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Abstract
We characterize a general traveling periodic wave of the defocusing mKdV (modified Korteweg–de Vries) equation
by using a quotient of products of Jacobi’s elliptic theta functions. Compared to the standing periodic wave of the
defocusing NLS (nonlinear Schrödinger) equation, these solutions are special cases of Riemann’s theta function of
genus two. Based on our characterization, we derive a new two-parameter solution form which defines a general
three-parameter solution form with the scaling transformation. Eigenfunctions of the Lax system for the general
traveling periodic wave are also characterized as quotients of products of Jacobi’s theta functions. As the main out-
come of our analytical computations, we derive a new solution of the defocusing mKdV equation which describes
the kink breather propagating on a general traveling wave background.

1. Introduction

Dispersive shock waves (DSWs) arise in the wave dynamics on the infinite line from initial data with
different constant boundary conditions at different infinities [16, 17]. Dynamics of DSWs is affected
by the interaction with solitary waves and other localized perturbations [33, 34, 40, 42]. Since DSWs
are modeled as modulations of the traveling periodic waves, dynamics of solitary waves on the travel-
ing periodic wave background have been recently studied for many integrable equations arising in the
physics of fluids, optics, and plasmas [1, 37].

Dynamics of the Korteweg–de Vries (KdV) equation has been considered in [5, 13, 19, 23], where it
was found that the two basic propagations of solitary waves on the elliptic (cnoidal wave) background
are represented by the bright (elevation) and dark (depression) profiles. Such time-periodic interactions
of a spatially decaying wave and a spatially periodic wave are termed as breathers of the KdV equation
[23]. Similar bright and dark breathers appear on the traveling wave background in the Benjamin–Ono
equation [11], where exact solutions are expressed in elementary functions compared to the elliptic
functions. Extension of the breathers for the more general equations of the KP hierarchy can be found
in [24, 30].

Propagation of solitary waves on the unstable elliptic background was studied for the focusing
nonlinear Schrödinger (NLS) equation in [6, 7], where rogue waves were shown to arise due to the
modulational instability of both dnoidal and cnoidal waves [12, 18]. Similar propagations of solitary
waves for the focusing modified KdV (mKdV) equation were studied in [20, 22, 32]. However, compared
to the focusing NLS equation, the dnoidal wave is modulationally stable and supports stable propagation
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of bright breathers, whereas the cnoidal wave is modulationally unstable and supports rogue waves [9,
10, 14].

For the defocusing NLS equation, the elliptic (snoidal wave) background is modulationally stable
and dark breathers have been constructed in [31, 36, 41]. Similarly, the snoidal wave is modulationally
stable in the defocusing mKdV equation and dark breathers have been constructed in [35]. It is rather
interesting that the exact expressions of the dark breathers are different between the defocusing NLS
and mKdV equations.

The purpose of this manuscript is to address the open problem arising in the construction of breathers
in the defocusing mKdV equation posed in [35].

Although the NLS and mKdV equations share the same spectral problem in the Lax system [2], their
traveling wave solutions are different. A general family of traveling wave solutions of the defocusing
NLS equation is given by the elliptic functions which correspond to Riemann’s theta function of genus
one. These complex-valued solutions only give the snoidal wave of the defocusing mKdV equation
since solutions of the mKdV equation are real-valued. However, the snoidal wave is not the most general
traveling wave solution of the mKdV equation. The general solutions arise as the elliptic degeneration
of Riemann’s theta function of genus two. If the Lax spectrum of the snoidal wave contains only two
bandgaps symmetrically relative to the origin, the Lax spectrum of the general traveling wave contains
three bandgaps symmetrically relative to the origin. Dark breathers constructed in [35] correspond to
eigenvalues placed in the two bandgaps associated with the snoidal wave. It remained open in [35]
how to construct the kink breathers which correspond to eigenvalues placed in the central bandgap of
the three bandgaps. Such kink breathers arise naturally in the numerical simulations of the defocusing
mKdV equation [17, 42]. Kink breathers can be thought to represent heteroclinic connections between
the traveling periodic wave of different polarities similar to the solutions constructed in [38, 39] in
non-integrable models.

Let us briefly describe our approach on how to construct kink breathers. First, we have used the
elliptic curves theory to express a general traveling wave solution in terms of the Weierstrass’ elliptic
function. Next, by using the theory of elliptic functions, we express both the general traveling wave
and the eigenfunctions of the Lax system as quotients of products of Jacobi’s elliptic theta functions.
We show that zeros and poles of the first factorization are found uniquely in terms of parameters of
the traveling wave solutions. However, we also show that zeros and poles of the second factorization
(for eigenfunctions of the Lax system) are not found uniquely if the spectral parameter is nonzero.
Nevertheless, they are found uniquely if the spectral parameter is zero and we use the explicit factoriza-
tion to construct the particular (symmetric) kink breather in a closed form with all parameters explicitly
expressed in terms of parameters of the traveling wave solutions. This construction gives a novel solu-
tion of the mKdV equation in the form which is useful for interpretation of the numerical and laboratory
experiments modeled by the defocusing mKdV equation.

The paper is organized as follows. The main mathematical results on the characterization of a gen-
eral traveling periodic wave, its eigenfunctions for the spectral parameter at the origin, and the kink
breathers are presented in Section 2. Technical details of the proof of the main results can be found
in Section 3, where we also review other expressions for the general traveling periodic wave, and
in Section 4. The concluding Section 5 poses an open question on the general characterization of eigen-
functions for nonzero values of the spectral parameter. Appendix A reviews the unique parameterization
of eigenfunctions of the Lax system for the snoidal wave of genus one which was used in [4, 35, 36,
41].

2. Main results

We consider the defocusing mKdV equation in the normalized form

ut − 6u2ux + uxxx = 0, (2.1)
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where (x, t) ∈ R × R and u = u(x, t) ∈ R. As is well-known since the pioneering work [2], classical
solutions of the mKdV equation (2.1) arise as a compatibility condition mxmti = mtmxi of the following
Lax system of linear equations for the eigenfunction i ∈ C2(R × R,C2),

mxi = U (Z , u)i, mti = V (Z , u)i, (2.2)

where

U (Z , u) =
(

iZ u
u −iZ

)
,

V (Z , u) =
(

4iZ3 + 2iZu2 4Z2u − 2iZux + 2u3 − uxx

4Z2u + 2iZux + 2u3 − uxx −4iZ3 − 2iZu2

)
,

and Z ∈ C is the spectral parameter. In what follows, we present the main results on the charac-
terization of the general traveling periodic wave of the mKdV equation (2.1), eigenfunctions of the
Lax system (2.2) for Z = 0, and the kink breathers. We shall use the normalized Jacobi’s elliptic theta
functions: 

\1(y) = 2
∞∑

n=1
(−1)n−1q(n− 1

2 )
2 sin(2n − 1)y,

\4(y) = 1 + 2
∞∑

n=1
(−1)nqn2 cos 2ny,

where q := e−
cK′ (k)
K (k) with K(k) being the complete elliptic integral and K ′ (k) = K (k′) with k′ =

√
1 − k2.

See [3, 4, 8, 21, 29, 43] for review of elliptic functions. We use notations

H (x) = \1

(
cx

2K (k)

)
, Θ(x) = \4

(
cx

2K (k)

)
, (2.3)

and drop the dependence of the elliptic functions on k ∈ (0, 1) if it does not cause a confusion.

2.1. Characterization of the general traveling periodic wave

Travelling waves of the mKdV equation (2.1) are written in the form u(x, t) = q(x + ct), where the
real-valued profile q satisfies the third-order equation

q′′′ − 6q2q′ + cq′ = 0. (2.4)

Integration of (2.4) yields the second-order equation

q′′ − 2q3 + cq = b, (2.5)

where b is the integration constant. Multiplying (2.5) by q′ and integrating, we obtain the first-order
invariant in the form:

(q′)2 = Q(q), Q(q) := q4 − cq2 + 2bq + 2d, (2.6)

where d is another integration constant. We note that equations (2.4), (2.5), and (2.6) are written for
q = q(x), where x stands for the traveling wave coordinate x + ct.
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Remark 2.1. The following scaling transformation (q̃; b̃, c̃, d̃) ↦→ (q; b, c, d) given by

q(x) = aq̃(ax), c = a2c̃, b = a3b̃, d = a4d̃, (2.7)

leaves solutions of the system (2.4), (2.5), and (2.6) invariant with an arbitrary parameter a ∈ R. This
transformation can be used to reduce the number of independent parameters (b, c, d) by one.

Example 2.1. If b= 0, there exists the following one-parameter family of the periodic solutions of the
system (2.4), (2.5), and (2.6)

q(x) = k sn(x, k), c = 1 + k2, b = 0, d =
1
2

k2, (2.8)

parameterized by the elliptic modulus k ∈ (0, 1). A two-parameter family of solutions of the system
(2.4), (2.5), and (2.6) for b= 0 is obtained with the scaling transformation (2.7).

The first main result of this work is to represent the general periodic solution of the system (2.4),
(2.5), and (2.6) for b≠ 0 in the analytical form which involves the quotient of the product of Jacobi
elliptic functions (2.3).

Theorem 1. Bounded periodic (nonconstant) solutions of the second-order equation (2.5) exist if and
only if (b, c) ∈ Ω, where Ω is given by

Ω = {(b, c) : b ∈ (−bc, bc), c > 0}, bc :=
√

2c3
√

27
. (2.9)

These solutions for b ∈ (0, bc) and c> 0 can be uniquely parameterized by the real parameters
(Z1, Z2, Z3) satisfying 0 < Z3 < Z2 < Z1 with


b = 4Z1Z2Z3,

c = 2(Z2
1 + Z2

2 + Z2
3 ),

d = 1
2 (Z

4
1 + Z4

2 + Z4
3 ) − Z2

1 Z
2
2 − Z2

1 Z
2
3 − Z2

2 Z
2
3 .

(2.10)

If Z1 ≠ Z2 + Z3, the periodic profile q is given explicitly by

q(x) = (Z1 − Z2 − Z3)
H (ax − V)H (ax + V)
Θ(ax − U)Θ(ax + U)

Θ2(U)
H2(V)

, (2.11)

where a > 0, k ∈ (0, 1), U ∈ (0, K), and V ∈ (0, K) × i(0, K ′) are uniquely expressed by

a =

√
Z2

1 − Z2
3 , k =

√√
Z2

1 − Z2
2

Z2
1 − Z2

3
, (2.12)

and

sn(U) =

√
Z1 − Z3

Z1 + Z2
, sn(V) =

√
(Z1 + Z3) (Z1 − Z2 − Z3)
(Z1 − Z2) (Z1 + Z2 + Z3)

, (2.13)
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Figure 1. Domain Ω (green shaded area) between the two boundaries (blue solid lines). Example 2.1
corresponds to the red dotted line.

such that V is real for Z1 > Z2 + Z3 and purely imaginary for Z1 < Z2 + Z3. If Z1 = Z2 + Z3, the periodic
profile q is given by

Z1 = Z2 + Z3 : q(x) = 2(Z2 + Z3)Z3 sn
2(ax)Θ2(ax)Θ2(U)

(Z2 + 2Z3)Θ(ax − U)Θ(ax + U)Θ2(0)
, (2.14)

with the same a > 0, k ∈ (0, 1), and U ∈ (0, K).

Figure 1 displays the existence domain Ω in (2.9) by the green shaded area between the two bound-
aries (blue solid lines). The periodic solution in Example 2.1 corresponds to the line b= 0, c> 0 (red
dotted line). The periodic solution in Theorem 1 corresponds to the region in the upper half-plane
between the blue solid line and the red dotted line.

Figure 2 shows profiles q of the periodic solutions of Theorem 1 for two choices of parameters
(Z1, Z2, Z3) with Z1 > Z2 + Z3 (left) and Z1 < Z2 + Z3 (right). Red dots show zeros of q at x = ±a−1V if
V ∈ (0, K) is real. The solution is positive-definite for b ∈ (0, bc) if V = i(0, K ′) is purely imaginary.

