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Abstract
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Lukasz Brzozowski

Doctor of Philosophy

Graduate Department of Electrical and Computer Engineering

University of Toronto

2003

This work advances the field of optical signal processing using nonlinear periodic struc-

tures. A novel approach to all-optical signal processing using nonlinear periodic struc-

tures is proposed. The nonlinear response of various materials is measured, and nonlinear

periodic structures are fabricated and characterized.

This work presents an analytical and numerical study of a stable all-optical limiter

that clamps the output level below a design-specific limiting intensity. The introduction

of disorder is predicted through theory to result in widening of the nonlinear stopband,

localization of light, and formation of stationary gap solitons. It is shown through devel-

opment and solution of a model that the incorporation of a built-in linear out-of-phase

grating into the index-matched limiting structures can enable signal processing functions

of hard-limiting, analog-to-digital conversion, and logic gating. A comprehensive the-

ory of intensity-domain optical stability in nonlinear periodic structures is derived and

conditions for multistability are presented. The propagation of pulses in the structures

proposed is analyzed and effects of pulse intensity limiting and pulse compression are

predicted.

The resonant, ultrafast, and thermal nonlinear properties of inorganic crystalline

semiconductor, organic, and nanocrystal materials are examined while seeking to max-

imize the strength of the refractive nonlinear response and associated figures of merit.

Nonlinear index changes of record magnitude of -0.14 with figures of merit of 1.38 are
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found for InAlGaAs/InGaAs semiconductor multi-quantum-wells under the illumination

at a wavelength of 1.5 µm and a fluence of 116 µJ/cm2. Resonant nonlinear response is

demonstrated in strongly-confined semiconductor PbS nanocrystals in the spectral region

of 1150 to 1600 nm.

Nonlinear periodic signal processing elements are designed, fabricated, and analyzed.

One dimensional semiconductor elements are shown to yield fluence-dependent transfer

characteristics due to the interplay of the nonlinear Bragg refraction and nonlinear ab-

sorption. A photonic stopband is experimentally demonstrated to emerge in the vicinity

of the wavelength of 1.5 µm at fluences below 320 µJ/cm2. Three-dimensional organic

colloidal crystals are proven to exhibit a nonlinear shift in the position of the photonic

stopband and a decrease in the reflectivity in the 530 to 570 nm spectral region.

The theoretical and experimental accomplishments of this work expand the field of

stable and multistable optical signal processing functionality of nonlinear periodic struc-

tures; and map out future directions for enhancing the functional diversity and perfor-

mance of elements required for optical networks.

iv



Acknowledgements

First and foremost I acknowledge my supervisor Professor Edward H. Sargent. I thank

him for his vision, guidance, involvement, motivation, availability, help and generous

support.

I thank Professor Eugenia Kumacheva and Chantal Pacquet for friendly, exciting

collaboration, as well as for their help in preparation of organic materials and devices.

I thank Anthony SpringThorpe and Marcius Extavour of Nortel Netoworks for rapid

fabrication of high quality semiconductor samples and devices.

I thank Professor Dmitry Pelinovsky for help in theoretical work. I thank Winnie Ye

for friendship and fruitful work on numerical simulations.

I thank Margaret Hines and Larissa Levina for synthesizing nanocrystal materials.

I thank Professor Peter Smith, Professor Stewart Aitchison, David Cooper, and Ken-

ton White for exciting conversation about nonlinear optics and for useful advice.

I thank members of the Organic and Polymer Optoelectronics Laboratory Wilfred

Lam, Iraklis Nikolakakos, Daniel-Steve Fournier, Vlad Sukhovatkin, and Fumyo Yoshino

for help in the experimental work.

I thank all the members of my research group, particularly Mathieu Allard, Andrew

Stok, Emanuel Istrate, Erik Johnson, Yuankun Lin, Qiying Chen, Ludmila Bakoueva,

Dayane Ban, Sergei Musikhin, and Marian Tzolov for creating the most friendly, em-

pathic, helpful and stimulating environment.

I am deeply indebted to my wife Miriam Brzozowski for her love and emotional

support. I also thank my parents Anna Brzozowska and Andrzej Brzozowski.

I acknowledge National Sciences and Engineering Research Council of Canada, Nortel

Networks, and University of Toronto for financial support during various stages of my

doctoral studies.

v



vi



Contents

1 Switching in Photonic Networks - The Need ... 1

1.1 Signal Processing in Optical Networks . . . . . . . . . . . . . . . . . . . 1

1.2 Current Optical Signal Processing Technologies . . . . . . . . . . . . . . 3

1.3 Optical Signal Processing using Nonlinear Optics . . . . . . . . . . . . . 3

1.4 This Work - A Novel Approach to Optical Signal Processing . . . . . . . 5

1.5 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Definitions of Concepts 11

2.1 Illumination-Dependent Refractive Index . . . . . . . . . . . . . . . . . . 11

2.1.1 Ultrafast Response . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Ultrafast Nonlinear Material Figures of Merit . . . . . . . . . . . 14

2.1.3 Resonant Response . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.4 Resonant Nonlinear Material Figures of Merit . . . . . . . . . . . 17

2.2 Periodic Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Bragg Gratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Nonlinear Periodic Structures . . . . . . . . . . . . . . . . . . . . 19

2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Literature Survey 23

3.1 Nonlinear Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Bulk and MQW Inorganic Crystalline Semiconductors . . . . . . . 23

vii



3.1.2 Organic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.3 Nanocrystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.4 Other Nonlinear Materials . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Nonlinear Periodic Structures . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 Steady-State Response of Nonlinear Optical Elements . . . . . . . 39

3.2.2 Propagation of Solitons in Nonlinear Periodic Structures . . . . . 42

3.2.3 Shifting the Stopband . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Conclusions from Literature Survey . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Summary of Published Results . . . . . . . . . . . . . . . . . . . . 46

3.3.2 The Need for Additional Research . . . . . . . . . . . . . . . . . . 48

4 Coupled Mode Theory of Nonlinear Periodic Structures 51

4.1 Representation of the Refractive Index Profile . . . . . . . . . . . . . . . 52

4.2 General Coupled Mode Equations for Nonlinear ... . . . . . . . . . . . . . 55

4.3 Nonlinear Coupled Mode Equations for Incoherent Light . . . . . . . . . 58

4.3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.2 Couple Mode Equations for Incoherent Light . . . . . . . . . . . . 59

4.3.3 Coupled Mode Equations for Incoherent Light, Matched Linear

Indices and Opposite Kerr Coefficients . . . . . . . . . . . . . . . 60

4.3.4 Coupled Mode Theory for Weakly Disordered Structures . . . . . 60

4.3.5 Transfer Matrix Formalism for Nonlinear System . . . . . . . . . 61

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Theory of Steady-State Optical Limiting and Switching 65

5.1 Structure and Modelling Approach . . . . . . . . . . . . . . . . . . . . . 66

5.2 Theory of All-Optical Limiting . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.1 Analytical Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.2 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 69

viii



5.3 Theory of Optical Switching with Stable Nonlinear ... . . . . . . . . . . . 75

5.3.1 Optical Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.2 Logic OR Gating . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4 Nonlinear Figures of Merit for Periodic Structures . . . . . . . . . . . . . 81

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Theory of Broadband Limiting with .. 83

6.1 Spectral Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 Analysis of Intensity Transmittance . . . . . . . . . . . . . . . . . . . . . 89

6.3 Localization of Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7 Theory of Optical Signal Processing with Out-... 97

7.1 Structure and Modelling Approach . . . . . . . . . . . . . . . . . . . . . 98

7.2 Basic Stability Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.3 S-shape Transfer Characteristics . . . . . . . . . . . . . . . . . . . . . . . 101

7.4 Analog-to-digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.5 Logic Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.6 Sensitivity of Transfer Curves to Fabrication Errors and Absorption . . . 109

7.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8 Theory of Intensity-Domain Optical Stability ... 111

8.1 Incoherent Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.1.1 Transmittance expressions . . . . . . . . . . . . . . . . . . . . . . 112

8.1.2 Multistable Regime . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.1.3 Stable Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.2 Coherent Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.2.1 Balanced Nonlinearity Management: nnl = 0 . . . . . . . . . . . . 119

8.2.2 Unbalanced Nonlinearity Management: nnl 6= 0 . . . . . . . . . . 122

ix



8.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

9 Theory of Pulse Shaping and Compression ... 125

9.1 Case I: n0k=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

9.2 Case II: n0k < 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

9.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

10 Experimental Assessment of the Applicability ... 137

10.1 Experimental Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

10.1.1 Laser Systems and Spectrophotometer . . . . . . . . . . . . . . . 139

10.1.2 Z-scan Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

10.2 Non-resonant Response of Nonlinear Materials . . . . . . . . . . . . . . . 152

10.2.1 Non-resonant Nonlinear Response of Azobenzene Dye Disperse Red 1152

10.2.2 Non-resonant Nonlinear Response of MEH-PPV/PMMA . . . . . 155

10.2.3 Thermal Response of Organic Nonlinear Materials . . . . . . . . . 159

10.3 Resonant Nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

10.3.1 Bandedge Saturation of Absorption in GaAs/AlGaAs Multi-Quantum-

Wells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

10.3.2 Resonant Nonlinear Properties of InGaAs/InAlGaAs Multi-Quantum-

Wells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

10.3.3 Resonant Nonlinear Response of PbS nanocrystals . . . . . . . . . 175

10.3.4 Resonant Nonlinear Response of DR1 . . . . . . . . . . . . . . . . 187

10.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

11 Measurement of the Transfer Characteristics ... 191

11.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

11.1.1 Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

11.1.2 Linear Optical Properties . . . . . . . . . . . . . . . . . . . . . . 196

11.1.3 Experimental Apparatus . . . . . . . . . . . . . . . . . . . . . . . 198

x



11.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

11.2.1 Nonlinear Response of Sample A . . . . . . . . . . . . . . . . . . 199

11.2.2 Nonlinear Response of Optical Element B . . . . . . . . . . . . . 202

11.2.3 Nonlinear Response of Optical Element C . . . . . . . . . . . . . 205

11.3 Analysis of Experimental Results Using ... . . . . . . . . . . . . . . . . . 209

11.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

12 Summary, Original Contributions, Future Prospects 215

12.1 Perspective and Approach Taken During this Work . . . . . . . . . . . . 215

12.2 Original Contributions of this Work . . . . . . . . . . . . . . . . . . . . . 216

12.2.1 Theoretical Contributions . . . . . . . . . . . . . . . . . . . . . . 216

12.2.2 Experimental Contributions . . . . . . . . . . . . . . . . . . . . . 218

12.3 Future Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

12.3.1 Further Search for Suitable Nonlinear Materials . . . . . . . . . . 219

12.3.2 Incorporation of Nonlinear Materials into Periodic Structures . . . 221

12.3.3 Extension of Theoretical Models . . . . . . . . . . . . . . . . . . . 225

12.4 Final Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

Bibliography 226

xi



xii



List of Figures

2.1 Schematic of a linear Bragg grating with period Λ: n01 and n02 are the

linear refractive indices of the two adjacent layers. . . . . . . . . . . . . . 18

2.2 Response of a periodic structure in which one set of layers experiences

positive refractive nonlinearity. The Bragg frequency ω0 shifts to lower

frequencies ω′0 and ω′′0 and the size of the bandgap ∆ωgap increases with

increasing level of illumination. . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Trends in the nonlinear response of bulk semiconductors. . . . . . . . . . 25

3.2 Results of the pump-probe measurements illustrating the time-resolved

change in transmission for He-InGaAsP samples with different Be doping

concentrations. This figure was reproduced from Ref. [37]. . . . . . . . . 27

3.3 Spectra of GaAs/AlGaAs MQWs of three different well widths, measured

at various incident intensities by pulsed pump at 1.52 eV: (a) absorption

coefficient, α, (b) the change in the real part of the refractive index, ∆n.

This figure was reproduced from Ref. [38]. . . . . . . . . . . . . . . . . . 30

3.4 Data of scaled n2 measured at 1.06 µm for various bulk inorganic crys-

talline semiconductors. This figure was reproduced from Ref. [29]. . . . . 33

3.5 Typical trends in the nonlinear response of organic materials with one

absorption resonance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Trends in the picosecond nonlinear response of inorganic semiconductor

nanocrystals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

xiii



3.7 The transmitted versus incident intensity characteristic of a bistable opti-

cal element exhibiting a hysteresis characteristic. . . . . . . . . . . . . . . 40

4.1 Schematic of a nonlinear periodic structure with period Λ. n01 and n02 are

the linear refractive indices, and nnl1 and nnl2 are the Kerr coefficients of

the adjacent layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Profile of the linear parts of refractive index nln and Kerr coefficients nnl

of a nonlinear periodic structure along the propagation direction z. . . . 53

4.3 Nonlinear periodic structure where layer thicknesses deviate randomly

from their quarter-wave value. . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1 Profile of linear refractive indices and Kerr coefficients of the limiting de-

vice. The refractive indices of the two adjacent layers are n01 + nnl1I and

n02 + nnl2I, where n01 = n02 and nnl1 = −nnl2. . . . . . . . . . . . . . . . 66

5.2 Transmitted intensity as a function of incident intensity for limiting struc-

tures with |nnl| = 0.01 for various numbers of layers. . . . . . . . . . . . . 69

5.3 The transmitted intensity as a function of incident intensity on a semi-log

plot for limiting structures with |nnl| = 0.01 for different numbers of layers. 70

5.4 The effective indices of refraction across the structure of 300 layers with

|nnl| = 0.01 and matched linear indices of nln = 1.5. This plot demon-

strates the decay of the intensity across the structure. . . . . . . . . . . . 71

5.5 The evolution of the transmittance spectra with increasing number of lay-

ers for structures with nnl = ±0.01. The nonlinear behaviour of the limiter

is responsible for the formation of a stopband at the desired frequency. . 72

5.6 The evolution of the transmittance spectra as a function of increased in-

cident intensity for the structure made of 300 layers with nnl = ±0.01. As

the incident intensity is increased the stopband becomes deeper and wider. 73

xiv



5.7 The limiting intensities as a function of the number of layers for |nnl| =

0.005, 0.01, and 0.02. The values obtained from numerical calculations

shown on the plot as squares, triangles and diamonds follow exactly the

curves predicted by the analytical model. . . . . . . . . . . . . . . . . . . 74

5.8 Demonstration of the switching capability. The figure shows the trans-

mittance of the signal beam as a function of the frequency of the pump

beam. The structures analyzed have refractive indices as in Figure 5.2.

The signal beam is on resonance λ0 = 2Λnnl and has a constant intensity

of 0.1. The frequency of the pump beam is varied from 0.93ω0 to 1.06ω0.

