeed
not just ones involving standard single-humped solitary waves, but also in more complex
settings involving vortices etc. Such studies are currently in progress and will be reported
in future publications.
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