Remark 2.2. Since H (x) =
√

ksn(x)Θ(x), see [29, (2.1.1)], the snoidal wave (2.8) can be rewritten as
the following quotient:

q(x) =
√

k
H (x)
Θ(x) . (2.15)

This solution is not expressed as a limiting case of the general solution (2.11) as Z3 → 0 but can
be derived from (2.10), (2.11), (2.12), and (2.13) with Z3 = 0 by using the Landen transformation [29]
which shows that the definition of elliptic modulus k is different between (2.11) and (2.15), see Example
3.2. This illustrates that the snoidal wave (2.8) is a particular case of Riemann’s theta function of genus
one, whereas the general elliptic wave (2.11) with 0 < Z3 < Z2 < Z1 is a particular case of Riemann’s
theta function of genus two.
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Figure 2. Profiles of q versus x for Z1 = 2, Z2 = 1, Z3 = 0.5 (left) and Z1 = 1, Z2 = 0.75, Z3 = 0.5
(right).

Figure 3. Lax spectrum for Z1 = 2, Z2 = 1, and Z3 = 0 (left) and for Z1 = 2, Z2 = 1, and Z3 = 0.5 (right).
Red dots show location of ±Z1, ±Z2, and ±Z3.

Figure 3 displays the Lax spectrum for the snoidal wave (2.8) (left) and for the general elliptic wave
(2.11) (right). The Lax spectrum is defined as the admissible set of the spectral parameter Z for the Lax
system (2.2) for which the eigenfunction i = i(x, t) are bounded functions of x on R for every t ∈ R.
The Lax spectrum for the defocusing mKdV equation (2.1) is a subset of R. The two-gap spectrum on
the left panel versus the three-gap spectrum on the right panel illustrates Remark 2.2 on the difference
between (2.8) and (2.11) as the genus-one and genus-two elliptic potentials, respectively.

Example 2.2. Bounded periodic (nonconstant) solutions of Theorem 1 are defined for a fixed Z3 > 0
and Z2 ∈ (Z3, Z1). If Z1 = Z2, then k = 0 and the solution becomes constant: q(x) = Z3. If Z2 = Z3, then
k = 1 and the solution becomes non-periodic (homoclinic) on the infinite line since lim

k→1
K (k) = ∞. The

solution form (2.11) for k = 1 is expressed in terms of the hyperbolic functions as

q(x) = (Z1 − 2Z2)
sinh(ax − V) sinh(ax + V)
cosh(ax − U) cosh(ax + U)

cosh2(U)
sinh2(V)

, (2.16)
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where a > 0, U > 0, and V ∈ (0,∞) × i
(
0, c

2
)

are uniquely expressed by

a =

√
Z2

1 − Z2
2 , tanh(U) =

√
Z1 − Z2

Z1 + Z2
, tanh(V) =

√
(Z1 + Z2) (Z1 − 2Z2)
(Z1 − Z2) (Z1 + 2Z2)

, (2.17)

such that V is real for Z1 > 2Z2 and purely imaginary for Z1 < 2Z2. The Lax specrum for the hyperbolic
solution (2.16) corresponds to (−∞,−Z1] ∪ {−Z2} ∪ {Z2} ∪ [Z1,∞).

Various solution forms of the traveling periodic waves have been used in the literature on the defo-
cusing mKdV equation (2.1). One popular parameterizaton of solutions, e.g., used in [17, 27], is given
by

q(x) = 2(Z1 + Z3) (Z2 + Z3)
(Z1 + Z3) − (Z1 − Z2)sn2(ax)

− Z1 − Z2 − Z3, (2.18)

where (Z1, Z2, Z3) are the same as in (2.10) and (a, k) are the same as in (2.12). However, as we show
in Example 3.1, the constraint a = 1 suggested by the scaling transformation (2.7) leads to non-unique
choice of (Z1, Z2, Z3) for a given point (b, c) in the existence region Ω.

As a corollary of Theorem 1, we present a novel parameterization of the periodic profile q which is
independent on whether Z1 > Z2 + Z3 or Z1 < Z2 + Z3. This solution form is generated by two arbitrary
parameters U ∈ (0, K) and k ∈ (0, 1), whereas the third arbitrary parameter Z1 ∈ (0,∞) is generated by
the scaling transformation (2.7). The novel two-parameter representation gives all periodic solutions of
the system (2.4), (2.5), and (2.6) for b ∈ (0, bc) and c> 0 in the same way as the one-parameter solution
form (2.8) in Example 2.1 gives all periodic solutions of the system (2.4), (2.5), and (2.6) with b= 0.

Corollary 1. For every (Z1, Z2, Z3) ∈ R3 satisfying Z3 < Z2 < Z1 in Theorem 1, there exists a unique
choice for (Z1,U, k) in (0,∞) × (0, K) × (0, 1) in the transformation


Z1 = Z1,
Z2 = Z1 dn(2U),
Z3 = Z1 cn(2U),

(2.19)

which also implies a = Z1 sn(2U) in (2.12). For Z1 = 1, the elliptic profile q in Theorem 1 can be
uniquely expressed by

q(x) = (dn(2U) + cn(2U)) 1 + k2 sn2(U) sn2(sn(2U)x)
1 − k2 sn2(U) sn2(sn(2U)x)

− 1, (2.20)

where U ∈ (0, K) and k ∈ (0, 1) are two arbirary parameters.

Proof. By using the fundamental relations for the elliptic functions,

sn2(z) + cn2(z) = 1, dn2(z) + k2 sn2(z) = 1, (2.21)

we obtain from the first formula in (2.13) that

sn(U) =
√
Z1 − Z3√
Z1 + Z2

, cn(U) =
√
Z2 + Z3√
Z1 + Z2

, dn(U) =
√
Z2 + Z3√
Z1 + Z3

. (2.22)
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It follows from the addition formulas [29, (2.4.1)]:

sn(u ± v) = sn(u) cn(v) dn(v) ± sn(v) cn(u) dn(u)
1 − k2 sn2(u) sn2(v)

, (2.23)

that

sn(2U) = 2 sn(U) cn(U) dn(U)
1 − k2 sn4(U)

=

√
Z2

1 − Z2
3

Z1
, (2.24)

where we have used (2.22). By the fundamental relations (2.21), we also obtain

cn(2U) = Z3

Z1
, dn(2U) = Z2

Z1
, (2.25)

which yield the transformation (2.19). The Jacobian of the transformation (Z1,U, k) ↦→ (Z1, Z2, Z3) is
given by

m (Z1, Z2, Z3)
m (Z1,U, k) =

�������
1 0 0

dn(2U) −2k2Z1 sn(2U) cn(2U) Z1mk dn(2U)
cn(2U) −2Z1 sn(2U) dn(2U) Z1mk cn(2U)

������� ,
= Z2

1 sn(2U)mk
[
dn2(2U) − k2 cn2(2U)

]
+ 2kZ2

1 sn(2U) cn
2(2U)

= 2kZ2
1 sn(2U) [cn

2(2U) − 1]
= −2kZ2

1 sn
3(2U),

where we have used (2.21). Since the Jacobian is nonzero for Z1 ∈ (0,∞), U ∈ (0, K), and k ∈ (0, 1),
the transformation is invertible and for every (Z1, Z2, Z3) ∈ R3 satisfying Z3 < Z2 < Z1, there exists a
unique choice for (Z1,U, k) in (0,∞) × (0, K) × (0, 1).

Let us now set Z1 = 1 and rewrite (2.18) in the equivalent form

q(x) = 2(1 + cn(2U))(dn(2U) + cn(2U))
(1 + cn(2U)) − (1 − dn(2U)) sn2(sn(2U)x)

− 1 − cn(2U) − dn(2U)

= (dn(2U) + cn(2U)) (1 + cn(2U)) + (1 − dn(2U)) sn2(sn(2U)x)
(1 + cn(2U)) − (1 − dn(2U)) sn2(sn(2U)x)

− 1.

Due to definition of U in (2.13), we get

k2 sn2 (U) = 1 − dn(2U)
1 + cn(2U) ,

from which we obtain (2.20). �
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Example 2.3. For the hyperbolic solutions in Example 2.2, we set k = 1 in Corollary 1 and obtain Z1 = 1,
Z2 = Z3 = sech(2U), and a = tanh(2U). The solution form (2.20) can be rewritten in the form

q(x) = 2sech(2U) 1 + tanh2(U) tanh2(z)
1 − tanh2(U) tanh2(z)

− 1

= 2sech(2U) cosh(2U) cosh(2z) + 1
cosh(2U) + cosh(2z) − 1

=
e2z + e−2z + 2[1 − sinh2(2U)]sech(2U)

e2z + e−2z + 2 cosh(2U)
, (2.26)

where z = tanh(2U)x.

Remark 2.3. If Z3 = 0, then it follows from (2.19) that U = 1
2K and Z2 = Z1

√
1 − k2. The expression

(2.20) is not similar to the snoidal solution (2.8) because the elliptic modulus is different between the
two expressions and the Landen transformation needs to be used, see Example 3.2.

2.2. Kink breathers

If Z = 0, the Lax system of linear equations (2.2) with u(x, t) = q(x+ct) admits two linearly independent
solutions i = (p0, q0)T and i = (p∗0, q∗0)

T given by

p0(x, t) = q0(x, t) = e[
Θ(ab − U)
Θ(ab + U) , (2.27)

and

p∗0(x, t) = −q∗0(x, t) = e−[ Θ(ab + U)
Θ(ab − U) , (2.28)

where b = x + ct and [ = s0b − bt defined with s0 =
aH′ (2U)
H (2U) .

The second main result of this work is to obtain the analytical solution of the mKdV equation (2.1)
for the kink breather, which corresponds to a superposition of the kink soliton and the general traveling
periodic wave of Theorem 1. The speed of the kink breather is defined in the coordinate [ = s0b − bt =
s0(x + cbt) with

cb := c − b
s0
.

If we choose 0 < Z3 < Z2 < Z1 as in Theorem 1, then b> 0 and s0 > 0 since it follows from (2.19)
that U ∈ (0, 1

2K) for Z3 > 0. Hence, we have cb < c, so that the kink moves to the right in the reference
frame moving with the traveling wave in the coordinate b = x + ct.

By using one solution u of the mKdV equation (2.1) and the eigenfunction i = (p, q)T of the Lax
system (2.2) with spectral parameter Z , we can construct another solution û of the same mKdV equation
(2.1) from the one-fold Darboux transformation [9, 10, 32, 35]:

û = u − 4iZpq
p2 − q2 . (2.29)

The kink breathers arises in the singular limit Z→ 0 of the Darboux transformation (2.29), for which
(p, q) is close to one of the two linearly independent solutions (2.27) and (2.28). By analyzing the
solution in the limit Z→ 0, we have obtained the following theorem.
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Figure 4. Plots of u(x, t) for the kink breather solution (2.30) with Z1 = 1, k= 0.9, and U = 0.25K
versus b = x + ct for t = −3 (left) and t= 3 (right). The kink moves to the right relative to the periodic
wave and flips its sign. The periodic wave impares the phase shift (2.33) due to the interaction with the
kink.

Theorem 2. Consider the traveling wave with the elliptic profile q in Theorem 1 for 0 < Z3 < Z2 < Z1.
A bounded kink breather solution of the mKdV equation (2.1) is given by

u(x, t) = 4q(b)Θ2(ab + U) + e2([+[0 )Θ2(ab − U) (2q(b)q′ (b) − q′′ (b) − b)
4Θ2(ab + U) + e2([+[0 )Θ2(ab − U) (c + 2q′ (b) − 2q(b)2)

, (2.30)

where b = x+ ct, [ = s0(x+ cbt), and [0 ∈ R is the arbitrary translational parameter. The kink breather
is characterized by the breather speed

cb = 2(Z2
1 + Z2

2 + Z2
3 ) −

4Z1Z2Z3

Z2 + Z3 − Z1 + 2
√
Z2

1 − Z2
3 Z (U)

< c, (2.31)

and the breather localization (inverse half-width)

s0 = Z2 + Z3 − Z1 + 2
√
Z2

1 − Z2
3 Z (U) > 0, (2.32)

where Z (x) := Θ′ (x)
Θ(x) is Jacobi’s zeta function. The asymptotic behavior of the kink breathers is given by

the limits

u(x, t) →
{

q(b) as [ → −∞,
−q(b − 2a−1U) as [ → +∞,

(2.33)

so that 2a−1U is the phase shift impaired by the kink breather in addition to the sign flip.