The number of layers is kept constant at 100 and the intensity of the pump

beam takes values of 1, 2, and 4. . . . . . . . . . . . . . . . . . . . . . . . 76

5.9 Transmittance spectrum of the probe beam for the structure analyzed in

Figure 5.8. Pump beam intensity is kept constant at 1 and number of

layers is varied (100, 300, and 500). . . . . . . . . . . . . . . . . . . . . . 77

5.10 Evolution of the pump beam intensity across a 100-layer structure for

pump frequencies of 0.83ω0, 0.97ω0, and ω0. . . . . . . . . . . . . . . . . 78

5.11 Transmittance of a signal beam as a function of the pump beam intensity.

The frequency of the probe beam is fixed at the Bragg resonance, while

the frequency of the pump beam takes values of (0.83ω0, 0.97ω0, and ω0). 79

5.12 An OR gate realized using limiting and switching structures proposed. . 80

6.1 Influence of the increased layer thickness randomization on the nonlinear

transmittance spectra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 A combined system consisting of broadband optical limiters with inserted

optical isolators. Decoupling among the constituent limiters eliminates

transmittance maxima within the effective stopband. . . . . . . . . . . . 86

6.3 Combining randomized units in series eliminates transmittance maxima,

deepens and widens the effective stopband. . . . . . . . . . . . . . . . . . 87

xv



6.4 A comparison of the transmission spectra for a single perfectly periodic

1000-layer structure (the thin line) versus 5 combined randomized 200-

layer units (the thick line). . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.5 Transmitted versus incident intensity for various degrees of randomness at

various trials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.6 The transmitted vs. the incident intensity for light at frequencies inside

the broadened stopband of a 10% randomized 100-layer structure. . . . . 90

6.7 Transmittance versus incident intensity. Comparison between ordered and

10% randomized 100-layer structures at two frequencies. . . . . . . . . . 91

6.8 Evolution of the intensity of the forward propagating wave across a 100-

layer structure. Impact of the increasing level of randomness for the inci-

dent intensity of 2 is shown. . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.9 The localization of light within a 30% randomized structure. The figure

shows the impact of increasing incident intensity. . . . . . . . . . . . . . 93

6.10 The intensity of the forward-propagating wave across the structure in the

transmitting and limiting regimes. . . . . . . . . . . . . . . . . . . . . . . 94

6.11 The intensity of the forward-propagating wave across a structure consisting

of five randomized 500-layer units. The inset shows the transmittance

spectra for structures with one and five units. . . . . . . . . . . . . . . . 95

7.1 Profile of linear refractive indices and Kerr coefficients of a nonlinear peri-

odic structure in the out-of-phase configuration. The refractive indices of

two adjacent layers are n01 + nnl1I and n02 + nnl2I, where n01 < n02 and

nnl1 = −nnl2 > 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.2 The transmitted intensity for the structures with an out-of-phase effective

refractive index profile for various numbers of layers (N = 100, 400, 1000).

The structures have linear refractive indices of n01=1.5 and n02=1.52 and

Kerr coefficients of nnl1=0.01 and nnl2=-0.01. . . . . . . . . . . . . . . . 101

xvi



7.3 Local effective refractive index and the intensity across a 1000-layer struc-

ture with material parameters as in Figure 7.2 for various values of incident

intensity. The total refractive index is given on the left vertical axis and

the local intensity is given on the right axis. . . . . . . . . . . . . . . . . 102

7.4 The idealized transmitted intensity for out-of-phase nonlinear periodic

structures with different material parameters. . . . . . . . . . . . . . . . 104

7.5 All-optical hard limiter. Arranging the proposed structures in series results

in an increasingly steep transition in the transfer characteristics. The inset

shows how the response of hard-limiter is modified with an increasing

number of units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.6 All-optical analog-to-digital converter. In the example considered, an ana-

log input of 5 is transformed to a digital word (0101). . . . . . . . . . . . 106

7.7 OR and AND gates. For two input beams A and B, the transmitted

intensity of the hard limiter biased at a = 1 implements the OR function

while the reflected beam implements the AND operation. . . . . . . . . . 107

7.8 Ideal transmission characteristics of the out-of-phase nonlinear balanced

structure with material parameter a = 2. The transfer curve enables OR

logic operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.9 Ideal reflection characteristics of the out-of-phase nonlinear balanced struc-

ture with material parameter a = 2. This transfer curve enables logic AND

and inversion logic operations. . . . . . . . . . . . . . . . . . . . . . . . . 108

7.10 Transmitted intensity as a function of incident intensity for the structure

with the same parameters as in Figure 7.3. The thicknesses of layers were

allowed to vary 0, 5, and 10% from their quarter-wave value. The effect

of the linear absorption on the transmittance is also shown. . . . . . . . . 109

8.1 The multistable and stable regimes of nonlinear periodic structures illu-

minated with light at the frequency of Bragg resonance. . . . . . . . . . . 114

xvii



8.2 The normalized limiting value of the output power Ilim/I0 as a function

of the inverse variance of the nonlinear index Γ at kΛ = π. . . . . . . . . 116

8.3 The limiting transmitted power Ilim as a function of the spectral position

of the illumination to spatial period ratio λ/(Λn0). . . . . . . . . . . . . 117

8.4 Balanced nonlinearity management with a linear built-in grating, where

nnl = 0, n2k = 1. Horizontal lines show the limiting intensity Ilim, while

the dotted line displays the regime of complete transparency: Iout = Iin.

An out-of-phase (n0k = −0.02) grating increases Ilim while an in-phase

grating (n0k = 0.02) decreases it. . . . . . . . . . . . . . . . . . . . . . . 120

8.5 Transfer characteristics of nonlinear periodic structures with unbalanced

nonlinearity. The threshold between limiting regime and multistability is

nnl = 4/3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9.1 Pulse energy transmittance as a function of the pulse width for a fixed

peak pulse intensity of Ipeak = 0.01|n2|. . . . . . . . . . . . . . . . . . . . 127

9.2 Temporal intensity profiles of input and output pulses after transmission

through a 360-period long device for input pulse widths of: (a) 240 Λ
c

and

(b) 570 Λ
c
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

9.3 Heuristic analysis of pulse shaping in a 360-period long nonlinear grating.

The time-dependent instantaneous transmittance is attributed to contri-

butions from the forward- and backward-propagating electric fields for an

input pulse widths of: (a) 240 Λ
c

and (b) 570 Λ
c
. . . . . . . . . . . . . . . 130

9.4 (a) Peak transmitted intensity versus peak incident intensity of 240 Λ
c
-long

pulses for devices that are 140, 360, and 580-periods long (b) Correspond-

ing reflected peak intensity as a function of peak incident intensity. . . . 132

9.5 Output temporal response of the device with length L = 140 Λ, 360 Λ, 420

Λ, 720 Λ, 1440 Λ, and 2160 Λ, for a fixed input pulse with Ipeak = Iclosing

and FWHM = 240Λ
c
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

xviii



9.6 Output transmitted pulse shapes when for incident pulses with peak in-

tensity of: (a) Ipeak = 0.5Iclosing and (b) Ipeak = 1.5Iclosing. The width of

the pulse is FWHM = 240Λ
c

and the device length is equal to 360 Bragg

periods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

10.1 General layout of the first laser system used: 1. VITESSE seed laser

[λ=800 nm, rep. rate = 80 MHz, τ = 30 fs, power = 300 mW]; 2. YLF

pump laser [λ=533 nm, rep. rate = 1 kHz, τ = 150 ns, power = 12-16 W];

3. TITAN amplifier [λ=800 nm, rep. rate = 1 kHz, τ = 1.7 ps, power =

2.0 W]; 4. TOPAS OPA [280 nm < λ < 2600 nm, rep. rate = 1 kHz, τ

= 1.2 ps, 8 mW < power < 430 mW]. . . . . . . . . . . . . . . . . . . . 140

10.2 Picture of the OPA laser system at installation. The numbers 1 to 4 in the

figures correspond to the system components as explained in the caption

of Figure 10.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

10.3 Schematic illustration of a z-scan experimental setup used in this work.

Diagram taken from Ref. [151]. . . . . . . . . . . . . . . . . . . . . . . . 143

10.4 Ideal normalized closed-aperture z-scan trace for the sample with a nega-

tive refractive nonlinearity. . . . . . . . . . . . . . . . . . . . . . . . . . . 144

10.5 Ideal normalized open-aperture z-scan trace for the sample exhibiting sat-

uration of absorption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

10.6 Normalized closed-aperture z-scan trace showing a negative nonlinear ther-

mal response of CS2 at a repetition rate of 76 MHz. The line corresponds

to the nonlinear refraction fit. . . . . . . . . . . . . . . . . . . . . . . . . 150

10.7 Normalized closed-aperture z-scan trace showing ultrafast positive index

change of CS2 at a repetition rate of 5 kHz. . . . . . . . . . . . . . . . . 151

10.8 The molecular structure of pseudo-stilbene type azobenzene molecule: the

azo group, two benzene rings, donor and acceptor groups. . . . . . . . . . 153

xix



10.9 Absorption spectra of Azobenzene Dye Disperse Red 1. The absorption

peaks at 490 nm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

10.10Results from the measurement of nonlinear properties at a laser wavelength

of 760 nm of the solution of azobenzene dye Disperse Red 1 in THF at

concentrations of 2%, 5%, and 10%. a) Kerr coefficients; b) two-photon

absorption coefficients; c) W figure of merit; d) 1/T figure of merit. . . . 154

10.11Linear absorption spectra of pure PMMA (dotted line) and MEH-PPV/PMMA

composite (solid line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

10.12Normalized open-aperture z-scan transmittances traces of MEH-PPV/PMMA

(circle) and pure PMMA (triangle) film samples using 100 femtosecond

pulses at λ=840 nm. The solid line is a theoretical fit to the open-aperture

trace of MEH-PPV/PMMA. . . . . . . . . . . . . . . . . . . . . . . . . . 157

10.13Normalized closed-aperture z-scan transmittance trace of MEH-PPV/PMMA

composite. The solid line is a theoretical fitting. . . . . . . . . . . . . . . 158

10.14Thermal nonlinear index change of solid samples of DR1/PMMA and

MePh as a function of intensity. . . . . . . . . . . . . . . . . . . . . . . . 159

10.15Cross-section of the GaAs/AlGaAs MQWs sample analyzed. Sixty-one

10 nm GaAs wells and sixty 21 nm Al0.28Ga0.72As barriers were grown on

on Si-doped 001 GaAs 3′′ substrate. . . . . . . . . . . . . . . . . . . . . . 162

10.16Photoluminescence intensity of the Al0.28Ga0.72As/GaAs MQWs sample. 163

10.17Absorption spectrum of the GaAs/Al0.28Ga0.72As MQWs sample. . . . . 164

10.18Change in the absorption in the bandedge region of GaAs/AlGaAs MQWs

samples at wavelengths of 785, 800, 820, 844, 848, 855, and 874 nm. . . . 165

10.19Saturation fluences of the GaAs/AlGaAs MQWs sample. . . . . . . . . . 166

10.20Cross-section of sample. One hundred and twenty-one 10 nm In0.530Al0.141Ga0.329As

barriers and one hundred and twenty 5 nm In0.530Ga0.47As wells were grown

on on S-doped 001 InP ′′ substrate. . . . . . . . . . . . . . . . . . . . . . 168

xx



10.21Photoluminescence spectra of the In0.530Al0.141Ga0.329As/In0.530Ga0.47As

sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

10.22Linear absorption spectra of the In0.530Al0.141Ga0.329As/In0.530Ga0.47As sam-

ple. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

10.23Saturation of absorption in In0.530Al0.141Ga0.329As/In0.530Ga0.470As MQWs

at room temperature in the spectral range 1480–1550 nm at fluences of

46 µJ/cm2, 69 µJ/cm2, 92 µJ/cm2, and 116 µJ/cm2. . . . . . . . . . . . 171

10.24Nonlinear index change in the In0.530Al0.141Ga0.329As/In0.530Ga0.470As MQWs

at the same experimental conditions as in Figure 10.23. . . . . . . . . . . 172

10.25Figures of merit under the same experimental conditions as in Figures

10.23 and 10.24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

10.26The linear absorption spectra of toluene, THF, chloroform, cyclohexane

in the 1300 – 1580 nm spectral range. . . . . . . . . . . . . . . . . . . . . 176

10.27The third order nonlinear Kerr coefficients of the compounds of Figure 10.26.

The measurements were taken using picosecond pulses with intensity of

75 GW/cm2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

10.28The nonlinear absorption coefficients under the same conditions as in Fig-

ure 10.28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

10.29The saturation of absorption in the 5.5 ± 0.5 nm PbS nanocrystals in the

wavelength range from 1150 to 1550 nm at fluences of 1 mJ/cm2, 2 mJ/cm2

and 3 mJ/cm2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

10.30Nonlinear index change of PbS nanocrystals under the same conditions as

in Figure 10.29. The inset compares the linear absorption spectrum with

spectral position of the refractive index change measured at a fluence of 3

mJ/cm2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

xxi



10.31Nonlinear figures of merit (FOM) of PbS nanocrystals under the same

conditions as in Figures 10.29 and 10.30. The inset displays the figures of

merit recorded at a fluence of 3 mJ/cm2 vs. the linear absorption spectrum.183

10.32Linear absorption spectra of the 22 mg/mL PbS nanocrystals in chloroform

solution for the samples with mean diameters of 4.8 ± 0.5 nm, 5.5 ± 0.5

nm, and 5.8 ± 0.5 nm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

10.33Nonlinear index change for the same samples as in Figure 10.32 as mea-

sured at a fluence of 3 mJ/cm2. . . . . . . . . . . . . . . . . . . . . . . . 185

10.34Nonlinear figures for merit of the three nanocrystal samples studied under

the same conditions as in Figure 10.33. . . . . . . . . . . . . . . . . . . . 186

10.35Trans-cis photoisomerization. Following resonant absorption, the azoben-

zene molecule changes its configuration, resulting in a decreased dipole

moment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

11.1 The cross-section of the analyzed MQWs sample A. A is made out of one

hundred and twenty-one 10 nm In0.530Al0.141Ga0.329As barriers and one

hundred and twenty 5 nm In0.530Ga0.47As wells. . . . . . . . . . . . . . . 193

11.2 The cross-section of optical element B. B is made out of MQWs type 1

and MQWs type 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

11.3 The cross-section of optical element C. C is made out of MQWs type 1

and MQWs type 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

11.4 The photoluminescence spectra of semiconductor samples A, B, and C. . 196

11.5 The linear transmittance spectra of semiconductor samples A, B, and C. 197

11.6 The experimental set up used in the nonlinear transmittance and re-

flectance measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

11.7 The change in the absolute transmittance of sample A in the spectral range

1300 nm to 1600 nm, at incident powers of 0.3 µW, 1 µW, 3µW, 10 µW,

30 µW, and 100 µW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

xxii



11.8 The change in absolute reflectance of sample A under the same conditions

as in 11.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

11.9 The nonlinear transmittance response of the optical element B under the

same conditions as in Figure 11.7. . . . . . . . . . . . . . . . . . . . . . . 202

11.10The nonlinear reflectance response of the optical element B under the same

conditions as in Figure 11.7. . . . . . . . . . . . . . . . . . . . . . . . . . 203

11.11The nonlinear transmittance response of the optical element C under the

same conditions as in Figure 11.7. . . . . . . . . . . . . . . . . . . . . . . 205

11.12The nonlinear reflectance response of the optical element C under the same

conditions as in Figure 11.7. . . . . . . . . . . . . . . . . . . . . . . . . . 206

11.13The nonlinear changes in the relative transmittance in A, B, and C. . . . 207

11.14The nonlinear changes in the relative reflectance in A, B, and C. . . . . . 208

11.15Simulated results of a change in the absolute transmittance and reflectance

of a sample of uniform nonlinear absorbing material. . . . . . . . . . . . 210

11.16Simulated results of a change in the absolute transmittance and reflectance

of a sample with a pop-up Bragg grating. . . . . . . . . . . . . . . . . . . 211

12.1 Differential nonlinear reflectance from colloidal crystal 1 compared to its

initial reflectance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

12.2 Nonlinear reflectance from colloidal crystal 2. The inset demonstrates how

the reflectance at 570 nm decreases with increasing incident power . . . . 224

xxiii



xxiv



Chapter 1

Switching in Photonic Networks -

The Need for Agile Solutions

1.1 Signal Processing in Optical Networks

Networking applications such as data browsing, large file transfer, multimedia-on-demand,

and videoconferencing require high quality transfer of data streams of different lengths

and initial formats.