Figure 4 gives an illustrative example of the kink breather in Theorem 2 for Z1 = 1, k = 0.9, and
U = 0.25K . It follows from (2.19) and (2.32) that Z2 ≈ 0.66, Z3 ≈ 0.55, and s0 ≈ 0.43. Since b = x + ct
and cb < c as in (2.31), the kink moves to the right in the reference frame moving with the periodic
wave.

Next we show that the kink breather (2.30) of Theorem 2 recovers as k→ 1 the two-soliton solution
constructed in [35], where one soliton is the kink and the other soliton is the solution with the hyperbolic
profile in Example 2.3. The result is given by the following corollary.
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Corollary 2. Consider Z1 = 1, Z2 = Z3 = sech(2U), and a = tanh(2U), where U ∈ (0,∞) is the only
parameter for the hyperbolic profile (2.26). The kink breather of Theorem 2 for k= 1 is equivalent up
to the translational parameters in b and [ to the two-soliton solution

u(x, t) = sinh([ + 2U)e−2z + sinh([ − 2U)e2z + 2 sinh([)(1 − sinh2 (2U))sech(2U)
cosh([ + 2U)e−2z + cosh([ − 2U)e2z + 2 cosh([) cosh(2U)

, (2.34)

where b = x + 2t + 4sech2(2U)t, [ = x + 2t, and z = tanh(2U)b.

Proof. We compute from (2.31) and (2.32) with Z1 = 1, Z2 = Z3 = sech(2U), and a = tanh(2U) that

s0 = −1 + 2sech2(2U) + 2 tanh(2U) tanh(U)
= 1 − 2sech(2U)sech(U) [cosh(2U) cosh(U) − cosh(U) − sinh(U) sinh(2U)]
= 1

and

cb = 2(1 + 2sech2(2U)) − 4sech2 (2U) = 2.

This yields b = x + 2t + 4sech2(2U)t and [ = x + 2t. The solution form (2.34) must be identical to the
solution form (2.30) for k = 1 up to the choice of translations in b and [ since both solutions correspond
to the kink for a simple eigenvalue at 0 and a soliton with the hyperbolic profile (2.26) for a pair of
simple eigenvalues ±sech(2U) in the gap of the continuous spectrum (−∞,−1] ∪ [1,∞) of the Lax
system (2.2). In other words, the Lax spectrum for the two-soliton solution (2.34) is

(−∞,−Z1] ∪ {−sech(2U)} ∪ {0} ∪ {sech(2U)} ∪ [Z1,∞).

To show the correspondence between (2.30) with k = 1 and (2.34), we first note that the expression (2.34)
converges to the shifted kink tanh([ ∓ 2U) as b → ±∞ and to the shifted hyperbolic profile (2.26) with
phase shifts ±U coth(2U) along x as [ → ±∞ and with the sign flip as [ → −∞.

The solution form (2.30) can be rewritten in the equivalent form:

u(x, t) = q(b) − 2Z1Z2Z3e2([+[0 )Θ2(ab − U)
Θ2(ab + U) + e2([+[0 )Θ2(ab − U) (Z2

1 cn
2(ab − U) + Z2

2 sn
2(ab − U))

,

where we have used equation (4.19) below. In the limit k→ 1, this expression with the normalization
Z1 = 1 yields

u(x, t) = 2sech(2U) cosh(2U) cosh(2z) + 1
cosh(2U) + cosh(2z) − 1

− 2e2([+[0 ) cosh2(z − U)
cosh2(2U) cosh2(z + U) + e2([+[0 ) [cosh2(2U) + sinh2(z − U)]

, (2.35)

where we have used the second equality in (2.26) with z = tanh(2U)b. In order to reduce (2.35) to (2.34),
we need to fix the translational parameters in the definitions of b and [. It follows from comparison
between (2.33) as [ → ±∞ and (2.34) as [ → ±∞, which is the shifted hyperbolic profile (2.26) with
phase shifts ±U along z as [ → ±∞ and with the sign flip as [ → −∞, that z in (2.35) should be replaced
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by z + U and the sign should be flipped. This yields the new expression instead of (2.35):

u(x, t) = 1 − 2sech(2U) cosh(2U) cosh(2z + 2U) + 1
cosh(2U) + cosh(2z + 2U)

+ 2e2([+[0 ) cosh2(z)
cosh2(2U) cosh2(z + 2U) + e2([+[0 ) [cosh2(2U) + sinh2(z)]

. (2.36)

In the limit z → ±∞, the expression (2.36) yields

u(x, t) → −1 + 2e2([+[0 )

cosh2(2U)e±4U + e2([+[0 )
,

which must recover tanh([ ∓ 2U), which follows from (2.34) as z → ±∞. This yields the definition of
[0 as e2[0 = cosh2(2U). With this definition of [0, we rewrite the expression (2.36) in the form

u(x, t) = 1 − 2sech(2U) cosh(2U) cosh(2z + 2U) + 1
cosh(2U) + cosh(2z + 2U)

+ 2e2[ cosh2(z)
cosh2(z + 2U) + e2[ [cosh2(2U) + sinh2(z)]

. (2.37)

To show the direct equivalence of (2.34) and (2.37), we note that

cosh(2U) + cosh(2z + 2U) = 2 cosh(z + 2U) cosh(z),

cosh2(z + 2U) + e2[ [cosh2(2U) + sinh2(z)]

= cosh2 (z + 2U) + 1
2

e2[ [cosh(4U) + cosh(2z)]

= cosh(z + 2U) [cosh(z + 2U) + e2[ cosh(z − 2U)],

and

cosh([ + 2U)e−2z + cosh([ − 2U)e2z + 2 cosh([) cosh(2U)
= e−[ [cosh(2z + 2U) + cosh(2U)] + e[ [cosh(2z − 2U) + cosh(2U)]
= 2 cosh(z) [e−[ cosh(z + 2U) + e[ cosh(z − 2U)] .

Subtracting (2.34) from 1 yields

1 − u(x, t) = e−[ [cosh(2U) cosh(2z + 2U) + 1] + e[ sinh2(2U)
cosh(2U) cosh(z) [e−[ cosh(z + 2U) + e[ cosh(z − 2U)] .

This expression is compared with the last two terms in (2.37):

2sech(2U) cosh(2U) cosh(2z + 2U) + 1
cosh(2U) + cosh(2z + 2U) − 2e2[ cosh2(z)

cosh2(z + 2U) + e2[ [cosh2(2U) + sinh2(z)]

=
cosh(2U) cosh(2z + 2U) + 1

cosh(2U) cosh(z) cosh(z + 2U) −
2e[ cosh2(z)

cosh(z + 2U) [e−[ cosh(z + 2U) + e[ cosh(z − 2U)]

=
e−[ [cosh(2U) cosh(2z + 2U) + 1] + e[ sinh2(2U)

cosh(2U) cosh(z) [e−[ cosh(z + 2U) + e[ cosh(z − 2U)] ,
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Figure 5. Plots of u(x, t) for the two-soliton solution (2.34) with U = 0.5 versus [ = x + 2t for t = −3
(left), t= 0 (middle), and t= 3 (right). The soliton with the hyperbolic profile (2.26) moves to the left
relative to the kink and flips the sign after the interaction with the kink. Both the soliton and the kink
impares the phase shifts due to the interaction.

where the simple expression for e[ sinh2(2U) in the numerator is obtained from

cosh(z − 2U) [cosh(2U) cosh(2z + 2U) + 1] − 2 cosh(2U) cosh3(z)
= cosh(z − 2U) [cosh(2U) cosh(2z + 2U) + 1] − cosh2(z) [cosh(z + 2U) + cosh(z − 2U)]
= cosh(z − 2U) [cosh(2U) cosh(2z + 2U) − sinh2(z)]

− cosh(z + 2U) [cosh2(z) + sinh2(2U) − sinh2(2U)]
= cosh(z − 2U) [cosh(2U) cosh(2z + 2U) − sinh2(z)]

− cosh(z + 2U) [cosh(z + 2U) cosh(z − 2U) − sinh2(2U)]
= cosh(z − 2U) [cosh(2U) cosh(2z + 2U) − sinh2(z) − cosh2(z + 2U)] + cosh(z + 2U) sinh2 (2U)
= cosh(z + 2U) sinh2(2U).

This completes the proof of equivalence of (2.34) and (2.37). �

Figure 5 gives an illustrative example of the two-soliton solution in Corollary 2 for Z1 = 1 and U = 0.5.
Since [ = x + 2t and 2 = cb < c = 2 + 4sech2(2U), the soliton with the hyperbolic profile (2.26) moves
to the left in the reference frame moving with the kink. The exact solution (2.34) illustrated in Figure
5 matches well the numerical experiment in Figure 11 in [42] (with the opposite direction of the time
variable used in [42]), which displays the flip of the soliton across the kink.

3. Proof of Theorem 1

In addition to the proof of Theorem 1, we will review other solution forms for the general traveling
periodic wave of the mKdV equation (2.1) used in the literature.

3.1. Solution form parameterized by roots of Q

Let us factorize the polynomial Q in (2.6) by its four roots

Q(q) = (q − u1) (q − u2) (q − u3) (q − u4) = q4 − cq2 + 2bq + 2d. (3.1)
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Expanding (3.1) gives us the following relations between parameters (b, c, d) and roots (u1, u2, u3, u4)
of Q:

u1 + u2 + u3 + u4 = 0,
u1u2 + u1u3 + u1u4 + u2u3 + u2u4 + u3u4 = −c,

u1u2u3 + u1u2u4 + u1u3u4 + u2u3u4 = −2b,
u1u2u3u4 = 2d.


(3.2)

The following lemma identifies the periodic solutions of the system (2.4), (2.5), and (2.6).

Lemma 3.1. There exist bounded periodic (nonconstant) solutions of the system (2.4), (2.5), and (2.6)
if and only if the four roots of Q are real and distinct, which is equivalent to (b, c) ∈ Ω with Ω given by
(2.9). By ordering the four roots of Q as u4 < u3 < u2 < u1, the solution form is given by

q(x) = u4 +
(u2 − u4) (u3 − u4)

(u2 − u4) − (u2 − u3)sn2(ax)
, (3.3)

where

a =
1
2
√
(u1 − u3) (u2 − u4) and k =

√
(u1 − u4) (u2 − u3)
(u1 − u3) (u2 − u4)

. (3.4)

The fundamental period of the elliptic profile q in x is 2a−1K and its minimal and maximal values on
[−a−1K , a−1K] are attained at q(0) = u3 and q(±a−1K) = u2, respectively.

Proof. We consider separate cases of four, two, and no real roots of Q.
Four real simple roots of Q. The first-order invariant (q′)2 = Q(q) admits real solutions for q if

and only if Q(q) ≥ 0, which is true in either of the following three intervals: (−∞, u4], [u3, u2], and
[u1,∞), provided that the roots of Q have been ordered as u4 < u3 < u2 < u1. Solutions to (2.6) are
orbits on the phase plane (q, q′) given by the (2d)-level curve of the function

F (q, q′) := (q′)2 − q4 + cq2 − 2bq.

Roots of Q give the turning points, where the level curve of F (q, q′) = 2d intersects with the q-line.
Roots of Qʹ give the equilibrium points (q, 0) on the phase plane (q, q′). It follows from the phase
portrait on the (q, q′) plane, see Figure 6, that bounded periodic (nonconstant) solutions of the second-
order equation (2.5) exist if and only if the curve on the (q, q′) plane is located between two turning
points and these turning points are not the equilibrium points. Hence, the intervals (−∞, u4] and [u1,∞)
correspond to the unbounded solutions, whereas the bounded periodic (nonconstant) solutions exist in
the only interval [u3, u2]. The four real roots of Q exist for some levels of F (q, q′) = 2d if and only if

Q′ (q) = 2(2q3 − cq + b),

admits three real roots. If c ≤ 0, there is only one real root of Q′ (q), whereas if c> 0, there exist three
real roots of Q′ (q) if and only if b ∈ (−bc, bc), where bc =

√
2c3√
27

corresponds to the local maximum of
the mapping x ↦→ 2x3 − cx. This completes the proof of the existence region Ω for (b, c) given by (2.9).
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Figure 6. Phase portrait of the second-order equation (2.5) from the level curves of F (q, q′) for c= 1
and b = 0.25bc.