Optical fiber provides a suitable medium in which it is possible to reach tremendous

transmission rates over long distances [1]. The maximum information carrying capacity

was estimated to be around 100 THz [2]. Very high data rates can be achieved using a

combination of wavelength- and time-division multiplexing techniques (WDM and TDM).

WDM involves sending many signals in parallel at closely spaced wavelengths along the

same fiber, while TDM allows close spacing in time of bits in a single channel.

While there exist means to produce, transfer, and detect information at a very high

bandwidth, there is a need for more agility in photonic networks.

The agility of present-day optical networks is limited by the electronic nature of a

very important function: the processing of data signals. Signal processing is responsible

1
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for switching and routing traffic, establishing links, restoring broken links, testing, and

managing the network.

At present, important and functionally complex signal processing operations of switch-

ing and routing are carried out electronically. Electronic signal processing imposes two

significant limitations on the functionality of optical networks: cost and opacity.

Today, signal switching and routing requires converting the optical information into

electrical signals, processing in the electronic domain, and converting back to the optical

domain before retransmission. Such an operation requires detection, retiming, reshaping,

and regeneration at each switching and routing point. This necessitates complex and

expensive electronic and electro-optical hardware at each routing and switching node.

The use of electronic signal processing places strict requirements on the format of data

streams transferred and processed, thus making the signal processing opaque. Repetition

rates of optical signals, power levels, and packet lengths have to be standardized before

they can be processed electronically.

In addition, since modern electronics can process information at repetition rates far

below the fundamental limits of the optical transmission, electronics imposes limits on

the ultimate transmission rate of a network.

The ability to perform signal processing operations entirely within the optical domain

would eliminate the requirement of optical-electrical-optical conversions, while providing

the agility and speed inherent to optical elements. Provisioning of services with a vast

diversity of rates and duration of connections could be enabled. All-optical switching

solutions would be transparent to bit rate and protocols. The speed of electronic devices

would no longer limit network throughput: optical signal processing, in contrast with

electronics, may provide ultrafast subpicosecond switching times [3].
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1.2 Current Optical Signal Processing Technologies

Currently commercially implemented all-optical devices and elements do not perform

complex self-processing of signals [4, 5].

Interferometric arrayed waveguide gratings and fiber Bragg grating passband filters

are used to multiplex, demulitplex, and drop WDM signals. Micro-Opto-Mechanical-

Sensors are made out of movable microscopic mirrors that steer light beams between de-

sired input and output ports in one, two, or three-dimensions. Optomechanical switches

are made out of movable waveguides. Electro-optical and thermo-optical interferometric

signal processing elements rely on changing the index of refraction by exploiting either

electro-optical or thermo-optical properties of the waveguide materials. Bubble- and liq-

uid crystal-based signal processing technologies rely on directing the light from input to

output ports through the externally controlled matrix. Apart from the electro-optical

devices, the technologies discussed above are characterized by slow switching speeds.

1.3 Optical Signal Processing using Nonlinear Op-

tics

In contrast to the optical signal processing solutions discussed in the previous section,

nonlinear optics can potentially support transparent and fast self-processing of signals.

A variety of nonlinear optical signal processing functions can be realized with similar

fundamental building blocks [6–8]. Nonlinear optical elements and devices can be either

integrated in photonic circuits [9] or used in a free-standing configuration [10]. Nonlin-

ear optics can enable signal processing without the requirement of external electrical,

mechanical, or thermal control [11]. The response time of properly designed nonlin-

ear optical devices is limited fundamentally only by the nonlinear response time of the

constituent materials [3, 12–14].
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Photons do not interact with each other in vacuo. In order to perform nonlinear

optical signal processing operation the properties of a medium through which the light

travels must be modified by the light itself. Optical signals then propagate differently as

a result of their influence on the medium.

Nonlinear optical signal processing elements utilize the illumination-dependent real

and imaginary parts of the index of refraction [11]. Depending on the material and

spectral position, the refractive index and absorption of a given nonlinear material can

either increase or decrease with increasing illumination.

A wide range of broadband and wavelength-selective nonlinear optical signal process-

ing devices has been proposed and demonstrated.

The most commonly studied nonlinear optical switching elements are nonlinear Fabry-

Perot interferometers, nonlinear Mach-Zehnder modulators, nonlinear directional cou-

plers, optical limiters, and nonlinear periodic structures.

A nonlinear Fabry-Perot interferometer consists of two mirrors separated by a nonlin-

ear material. As the refractive index of the nonlinear material changes with an increased

level of illumination, the effective path length of the resonator is altered. A nonlinear

Fabry-Perot interferometer can be tuned out of, or into, its transmission resonance. When

illuminated with the continuous-wave light, a nonlinear Fabry-Perot interferometer can

exhibit optical bistability. Optical bistability is a phenomenon in which the instanta-

neous transmittance of the device depends both on the level of incident illumination and

on the prior transmittance of the device. Such an element enables all-optical memory.

In a nonlinear Mach-Zehnder modulator and a nonlinear directional coupler, a part

of the waveguide is made out of a nonlinear material. Changing the intensity of the

incident light changes the effective path length experienced by the light. This, in turn,

through phase interference, results in an illumination-dependent transmittance in a Mach

Zehnder modulator, and an illumination-dependent coupling in a nonlinear directional

coupler.
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A number of techniques use nonlinear properties of materials to obtain power limiting,

and associated with it, on-off switching. Such devices are based on total internal reflec-

tion [15], self-focusing [16], self-defocusing, two photon absorption [17], or photorefractive

beam fanning [18].

Nonlinear periodic structures combine the phenomena of nonlinear index change and

distributed Bragg reflection. The intensity-dependent transmission and reflection prop-

erties of nonlinear periodic structures can be harnessed to yield various signal processing

functions. Prior to this work it has been demonstrated that nonlinear periodic structures

can support optical switching, optical bistability, and solitonic propagation of pulses.

Nonlinear periodic structures offer many structural and material degrees of freedom al-

lowing modification of the general character and specifics of their optical response.

1.4 This Work - A Novel Approach to Optical Signal

Processing

This work will argue that nonlinear periodic structures can enable transparent signal

processing in photonic networks, and therefore increase the agility of the transfer of

information.

The most important problems with the state of research on nonlinear periodic struc-

tures prior to this work were identified as:

• A lack of a comprehensive theory describing the response of the nonlinear periodic

devices capable of supporting diversified signal processing functions.

• Insufficient information and understanding about nonlinear properties of materials

capable of exhibiting large refractive index changes with good figures of merit.

• A small number of successful experimental demonstrations of optical signal pro-

cessing using large-index change nonlinear periodic structures.
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In this work these issues are addressed by:

• Developing the theory of optically stable nonlinear periodic structures. Through de-

velopment and solution of a model, it will be shown that this previously unexplored

branch of intensity-domain response of nonlinear periodic structures can be used

to obtain a variety of all-optical signal processing functions. An in-depth analysis

of nonlinear periodic all-optical limiters, switches, hard-limiters, analog-to-digital

converters, and a complete set of logic gates will be presented.

• Examining nonlinear properties of various inorganic crystalline semiconductors,

organic materials, and semiconductor quantum dots. This will be carried out with

an emphasis on simultaneously maximizing the strength of the nonlinear response

and the associated figures of merit in the telecommunication and visible spectral

regions.

• Fabricating novel nonlinear periodic signal processing elements. One- and three-

dimensional optical elements will be shown to yield promising intensity-dependent

transfer characteristics due to the interplay of Bragg periodicity, nonlinear absorp-

tion, and nonlinear refraction.

1.5 Organization of Thesis

The thesis is organized as follows:

Chapter 2 Definitions of Concepts establishes a background for this work. The phe-

nomenon of illumination-dependent refractive index will be explained in terms of the

theory of nonlinear material polarization. The concept of figures of merit will be used to

describe what constitutes a good nonlinear material. The idea of a Bragg resonance will

be introduced and it will be shown that nonlinearity and periodicity can be combined to

yield an illumination-dependent nonlinear periodic structure.



1.5. Organization of Thesis 7

Chapter 3 Literature Survey will outline the significant prior developments in research

fields related to this work. Refractive and absorptive nonlinearities measured in bulk

semiconductors, semiconductor multi-quantum-wells, semiconductor nanocrystals, and

organic materials will be summarized. It will be shown how the field of optical signal

processing using nonlinear periodic structures has evolved. The major results to date,

and important gaps in understanding, will be identified.

The nonlinear periodic structures analyzed in the remaining chapters of this work will

be introduced in chapter 4 Coupled Mode Theory of Nonlinear Periodic Structures. This

chapter will establish the theoretical framework for the analytical and numerical work

presented in the ensuing chapters.

Chapter 5 Theory of Steady-State Optical Limiting and Switching will analyze limit-

ing and switching with balanced nonlinear periodic structures. The analytical solutions

that predict clamping of the transmitted intensity below a well-defined limiting inten-

sity threshold will be derived. These derivations will be followed by the comprehensive

numerical analysis of optical limiting and single- and double-beam switching.

Broadband optical limiting will be discussed in chapter 6 Theory of Broadband Lim-

iting with Slightly-Disordered Nonlinear Periodic Structures. The introduction of limited

disorder will be shown to increase the effective operational bandwidth of the limiting

nonlinear periodic structures. The formation of stationary gap solitons and localization

of light in weakly disordered structures will be demonstrated numerically.

In chapter 7 Theory of Optical Signal Processing with Out-of-Phase Balanced Non-

linear Periodic Structures the theory from chapter 5 will be extended to introduce more

complex all-optical signal processing functions. These functions will be enabled by struc-

tural modification of the limiting devices introduced in chapters 5 and 6. It will be shown

through development and solution of a model that the introduction of a weak built-in

linear grating into index-matched limiting structures enables all-optical hard-limiting,

analog-to-digital conversion, and logic gating.



8 Chapter 1. Switching in Photonic Networks - The Need ...

Chapter 8 Theory of Intensity-Domain Optical Stability of Transfer Functions of Non-

linear Periodic Structures will present a comprehensive analytical and numerical study

of steady-state intensity-domain optical stability and multistability in nonlinear periodic

structures. Regimes in which periodic structures exhibit stable or multistable intensity-

domain optical response will be quantified in terms of material and structural parameters.

The time-dependent response of the devices proposed will be discussed in chapter 9

Theory of Pulse Shaping and Compression in Balanced Nonlinear Periodic Structures.

The propagation of ultrashort pulses in gratings with balanced nonlinearity will be sim-

ulated for the cases of: no built-in linear grating, and an out-of-phase built-in linear

grating. Pulse intensity limiting and pulse envelope compression will be predicted from

numerical simulations.

Chapter 10 Experimental Assessment of the Applicability of Specific Nonlinear Optical

Materials to Nonlinear Periodic Devices will present the linear and nonlinear properties

of materials characterized throughout this work. It will summarize and discuss the re-

sults of the illumination-dependent refraction and absorption in inorganic crystalline

semiconductors, semiconductor nanocrystals, and organic materials. The results will

be contextualized with respect to their applicability to optical signal processing using

nonlinear optics in general, and using nonlinear periodic structures in particular. The

characterization of the nonlinear properties will investigate which materials should by

implemented into the nonlinear periodic structures studied in the ensuing chapters.

Chapter 11 Measurement of the Transfer Characteristics of Nonlinear Semiconduc-

tor Bragg Gratings will discuss the design, fabrication and characterization of one-

dimensional semiconductor periodic structures. Based on the nonlinear transmission

and reflection experiments, various aspects of the response of the elements studied will

be attributed to nonlinear absorption or nonlinear refraction. Evidence of the emergence

of an intensity-dependent Bragg grating will be presented.

This work will be summarized and contextualized in chapter 12 Summary, Origi-
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nal Contributions, Future Prospects. It will be demonstrated that the research presented

herein has exploited various branches of optical signal processing using nonlinear periodic

structures. The concluding chapter will also present preliminary results of the measure-

ments of the nonlinear response of an organic periodic structure – a nonlinear three-

dimensional colloidal crystal. Experimental observation of an illumination-dependent

shift of the stopband position and a decrease in the reflectivity will be presented. Promis-

ing avenues for future investigations based on this work will be presented and discussed.
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Chapter 2

Definitions of Concepts

This chapter will introduce the most important concepts used in this work. The phenom-

ena of the ultrafast and resonant nonlinear index of refraction and Bragg scattering will

be explained. The combination of nonlinearity and periodicity will be shown to yield op-

tical signal processing functionality. The discussion presented in this chapter will lay the

foundations for the literature review presented in the next chapter and for the research

results reported in the rest of this thesis.

2.1 Illumination-Dependent Refractive Index

In a nonlinear optical medium intense light alters the real and imaginary components

of the refractive index. The nonlinear response of the real part of refractive index mod-

ifies the phase of propagating light while the imaginary part describes the change in

absorption.

This section will present the formalism used to describe how light affects the ultrafast

and the resonant changes in nonlinear refractive index. The ulrafast nonlinear index

changes take place in the spectral region where the material is nonabsorbing, while the

resonant nonlinear index changes take place in the absorbing spectral region. Comprehen-

sive descriptions of the nonlinear optical response can be found in the references [19–24].

11
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2.1.1 Ultrafast Response

Ultrafast nonlinear response is characterized by the instantaneous response, weak non-

linear index changes, and weak nonlinear absorption. The formalism that describes the

ultrafast changes in the real and imaginary parts of the refractive index can be derived

from the theory of nonlinear polarization.

Polarization ~P (r, ω) of a material in a presence of an electric field ~E(r, ω) at a fre-

quency ω is defined as

~P (r, ω) = ε0χ(ω) ~E(r, ω) (2.1)

where ε0 is the permittivity of free space and χ(ω) is the dielectric susceptibility tensor.

χ(ω) is related to the index of refraction n(ω) by

χ(ω) = n2(ω)− 1. (2.2)

In a nonlinear material χ(ω) is not constant with electric field and the influence of

~E(r, ω) on ~P (r, ω) is not linear. In this case it is customary to expand ~P (r, ω) in a power

series of ~E(r, ω)

~P (r, ω) = ε0χ
(1)(ω) ~E(r, ω) + ε0

[
χ

(2)
ijk(ω) ~Ej(r, ω) ~Ek(r, ω)

+ 3χ
(3)
ijkl(ω) ~Ej(r, ω) ~Ek(r, ω) ~El(r, ω)

+ higher order terms
]
,

(2.3)

where χ(1) is the linear susceptibility, while χ(2) and χ(3) are the coefficients of the second-

and third-order nonlinear susceptibility.

In all known materials the higher order components of the effective nonlinear sus-

ceptibility tensor χ(ω) yield smaller contributions to the effective polarization than the

preceding terms of the same parity. On the other hand, in the presence of high electric

field the terms designated as the higher order terms in Eq. (2.3) (i.e. terms proportional

to the powers of ~E(r, ω) higher than 4), can be larger than the first three terms. However,

the assumption of moderate intensities and the aim to illustrate the concept of nonlinear
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refractive index justifies retaining of only first three terms of Eq. (2.3) in the derivation

that follows.

This work will concentrate on the nonlinear effects in which intense light changes the

refractive index. Under such conditions there are no DC or low-frequency electro-optic

effects present and the second term in Eq. (2.3) can be neglected. ~P (r, ω) reduces to

~P (r, ω) = ε0[χ
(1)(ω) + 3χ(3)(ω) ~E(r, ω) ~E(r, ω)] ~E(r, ω)

= ε0

[
χ(1)(ω) +

6χ(3)(ω)I

ε0n0c

]
~E(r, ω),

(2.4)

where I is the local intensity

I =
ε0

2
n0c|E(ω)|2, (2.5)

and c is the speed of light in vacuum.

The first term in Eq. (2.4) represents the linear contribution to the polarization

and the second term represents the nonlinear, intensity-dependent part. This intensity-

dependent part gives rise to the nonlinear index of refraction fundamental to this work.

To obtain the direct expression for the nonlinear refractive index the effective suscep-

tibility from Eq. (2.4) is substituted into Eq. (2.2).

n2 = 1 + χ(1) +
6χ(3)(ω)I

ε0n0c
(2.6)

In order to relate directly this nonlinear part of polarization to the intensity-dependent

part of refractive index — a macroscopic measurable quantity — the effective index of

refraction is expressed as

n = n0 + n2I. (2.7)

Taking a square of Eq. (2.7) and neglecting the terms proportional to I2 under the

assumption of weak relative nonlinearity (n2
2I

2 � n0n2I � n2
0) gives

n2 = n2
0 + 2n0n2I. (2.8)
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Equating Eq. (2.6) and Eq. (2.8) gives an expression for n2

n2 =
3χ(3)

ε0n2
0c

, (2.9)

where all the factors are in SI units.

In general, n2 can have real (Re) and imaginary (Im) parts with n2Re responsible

for the nonlinear refraction and n2Im responsible for the nonlinear absorption or gain.

There are many conventions used to express the real and imaginary parts of the nonlinear

refractive index. The approach used by researchers must be always determined prior to

the comparison of the absolute numbers. However, in general it is safe to write

n2Re =
K

n2
0

Re
[
χ(3)] (2.10)

and

n2Im =
K

n2
0

Im
[
χ(3)], (2.11)

where constant K depends on the convention and units used [24].

In the rest of the work n2 will be used to express the real part of ultrafast nonlinear

index of refraction, i.e. n2 will be as used in Eq. (2.10).

In order to account for the imaginary component of the ultrafast nonlinear response

in a commonly used way the following relationship is defined

α = α0 + βI. (2.12)

Eq. (2.12) expresses total absorption (α) in terms of its linear (α0) and nonlinear (βI)

contribution. β is the measurable, macroscopic quantity that will be used throughout this

work to quantify the effects of ultrafast imaginary nonlinear response,i.e a two photon

absorption.

2.1.2 Ultrafast Nonlinear Material Figures of Merit

A nonlinear material useful in a nonlinear optical signal processing device must simulta-

neously satisfy the following conditions:
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• The excitation time of the nonlinear effect must be less than the pulse width.

• The sum of the excitation and the relaxation times must be shorter than the pulse

spacing.

In addition, an ultrafast nonlinear material must satisfy the following requirements:

• The effect of linear absorption must be weak compared to the effect of nonlinear

refraction. Stegeman quantifies this condition in terms of the unitless figure of

merit W [14]

W =
|∆n|
α0λ

> 1, (2.13)

where ∆n is the induced change in the real part of the refractive index, α0 is the

linear absorption (expressed in units of inverse length) and λ is the wavelength

of light (units of length). To facilitate consistent comparison between different

nonlinear materials, ∆n in Eq. (2.13) was assumed to be evaluated as the intensity

approaches the saturation intensity, at which the rate of change of the refractive

index drops noticeably below a linear dependence on intensity [14]. In general

Eq. (2.13) can be used to quantify the nonlinear quality of a given material at any

intensity, not only at the saturation.

• The effect of two-photon absorption must be weak compared to the effect of non-

linear refraction. This condition is quantified using the figure of merit T [14]

T =
β2λ

n2

< 1, (2.14)

where β is the two-photon absorption coefficient from Eq. (2.12) (expressed in units

of length/power).

Conditions (2.13) and (2.14) can be combined in terms of a single figure of merit F

F =
|∆n|
αeffλ

> 1, (2.15)
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where αeff is the effective absorption experienced by the sample at a given intensity.

F can be used to quantify the quality of materials for signal processing with respect to

nonlinear processes of any order rather than with respect to only third-order processes

as in (2.14).

Condition (2.15) ensures that the nonlinear phase shift ∆φNL = 2π∆nL/λ, where L

is the length of the material, reaches 2π before the intensity decays to 1/e of its input

value as a result of the effective absorption. Phase shifts between 0.5π and 3.5π are

required for most optical switching devices [14].

2.1.3 Resonant Response

The resonant response of a nonlinear material is the dominant nonlinear effect in the

absorbing spectral region. A different formalism than that presented in section 2.1.1 is

used to describe the resonant changes in the real and imaginary parts of the refractive

index.

Illumination with light which is resonant with the material results in the direct ab-

sorption of the incoming photons, generating excited states and giving rise to a decrease

in the effective absorption. If the relaxation time of the excited states is longer than the

length of the pulse, the resonant effect is proportional to the fluence, rather than to the

intensity of the incident ultrafast pulse. This saturation of absorption is described by

the following expression for the effective absorption αeff [25]

αeff =
α0

1 + P
Psat

. (2.16)

where P =
∫ t

0
I(t′)dt′ is the incident fluence and Psat is the saturation fluence at which the

effective absorption decreases to a half of its initial value. P accounts for the cumulative

(up to the duration of the pulse) character of the resonant nonlinear response.

The saturation of absorption is accompanied by a change in the real part of the
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refractive index [25]

∆n =
n′2P

1 + P
Psat

. (2.17)

n′2 describes the strength of the real part of the resonant nonlinear refractive index.

In this work, nonresonant and resonant phenomena are considered. The parameters

n2 and β from 2.1.1 are used to quantify the ultrafast response and ∆n and ∆α from

section 2.1.2 are used to describe the resonant response.

2.1.4 Resonant Nonlinear Material Figures of Merit

Figures of merit for the non-resonant response have been defined in section 1.1.3. This

section will introduce resonant figures of merit that account for the nonlinear phase shift

that accumulates over the duration of a pulse.

For illustrative purposes, first order approximations to Eqs. (2.16) and (2.17) of the

form ∆n(t) =
∫ t

0
n‘

2I(t′)dt′ and αeff (t) = α0 are considered under the assumption P �

Psat. A resonant nonlinear material is assumed to be illuminated with a square pulse of

the form:

I(t) =


I0, if 0 < t < τp

0, if t < τp.

(2.18)

In analogy to Eq. (2.15) a time-averaged nonlinear figure of merit is defined for the

resonant response

〈F 〉 =
| 〈∆n〉 |
〈α〉λ

. (2.19)

The time-averaged nonlinear index change is

〈∆n〉 =
1

τp

∫ τp

0

[∫ t

0

n′2I(t′)dt′
]

dt =
n′2Ptotal

2
=
|∆nultrafast

peak |
2

, (2.20)

where Ptotal is the total fluence of the pulse Ptotal =
∫ τp

0
I(t′)dt′ = I0τp. The time-averaged

absorption is 〈α〉 = α0. For the case considered, the figure of merit (2.19) becomes:

〈F 〉 =
|∆npeak|

2α0λ
, (2.21)
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which is half of the ultrafast figure of merit. For simplicity, Eq. (2.15) will be used

throughout the thesis for both resonant and ultrafast response. The figure of merit

specific to the devices introduced in this work will be derived in chapter 5.

2.2 Periodic Structures

2.2.1 Bragg Gratings

Figure (2.1) illustrates an optical Bragg periodic structure. It is made out of two materials

with generally different linear refractive indices n01 and n02.

Figure 2.1: Schematic of a linear Bragg grating with period Λ: n01 and n02 are the linear

refractive indices of the two adjacent layers.

The refractive indices n01 and n02 and corresponding layer thicknesses t1 and t2 are

chosen in such a way that the period of the grating defined as Λ = t1 + t2 satisfies the

condition of a Bragg Resonance [26]

λ0 = 2n̄Λ. (2.22)

where n̄ is the average refractive index. λ0 is the center wavelength of the stopband ∆λ.

Stopband ∆λ contains waves undergoing multiple coherent reflections from successive
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grating periods resulting in a net reflection. The width of the stopband ∆λ is defined as

∆λgap
∼=

2

π

∆n

n̄
λ0, (2.23)

where ∆n is the difference in the refractive indices of the alternating materials. For a

light within the spectral range ∆λ, the amplitude of the forward-going wave decreases

as its energy is transferred to the contradirectional wave, resulting in a reflection.

Structures that are periodic in two or three dimensions also exhibit Bragg scatter-

ing [27]. Such multidimensional periodic structures show strong coherent refractive ef-

fects over a wider angular range than observed in one-dimensional periodic structures,

providing additional degrees of freedom to the design and operation of periodic optical

elements.

2.2.2 Nonlinear Periodic Structures

In a periodic structure in which at least one set of layers is made out of materials ex-

hibiting Kerr nonlinearity, the transmittance and reflectance near the Bragg resonance

depend on the strength of illumination.

In the case of nonlinear periodic structures, the centre frequency of the photonic

stopband ω0 and the spectral width and depth of the stopband ∆ωgap are not fixed but

are a function of the intensity I:

ω0 =
πc

n̄(I)Λ
, ∆ωgap

∼=
2

π

|∆n(I)|
n̄(I)

. (2.24)

This behaviour is illustrated in Figure 2.2. If one of the constituent materials exhibits

positive nonlinear index change, the stopband centered initially at ω0 widens and moves

towards lower frequencies with increasing level of illumination.
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Figure 2.2: Response of a periodic structure in which one set of layers experiences positive

refractive nonlinearity. The Bragg frequency ω0 shifts to lower frequencies ω′0 and ω′′0 and

the size of the bandgap ∆ωgap increases with increasing level of illumination.
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2.3 Conclusions

This chapter introduced the fundamental concepts central to the understanding of this

thesis. Expressions for the real and imaginary parts of the ultrafast and resonant non-

linear refractive index were defined together with the pertinent material figures of merit.

It was shown that the nonlinear response of periodic structures can yield illumination-

dependent transfer characteristics.
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Chapter 3

Literature Survey

The preceding chapters established the motivation and framework of this work. The

present chapter discusses how the research on refractive nonlinear materials relevant to

this work and nonlinear periodic structures has evolved, what has been discovered, and

what remaines to be accomplished.

3.1 Nonlinear Materials

3.1.1 Bulk and MQW Inorganic Crystalline Semiconductors

The illumination-dependent refractive and absorptive nonlinear properties of inorganic

crystalline semiconductors have been studied comprehensively. Since semiconductors

are at the heart of the electronics industry, semiconductor micro- and nanofabrication

techniques are well established. This enables the preparation of high-quality nonlinear

samples and devices. The ability to change the composition of semiconductor compounds

allows the tuning of the electronic bandgap over the visible and infrared spectral ranges.

The spectral position of the bandgap, in turn, tunes the nonlinear properties.

The nonlinear response of semiconductors can be divided into two groups: response

when illuminated with light at a photon energy above that of the electronic bandgap

23
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of a given semiconductor, and response to light at a photon frequency below that of a

bandgap. The former kind is referred to as a resonant nonlinear response and the latter

kind is referred to as a non-resonant nonlinear response.

When a semiconductor is illuminated with light at a frequency within the absorbing

region, the dominant nonlinear effect relies on the presence of linear absorption. Upon

absorption of the incident light, the electrons undergo a transition from the valence band

to the conduction band, saturating the absorption. This bandfilling effect is accompanied

by a very large change in the real part of the refractive index.