To get the solution form (3.3), we use formula 254.00 in [8] and obtain

x =

∫ q

u3

dt√
(t − u1) (t − u2) (t − u3) (t − u4)

=
2√

(u1 − u3) (u2 − u4)
F

(
sin−1

√
(u2 − u4) (q − u3)
(u2 − u3) (q − u4)

,

√
(u2 − u3)(u1 − u4)
(u1 − u3)(u2 − u4)

)
,

where F (i, k) is the incomplete elliptic integral of the first kind:

F (i, k) =
∫ i

0

dU√
1 − k2 sin2 U

=

∫ sin i

0

dt√
(1 − t2) (1 − k2t2)

.

Inverting x = F (i, k) by using Jacobi elliptic function sn(x, k) = sin(i), we rewrite the explicit solution
as (3.3), where the elliptic modulus k is dropped according to our convention.

Two real and two complex simple roots of Q. Let us denote the real roots of Q by u1 and u2 such that
u2 < u1 and the complex-conjugate roots by u3 and u4. Since Q(q) ∼ q4 for large q and the first-order
invariant (q′)2 = Q(q) admits real solutions for q if and only if Q(q) ≥ 0, the solutions only exist in
the intervals (−∞, u2] and [u1,∞). Since each interval includes only one turning point, all solutions are
unbounded in this case.

No real roots of Q. We have Q(q) > 0 so that no turning points exist on (−∞,∞). All solutions are
unbounded in this case.

Double real roots of Q. In the case of four real roots (counting their multiplicities), if either u1 = u2 or
u3 = u4, then k = 1 and the solution (3.3) is non-periodic since lim

k→1
K (k) = ∞ connecting the constant

solutions q(x) = u1 or q(x) = u4 respectively, whereas if u2 = u3, then k = 0 and the solution (3.3)
is constant as q(x) = u2 = u3. In the case of two real roots and two complex roots (counting their
multiplicities), if u1 = u2, then the only bounded solution is constant as q(x) = u1.

Thus, the bounded periodic (nonconstant) solution exists if and only if Q admits four real simple
roots. �
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3.2. Solution form parameterized by roots of the characteristic polynomial

Let us consider the Lax system (2.2) for the traveling wave u(x, t) = q(x + ct). Following [15], we can
separating the variables as i(x, t) = k(x + ct)e4`t and rewrite (2.2) in the form:

d
dx

k =

(
iZ q

q −iZ

)
k (3.5)

and

4`k =

(
4iZ3 + 2iZq2 − icZ 4Z2q − 2iZq′ + 2q3 − q′′ − cq
4Z2q + 2iZq′ + 2q3 − q′′ − cq −4iZ3 − 2iZq2 + icZ

)
k, (3.6)

where derivatives and the potentials depend on only one variable x which stands for the traveling
wave coordinate x + ct. Since (3.6) is the algebraic system, admissible values of µ are found from the
characteristic equation����� 4iZ3 + 2iZq2 − icZ − 4` 4Z2q − 2iZq′ + 2q3 − q′′ − cq

4Z2q + 2iZq′ + 2q3 − q′′ − cq −4iZ3 − 2iZq2 + icZ − 4`

����� = 0. (3.7)

Expanding the determinant in (3.7) and using (2.5) and (2.6), we obtain `2 + P(Z) = 0, where P(Z) is
the characteristic polynomial of the traveling waves in the form:

P(Z) = Z6 − c
2
Z4 + 1

16
(c2 − 8d)Z2 − b2

16
. (3.8)

It is customary to introduce roots {±Z1,±Z2,±Z3} of the polynomial P in the factorization

P(Z) = (Z2 − Z2
1 ) (Z

2 − Z2
2 ) (Z

2 − Z2
3 ). (3.9)

Expanding (3.9) and comparing with (3.8) yields the following relations between parameters (b, c, d)
and roots (Z1, Z2, Z3) of P:

Z2
1 + Z2

2 + Z2
3 =

c
2

,

Z2
1 Z

2
2 + Z2

1 Z
2
3 + Z2

2 Z
2
3 =

1
16

(c2 − 8d),

Z2
1 Z

2
2 Z

2
3 =

b2

16
.


. (3.10)

The following lemma gives a relation between roots of Q and roots of P in (3.2) and (3.10). The relations
are well established in the literature, see [25–28] but we still give the proof for the sake of completeness.

Lemma 3.2. Let (u1, u2, u3, u4) be roots of Q ordered as u4 < u3 < u2 < u1 in Lemma 3.1. Roots
(Z1, Z2, Z3) of P are real and can be expressed from (u1, u2, u3, u4) as
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Z1 =
1
2
(u1 + u2), Z2 =

1
2
(u1 + u3), Z3 =

1
2
(u2 + u3), (3.11)

which satisfies ordering Z3 < Z2 < Z1.

Proof. We will show that the parameterization (3.10) is equivalent to the parameterization (3.2) by using
(3.11). This verifies the validity of (3.11). Since (u1, u2, u3, u4) are real by Lemma 3.1, then (Z1, Z2, Z3)
are real. If (u1, u2, u3, u4) satisfies ordering u4 < u3 < u2 < u1, then (Z1, Z2, Z3) satisfies ordering
Z3 < Z2 < Z1.

For the first equation of system (3.10), we obtain with (3.11) and u1 + u2 + u3 + u4 = 0 that

2c = 4(Z2
1 + Z2

2 + Z2
3 )

= (u1 + u2)2 + (u1 + u3)2 + (u2 + u3)2

= −(u1 + u2) (u3 + u4) − (u1 + u3) (u2 + u4) − (u2 + u3) (u1 + u4)
= −2u1u2 − 2u1u3 − 2u1u4 − 2u2u3 − 2u2u4 − 2u3u4,

which recovers the second equation of system (3.2).
For the third equation of system (3.10), we extract the square root for b = 4Z1Z2Z3 without loss of

generality. It follows from (3.11) and u1 + u2 + u3 + u4 = 0 that

2b = 8Z1Z2Z3

= (u1 + u2) (u1 + u3) (u2 + u3)
= −u1(u2 + u4) (u2 + u3) − u2(u1 + u3) (u1 + u4)
= −u1u2u3 − u1u2u4 − u1u3u4 − u2u3u4 − u1u2(u1 + u2 + u3 + u4)
= −u1u2u3 − u1u2u4 − u1u3u4 − u2u3u4,

which recovers the third equation of system (3.2).
For the second equation of system (3.10), we first perform some algebraic manipulations. It follows

from (3.10) and (3.11) that

4Z2
1 − c = 2(Z2

1 − Z2
2 − Z2

3 )

=
1
2
[(u1 + u2)2 − (u1 + u3)2 − (u2 + u3)2]

=
1
2
[−(u1 + u2) (u3 + u4) + (u1 + u3) (u2 + u4) + (u2 + u3) (u1 + u4)]

= u1u2 + u3u4,

and similarly,

4Z2
2 − c = u1u3 + u2u4,

4Z2
3 − c = u1u4 + u2u3.
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By using these relations, we transform the second equation of system (3.10) to the form:

c2 − 8d = 16(Z2
1 Z

2
2 + Z2

1 Z
2
3 + Z2

2 Z
2
3 )

= (c + u1u2 + u3u4) (c + u1u3 + u2u4) + (c + u1u2 + u3u4) (c + u1u4 + u2u3)
+ (c + u1u3 + u2u4) (c + u1u4 + u2u3)

= 3c2 + 2c(u1u2 + u1u3 + u1u4 + u2u3 + u2u4 + u3u4)
+ (u1u2 + u3u4) (u1u3 + u2u4) + (u1u2 + u3u4) (u1u4 + u2u3)
+ (u1u3 + u2u4) (u1u4 + u2u3)

= c2 + u1u2u3(u1 + u2 + u3) + u1u2u4(u1 + u2 + u4)
+ u1u3u4(u1 + u3 + u4) + u2u3u4(u2 + u3 + u4)

= c2 − 4u1u2u3u4,

which yields 2d = u1u2u3u4, that is, the fourth equation of system (3.2). �

By using Lemma 3.2, we rewrite the solution form (3.3) in a different representation parameterized
by roots (Z1, Z2, Z3). This result is given by the following lemma.

Lemma 3.3. The mapping (Z1, Z2, Z3) → (b, c, d) given by (3.10) with b = 4Z1Z2Z3 is a diffeomorphism
if roots of P satisfy Z3 < Z2 < Z1. The bounded periodic (nonconstant) solutions of Lemma 3.1 can be
written in the form

q(x) = 2(Z1 + Z3) (Z2 + Z3)
(Z1 + Z3) − (Z1 − Z2)sn2(ax)

− Z1 − Z2 − Z3, (3.12)

with

a =

√
Z2

1 − Z2
3 , k =

√√
Z2

1 − Z2
2

Z2
1 − Z2

3
. (3.13)

Proof. Inverting (3.11) with the constraint u1 + u2 + u3 + u4 = 0, we obtain
u1 = Z1 + Z2 − Z3,
u2 = Z1 − Z2 + Z3,
u3 = −Z1 + Z2 + Z3,
u4 = −Z1 − Z2 − Z3.

(3.14)

The solution form (3.3)–(3.4) transforms to the solution form (3.12)–(3.13) by using substitution (3.14)
and direct computations.

Next, we show that the mapping (Z1, Z2, Z3) → (b, c, d) given by (3.10) with b = 4Z1Z2Z3 is invertible
for Z3 < Z2 < Z1. The Jacobian of the mapping (Z1, Z2, Z3) → (b, c, c2 − 8d) is given by

m (b, c, c2 − 8d)
m (Z1, Z2, Z3)

= 29

�������
Z2Z3 Z1Z3 Z1Z2

Z1 Z2 Z3

Z1(Z2
2 + Z2

3 ) Z2 (Z2
1 + Z2

3 ) Z3(Z2
1 + Z2

2 )

������� ,
= 29 [

Z2
2 Z

2
3 (Z

2
2 − Z2

3 ) − Z2
1 Z

2
3 (Z

2
1 − Z2

3 ) + Z2
1 Z

2
2 (Z

2
1 − Z2

2 )
]

= 29(Z2
1 − Z2

2 ) (Z
2
1 − Z2

3 ) (Z
2
2 − Z2

3 ) ≠ 0.
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Since the mapping (Z1, Z2, Z3) → (b, c, c2 − 8d) is a diffeomorphism, so is the mapping (Z1, Z2, Z3) →
(b, c, d). �

Example 3.1. In view of the scaling transformation (2.7), it is tempting to fix a = 1 in the solution
form (3.12). However, if a is fixed and Z1 =

√
Z2

3 + a2, Z2 =

√
Z2

3 + (1 − k2)a2 are uniquely defined by
(Z2

3 , k2), we obtain {
c = 2(3Z2

3 + a2(2 − k2)),
b2 = 16Z2

3 (Z
2
3 + a2) (Z2

3 + a2(1 − k2)).
(3.15)

The Jacobian of the mapping (Z2
3 , k2) → (c, b2) is computed from (3.15) as

m (c, b2)
m (Z2

3 , k2)
= 32

����� 3 −a2

3Z4
3 + 2a2(2 − k2)Z2

3 + a4(1 − k2) −a2Z2
3 (Z

2
3 + a2)

����� ,
= 32a4(Z2

3 (1 − 2k2) + a2(1 − k2)).

The mapping (Z2
3 , k2) → (c, b2) for fixed a > 0 is only invertible for every k2 ∈ [0, 1

2 ], which does not
cover the entire existence region Ω in (2.9). This suggests that the solution form (3.12) is not convenient
for the reduction to the two-parameter form by fixing a = 1 according to the scaling transformation (2.7).

Example 3.2. The periodic solution (2.8) with b= 0 is obtained for the choice

Z1 =
1
2
(1 + k̃), Z2 =

1
2
(1 − k̃), Z3 = 0, (3.16)

where k̃ ∈ (0, 1) is the elliptic modulus of the solution q(x) = k̃ sn(x, k̃). It is interesting that the general
periodic solution (3.12) with the elliptic modulus k ∈ (0, 1) does not reduce to the solution form (2.8)
directly but recovers it after Landen’s transformation. Indeed, it follows from (3.13) with (3.16) that

a =
1
2
(1 + k̃), k =

2
√

k̃
1 + k̃

. (3.17)

The solution form (3.12) implies with the help of (3.16) and (3.17) that

q(x) = 1 − k̃2

1 + k̃ − 2k̃ sn2(ax, k)
− 1

=
1 − k̃2

1 − k̃2 sn2 (x, k̃) + k̃ cn(x, k̃) dn(x, k̃)
− 1,

where we have used

sn2(ax, k) = 1 − cn(2ax, k)
1 + dn(2ax, k) =

1
2

[
1 + k̃ sn2(x, k̃) − cn(x, k̃) dn(x, k̃)

]
with the last equality due to the Landen transformation

cn

(
(1 + k̃)x,

2
√

k̃
1 + k̃

)
=
cn(x, k̃) dn(x, k̃)
1 + k̃ sn2(x, k̃)

, dn

(
(1 + k̃)x,

2
√

k̃
1 + k̃

)
=

1 − k̃ sn2(x, k̃)
1 + k̃ sn2(x, k̃)

.
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By using the fundamental relations (2.21), we finally obtain

q(x) = 1 − k̃2

dn(x, k̃) (dn(x, k̃) + k̃ cn(x, k̃)
− 1

=
dn(x, k̃) − k̃ cn(x, k̃)

dn(x, k̃)
− 1

= − k̃ cn(x, k̃)
dn(x, k̃)

= −k̃ sn(x + K (k̃), k̃),

where we have used

sn(x + K) = cn(x)
dn(x) .

This recovers the solution form q(x) = k̃ sn(x, k̃) up to the spatial translation and the sign flip.

3.3. Solution form expressed by Weierstrass’ elliptic functions

The Weierstrass’ elliptic function ℘(x) with two fundamental periods 2l and 2l′ is defined by the
differential equation

(℘′ (x))2 = 4℘(x)3 − g2℘(x) − g3 = 4(℘(x) − e1) (℘(x) − e2) (℘(x) − e3), (3.18)

where the roots

e1 = ℘(l), e2 = ℘(l + l′), e3 = ℘(l′),

are sorted as e3 < e2 < e1. Weierstrass’ and Jacobi’s elliptic functions are related by

℘(x) = e3 +
e1 − e3

sn2(√e1 − e3x, k)
, k =

√
e2 − e3

e1 − e3
, (3.19)

which yields the following relations between the fundamental periods

l =
K (k)

√e1 − e3
and l′ =

iK ′ (k)
√e1 − e3

. (3.20)

It follows from (3.18) that

e1 + e2 + e3 = 0,

e1e2 + e2e3 + e1e3 = −1
4

g2,

e1e2e3 =
1
4

g3.


(3.21)

The following lemma gives the solution form for q(x) based on ℘(x). Although this representation is
old, see [3, p.13] and [43, p.453], it is useful for many computations in Sections 4 and 5.
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Lemma 3.4. The bounded periodic (nonconstant) solutions of Lemma 3.3 can be written as the linear
fractional transformation of Weierstrass’ elliptic function:

q(x) = U1℘(x) + V1

℘(x) + W1
, (3.22)

where

U1 := Z2 + Z3 − Z1,

V1 :=
1
3
Z1(Z2

1 − 2Z2
2 − 2Z2

3 − 3Z2Z3) +
1
3
(Z2 + Z3) (2Z2

1 − Z2
2 − Z2

3 + 3Z2Z3),

W1 := Z1(Z2 + Z3) − Z2Z3 −
1
3
(Z2

1 + Z2
2 + Z2

3 ).

There exists v ∈ C in the rectangle [−l,l] × [−l′,l′] such that

c
6
= ℘(v), b

2
= ℘′ (v), (3.23)

which allows us to rewrite the solution (3.22) in another form:

q(x) = 1
2
℘′ (x − v

2 ) + ℘′ (x + v
2 )

℘(x − v
2 ) − ℘(x + v

2 )
(3.24)

and

q′ (x) = ℘

(
x − v

2

)
− ℘

(
x + v

2

)
. (3.25)

Proof. First, we show that parameters (b, c, d) of the quartic polynomial Q in (2.6) are related to
parameters (g2, g3) of the cubic polynomial in (3.18) with the correspondence:


g2 =

c2

12
+ 2d,

g3 =
c3

216
− cd

3
− b2

4
.

(3.26)

To do so, we use the relations:


e1 =

1
3
(Z2

1 + Z2
2 − 2Z2

3 ),

e2 =
1
3
(Z2

1 − 2Z2
2 + Z2

3 ),

e3 =
1
3
(−2Z2

1 + Z2
2 + Z2

3 ),

⇒


e1 − e2 = Z2

2 − Z2
3 ,

e1 − e3 = Z2
1 − Z2

3 ,

e2 − e3 = Z2
1 − Z2

2 .

(3.27)
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By substituting (3.27) into (3.21) and using (3.10), we obtain the relations (3.26) as follows:

g2 = −4(e1e2 + e2e3 + e1e3)

= −4
[( c

6
− Z2

3

) ( c
6
− Z2

2

)
+

( c
6
− Z2

3

) ( c
6
− Z2

1

)
+

( c
6
− Z2

2

) ( c
6
− Z2

1

)]
= −4

[
c2

12
− c

3
(Z2

1 + Z2
2 + Z2

3 ) + (Z2
1 Z

2
2 + Z2

1 Z
2
3 + Z2

2 Z
2
3 )

]
= −4

[
c2

12
− c2

6
+ c2 − 8d

16

]
=

c2

12
+ 2d

and

g3 = 4e1e2e3

= 4
( c
6
− Z2

1

) ( c
6
− Z2

2

) ( c
6
− Z2

3

)
= 4

(
c3

216
− c2

36
(Z2

1 + Z2
2 + Z2

3 ) +
c
6
(Z2

1 Z
2
2 + Z2

1 Z
2
3 + Z2

2 Z
2
3 ) − Z2

1 Z
2
2 Z

2
3

)
= 4

(
c3

216
− c3

72
+ c3

96
− cd

12
− b2

16

)
=

c3

216
− cd

3
− b2

4
.

Comparing (3.12) with (3.19) and (3.27) yields the linear fractional transformation (3.22). In order to
derive (3.24) and (3.25), we obtain from (3.26) that(

b
2

)2
= 4

( c
6

)3
− g2

( c
6

)
− g3.

Hence,
(

c
6 , b

2

)
is a point on the elliptic curve for ℘(x) so that there exists v ∈ C in the rectangle [−l,l]×

[−l′,l′] which parameterizes (b, c) in (3.23). Consequently, equation (2.6) can be rewritten in the
following form

(q′)2 = [q2 − 3℘(v)]2 + 4℘′ (v)q + g2 − 12[℘(v)]2,

which is satisfied by (3.24) and (3.25) due to computations on pp.103-104 in [3], �

Remark 3.1. By using formula 8.177.1 in [21], we can rewrite (3.24) in the equivalent form:

q(x) = Z

(
x + v

2

)
− Z

(
x − v

2

)
− Z (v), (3.28)

where Z is the Weierstrass’ zeta function. Furthermore, by using formula 8.166.2 in [21], we integrate
the product of q in (3.24) and q′ in (3.25) to obtain

q2(x) = ℘

(
x + v

2

)
+ ℘

(
x − v

2

)
+ ℘(v). (3.29)
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3.4. Solution form expressed by Jacobi’s theta functions

For the soluton form (3.12) in Lemma 3.3, it is convenient to use the variable z := ax. Since q is
periodic in z = ax with the fundamental periods 2K and 2iK ′, we are looking for poles and zeros in the
fundamental rectangle [−K , K] × [−iK ′, iK ′]. This rectangle in variable z is equivalent to the rectangle
[−l,l] × [−l′,l′] for the Weierstrass’ elliptic function ℘ in variable x due to (3.20) and (3.27).

From the theory of elliptic functions, we adopt the following three propositions, where the numbers
of zeros and poles are defined according to their multiplicity and subject to the periodic boundary
conditions on the boundaries of the fundamental rectangles.

Proposition 3.1. For every c ∈ C, there exist only two solutions of the elliptic equation ℘(x) = c in the
rectangle [−l,l] × [−l′,l′] or equivalently, only two solutions of the elliptic equation sn2(z) = c in
the rectangle [−K , K] × [−iK ′, iK ′].

Proof. Since the Weierstrass function ℘ is an elliptic function of the second order (pages 8 and 12 in
[3]), the assertion follows from 20-13 on page 432 in [43]. �

Proposition 3.2. For every elliptic function, the number of zeros and poles in the rectangle [−K , K] ×
[−iK ′, iK ′] coincide.

Proof. The assertion follows by 20-13 on page 432 in [43]. �

Proposition 3.3. Let f (x) : C → C be an elliptic function with two fundamental periods 2l, 2l′ ∈ C
and with N zeros {x′1, x′2, . . . , x′N } and N poles {x1, x2, . . . , xN } inside [−l,l] × [−l′,l′]. There exists
a constant C ∈ C such that

f (x) = C
H (x − x′1)H (x − x′2) . . .H (x − x′N )
H (x − x1)H (x − x2) . . .H (x − xN )

, (3.30)

where H(x) is Jacobi’s theta function given by (2.3).

Proof. See Sections 14 and 19 in [3]. �

By Lemma 3.4, the profile q is an elliptic function, see (3.22), (3.24), and (3.28). The following
lemma specifies the number and locations of zeros and poles of q in the fundamental rectangle. To
avoid confusion, we write explicitly the elliptic modulus k ∈ (0, 1) and use k′ =

√
1 − k2 in Jacobi’s

elliptic functions.

Lemma 3.5. Assume that 0 < Z3 < Z2 < Z1. There exist exactly two simple poles of q(x) for z = ax in
[−K , K] × [−iK ′, iK ′] at ±(iK ′ + U) with U ∈ (0, K) given by

sn(U, k) =

√
Z1 − Z3

Z1 + Z2
(3.31)

and two simple zeros of q in [−K , K] × [−iK ′, iK ′] at ±V, where V ∈ (0, K) is real for Z1 > Z2 + Z3
given by

sn(V, k) =

√
(Z1 + Z3) (Z1 − Z2 − Z3)
(Z1 − Z2) (Z1 + Z2 + Z3)

, (3.32)
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V ∈ i(0, K ′) is purely imaginary for Z1 < Z2 + Z3 given by

sn(−iV, k′) =

√
(Z1 + Z3) (Z2 + Z3 − Z1)
(Z2 + Z3) (Z1 − Z2 + Z3)

, (3.33)

and V = 0 for Z1 = Z2 + Z3 (in which case, there is only one double zero).

Proof. It follows from (3.12) that the poles of q are obtained from roots of the following equation:

sn2 (z, k) = Z1 + Z3

Z1 − Z2
> 1. (3.34)

By using the formula

sn(z + iK ′, k) = 1
k sn(z, k) ,

we can rewrite (3.34) for z = iK ′ + U:

sn2(U, k) = 1
k2

Z1 − Z2

Z1 + Z3
=

Z1 − Z3

Z1 + Z2
∈ (0, 1),

By Proposition 3.1, there exist only two solutions of this equation in [−K , K] × [−iK ′, iK ′] and since
sn2(U, k) ∈ (0, 1), the roots are located symmetrically at ±U, where U ∈ (0, K) is uniquely obtained
from (3.31). Due to 2iK ′ periodicity of sn2(z, k), the two roots can be equivalently placed at ±(iK ′+U).

It follows from (3.12) that the zeros of q are obtained from roots of the following equation:

sn2(z, k) = (Z1 + Z3) (Z1 − Z2 − Z3)
(Z1 − Z2) (Z1 + Z2 + Z3)

. (3.35)

If Z1 = Z2 + Z3, then the only solution of (3.35) is a double zero at 0. If Z ≠ Z2 + Z3, two solutions of
(3.35) correspond to two simple zeros.

• If Z1 > Z2 + Z3, then

(Z1 + Z3) (Z1 − Z2 − Z3)
(Z1 − Z2) (Z1 + Z2 + Z3)

∈ (0, 1)

since

(Z1 + Z3) (Z1 − Z2 − Z3) < (Z1 − Z2) (Z1 + Z2 + Z3)

is satisfied due to

(Z2 + Z3) (Z1 − Z2 + Z3) > 0.

As a result, the roots of (3.35) are real and located symmetrically at ±V, where V ∈ (0, K) is
uniquely obtained from (3.32).
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Figure 7. The rectangle [−K , K] × [−iK ′, iK ′] in the z-plane (dotted black) with zeros of q (red dots)
and poles of q (blue dots). The zeros of q are located on the real axis for Z1 > Z2 + Z3 (left) and on the
imaginary axis for Z1 < Z2 + Z3 (right) whereas the poles of q are located at ±(iK ′ +U) with U ∈ (0, K)
given by (3.31).