In the spectral region corresponding to the ultrafast response no single-photon ab-

sorption takes place. Upon illumination with intense light the electronic clouds of the

constituent atoms are distorted, changing the refractive index of the material. Associated

with it is a multiphoton absorption process. This takes place when the sum of the photon

energies is larger than the bandgap energy. This effect changes the absorption charac-

teristics of the material. Both the real and imaginary parts of ultrafast nonlinear index

must change given their connection through the nonlinear Kramers-Kronig relations.

In addition, when subjected to an intense continuous-wave or a high-repetition rate

pulsed illumination, the temperature of absorbing materials including semiconductors

increases. This in turn changes the refractive index. Thermal effects have relaxation

times as long as milliseconds and are not useful in processing trains of closely-spaced

pulses.

Figure 3.1 shows typical trends in the non-thermal nonlinear response of bulk inor-

ganic crystalline semiconductor material under picosecond, low-repetition rate illumina-

tion.

Resonant Nonlinearities

The two most important characteristics of resonant nonlinear response are saturation of

absorption and large nonlinear index change [28–30]. The relaxation times of resonant
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Figure 3.1: Trends in the nonlinear response of bulk semiconductors.

nonlinear effects in semiconductors are not instantaneous. As long as the duration of the

incident pulse is shorter than the relaxation time of the material, the magnitude of a non-

linear resonant response is proportional to the fluence, rather than to the intensity of the

incident pulse. The relatively long relaxation time of nonlinear effects in bulk and MQW

inorganic crystalline semiconductors (from 100s of picoseconds to 10s of nanoseconds) is

often used as an argument against using resonant nonlinearities. However, established

techniques such as low-temperature growth and doping can reduce the relaxation time

down to tens of picosecond [31,32].

The phenomenon of saturation of absorption translates into absorption that decreases
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with increasing incident fluence. This phenomenon will be observed in many of the

material systems studied in this work.

Resonant figures of merit of semiconductors are acceptable near the bandedge and be-

come worse at lower wavelengths. Such a behaviour is due to a stronger, lower-threshold

saturation of absorption around the bandedge.

Nonlinear index change is negative around the bandedge and has been predicted to

be positive at wavelengths lower than corresponding to the first heavy hole and light hole

excitonic peaks [33].

Decreasing Relaxation Times of Resonant Nonlinearities in Bulk Semiconductors

In 1991 Gupta et al. measured the time of nonlinear response GaAs grown at low

temperatures (LT-GaAs) [34]. Changes in reflectivity were monitored during a pump-

probe experiment at 620 nm. Relaxation times of several 2 µm thick samples grown at

temperatures ranging between 190◦C and 400◦C were measured. A decrease in the decay

time to 0.4 ps was recorded with decreasing growth temperatures. This short relaxation

time is drastically lower than the typical value of nanoseconds for unannealed GaAs [34].

In 1993 Harmon et al. studied the dependence of the nonlinear relaxation time in

LT-GaAs on annealing temperatures. A decrease in the relaxation time down to subpi-

cosecond values was observed with decreasing annealing temperatures [35].

In a number of papers published between 1994 and 1998 group of Smith, Othonos,

Benjamin, and Loka reported on a series of comprehensive experiments carried out on

various MBE-grown LT-GaAs samples. The dependence of the magnitude and the re-

sponse time of nonlinear effects on the growth and annealing temperatures was studied.

Very large negative nonlinear index changes were measured (∆nmax=-0.13) accompanied

by a strong saturation of absorption [36]. The relaxation time was measured to decrease

to a few picoseconds for samples grown at 500◦C [37]. The pump-probe measurements

were carried out in the bandedge region at wavelengths ranging from 870 nm to 890 nm.

The decreased response time was attributed to fast decay of excited carriers to mid-gap
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states. These states are an effect of the LT growth [32].

In the following years another group of researchers studied the strength and dynam-

ics of intensity-dependent response in InGaAsP doped with Be grown with He-plasma-

assisted MBE. As illustrated in Figure 3.2, subpicosecond relaxation times were ob-

tained [38]. The rapid decay was explained by a short lifetime of excited states due to

the existence of mid-gap He and He-Be trap states. Again, large negative changes in the

real part of the refractive index and strong saturation of absorption were observed [31].

Figure 3.2: Results of the pump-probe measurements illustrating the time-resolved

change in transmission for He-InGaAsP samples with different Be doping concentrations.

This figure was reproduced from Ref. [37].

Resonant Nonlinearities in Semiconductor Multi-Quantum-Wells

The nonlinear properties of semiconductor multi-quantum-wells (MQWs) are similar

to those of bulk semiconductors [30,33,39]. The nonlinear response in MQWs around the

bandedge is stronger and begins at lower fluences than in bulk materials. The changes in

the real part of refractive associated with the bandedge nonlinear response of semicon-

ductor MQWs will be used in chapters 10 and 11 of this work to trigger the nonlinear



28 Chapter 3. Literature Survey

response of a nonlinear superlattice and Bragg periodic structures.

Compared with bulk semiconductors, semiconductor MQWs offer an additional degree

of freedom in selecting their nonlinear properties. The effective electronic bandgap of a

given semiconductor MQW structure, and hence the dispersion of real and imaginary

parts of its linear and nonlinear refractive index, are influenced by two factors: the

choice of the compositions of constituent compound and the well-to-barrier thickness

ratio.

In 1982 Miller et al. reported on the measurements of resonant nonlinear properties

of semiconductor MQWs. A very strong absorption saturation was noticed around the

first excitonic peak in GaAs/AlGaAs MQWs. Based on these results a large refractive

nonlinearity was deduced from the nonlinear Kramers-Kronig relation [40]. A theoretical

paper followed explaining the dynamics of transient excitonic nonlinearities [41]. A 20 ns

excited carrier relaxation time was predicted.

In 1986 Lee et al. measured the nonlinear saturation of absorption of bulk GaAs

and 29.9 nm GaAs/AlGaAs wells grown by molecular beam epitaxy. The measurement

was performed using a monochromatic pump and a broadband probe over a 40 nm

spectral range near the MQW bandedge. Using the nonlinear Kramers-Kronig relation,

large index changes of both signs were predicted. In MQWs, absorptive and refractive

nonlinearities were enhanced compared to bulk GaAs. Index changes ranging from ∆n=-

0.06 to ∆n=0.03 were predicted in the samples analyzed [42].

This report was followed in 1988 by a study of nonlinearities around the bandedge by

the same group [30]. The response of bulk GaAs was compared with that of three sets of

GaAs/AlGaAs MQWs, with well thicknesses of 7.6 nm, 15.2 nm and 29.9 nm. Again, a

strong saturation of absorption was measured and nonlinear index changes of both signs

were predicted from the nonlinear Kramers-Kronig relation [43]. The magnitude of the

change in the real part of the refractive index was predicted to increase with decreasing

well size. The sign of the refractive nonlinearity changed at wavelengths slightly shorter
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than that corresponding to the first excitonic peak [30].

From 1988 on, many results of research on nonlinear properties of GaAs/AlGaAs

MQWs were reported by Elsa Garmire et al. In a series of papers, the saturation of

absorption was studied in GaAs/AlGaAs MQWs grown by metalorganic chemical vapor

deposition epitaxy. The nonlinear Kramers-Kronig relation was used to predict the as-

sociated change in the real part of the refractive index. Figure 3.3 shows the predicted

enhancement of nonlinearity with decreased well size and change of sign near the exci-

tonic peak. Attempts were made to use the illumination-dependent shift of Fabry-Perot

fringes to estimate directly the negative nonlinear index change along the bandedge.

However, this approach was admitted to yield significant errors, with the Fabry-Perot

technique sometimes giving a value of ∆n at twice the magnitude predicted from the

Kramers-Kronig relation [33].

In 1987 Fox et al. reported nonlinear measurements around the bandedge of bulk

GaInAs [44] and GaInAs/InP MQWs near the wavelength of 1.6 µm [45]. Full saturation

of absorption was observed. The nonlinear index changes deduced from the nonlinear

Kramers-Kronig relation were slightly larger than that observed in GaAs [25].

In 1996 Judawlikis et al. reported the decreased nonlinear relaxation time in LT-

grown Be-doped InGaAs/InAlAs MQWs. Nonlinear relaxation times of a few tens of

picoseconds were observed in a pump-probe experiment near the bandedge. The nonlinear

change in the real part of the refractive index was not reported [46].

A different approach to decrease the response times of bandedge nonlinearities of

semiconductor MQWs was taken by groups of White, Sibbet, and Adams. An electric

current was applied to active InGaAsP/InP waveguides and the nonlinear optical re-

sponse under electrical bias was studied. It was found that under a forward bias the

refractive nonlinear response was quenched. Under a reverse bias the nonlinear response

was slightly reduced, but the initially long recovery time was reduced to 50 ps [47] and 18

ps in subsequent experiments [48]. Further, it was found that when the waveguide was
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Figure 3.3: Spectra of GaAs/AlGaAs MQWs of three different well widths, measured at

various incident intensities by pulsed pump at 1.52 eV: (a) absorption coefficient, α, (b)

the change in the real part of the refractive index, ∆n. This figure was reproduced from

Ref. [38].

biased at transparency, the nonlinear coefficients of the semiconductor MQW waveguides

were n2=4×10−11 cm2/W and β=4×10−9 cm/W, giving a combined figure of merit of F

= 7 [49]. In all measurements the negative nonlinear index changes were measured to

have magnitude smaller than |∆n| < 0.001 [50].
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Non-Resonant Nonlinearities

Non-resonant nonlinearities are not triggered by direct electronic transitions due to single-

photons. Much weaker effects of distortion of electronic clouds and multi-photon absorp-

tion are responsible for non-resonant nonlinear response. Maximum non-resonant nonlin-

ear index changes are of the order |∆nmax| ∼ 1× 10−3. Since in certain spectral regions

a typical non-resonant Kerr coefficient is n2 ∼ 1 × 10−13 cm2/W, linear absorption is

around 5 cm−1, and the corresponding two photon absorption coefficient is β ∼ 1× 10−9

cm/W, the figures of merit associated with non-resonant semiconductor nonlinearities

can be acceptable.

The biggest advantage of non-resonant semiconductor nonlinearities is their sub-

picosecond response time. The sum of rise and relaxation times of non-resonant non-

linearity has been argued to be comparable to the orbital period of an electron in its

motion about the nucleus, estimated to be around 10−16 s [19].

Depending on the spectral region, bulk and MQW inorganic crystalline semiconduc-

tors may exhibit either positive or negative refractive non-resonant nonlinearities. Under

illumination with sub-nanosecond pulses at low repetition rates, the nonlinear index

change is negative for wavelengths up to 1.5 ch
Eg

, where ch
Eg

is the wavelength correspond-

ing to the bandgap, and h is Planck’s constant. ∆n is positive for wavelengths longer

than 1.5ch
Eg

[29, 51]. In MQWs the spectral position of the sign change in ∆n depends on

the nanostructure of MQWs [52]. In 1993 Shaw and Jaros predicted through theory the

dispersion of refractive nonlinearity in semiconductor MQWs and superlattices. They

found that in MQWs the proximity of the spectral position of the ∆n sign change to the

bandedge increases with increasing quantum confinement [52].

Under non-resonant illumination with pulses longer than one nanosecond, there is no

sign change in the refractive nonlinearity. The negative nonlinearity originating from two

photon absorption-induced free-carrier-effects is much stronger than any positive third-

order refractive effects at moderate and high intensities for hc
Eg

< λ < 2hc
Eg

. Consequently,
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the measured ∆n is always negative in this spectral range [53].

Since the experimental part of this thesis does not deal with non-resonant nonlin-

ear response, the discussion that ensues will be brief and restricted to describing major

developments in predicting and measuring trends in the below-the-bandgap nonlinear re-

sponse. In particular, the following discussion will describe the evidence for the existence

of both positive and negative refractive nonlinearities with acceptable figures of merit.

The group of Sheik-Bahae and Van Stryland has authored several reports on predict-

ing the spectral dependence of non-resonant nonlinearities in semiconductors. In 1985

Van Stryland et al. predicted trends in the absorptive ultrafast nonlinear response of

semiconductors. An equation for the below-the-bandgap two photon absorption was de-

rived and compared with experimental values. Dispersion of two photon absorption is

expected to mimic the dispersion of linear abosorption; i.e. two photon absorption is

strong and relatively flat from bandgap to almost half-bandgap, at which point it goes to

zero. Good agreement was obtained between experiment and theory for photon energies

not in the vicinity of the bandgap, with two photon absorption coefficients of various

semiconductors ranging from β=3×10−9 cm/W to β=25×10−9 cm/W [28].

In the ensuing years the same research group reported the theory describing the

spectral dependence of the real part of the ultrafast nonlinearity and compared it with

experiments. The results are shown in Figure 3.4. The magnitude of n2 is largest near the

photon energy corresponding to half of the bandgap. Since for wavelengths longer than

corresponding to half bandgap two-photon-absorption vanishes, large figures of merit

can be expected in these spectral region. In addition, n2 was predicted to be positive

for wavelengths longer than that corresponding to 0.75 Eg, and negative between 0.75

Eg and Eg [29,54]. A large discrepancy between theoretical and experimental results was

observed near the bandgap where the theory drastically underestimated the strength of

refractive nonlinearity.



3.1. Nonlinear Materials 33

Figure 3.4: Data of scaled n2 measured at 1.06 µm for various bulk inorganic crystalline

semiconductors. This figure was reproduced from Ref. [29].

3.1.2 Organic Materials

Organic materials constitute another class of promising nonlinear materials. Organic

materials exhibit significant nonlinearities across the visible and infrared spectral re-

gions [55]. They are readily processable into thin-film waveguide structures [23, 56] and

in general do not rely on a high degree of perfection in ordering or purity to mani-

fest their desired properties. The molecules which make up organic materials provide a

tremendous range of structural, conformational, and orientational degrees of freedom for

exploration with the aid of novel synthetic chemistry. This permits flexible modification

and optimization of linear and nonlinear properties [23].

As in the case with semiconductor nonlinearities, the nonlinear response of organic

materials can be divided into resonant and non-resonant, occurring in the absorbing

and transparent regions, respectively. The resonant nonlinearities are a result of a single-

photon absorption, while the non-resonant nonlinearities arise as a result of perturbations

of electronic clouds and multi-photon absorption.
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Depending on the structure of constituent molecules, organic materials may exhibit

many absorption resonances and hence many spectral areas of different strength and sign

of nonlinear response. Phenomena such as molecular reorientation and photoisomeriza-

tion, which are often found in organic materials, make the picture even more complex.

Nonlinear organic dyes are one class of organic materials that has been studied

comprehensively. Among nonlinear dyes, azobenzenes have received special attention.