• If Z1 < Z2 + Z3, then

(Z1 + Z3) (Z1 − Z2 − Z3)
(Z1 − Z2) (Z1 + Z2 + Z3)

< 0.

By using the formula

sn(iz, k) = i sn(z, k′)
cn(z, k′) ,

we rewrite (3.35) in the equivalent form for z = iz′:

sn2(z′, k′) = (Z1 + Z3) (Z2 + Z3 − Z1)
(Z2 + Z3) (Z1 − Z2 + Z3)

∈ (0, 1),

where the right-hand side belongs to (0, 1) since

(Z1 + Z3) (Z2 + Z3 − Z1) < (Z2 + Z3) (Z1 − Z2 + Z3)

is satisfied due to

(Z1 − Z2) (Z1 + Z2 + Z3) > 0.

As a result, the roots of (3.35) are purely imaginary and located symmetrically at ±V, where V ∈
i(0, K ′) is uniquely obtained from (3.33).

These computations complete the proof of the assertions. �

Figure 7 shows the location of poles and zeros of q(x) for z = ax in [−K , K] × [−iK ′, iK ′].
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Lemma 3.6. The point v ∈ [−l,l] × [−l′,l′] in Lemma 3.4 is related to the value of U in Lemma
3.5 by the following correspondence:

v
2
= − iK ′ + U

√e1 − e3
. (3.36)

Proof. Since ℘(x) = x−2 +O(1) as x→ 0, it follows from (3.25) that x = ± v
2 are simple poles of q(x)

such that

lim
x→± v

2

(
x ∓ v

2

)
q(x) = ∓1. (3.37)

Expanding (3.12) in z near z = iK ′ + U yields

lim
ax→iK ′+U

(ax − iK ′ − U)q(x) = − (Z1 + Z3) (Z2 + Z3)
(Z1 − Z2) sn(iK ′ + U) cn(iK ′ + U) dn(iK ′ + U)

=
(Z1 + Z3) (Z2 + Z3)k2 sn3(U)

(Z1 − Z2) cn(U) dn(U)
, (3.38)

where we have used translation formulas for Jacobi’s elliptic functions

sn(z + iK ′) = 1
k sn(z) , cn(z + iK ′) = −i dn(z)

k sn(z) , dn(z + iK ′) = −i cn(z)
sn(z) . (3.39)

The limit (3.38) is computed by using (2.12) and (2.22),

lim
ax→iK ′+U

(ax − iK ′ − U)q(x) = a. (3.40)

Since a =
√e1 − e3, comparing (3.37) and (3.40) implies (3.36). �

Next, we incorporate the poles and zeros of the elliptic function q in Lemma 3.5 and obtain the
solution form (2.11) in Theorem 1. This is done by using Propositions 3.2 and 3.3 with the factorization
formula (3.30) for N = 2.

Lemma 3.7. Assume 0 < Z3 < Z2 < Z1 and Z1 ≠ Z2 + Z3. Let U ∈ (0, K) and V ∈ (0, K) ∪ i(0, K ′) be
defined as in Lemma 3.5. Then, the periodic solution with the profile q in Lemma 3.4 is given by

q(x) = (Z1 − Z2 − Z3)
H (ax − V)H (ax + V)Θ2(U)
Θ(ax − U)Θ(ax + U)H2(V)

. (3.41)

Proof. By Proposition 3.3 with N = 2, the elliptic function q is factorized as a quotient of the products
of Jacobi’s theta function H centred at two zeros and two poles given by Lemma 3.5:

q(x) = C
H (ax − V)H (ax + V)

H (ax − iK ′ − U)H (ax + iK ′ + U) ,

where C is a specific constant to be determined uniquely. Since

H (z + iK ′) = ie
cK′
4K e−

icz
2K Θ(z), (3.42)
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we obtain

H (ax − iK ′ − U)H (ax + iK ′ + U) = e
cK′
2K e−

icU
K Θ(ax − U)Θ(ax + U),

which yields

q(x) = C̃
H (ax − V)H (ax + V)
Θ(ax − U)Θ(ax + U) ,

with C̃ = Ce− cK′
2K e icU

K . Since q(0) = u3 = Z2 + Z3 − Z1, we obtain the unique expression for C̃ by

C̃ = (Z1 − Z2 − Z3)
Θ2 (U)
H2 (V)

,

because H is odd and Θ is even. This yields the analytical representation (3.41). �

Remark 3.2. For Z1 < Z2 + Z3, we note that V ∈ i(0, K ′) but H (ax − V)H (ax + V) is real for real x. By
using the squared relation between the Jacobi theta functions,

H (x + y)H (x − y)Θ2(0) = H2(x)Θ2(y) − Θ2(x)H2(y),

we can rewrite the solution form (3.41) for Z1 < Z2 + Z3 in the equivalent form:

q(x) = (Z1 − Z2 − Z3)
Θ2(U)
H2(V)

H2(ax)Θ2(V) − Θ2(ax)H2(V)
Θ2(0)Θ(ax − U)Θ(ax + U)

.

Using

H (V) =
√

k sn(V)Θ(V) and sn(iW, k) = i sn(W, k′)
cn(W, k′) ,

with V = iW and W ∈ (0, K ′), we can rewrite the solution form as

q(x) = (Z2 + Z3 − Z1)
Θ2(U)Θ2(ax)

Θ2(0)Θ(ax − U)Θ(ax + U)
sn2(ax, k) cn2(W, k′) + sn2(W, k′)

sn2 (W, k′)
, (3.43)

which only involve the real-valued elliptic functions.

Remark 3.3. If Z1 = Z2 + Z3, then V = 0 and the solution form (3.41) is undetermined. Since H (V) =√
k sn(V)Θ(V), we use (3.32) and obtain (2.14) in the limit V→ 0. The same solution form (2.14) follows

from (3.33) with V = iW and (3.43) in the limit W→ 0.

Remark 3.4. It follows from (3.28) by using formula 8.193.2 in [21] that

q(x) = a

[H′ (a(x + v
2 ))

H (a(x + v
2 ))

−
H′ (a(x − v

2 ))
H (a(x − v

2 ))
− H′ (av)

H (av)

]
= a

[
Θ′ (ax − U)
Θ(ax − U) − Θ′ (ax + U)

Θ(ax + U) + H′ (2U)
H (2U)

]
, (3.44)
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where we have used (3.36), (3.42), and

H (z + 2iK ′) = −e−
cK′
K e−

icz
K H (z).

The solution form (3.44) is useful in the proof of Theorem 2.

Example 3.3. For k = 1, the periodic solution with the elliptic profile of Theorem 1 transforms to the
soliton solution with the hyperbolic profile of Example 2.2. In this case, Z2 = Z3 and solutions of (3.31)
and (3.32) are found from

cosh2(U) = Z1 + Z2

2Z2
, cosh2(V) = (Z1 − Z2) (Z1 + 2Z2)

2Z1Z2
.

Both solution forms (3.12) and (3.41) are equivalent and reduce to each other as in

q(x) = 4Z2(Z1 + Z2) cosh2(ax)
cosh2(ax) (Z1 + Z2) − sinh2(ax) (Z1 − Z2)

− Z1 − 2Z2

= Z1 −
2(Z2

1 − Z2
2 )

cosh2(ax) (Z1 + Z2) − sinh2(ax) (Z1 − Z2)

= Z1 −
2a2

Z1 + Z2 cosh(2ax) ,

and

q(x) = (Z1 − 2Z2)
cosh2(U) sinh(ax − V) sinh(ax + V)
sinh2(V) cosh(ax − U) cosh(ax + U)

=
sinh2(ax) (Z1 − Z2) (Z1 + 2Z2) − cosh2(ax) (Z1 + Z2) (Z1 − 2Z2)

cosh2(ax) (Z1 + Z2) − sinh2(ax) (Z1 − Z2)

=
Z1Z2 cosh(2ax) − Z2

1 + 2Z2
2

Z1 + Z2 cosh(2ax)

= Z1 −
2a2

Z1 + Z2 cosh(2ax) ,

where a =

√
Z2

1 − Z2
2 .

The proof of Theorem 1 is accomplished with the results of Lemmas 3.1, 3.3, 3.5, and 3.7.

4. Kink breather

Let k ∈ C1(R × R,C2) be a solution of the Lax system (3.5) and (3.6). It follows from (3.7) that
`2 + P(Z) = 0 with P(Z) being the characteristic polynomial in (3.8). As in (3.9), we factorize P(Z) by
{±Z1,±Z2,±Z3} satisfying Z3 < Z2 < Z1. One solution k = (p, q)T of the Lax system (3.5) and (3.6) is
defined by

` = i
√

P(Z) = i
√
(Z2 − Z2

1 ) (Z2 − Z2
2 ) (Z2 − Z2

3 ). (4.1)

Another solution k = (p∗, q∗)T of the Lax system (3.5) and (3.6) is defined by ` = −i
√

P(Z).
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It follows from (3.6) that the quotient d = q/p for the solution k = (p, q)T satisfies

d = −4iZ3 + iZ (2q2 − c) − 4`
4Z2q − 2iZq′ − b

=
4Z2q + 2iZq′ − b

4iZ3 + iZ (2q2 − c) + 4`
, (4.2)

where we have used the second-order equation (2.5) for the profile q. By using b = 4Z1Z2Z3, c =

2(Z2
1 + Z2

2 + Z2
3 ), and ` = i

√
P(Z), we rewrite the two quotients in the equivalent form:

d = −i
Z3 + 1

2 Z (q
2 − Z2

1 − Z2
2 − Z2

3 ) −
√

P(Z)
Z2q − i

2 Zq
′ − Z1Z2Z3

(4.3)

= −i
Z2q + i

2 Zq
′ − Z1Z2Z3

Z3 + 1
2 Z (q2 − Z2

1 − Z2
2 − Z2

3 ) +
√

P(Z)
. (4.4)

If d is defined by either (4.3) or (4.4), the first component of the eigenfunction q = (p, q)T can be found
from the first-order equation

mxp = (iZ + qd)p, (4.5)

which follows from (3.5). For Z = 0, the two solutions k = (p, q)T and k = (p∗, q∗)T are found explicitly
by using the representation (3.44) for the elliptic profile q. The following lemma recovers expressions
(2.27) and (2.28) which are written in original variables (x, t).

Lemma 4.1. Assume 0 < Z3 < Z2 < Z1 and consider the periodic solution of Theorem 1 with the
elliptic profile q. The two linearly independent solutions k = (p0, q0)T and k = (p∗0, q∗0)

T of the Lax
system (3.5) and (3.6) with Z = 0 are given by

` = −Z1Z2Z3 :

(
p0

q0

)
= es0x Θ(ax − U)

Θ(ax + U)

(
1
1

)
, (4.6)

and

` = Z1Z2Z3 :

(
p∗0
q∗0

)
= e−s0x Θ(ax + U)

Θ(ax − U)

(
1
−1

)
, (4.7)

where s0 =
aH′ (2U)
H (2U) .

Proof. Since Z = 0, the two solutions of `2+P(Z) = 0 are ` = Z1Z2Z3 and ` = −Z1Z2Z3. If ` = −Z1Z2Z3,
then d = 1 from (4.2) since b = 4Z1Z2Z3. By using (4.5) with Z = 0 and d = 1 and computing the integral
with (3.44), we obtain

p0(x) = e
∫
qdx = es0x Θ(ax − U)

Θ(ax + U) , s0 =
aH′ (2U)

H (U) ,

which yields (4.6). Similarly, if ` = Z1Z2Z3, then d = −1 from (4.2) so that by using (4.5) with Z = 0
and d = −1 and (3.44), we obtain

p∗0(x) = e−
∫
qdx = e−s0x Θ(ax + U)

Θ(ax − U) ,

which yields (4.7). �
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In original variables (x, t) of the mKdV equation (2.1), we should introduce two coordinates. The
traveling periodic wave u(x, t) = q(x + ct) has the coordinate b = x + ct, whereas the exponential factor
of the eigenfunctions i(x, t) = k(x + ct)e4`t has the coordinate

[ = s0 (x + ct) − 4Z1Z2Z3t = s0(x + cbt),

with cb = c − 4Z1Z2Z3
s0

and c = 2(Z2
1 + Z2

2 + Z2
3 ). The following lemma gives the expression for s0, which

is used in (2.31) and (2.32).