Azobenzenes have been shown to exhibit large, low-threshold nonlinear index changes as

a result of optically-induced structural changes in the middle and near the edge of the

absorption resonance [57]. The nonlinear index changes associated with this photochem-

ical phenomenon, called trans-cis photoisomerization, will be used in chapter 12 of this

work to trigger the nonlinear response of a three-dimensional nonlinear colloidal crystal.

Most nonlinear dyes (among them azobenzenes) have only one absorption resonance,

which permits to qualitatively predict their nonlinear response in the visible and near-

infrared regions. Figure 3.5 shows the nonlinear response of a typical nonlinear organic

material with one absorption resonance.

In general, the figures of merit of organic materials in the absorbing region are poor.

However, molecular effects such as trans-cis photoisomerization strongly increase the non-

linear index change along the absorption edge. The magnitudes of ultrafast nonlinearities

and associated figures of merit of organic materials are comparable to those of inorganic

crystalline semiconductors.

3.1.3 Nanocrystals

Nanoscale quantum-confined inorganic crystalline semiconductors represent an interest-

ing group of nonlinear materials [58]. The size of such quantum dots is less than the bulk

radii of excitons, holes, and electrons in a given semiconductor. As in the case of semi-

conductor MQWs, this results in quantum confinement of carriers. In a nanocrystal, this

takes place in all three dimensions [59,60]. Quantized energy levels make nanocrystals an
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Figure 3.5: Typical trends in the nonlinear response of organic materials with one ab-

sorption resonance.

artificial analogue of non-interacting atoms in a gas, raising the possibility of explaining

the nonlinear processes by adopting the models of atomic physics.

To allow processability nanocrystals are usually embedded in either solid or liquid

optically linear organic or glass hosts. Nanocrystal material systems are thus hybrids of

semiconducting and insulating materials and combine interesting properties from both

material groups. As in the case of semiconductor MQWs, the composition and size of

quantum dots determines the energy of electronic transitions. This allows spectral tun-

ability of absorption features and nonlinear properties over the entire visible and infrared
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spectrum. On the other hand, the organic or glass host permits flexible fabrication of

samples, waveguides, and other integrated components using polymer photonics tech-

nologies [61].

Figure 3.6 shows the properties of a typical resonant and non-resonant nonlinear

response of strongly-confined semiconductor nanocrystal composites. The data presented

in this figure are based on the published theoretical predictions and experimental reports.
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Figure 3.6: Trends in the picosecond nonlinear response of inorganic semiconductor

nanocrystals.

The finite number of allowed lower electronic levels leads to more pronounced excitonic

features and resonant nonlinearities that take place at lower fluences than in bulk or
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MQW semiconductors [62].

Similarly to the nonlinear response of bulk and MQW semiconductors, the resonant

nonlinear response of nanocrystals is characterized by the saturation of absorption and

the large changes in the real part of the refractive index associated with it.

Saturation of absorption in strongly-confined PbS quantum-dot glasses was measured

in the 1.2 µm to 1.3 µm spectral range [63], covering the spectral position of the valley

between the first and second excitonic peak in the 6.6 nm diameter sample studied. This

material system was used as a passive saturable absorber in the production of 4.6 ps

pulses via mode-locking around the wavelength of 1.3 µm [63]. The report was followed

by studies of saturation of absorption dynamics in quantum dots of various sizes at a

wavelength of 1.3 µm. This wavelength covered spectral regions ranging from first to sec-

ond electronic transitions depending on the size of a nanocrystal. The saturation energy

and nonlinear decay times at a given wavelength were found to decrease with increasing

size of nanocrystals [64]. Values for the refractive nonlinearity were not reported.

Lu et al. measured the nonlinear refractive properties of strongly-confined PbS

nanocrystals of mean diameter 3.3 nm with polymeric coatings in the spectral range

580 nm to 630 nm. This spectral range corresponds to the wavelengths around the first

excitonic peak. The degenerate four wave mixing technique was used to measure the

nonlinear susceptibility of nanocrystals near the photon energy of the first electronic

transition at 595 nm. The values were found to range between χ(3) = 1 × 10−6 esu and

χ(3) = 1 × 10−5 esu. Combined with the 50 kW/cm2 intensity used in the experiment

such values of χ(3) suggest maximum nonlinear index changes of ∆n ≈ 0.013. No data

on saturation of the absorption were reported.

The non-resonant nonlinear response of nanocrystals shows different dispersion char-

acteristics than that of any other material group. Under illumination with picosecond

pulses, the non-resonant nonlinear index change is negative for photon energies between

half-bandgap and bandgap, at which point the index change disappears entirely [65].
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Such a response is in contrast to the ∆n sign change between absorption and two pho-

ton absorption resonances as observed in bulk semiconductors and organic materials.

However, similar to the non-resonant response of bulk semiconductors, the sign of the

non-resonant nonlinearity depends on the duration of the pulses used to measure the

nonlinear effect in some spectral ranges. For pulses shorter than 1 ps the contribution

of third-order positive refractive effects is comparable to that of the negative free carrier

absorption nonlinearities. Consequently, the measured ∆n can be positive [53].

It has been predicted through theory that in the spectral region close to the absorption

edge the third-order non-resonant nonlinear refraction effects could be as large as n2 ∼

1 × 10−13 cm2/W with nonlinear absorption of β ∼ 1 × 10−10 cm/W [66]. This would

result in a nonlinear figure of merit T ∼ 0.6. Most of the experimental data suggest that

non-resonant n2 coefficients are in reality at least an order of magnitude smaller [67,68].

3.1.4 Other Nonlinear Materials

Metallic nanocomposites and cascaded 2nd order materials are two other promising groups

of nonlinear materials. Metallo-organic nanocomposites are made out of metallic quan-

tum dots embedded in organic or glass hosts. Resonant nonlinear properties of copper [69]

and silver nanoparticles [70, 71] embedded in the glass host were measured using degen-

erate four wave mixing experiment at visible wavelengths. The nonlinear coefficients

and figures of merit of metallic nanocrystals characterized were similar to those of semi-

conductor nanocrytals and reached a maximum near the plasma-frequency absorption

peak.

It has been argued that metallic nanoparticles can potentially exhibit stronger non-

linear effects than other material systems [72]. This is associated with local field effects

that enhance nonlinear response of the composite systems if the refractive index of the

nonlinear constituent is lower than that of the linear host. Such a scenario can be real-

ized in metallic nanoparticle-glass composites, since around the spectral positions of the
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plasma resonance the refractive index of metals can be lower than 1.

Cascaded refractive nonlinear material systems are made out of materials with second

order nonlinear properties. An appropriate design results in a net accumulated phase

shift for the illumination at a fundamental optical frequency at the end of a cascaded

system. Cascaded material system acts as an effective 3rd order nonlinear material [73–

75]. However, cascaded materials do not lend themselves naturally to the fabrication of

the third order nonlinear Bragg periodic structures considered in this work, since each

section of the cascade has to be many wavelengths long in order to accumulate sufficient

phase shift.

3.2 Nonlinear Periodic Structures

The remainder of this chapter will discuss published results on nonlinear periodic struc-

tures. To date, research on nonlinear periodic structures has concentrated on: steady-

state bistable response and the presence of stationary gap solitons; studies of reflection

and transmission properties of, and localization of light, in nonlinear partially disordered

structures; propagation of Bragg solitons and pulse compression; and several experimen-

tal demonstrations of nonlinear stopband shifting.

3.2.1 Steady-State Response of Nonlinear Optical Elements

Bistable Optical Elements and Stationary Gap Solitons

In a bistable nonlinear element the value of transmittance depends on whether the inci-

dent intensity is increasing or decreasing, i.e. the transmittance depends on its previous

state and the strength of incident illumination. This behaviour is illustrated in Fig-

ure 3.7. The hysteresis loop present in the transfer characteristics of bistable elements

enables steady-state optical memory operation.

In the late 1970s and early 1980s a number of research groups predicted and demon-
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Figure 3.7: The transmitted versus incident intensity characteristic of a bistable optical

element exhibiting a hysteresis characteristic.

strated steady-state optical bistability in a nonlinear Fabry-Perot interferometer. In a

number of publications the groups of Smith and Gibbs reported bistability in an electro-

optically biased crystal in free-space [10, 76] and integrated [9, 77] configurations, deter-

mined threshold conditions for bistability in terms of the incident power and strength of

the nonlinearity [78], and demonstrated optical bistability in dielectric [79] and semicon-

ductor [78, 80] materials. These achievements were summarized in [81] and a book [82],

both written by Gibbs and published in 1985.

In 1979 Winful et al. published the theory of bistability in distributed feedback

structures. Analytical expressions for the intensity-dependent transmissivity were pro-

vided [83]. In the following years additional reports provided analyses of: the effects of

linear absorption on the response of nonlinear periodic structure [84], the response of

a periodic nonlinear element to non-monochromatic illumination [85], a combined dis-

tributed feedback — Fabry-Perot interferometer structure [86], and coupling between

various modes in a nonlinear fiber Bragg grating [87].

In 1992 He et al. reported experimental demonstration of optical bistability in non-
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linear periodic structures. The optical element analyzed consisted of 30 GaAs/AlGaAs

Bragg periods. Strong bandedge nonlinearities were used in the spectral region of 875 to

885 nm. A shift in the reflectivity peak with increasing intensity was observed when the

sample was illuminated with 10 µs square pulses [88].

In 1993 Herbert et al. experimentally demonstrated bistability and multistability in a

colloidal crystal exhibiting electrostrictive nonlinearity illuminated with continuous-wave

light at 514.5 nm [89].

In 1996 Li et al. discussed the dependence of the strength of bistability on the sign of

the real part of nonlinearity. It was concluded that for a positive Kerr nonlinearity the

transmission is severely suppressed near the low-energy end of the stopband, while for a

negative Kerr nonlinearity the transmittance increases [90].

The field of optical bistability in nonlinear periodic structures was summarized by

Lidorikis et al. in a paper published in 1997. The strength of the bistable behaviour was

analyzed with respect to the spectral position relative to the center of the stopband [91].

Bistable structures in general also support stationary gap solitons. Stationary gap

solitons are fully-transmissive continuous-wave states whose electric field envelope distri-

bution within a nonlinear periodic structure resembles the sech2(z) shape of a temporal

soliton. In a stationary gap soliton the intensity inside the structure is higher than the

incident intensity. This is in contrast to the fully-transmissive states at wavelengths that

are far from the Bragg resonance in which the intensity distribution is uniform across the

structure. Stationary gap solitons arise under monochromatic continuous-wave illumi-

nation of a nonlinear periodic structure at a wavelength lying within the initial built-in

photonic stopband [92]. Nonlinear refraction changes the position and shape of the stop-

band. The transmittance of the structure can change from low to high as the stopband

is shifted entirely away from the spectral position of the light. The concept of a sta-

tionary gap soliton was first introduced in 1987 by Chen and Mills [93] with Mills and

Trullinger [94] later analytically predicting the existence of stationary gap solitons.
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Disordered Nonlinear Periodic Structures

The optical response of linear and nonlinear disordered structures that are periodic on

average preserves in part the scattering properties of perfectly ordered structures, but it

exhibits additional effects.

In 1987 John for the first time discussed localization of light in disordered systems

that are periodic on average. It was found that when partial disorder breaks the perfect

periodicity, light-trapping microcavities are formed [95]. In the ensuing years additional

work was reported on partially disordered periodic structures with analysis of: the de-

pendence of the localization length on the degree of disorder [96–98], the localization of

light in three-dimensional random dielectric media [99], reflection from disordered point-

like scatterers [100], and scattering from randomly-distributed two-dimensional dielectric

cylinders within a planar metallic waveguide [101].

Simultaneously with the work on linear partially randomized structures, research was

carried out on nonlinear disordered structures. It was found that in partially disordered

systems in which at least one material exhibits Kerr nonlinearity, the decay length of

intensity increases, with the intensity decreasing closer to 1/x than to 1/x2 (as in the

case of fully-ordered periodic structures) with distance x from its maximum [102, 103].

In 1988 Li et al. further analyzed the effects of nonlinearity on transmittance through

partially disordered structures. It was found that, depending on the magnitude of the

Kerr coefficient, the decay length at any spectral position can vary from 1/x to 1/
√

x

with stronger nonlinearity increasing the decay length [104].

3.2.2 Propagation of Solitons in Nonlinear Periodic Structures

Investigations of pulse propagation in nonlinear periodic structures have concentrated on

Bragg solitons and a pushbroom switching effect.

Bragg solitons are solitary waves: they propagate without changing their shape. In
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the case of a nonlinear periodic structures, solitonic propagation occurs due to the balance

of the effects of grating dispersion and nonlinear self-phase modulation [105].

In 1985 and 1988 Winful and Sipe [105, 106] and de Sterke and Sipe [107] showed

that near the edge of a stopband in a Bragg nonlinear periodic structure, the nonlinear

Schrödinger equation can be solved to yield soliton solutions for the propagation of optical

pulses.

In 1989 Christodoulides and Joseph [108] and Aceves and Wabnitz [109] analyzed

propagation of pulses with carrier frequencies close to the centre of the stopband and

with power spectra within the stopband. Since the nonlinear Schrödinger equation as-

sumes weak coupling between counterpropagating modes it cannot be used to describe

the scenario in which a significant amount of pulse intensity is continuously transferred

back and forth between the counterpropagating modes. Coupled mode theory that allows

strong coupling was used to analyze such a system. It was shown that soliton solutions ex-

ist and that the velocity of these solitons can vary from 0 to the speed of light. The slower

speed of the soliton corresponds to a greater rate of transfer of energy between forward

and backward modes during pulse propagation. Because the spectrum of these solitons

lies entirely within the stopband, they were later named gap solitons [110]. Propagating

gap solitons are distinct from stationary gap solitons discussed in preceding subsection

of this chapter [93, 94].

The experimental work on propagation of pulses in nonlinear periodic structures in-

cludes demonstration of pulse switching and solitonic propagation.

In 1992 Sankey et al. [111] reported all-optical pulse switching in a corrugated silicon-

on-insulator waveguide. The reflectance experienced by the nanosecond pulses increased

with increasing intensity as the stopband shifted to overlap partially with the spectrum

of the incident pulse.

Eggleton et al. [110] reported direct observation of Bragg soliton propagation in fiber

Bragg gratings in 1996 using a Q-switched YLF laser producing 60 and 90 ps pulses at



44 Chapter 3. Literature Survey

a wavelength of 1064 nm. Formation of solitons was observed for pulses with spectra

overlapping the edge of the linear stopband and for pulses with spectra significantly

overlapping the center of the stopband. These experiments verified experimentally the

theories from Refs. [105–107] and [108,109].

The formation of gap solitons was also observed by Miller et al. in 1999 in an AlGaAs

waveguide [112]. At moderate incident powers, transmission of soliton-shaped pulses was

observed for pulses with spectra at the centre of the bandgap at 1.5 µm. For higher

powers the solitons split into several shorter pulses [112].

In 1997 Broderick at al. demonstrated experimentally pulse switching in a nonlinear

fiber Bragg grating using a pushbroom effect at 1.55 µm [113]. A strong pump pulse

spectrally detuned a part of the continuous-wave probe out of the stopband. This detuned

part of the probe had the time duration comparable to the length of the pump pulse

and emerged out of the grating as a new probe pulse. This switching mechanism has

not been attributed to the shifting of the built-in stopband but entirely to cross-phase

modulation [113].

In a similar experiment in 1997 Broderick et al. demonstrated a reflection-based

modification of the pushbroom effect [114]. In this experiment the wavelength of a

continuous-wave probe was initially outside of the grating stopband. A pulsed pump at a

frequency far outside the bandgap was used to shift, through the cross-phase-modulation,

the wavelength of probe into the grating stopband, generating a reflected pulse.

3.2.3 Shifting the Stopband

Complementary to work on the steady-state response of nonlinear periodic structures

and propagation of solitonic pulses, research was carried out on periodic structures in

which the induced nonlinear index change is large, i.e. ∆n > 0.01. The focus of this work

was not the demonstration of bistable or solitonic behaviour but rather an observable

movement of a photonic stopband.
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An experimental demonstration of observable stopband shift in a 30 Bragg period

GaAs/AlGaAs stack was reported in 1992 by He et al.. 1 µs square pulses produced by a

dye laser at a repetition rate of 10 kHz excited bandedge negative thermal nonlinearities.

A 4 nm shift of the center of the stopband was observed at high levels of illumination [88].

Since the duration of the pulses used in the experiment was much greater than the

propagation time through the grating, the experiment can be treated as a response to a

continuous-wave illumination.

In 1992, Herbert et al. reported a power-dependent shift in the stopband of a three-

dimensional dye-doped colloidal crystal. A decrease in transmittance through the crystal

was observed under continuous-wave illumination of the Ar Ion beam at 514.5 nm [89].

In 1992 Scalora et al. published a qualitative discussion of nonlinear stopband dy-

namics in periodic structures. A scenario was considered in which, depending on the

spectral position of the probe beam, a strong pump beam would move the stopband

towards or away from the weak probe beam, thereby altering probe transmission [115].

An experimental demonstration of nonlinear stopband shifting using short pulses was

reported in 1997 by Pan et al. Intensity-dependent coherent scattering from a colloidal

crystal infiltrated with optically linear liquid was described. The index of refraction

of the liquid was slightly higher than that of the photonic crystal spheres. Under the

illumination with 3.5 ns pulses at 514 nm, the negative thermal nonlinearity of the

dye-doped spheres increased the contrast of the grating. A maximum increase in the

reflectance was estimated at 2 % [116].

A theoretical paper was published in 1999 by Tran in which the nonlinear response

of a structure with a very sharp stopband was studied theoretically. The paper discussed

optical switching when the frequency of light was aligned with the edge of the stopband

and with the maximum of one of the sidelobes in the reflectance spectrum [117].

A novel approach to fabricating nonlinear periodic structures was presented in 2001

and 2002 by a group of researchers from the Naval Research Laboratory [118, 119]. A
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sheet made out of two layers of two different polymers, each few tens of nanometers

thick, was folded upon itself multiple times to generate a periodic structure of 4096

layers. The layers were not uniform in thickness. This introduced a disorder which

resulted in a broadband response. Increasing reflection in the visible region was observed

upon steady-state illumination. This was attributed to the nonlinear intensity-dependent

refractive index contrast between the two constituent materials [118,119].

Recently an experimental demonstration of ultrafast stopband shifting was reported

by Leonard et al. [120]. In a pump-probe experiment with 300 fs pulses at 800 nm, a

20 nm shift of the edge of the stopband towards shorter wavelengths around 1.9 µm was

observed in the silicon two-dimensional photonic crystal [120].

3.3 Conclusions from Literature Survey

3.3.1 Summary of Published Results

Following the preceding review, the discussion that ensues will summarize the major

conclusions, as well as the missing pieces, of the published literature on nonlinearity and

nonlinear periodic structures.

Nonlinear Response of Materials

Bulk and MQW semiconductors have been demonstrated to exhibit low-threshold satu-

ration of absorption near the bandedge. The spectral position of the bandedge can be

tuned over the entire visible and near-infrared spectrum. It has been predicted from

the nonlinear Kramers-Kronig relation, and has been measured directly in isolated cases,

that the bandedge saturation of absorption results in large changes of the real part of

the refractive index.

In the regions of transparency, semiconductors exhibit weak nonlinear refractive ef-

fects of both signs. The non-resonant effects can be accompanied by two-photon ab-
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sorption. Depending on the spectral position, the non-resonant nonlinear response of

semiconductors can be characterized by good figures of merit.

Semiconductor nanocrystals also permit spectral tunability of their linear and non-

linear optical properties over the entire visible and near-infrared regions. Semiconductor

nanocrystals have been demonstrated to exhibit strong saturation of absorption near the

excitonic peak associated with the first allowed electronic transition. The non-resonant

nonlinear response of nanocrystals is of a similar magnitude as in bulk and MQW semi-

conductors.

The figures of merit for organic materials in the absorbing region are in general poor.

In the transparent region the Kerr and two-photon absorption coefficients of organic

materials are of magnitudes comparable to those of inorganic crystalline semiconduc-

tors. The sign of the refractive nonlinearity varies across the spectrum depending on the

proximity to various absorption resonances.

Nonlinear Periodic Structures

A large number of nonlinear periodic optical signal processing elements has been proposed

and, in some cases, demonstrated experimentally.

Nonlinear periodic systems have been shown to exhibit optical bistability and there-

fore provide a prospective basis for optical memory. Bistable systems exhibit illumination-

dependent spectral movement and change of the shape of photonic stopband and can

support stationary gap solitons.

It has been shown that the introduction of a controlled degree of disorder in nonlinear

periodic structures results in the formation of light-trapping microcavities. The decay

length of intensity in such structures increases with an increasing magnitude of nonlinear

coefficients and disorder.

Nonlinear reflection of laser pulses from a fiber Bragg grating has been demonstrated

experimentally. The power and spectral content of the reflected pulses was shown to vary
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with the level of illumination.

Corrugated waveguides have been shown to support the propagation of solitary pulses

whose spectrum lies close to the edge of a photonic stopband and whose spectrum lies

within the photonic stopband. These Bragg and gap solitons, respectively, can propagate

through a nonlinear periodic grating without spreading temporally by balancing the

effects of grating dispersion and self-phase modulation.

A pushbroom effect has been proposed and demonstrated in a fiber Bragg grating. In

a pushbroom effect a strong pulsed pump beam tunes the spectral content of a continuous-

wave probe either out of or into a stopband.

An illumination-dependent movement of stopband was observed in three-dimensional

organic and inorganic semiconductor nonlinear photonic crystals.

3.3.2 The Need for Additional Research

Despite vast accomplishments in the research on nonlinear periodic structures, there are

many opportunities to increase their optical signal processing functionality.

A theory on nonlinear periodic structures preceding this work has to be expanded to

enable complex signal processing functions. To achieve this, a new approach to signal

processing using nonlinear periodic structures is needed. A theory should be derived that

describes and summarizes the conditions for intensity-domain optical stability and allows

prediction of the transfer characteristics. Analyses of the effect of disorder on the optical

signal processing functionality of nonlinear periodic structures need to be carried out.

Although nonlinear properties of many materials systems have been reported, further

characterization is needed to assess the applicability of various nonlinear material systems

to optical signal processing. In contrast to previously reported measurements carried

out at isolated wavelengths, measurements of the refractive and absorptive nonlinear

response over wide spectral ranges, which would permit determination of figures of merit

need to be carried out. In particular, the refractive and absorptive nonlinear response in
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the most promising absorption-edge regions of MQW semiconductors and semiconductor

nanocrystals should be examined comprehensively and the applicability of these material

systems to optical signal processing should be determined.

New approaches to fabrication of nonlinear periodic structures with increased signal

processing functionality should be considered and demonstrated. To facilitate opera-

tion and implementation these techniques should aim to exploit large index changes at

wavelengths important in telecommunications.

Chapter 4 to 9 will advance the theory of optical signal processing using nonlinear

periodic structures. A stable optical response of nonlinear periodic structures will be

proposed and theoretically demonstrated to yield an array of simple and complex signal

processing functions. The designs of nonlinear periodic devices capable of supporting

optical limiting, switching, logic gating, and analog-to-digital conversion will be proposed.

The theory of optical stability will be derived and the impact of the disorder on the

performance of optically stable nonlinear periodic structures will be studied.

Chapters 10 and 11 constitute the experimental part of this work. Nonlinear prop-

erties of a variety of nonlinear materials will be characterized and their applicability to

optical signal processing using nonlinear periodic structures will be determined. In par-

ticular, the broadband nonlinear response of large index change bandedge nonlinearites

in semiconductor MQWs and nanocrystals will be directly measured and their figures of

merit will be reported. This work will conclude with the experimental demonstration of

the nonlinear response of nonlinear periodic structures.
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Chapter 4

Coupled Mode Theory of Nonlinear

Periodic Structures

This chapter will present the theoretical formalism that will be used in the ensuing

chapters. The theory derived will enable the analysis of new nonlinear periodic devices

capable of supporting optical signal processing functions as presented in the ensuing

chapters.

Coupled mode theory (CMT) will be derived for the general case of a shallow nonlinear

periodic structure under coherent illumination. It will be shown that the general CMT

can be applied to the special cases of incoherent radiation and partial disorder. The

formalism derived represents a basis for the analysis of the nonlinear periodic structures

studied theoretically in chapters 5-9.

An alternative method of analyzing propagation of light through nonlinear periodic

structures, the transfer matrix method (TMM), will be presented and compared with

CMT. TMM will be selectively used in the following chapters to verify the results of

CMT analysis.

51
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4.1 Representation of the Refractive Index Profile

The general refractive index cross-section of the optical elements studied in this work is

illustrated in Figure 4.1. The periodic structure consists of two materials with generally

different linear and nonlinear indices of refraction.

N periods

Incident

Reflected
Transmitted

z

Λ

n=n01+|nnl1|I(z) n=n02-|nnl2|I(z)

Figure 4.1: Schematic of a nonlinear periodic structure with period Λ. n01 and n02 are

the linear refractive indices, and nnl1 and nnl2 are the Kerr coefficients of the adjacent

layers.

To derive coupled mode equations the refractive index profile will be expanded in a

Fourier series and then substituted into the nonlinear Maxwell wave equation.

The linear parts of the refractive index nln and Kerr coefficients nnl of the structure

shown in Figure 4.1 can be well approximated by the periodic functions n(ln)Λ(z) and

n(nl)Λ(z), respectively. This is illustrated in Figure 4.2.
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Figure 4.2: Profile of the linear parts of refractive index nln and Kerr coefficients nnl of

a nonlinear periodic structure along the propagation direction z.

The functions n(ln)Λ(z) and n(nl)Λ(z) may be described over one period as follows:

n(ln,nl)Λ(z) =


n02, nnl2, if −mΛ

2
< z < −mΛ

4
;

n01, nnl1, if −mΛ
4

< z < mΛ
4

;

n02, nnl2, if mΛ
4

< z < mΛ
2

; m = 1, 2, . . .

(4.1)

Using a Fourier series expansion, Eqs. (4.1) can be resolved into an infinite sum of sine

and cosine terms:

nΛ(z) = a0 + 2
∞∑

n=1

[am cos (2πmf0z) + bm sin (2πmf0z)], (4.2)

where f0 is the fundamental spatial frequency of the grating, f0 = 1/Λ. The coefficients

of am and bm represent the amplitudes of even and odd terms, respectively. The quantity

mf0 represents the mth harmonic of the fundamental spatial frequency f0. The coefficient

a0 is the mean value of the periodic signal nΛ(z) over one period. It is calculated according

to:

a0 =
1

Λ

∫ Λ/2

−Λ/2

nΛ(z)dz (4.3)
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Fourier coefficients am and bm are:

am =
1

Λ

∫ Λ/2

−Λ/2

nΛ(z) cos (2πmf0z)dz, m = 1, 2, 3, . . .

bm =
1

Λ

∫ Λ/2

−Λ/2

nΛ(z) sin (2πmf0z)dz, m = 1, 2, 3, . . . (4.4)

For an even function such as the one shown in Figure 4.2, bm = 0 and am 6= 0.

Substituting n(ln)Λ(z) from Eq. (4.1) into Eq. (4.3) gives:

a0 =
1

Λ

∫ Λ/2

−Λ/2

n(ln)Λ(z)dz

=
2

Λ

(∫ Λ/4

0

n01dz +

∫ Λ/2

Λ/4

n02dz

)

=
n01 + n02

2

(4.5)

The Fourier coefficient am is evaluated as:

am =
1

Λ

∫ Λ/2

−Λ/2

n(ln)Λ(z) cos (2πmf0z)dz

=
2

Λ

∫ Λ/4

0

n01 cos(2πmf0z)dz

+
2

Λ

∫ Λ/2

Λ/4

n02 cos(2πmf0z)dz

=


0, if m is even

1
πm

(n01 − n02) sin(πm
2

), if m is odd

(4.6)

Using (4.5) and (4.6), and similar Fourier coefficients for the n(nl)Λ(z), the index of

refraction in Eq. (4.2) can be rewritten as:

nΛ(z, |E|2) = n(ln)Λ(z) + n(nl)Λ(z)|E|2

=
n01 + n02

2
+

nnl1 + nnl2

2
|E|2

+ 2
∞∑

m=1, m odd

1

πm
(n01 − n02 + nnl1|E|2 − nnl2|E|2) sin

(πm

2

)
cos(2πmf0z)

(4.7)

The reflectance and transmittance of periodic structures display the most interesting

features near the Bragg resonance which takes place when the wavelength of light is close
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to twice the optical length of the grating period. For wavelengths in the vicinity of the

Bragg resonance only the terms with m=1 in (4.7) will couple with the terms representing

electric field. In this case (4.7) reduces to:

nΛ(z, |E|2) ≈ n01 + n02

2
+

nnl1 + nnl2

2
|E|2 + 2

(
n01 − n02

π
+

nnl1 − nnl2

π
|E|2

)
cos

2πz

Λ

(4.8)

To simplify the above equation, four new parameters are introduced: average linear index

(nln), linear index difference (n0k), average Kerr coefficient (nnl), and Kerr coefficient

difference (n2k):

nln =
n01 + n02

2
, nnl =

nnl1 + nnl2

2
,

n0k =
n01 − n02

π
, n2k =

nnl1 − nnl2

π
. (4.9)

Defining the wavenumber of the grating as k0 = 2π
Λ

, Eq. (4.8) can be rewritten as:

nΛ(z, |E|2) = nln + nnl|E|2 + 2n0k cos k0z + 2n2k|E|2 cos k0z. (4.10)

4.2 General Coupled Mode Equations for Nonlinear

Periodic Structure

The scalar electromagnetic wave equation states:

∂2E

∂z2
− n2(z, |E|2)

c2

∂2E

∂t2
= 0, (4.11)

where c is the speed of light and E(z, t) is the electric field expressed as:

E(z, t) = A+(z, t)ei(kz−ω0t) + A−(z, t)e−i(kz+ω0t). (4.12)

ω0 = ck/|nln| is the center optical frequency and k = 2π|nln|/λ0 is the wavenumber of

light. A+ and A− are the slowly-varying envelopes of amplitudes of the forward- and

backward-propagating waves.
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The analyses that follow will concentrate on the spectral region that is close to the

Bragg resonance, i.e. λ0 ≈ 2nlnΛ or k0 ≈ 2k.