Lemma 4.2. Let U ∈ (0, K) be given in Lemma 3.5 for 0 < Z3 < Z2 < Z1. We have

s0 =
aH′ (2U)
H (2U) = Z2 + Z3 − Z1 +

2aΘ′ (U)
Θ(U) . (4.8)

Proof. It follows from H (x) =
√

k sn(x)Θ(x) that

H′ (2U)
H (2U) =

Θ′ (2U)
Θ(2U) + cn(2U) dn(2U)

sn(2U) .

The addition formulas [29, (3.6.2)]

Z (u ± v) = Z (u) ± Z (v) ∓ k2 sn(u) sn(v) sn(u ± v), (4.9)

imply

Θ′ (2U)
Θ(2U) = 2

Θ′ (U)
Θ(U) − k2 sn2(U) sn(2U).

With the help of (2.24) and (2.25), we obtain

s0 =
aH′ (2U)
H (2U)

=
2aΘ′ (U)
Θ(U) + a

[
cn(2U) dn(2U)

sn(2U) − k2 sn2(U) sn(2U)
]

=
2aΘ′ (U)
Θ(U) + 1

Z1
[Z2Z3 − (Z1 − Z2) (Z1 − Z3)]

=
2aΘ′ (U)
Θ(U) + Z2 + Z3 − Z1,

which yields (4.8). �

Remark 4.1. The Jacobi’s zeta function Z (x) := Θ′ (x)
Θ(x) is related to the incomplete elliptic integral of

the second kind E(x, k) :=
∫ x
0 dn2(x)dx. Indeed, it follows from Proposition 5 in [23] that

Z′ (x) = 1 − k2 sn2(x) − E(k)
K (k) = dn2(x) − E(k)

K (k) .

Hence we have Z (x) = E(x, k) − E (k)
K (k) x.

The following lemma gives derivation of the kink breather (2.30) by using the Darboux transforma-
tion (2.29).
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Lemma 4.3. Assume 0 < Z3 < Z2 < Z1 and consider the periodic solution of Theorem 1 with the
elliptic profile q. The bounded kink breather solution of the mKdV equation (2.1) is given by

u(x, t) = 4q(b)Θ2(ab + U) + e2([+[0 )Θ2(ab − U) (2q(b)q′ (b) − q′′ (b) − b)
4Θ2(ab + U) + e2([+[0 )Θ2(ab − U) (c + 2q′ (b) − 2q(b)2)

, (4.10)

where [0 ∈ R is the arbitrary translational parameter.

Proof. The Darboux transformation (2.29) returns the identity as Z→ 0 unless p2 → q2 as Z→ 0.
Without loss of generality, we take (p0, q0) in the form (2.27) and expand solutions of the Lax system
of linear equations (2.2) in powers of iZ :

p = p0 + iZp1 +O(Z2), q = p0 − iZp1 +O(Z2).

By using the second-order equation (2.5), we obtain recursively in powers of iZ :

O(1) : mbp0 = q(b)p0, mtp0 = −bp0, (4.11)

O(iZ) : mbp1 = −q(b)p1 + p0, mtp1 = bp1 + (2q(b)2 − 2q′ (b) − c)p0. (4.12)

where b = x + ct. The solution of the system (4.11) at O(1) agrees with (2.27) and yields

p0 = e[
Θ(ab − U)
Θ(ab + U) , (4.13)

where [ = s0b − bt = s0 (x + cbt) with cb = c − b
s0

. Since p2 − q2 = 4iZp0p1 +O(Z2), the new solution
follows from (2.29) in the limit Z→ 0 as

û = q − p0

p1
. (4.14)

By using the systems (4.11) and (4.12), we derive

mb (p0p1) = p2
0, mt (p0p1) = (2q(b)2 − 2q′ (b) − c)p2

0. (4.15)

Separation of variables b and t in the linear system (4.15) yields the exact solution

p0p1 =
1
2b

[
(c + 2q′ − 2q2)p2

0 + 4C
]

, (4.16)

where C is the constant of integration. Substituting (4.16) into (4.14) and bringing it to the common
denominator yields

û = q −
2bp2

0

4C + p2
0 (c + 2q′ − 2q2)

=
4Cq + p2

0(2qq
′ − q′′ − b)

4C + p2
0(c + 2q′ − 2q2)

, (4.17)

where the second-order equation (2.5) has been used.
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Next we prove that the new solution (4.17) is bounded for (x, t) ∈ R × R if C ≥ 0. It follows from
(3.23), (3.25), and (3.29) that

c + 2q′ (b) − 2q(b)2 = 4℘(v) − 4℘
(
b + v

2

)
. (4.18)

By using (3.19), (3.27), (3.36), and (3.39), we obtain

℘

(
b + v

2

)
= e3 +

e1 − e3

sn2(ax + av
2 )

=
1
3
(−2Z2

1 + Z2
2 + Z2

3 ) +
Z2

1 − Z2
3

sn2(ax − iK ′ − U)

=
1
3
(−2Z2

1 + Z2
2 + Z2

3 ) + (Z2
1 − Z2

2 ) sn
2(ax − U),

which yields with the help of (3.23) that

c + 2q′ (b) − 2q(b)2 = 4Z2
1 − 4(Z2

1 − Z2
2 ) sn

2(ab − U)
= 4Z2

1 cn
2 (ab − U) + 4Z2

2 sn
2(ab − U). (4.19)

Since the expression in (4.19) is strictly positive, the denominator in (4.17) is bounded away from zero
if C ≥ 0. Subtituting (4.13) and C = e−2[0 ≥ 0 with arbitrary [0 ∈ R in (4.17) yields the expression
(4.10), which is bounded for every (x, t) ∈ R × R. �

The following lemma gives the phase shifts of the kink breathers in the limits (2.33).

Lemma 4.4. It follows for the solution (4.10) that

u(x, t) →
{

q(b) as [ → −∞,
−q(b − 2a−1U) as [ → +∞.

(4.20)

Proof. It is clear that

lim
[→−∞

u(x, t) = q(b) and lim
[→+∞

u(x, t) = 2q(b)q′ (b) − q′′ (b) − b
c + 2q′ (b) − 2q(b)2 ,

hence the first limit in (4.20) is confirmed. To confirm the second limit in (4.20), we obtain from (3.23),
(3.25), and (3.29) that

2q(b)q′ (b) − q′′ (b) − b =
d
db

(q(b)2 − q′ (b)) − b = 2℘′
(
b + v

2

)
− 2℘′ (v). (4.21)

Combining (4.18) and (4.21) yields

2q(b)q′ (b) − q′′ (b) − b
c + 2q′ (b) − 2q(b)2 = −1

2
℘′ (b + v

2 ) − ℘′ (v)
℘(b + v

2 ) − ℘(v) = −q(b + v),

where we have used (3.24) rewritten as

q(b) = 1
2
℘′ (b − v

2 ) + ℘′ (b + v
2 )

℘(b − v
2 ) − ℘(b + v

2 )
=

1
2
℘′ (b − v

2 ) − ℘′ (v)
℘(b − v

2 ) − ℘(v) .
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The second equality can be proven based on Exercise 15 in [29, p.183],

℘′ (u) − ℘′ (v)
℘(u) − ℘(v) =

℘′ (v) + ℘′ (u + v)
℘(v) − ℘(u + v) , ∀u, v ∈ C.

By using this relation twice together with the even parity of ℘(x), we obtain

℘′ (b − v
2 ) − ℘′ (v)

℘(b − v
2 ) − ℘(v) =

℘′ (v) + ℘′ (b + v
2 )

℘(v) − ℘(b + v
2 )

=
℘′ (v) − ℘′ (−b − v

2 )
℘(v) − ℘(−b − v

2 )

=
℘′ (−b − v

2 ) + ℘′ (−b + v
2 )

℘(−b − v
2 ) − ℘(−b + v

2 )

=
℘′ (b − v

2 ) + ℘′ (b + v
2 )

℘(b − v
2 ) − ℘(b + v

2 )
.

In view of (3.20) and (3.36), we get

q(b + v) = q(b − 2ia−1K ′ − 2a−1U) = q(b − 2a−1U),

which confirms the second limit in (4.20). �

The proof of Theorem 2 is accomplished with the results of Lemmas 4.1, 4.2, 4.3, and 4.4.

5. Summary and further discussions

We have characterized the elliptic profile of the traveling wave solutions of the defocusing mKdV equa-
tion by using the elliptic function theory. The representation given by Theorem 1 is based on the structure
of zeros and poles of the elliptic profile and leads to a simple two-parameter form of Corollary 1 which
incorporates the scaling transformation. Based on the new representation of the elliptic profile and the
explicit solutions for eigenfunctions of the Lax system for Z = 0, we have constructed a new solution for
the defocusing mKdV equation in Theorem 2, which corresponds to the kink breather propagating over
the traveling periodic wave. When the elliptic profile degenerates into the hyperbolic profile, the new
solution recovers the two-soliton solution of Corollary 2. Overall, our work solves the open problem
posed in [35] on the analytical characterization of the kink breather in the defocusing mKdV equation.

Remark 5.1. For a general construction of breathers on the traveling periodic wave solution, one needs
to obtain the explicit solutions for eigenfunctions of the Lax system (2.2) with Z ≠ 0. This has been done
for the snoidal profile (2.8), see Appendix A. However, eigenfunctions of the Lax system for the general
elliptic profile (2.11) have not been characterized uniquely for Z ≠ 0, as we explain below. Recall from
Remark 2.2 that the snoidal profile (2.8) corresponds to Riemann’s theta function of genus one and the
general elliptic profile (2.11) corresponds to the elliptic degeneration of Riemann’s theta function of
genus two. Eigenfunctions of the Lax system (2.2) for the general elliptic profile are also given by the
elliptic degeneration of Riemann’s theta function of genus two and this is an open problem for further
studies.

Let u(x, t) = q(x + ct) be defined by the elliptic profile q of Theorem 1 for 0 < Z3 < Z2 < Z1. Let
i(x, t) = k(x + ct)e4`t be the eigenfunction of the Lax system (2.2) with the spectral parameter Z ≠ 0.
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Then, we claim that the eigenfunction k = (p, q)T for ` = −i
√

P(Z) is given by

p(x) = esx H (ax − z∗1)H (ax − z∗2)
Θ(ax − U)Θ(ax + U)Θ(U + z∗1)Θ(U + z∗2)

e
ic
2K (z∗1+z∗2 ) , (5.1)

and

q(x) = esx H (ax + z1)H (ax + z2)
Θ(ax − U)Θ(ax + U)Θ(U − z1)Θ(U − z2)

e−
ic
2K (z1+z2 ) , (5.2)

whereas the eigenfunction k = (p∗, q∗)T for ` = i
√

P(Z) is given by

p∗(x) = e−sx H (ax − z1)H (ax − z2)
Θ(ax − U)Θ(ax + U)Θ(U − z1)Θ(U − z2)

e−
ic
2K (z1+z2 ) , (5.3)

and

q∗(x) = −e−sx H (ax + z∗1)H (ax + z∗2)
Θ(ax − U)Θ(ax + U)Θ(U + z∗1)Θ(U + z∗2)

e
ic
2K (z∗1+z∗2 ) . (5.4)

Parameters {±z1,±z2} and {±z∗1,±z∗2} are the only roots for z = ax in [−K , K]×[−iK ′, iK ′] of equations

Z
[
q(x)2 + 2Z2 − Z2

1 − Z2
2 − Z2

3
]
+ 2

√
P(Z) = 0, (5.5)

and

Z
[
q(x)2 + 2Z2 − Z2

1 − Z2
2 − Z2

3
]
− 2

√
P(Z) = 0, (5.6)

respectively, such that {z1, z2, z∗1, z∗2} are the only roots for z = ax in [−K , K] × [−iK ′, iK ′] of equation

Z2q(x) − i
2
Zq′ (x) − Z1Z2Z3 = 0 (5.7)

and {−z1,−z2,−z∗1,−z∗2} are the only roots for z = ax in [−K , K] × [−iK ′, iK ′] of equation

Z2q(x) + i
2
Zq′ (x) − Z1Z2Z3 = 0, (5.8)

respectively. We note that (5.6) and (5.7) give zeros of the numerator and denominator of the quotient
(4.3), respectively, whereas (5.5) and (5.8) give zeros of the denominator and numerator of the quotient
(4.4), respectively. The roots {z1, z2, z∗1, z∗2} satisfy the completeness relation

z1 + z2 + z∗1 + z∗2 = 0 mod(2K, 2iK ′), (5.9)

whereas the expression for s is given by

s = −i
Z4 − Z2(Z2 + Z3 − Z1)2 + Z

√
P(Z) + Z1Z2Z3(Z2 + Z3 − Z1)

Z3 + Z (Z2Z3 − Z1Z2 − Z1Z3) +
√

P(Z)
− aH′ (z1)

H (z1)
− aH′ (z2)

H (z2)
. (5.10)

To complete the characterization of the eigenfunctions (5.1)–(5.2) and (5.3)–(5.4), one needs to find
uniquely expressions for {z1, z2, z∗1, z∗2} in terms of Z ∈ R. We checked numerically in the gaps of the
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Lax spectrum for Z ∈ (Z2, Z1) and Z ∈ (0, Z3), see Figure 3 (right), that the roots satify the symmetry
z1 = −z̄∗1 and z2 = −z̄∗2 for these values of Z . With the account of the completeness relation (5.9) and the
symmetry z1 = −z̄∗1 and z2 = −z̄∗2, there are still three real parameters in the roots {z1, z2, z∗1, z∗2}, which
must be uniquely defined in terms of the only spectral parameter Z ∈ R.

The next example shows that the general construction of the eigenfunctions reduces as Z→ 0 to the
explicit solutions obtained in Section 4.

Example 5.1. If Z→ 0, it follows from (5.5), (5.6), (5.7), and (5.8) that both pairs of the roots {z1, z2}
and {z∗1, z∗2} are defined from the poles of q(x) for z = ax at ±(iK ′ + U) and ±(iK ′ − U) as follows:

z1 = iK ′ − U, z2 = −iK ′ − U, z∗1 = iK ′ + U, z∗2 = −iK ′ + U.

The four roots satisfy the completeness relation (5.9) and the symmetry z1 = −z̄∗1 and z2 = −z̄∗2. It
follows from (5.1)–(5.2) by using (3.42) that

p(x) = q(x) = Ces0x Θ(ax − U)
Θ(ax + U) ,

with the numerical constant

C =
e cK′

2K + icU
K

Θ(2U + iK ′)Θ(2U − iK ′) .

The constant s0 is defined from (5.10) as follows:

s0 = Z2 + Z3 − Z1 −
aH′ (iK ′ − U)
H (iK ′ − U) − aH′ (−iK ′ − U)

H (−iK ′ − U)

= Z2 + Z3 − Z1 +
2aΘ′ (U)
Θ(U) .

This construction agrees with (2.27) and (2.32). Similarly, we obtain from (5.3)–(5.4) that

p(x) = −q(x) = Ce−s0x Θ(ax + U)
Θ(ax − U) ,

which recovers (2.28) with the same s0 and the same constant C.

Remark 5.2. It follows from Example 5.1 that the characterization of eigenfunctions of the Lax system
(2.2) for the general elliptic traveling wave is recovered correctly in the limit Z→ 0. However, it needs
to be completed with the explicit mapping Z ↦→ z1, z2, z∗1, z∗2 for Z ≠ 0 before the expressions (5.1)–(5.2)
and (5.3)–(5.4) can be used for the construction of general breathers on the general traveling periodic
wave. This unique characterization is an open question for further studies.
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Appendix A. Derivation of the explicit eigenfunctions for the snoidal wave

Let u(x, t) = q(x + ct) with q(x) = k sn(x) and c = 1 + k2 be the periodic solution of the mKdV
equation (2.1) in Example 2.1. Let i(x, t) = k(x + ct)e4`t be the eigenfunction of the Lax system (2.2).
It follows from (3.5), (3.6), (3.7), (3.8), and (3.9) with Z3 = 0 that k(x) is the eigenfunction of the
spectral problem

d
dx

k =

(
iZ k sn(x)

k sn(x) −iZ

)
k, (A.1)

and ` = ±i
√

P(Z), where P(Z) = Z2(Z2 − Z2
1 ) (Z

2 − Z2
2 ). Eigenfunctions of the spectral problem (A.1)

are available in the explicit form, see [4, 41], compared to the open problem posed in Section 5. The
following proposition reviews details of the derivation of the explicit solution of the spectral problem
(A.1). We give it for completeness as the explicit expression has been used in [35] without verification
of its validity.

Proposition. Let Z3 = 0, Z2 = 1
2 (1 − k), and Z1 = 1

2 (1 + k), where k ∈ (0, 1) is the elliptic modulus of
the snoidal solution q(x) = k sn(x) in Example 2.1. Define z ∈ [−K , K] × [−iK ′, iK ′] from the spectral
parameter Z ∈ R by using the characteristic relation

Z (z) = 1
2
dn(z) dn(iK ′ − z). (A.2)

One solution k = (p, q)T of the spectral problem (A.1) with ` = i
√

P(Z) is given by

p(x) = es(z)x H (x − z)
Θ(x)Θ(z) , q(x, t) = es(z)x Θ(x − z)

Θ(x)H (z) , (A.3)

where

s(z) = Θ′ (z)
2Θ(z) −

Θ′ (iK ′ − z)
2Θ(iK ′ − z) −

ic
4K

, (A.4)

`(z) = i
8
dn(z) dn(iK ′ − z)

[
1

sn2 (z)
− 1
sn2(iK ′ − z)

]
, (A.5)
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Another solution k = (p∗, q∗)T of the spectral problem (A.1) with ` = −i
√

P(Z) is obtained from (A.3)
by replacing z by z′ := iK ′ − z.

Proof. Recall that the quotient d = p/q for the solution k = (p, q)T with ` = i
√

P(Z) in (4.1) is defined
by either (4.3) or (4.4). Substituting Z3 = 0 and canceling one power of Z in (4.3) yields

d = −i
Z2 + 1

2 (q
2 − Z2

1 − Z2
2 ) −

√
(Z2 − Z2

1 ) (Z2 − Z2
2 )

Zq − i
2q

′
. (A.6)

By Proposition 3.1, there exist exactly two zeros in [−K , K]×[−iK ′, iK ′] of the numerator in (A.6) since
q(x) = k sn(x). Similarly, there exist exactly two zeros in [−K , K] × [−iK ′, iK ′] of the denominator in
(A.6) rewritten as

q′ (x)
q(x) =

cn(x) dn(x)
sn(x) = −2iZ ∈ C. (A.7)

This also follows from Proposition 3.1 due to the fundamental relations for elliptic functions (2.21). For
a given Z ∈ R, we denote one root of (A.7) by z ∈ [−K , K] × [−iK ′, iK ′]. With the help of (3.39), this
allows us to parameterize

Z (z) = i
2
cn(z) dn(z)

sn(z) =
1
2
dn(z) dn(iK ′ − z), (A.8)

which recovers (A.2). Due to the symmetry, the other root of (A.7) is iK ′ − z ∈ [−K , K] × [−iK ′, iK ′].
Thus, z, iK ′ − z are two roots of the denominator in (A.6) in [−K , K] × [−iK ′, iK ′].

To get roots of the numerator in (A.6), we verify that

(Z2 − Z2
1 ) (Z

2 − Z2
2 ) = Z4 − 1

2
(1 + k2)Z2 + 1

16
(1 − k2)2

=
cn4(z) dn4 (z) + 2(1 + k2) sn2(z) cn2(z) dn2 (z) + (1 − k2)2 sn4(z)

16 sn4(z)

=
(1 − k2 sn4(z))2

16 sn4(z)
.

This yields with the help of (3.39) that

`(z) = iZ
√
(Z2 − Z2

1 ) (Z2 − Z2
2 )

=
i
8
dn(z) dn(iK ′ − z)

[
1

sn2(z)
− 1
sn2(iK ′ − z)

]
,

which recovers (A.5). Moreover, we obtain

Z2 + 1
2

[
q(iK ′ ± z)2 − Z2

1 − Z2
2
]
−

√
(Z2 − Z2

1 ) (Z2 − Z2
2 )

= −cn2(z) dn2(z) − 1 + (1 + k2) sn2(z) − k2 sn4(z)
4 sn2(z)

= 0.

Hence, ±(iK ′ − z) ∈ [−K , K] × [−iK ′, iK ′] are two zeros of the numerator in (A.6).
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Poles of both numerator and denominator in (A.6) coincide with the poles of q2(x) and q′ (x), which
are double poles at the same location iK ʹ. Since both the numerator and the denominator are ellip-
tic functions, have only two zeros in [−K , K] × [−iK ′, iK ′], and their double poles coincide at iK ′,
Proposition 3.3 implies that

d(x) = C1e−
icx
2K

H (x − iK ′ − z)(((((((H (x − iK ′ + z)
H (x − z)(((((((H (x − iK ′ + z) = C2

Θ(x − z)
H (x − z) , (A.9)

where we have used (3.42) and introduced constants C1 and C2 = (−i)C1e cK′
4K e

−icz
2K . The exponential

factor e− icx
2K in (A.9) is included due to the anti-periodicity of q(x) = k sn(x) with respect to the period

2K of the elliptic function q2. The constant C2 can be uniquely obtained from x = 0 as

C2 = −H (z)
Θ(z) d(0)

= −2H (z)
kΘ(z)

(
Z2 − 1

4
(1 + k2) − 1 − k2 sn2(z)

4 sn2(z)

)
=

H (z)
k sn2(z)Θ(z)

=
Θ(z)
H (z) ,

where we have used H (z) =
√

k sn(z)Θ(z). This recovers the quotient in (A.3) as

d(x) = Θ(z)Θ(x − z)
H (z)H (x − z) . (A.10)

It remains to integrate (4.5) for p(x) in order to verify the expression (A.4) for s(z) and the
representation (A.3) for p. We rewrite (4.5) with (A.8) and (A.10) as

p′ (x) =
(
−cn(z) dn(z)

2 sn(z) + sn(x)
sn(z) sn(x − z)

)
p(x), (A.11)

where we have used H (x) =
√

k sn(x)Θ(x). Since

Θ(z + iK ′) = ie
cK′
4K e−

icz
2K H (z),

we obtain

Θ′ (z)
2Θ(z) −

Θ′ (iK − z)
2Θ(iK ′ − z) −

ic
4K

=
Θ′ (z)
2Θ(z) +

H′ (z)
2H (z) = −cn(z) dn(z)

2 sn(z) + H′ (z)
H (z) .

Hence (A.11) is satisfied with

p(x) = es(z)x H (x − z)
Θ(x)Θ(z) ,

where s(z) is given by (A.4) if and only if the following identity is true:

H′ (x − z)
H (x − z) − Θ′ (x)

Θ(x) =
sn(x)

sn(z) sn(x − z) −
H′ (z)
H (z) .
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This identity can be rewritten with the help of H (x) =
√

k sn(x)Θ(x) in the equivalent form:

Θ′ (x − z)
Θ(x − z) − Θ′ (x)

Θ(x) + Θ′ (z)
Θ(z) =

sn(x)
sn(z) sn(x − z) −

cn(x − z) dn(x − z)
sn(x − z) − cn(z) dn(z)

sn(z)

=
sn(x) − sn(x − z) cn(z) dn(z) − sn(z) cn(x − z) dn(x − z)

sn(z) sn(x − z)
= k2 sn(x) sn(z) sn(x − z),

where we have used (2.23). This relation is satisfied due to the addition formulas (4.9). The proof
of (A.2), (A.3), (A.4), and (A.5) is complete. The other solution for ` = −i

√
P(Z) is obtained from

(A.2), (A.3), (A.4), and (A.5) by replacing z with z′ := iK ′ − z, which is another root of (A.7) in
[−K , K] × [−iK ′, iK ′]. �

Remark. The characteristic equation (A.2) is analyzed in [35, Proposition 1] with precise behavior of
z ∈ [−K , K] × [−iK ′, iK ′] for Z ∈ R shown in Figure 5 in [35]. In particular, if Z ∈ (Z2, Z1) is in the
bandgap of the Lax spectrum, see Figure 2 (left), then z − iK ′

2 ∈ (0, K).
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