Substituting Eq. (4.12) into first term of Eq. (4.11) and making the slowly-varying

envelope approximation gives the following expression for the second order time derivative

of the electric field:

∂2E

∂z2
= −k2A+ei(kz−ω0t) + 2ik

∂A+

∂z
ei(kz−ω0t) − k2A−e−i(kz+ω0t)

+ 2ik
∂A−

∂z
e−i(kz+ω0t) +

∂2A+

∂z2
ei(kz−ω0t) +

∂2A−

∂z2
e−i(kz+ω0t)

≈
(
−k2A+ + 2ik

∂A+

∂z

)
ei(kz−ω0t) +

(
−k2A− − 2ik

∂A−

∂z

)
e−i(kz+ω0t).

(4.13)

The second term in Eq. (4.11) becomes:

n2(z, |E|2)
c2

∂2E

∂t2
≈ k

ω0nlnc

[
n2

ln + 2nlnnnl|E|2 + (2nlnn0k + 2nlnn2k|E|2)(eik0z + e−ik0z)
] ∂2E

∂t2

(neglecting all higher terms in n2k)

=
k

ω0c

[
nln + 2nnl|E|2 + (2n0k + 2n2k|E|2)(eik0z + e−ik0z)

]
·
[
−ω0(ω0A+ + 2i

∂A+

∂t
)ei(kz−ω0t) − ω0(ω0A− + 2i

∂A−

∂t
)e−i(kz+ω0t)

]
.

(4.14)

The intensity term |E|2 in Eq. (4.14) is expressed in terms of A+ and A− as:

|E|2 = E · E∗ = |A+|2 + |A−|2 + A+A∗
−ei2kz + A∗

+A−e−i2kz. (4.15)

Eq. (4.14) then becomes:

n2(z, |E|2)
c2

∂2E

∂t2
≈ −k

c
[nlnω0A+ + 2inln

∂A+

∂t
+ 2n0kω0A−ei∆kz + 2nnl(|A+|2 + |A−|2)ω0A+

+ 2nnlA+A∗
−ω0A− + 2n2k(|A+|2 + |A−|2)ω0A−ei∆kz + 2n2kA

∗
+A−ω0A+ei∆kz

+ 2n2kA+A∗
−ω0A+e−i∆kz] · ei(kz−ω0t) − k

c
[nlnω0A− + 2inln

∂A−

∂t

+ 2n0kω0A+e−i∆kz + 2nnl(|A+|2 + |A−|2)ω0A− + 2nnlA
∗
+A−ω0A+

+ 2n2k(|A+|2 + |A−|2)ω0A+e−i∆kz + 2n2kA+A∗
−ω0A−e−i∆kz

+ 2n2kA
∗
+A−ω0A−ei∆kz] · e−i(kz+ω0t).

(4.16)



4.2. General Coupled Mode Equations for Nonlinear ... 57

where ∆k is the detuning, defined as ∆k = k0 − 2k.

Eq. (4.16) can be decomposed into two equations, one describing the change in A+

and the second equation describing the change in A−. Using expansions (4.13) and (4.16)

terms proportional to ei(kz−ω0t) in Eq. (4.11) can be combined to give:

−k2A+ + 2ik
∂A+

∂z
+

k

c
[nlnω0A+ + 2inln

∂A+

∂t
+ 2n0kω0A−ei∆kz

+2nnl(|A+|2 + |A−|2)ω0A+ + 2nnlA+A∗
−ω0A− + 2n2k(|A+|2 + |A−|2)ω0A−ei∆kz

+2n2kA
∗
+A−ω0A+ei∆kz + 2n2kA+A∗

−ω0A+e−i∆kz] = 0.

(4.17)

Using product expansions and simplification, (4.17) becomes:

i
c

ω0

∂A+

∂z
+ i

nln

ω0

∂A+

∂t
+ n0kA−ei∆kz + nnl(|A+|2 + |A−|2)A+ + nnl|A−|2A+

+ n2k(|A+|2 + |A−|2)A−ei∆kz + n2k|A+|2A−ei∆kz + n2kA
2
+A∗

−e−i∆kz = 0.

(4.18)

Similarly, by grouping all the e−i(kz+ω0t) terms the second coupled-mode equation, that

describes the evolution of the A− envelope is obtained:

− i
c

ω0

∂A−

∂z
+ i

nln

ω0

∂A−

∂t
+ n0kA+e−i∆kz + nnl(|A+|2 + |A−|2)A− + nnl|A+|2A−

+ n2k(|A+|2 + |A−|2)A+e−i∆kz + n2k|A−|2A+e−i∆kz + n2kA
2
−A∗

+ei∆kz = 0.

(4.19)

To simplify further the coupled-mode equations (4.18) and (4.19), the normalized space

Z and time T coordinates are introduced: Z = ω0z/c and T = ω0t/nln. This process of

parameter normalization ensures that the spatial and time parameters are of the same

unit, which facilitates the numerical analysis. After grouping similar terms together the

resulting normalized coupled-mode equations are:

i

(
∂A+

∂Z
+

∂A+

∂T

)
+ n0kA−ei∆kz + nnl(|A+|2 + 2|A−|2)A+

+n2k

[
(2|A+|2 + |A−|2)A−ei∆kz + A2

+A∗
−e−i∆kz

]
= 0

(4.20)

and

−i

(
∂A−

∂Z
− ∂A−

∂T

)
+ n0kA+e−i∆kz + nnl(2|A+|2 + |A−|2)A−

+n2k

[
(|A+|2 + 2|A−|2)A+e−i∆kz + A2

−A∗
+ei∆kz

]
= 0

.

(4.21)
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The coupled mode equations (4.20) and (4.21) describe the evolution of electric field en-

velopes (forward wave A+ and backward wave A−) across a nonlinear periodic structure.

They will be used in chapter 8 during the stability analysis, and in chapter 9 to describe

the propagation of pulses.

4.3 Nonlinear Coupled Mode Equations for Incoher-

ent Light

In this section Eqs. (4.20) and (4.21) will be simplified and rearranged to account for

special cases that will be studied in the chapters that follow.

4.3.1 Assumptions

A continuous-wave illumination is now assumed. To simplify the initial analysis, the

radiation is also considered to be incoherent. The first assumption translates into zero

∂A+

∂T
and ∂A−

∂T
partial time derivatives. The second assumption means that the cross terms

in Eq. (4.15) are zero and that the intensity is defined as:

I = |E|2 = E · E∗ = |A+|2 + |A−|2. (4.22)

Because of the simplified expression for intensity (4.22), fewer terms couple in the analysis

(4.14) to (4.21). Consequently Eqs. (4.20) and (4.21) will contain fewer terms. As will be

demonstrated in chapter 5, for some special cases these simplified coupled mode equations

can be solved analytically.
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4.3.2 Couple Mode Equations for Incoherent Light

The steady-state coupled mode equations for incoherent light become:

i
dA+

dZ
+ n0kA−ei∆kz + nnlIA+ + n2kIA−ei∆kz = 0 (4.23)

−i
dA−

dZ
+ n0kA+e−i∆kz + nnlIA− + n2kIA+e−i∆kz = 0. (4.24)

If the thicknesses of layers are not equal, the Fourier coefficients from the refractive index

expansion (4.1) to (4.10) have to be modified. The total (including linear and nonlinear

parts) refractive index is then redefined as:

n(z) = nln + πn0kf(z) + nnlI + πn2kIf(z), (4.25)

where nln = (n01d1 + n02d2)/Λ and nnl = (nnl1d1 + nnl2d2)/Λ, with d1 and d2 being the

thicknesses of layers 1 and 2, and Λ is again the period of the grating, Λ = d1 + d2. f(z)

is the Fourier expansion of the step function:

f(z) = −
∑
m6=0

exp(imπX)
sin(mπX)

mπ
exp

(
i
2mπz

Λ

)
(4.26)

with X = d1/Λ.

Since layer thicknesses are assumed not to deviate significantly from their quarter-

wave value, only the first order terms with m = 1 in the Eq. (4.26) couple with the spatial

derivatives of A+ and A−. The resulting coupled mode equations are:

i
dA+

dZ
− n0kA− exp

(
−i

πd2

Λ

)
sin(πd1/Λ)ei∆kz

+nnlIA+ − n2kIA− exp

(
−i

πd1

Λ

)
sin(πd2/Λ)ei∆kz = 0

(4.27)

−i
dA−

dZ
+ n0kA+ exp

(
i
πd2

Λ

)
sin(πd1/Λ)e−i∆kz

+nnlIA− + n2kIA+ exp

(
i
πd1

Λ

)
sin(πd2/Λ)e−i∆kz = 0

(4.28)

Eqs. (4.27) and (4.28) describe the propagation of steady-state monochromatic incoherent

light in nonlinear periodic structures with, in general, different adjacent layer thicknesses.
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These equations will be used in chapter 7 to describe the response of structures that

support hard limiting, logic gating, and analog-to-digital conversion in nonlinear periodic

structures.

4.3.3 Coupled Mode Equations for Incoherent Light, Matched

Linear Indices and Opposite Kerr Coefficients

As will be shown in chapter 5, the important signal processing functions of stable optical

limiting and switching require additional constraints on the material parameters. These

constraints are: matched linear indices n01 = n02, Kerr coefficients of opposite sign and

equal magnitude nnl1 = −nnl2, and same layer thicknesses d1 = d2.

These conditions result in n0k = 0 and nnl = 0. Eqs. (4.27) and (4.28) simplify to:

i
dA+

dZ
+ n2kIA−ei∆kz = 0 (4.29)

−i
dA−

dZ
+ n2kIA+e−i∆kz = 0 (4.30)

4.3.4 Coupled Mode Theory for Weakly Disordered Structures

The introduction of weak disorder in nonlinear periodic structures results in the widening

of the effective photonic stopband and, associated with it, broadband limiting. Such

structures will be analyzed in chapter 6. Disorder will be introduced by allowing layer

thicknesses to deviate randomly from their quarter-wave value over a predefined range.

The conditions of matched linear indices and opposite Kerr coefficients still hold. Such

a structure is illustrated in Figure 4.3.

The Corresponding CM equations (4.27) and (4.28) become:

i
dA+

dZ
+ fAC

nl (z)n2kIA−eik0z + nnlIA+ = 0 (4.31)

−i
dA−

dZ
+ fAC

nl (z)n2kIA+e−ik0z + nnlIA− = 0 (4.32)
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Figure 4.3: Nonlinear periodic structure where layer thicknesses deviate randomly from

their quarter-wave value.

where fAC
nl is the AC component of the numerical Fourier expansion of the nonlinear

index profile fnl at a given position z. nnl is the average Kerr coefficient of the structure

with length L, made out of N layers with corresponding nnli Kerr coefficients. nnl is

calculated according to:

nnl =
1

L

N∑
i=1

nnlidi (4.33)

Both fAC
nl and nnl are calculated separately for each disordered structure analyzed.

4.3.5 Transfer Matrix Formalism for Nonlinear System

An alternative computational technique, the transfer matrix method (TMM), can be

used to verify the results of coupled mode computations. Unlike CMT, TMM allows the

determination of the transfer characteristics of arbitrary structures, with no restrictions

on the periodicity of material coefficients. TMM is only computationally time-efficient

for the analysis of steady-state response. Computations using CMT are faster and in

some special case CMT equations are integrable.

To permit numerical simulations using TMM, the traditional TMM [121] is modified
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to account for the intensity-dependent refractive index. The structure under analysis

is first sliced into spatial increments. The natural choice is that each spatial increment

corresponds to one layer in a structure consisting of locally homogeneous materials. The

relation between the coefficients a of the forward-propagating wave and b of the backward

propagating wave in layers j and j + 1 is determined by: aj

bj

 = Mj,j+1

 aj+1

bj+1

 , (4.34)

where the matrix Mj,j+1 that relates a and b coefficients in the adjacent spatial steps, is:

Mj,j+1 =
1

2

 (1 + kj+1/kj)e
ikj+1tj+1 (1− kj+1/kj)e

−ikj+1tj+1

(1− kj+1/kj)e
ikj+1tj+1 (1 + kj+1/kj)e

−ikj+1tj+1

 . (4.35)

In Eq. (4.35) ti are the lengths of the ith spatial step in the numerical computation.

At each step of the computation the wavenumbers kj in corresponding spatial incre-

ments are calculated according to:

ki =
2π(n0 + nnlI)

λ
. (4.36)

Using Eqs. (4.34) and (4.35), the coefficients of the forward- and backward-propagating

field at the beginning of the structure (a0 and b0) can be related to the coefficients at the

end of the structure (aN and bN) through: a0

b0

 = M0,1 ×M1,2 × ...×MN−1,N

 aN

bN

 . (4.37)

Eq. (4.37) enables calculation of the transfer characteristics of the nonlinear structures.
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4.4 Conclusions

This chapter established the general theoretical formalism used throughout this work.

The computational techniques of coupled mode theory and transfer matrix were intro-

duced. The general (preexisting) method of CMT was applied to the physical system to

be explored in this work.
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Chapter 5

Theory of Steady-State Optical

Limiting and Switching

This chapter utilizes the formalism derived in chapter 4 to analyze theoretically the

response of novel nonlinear periodic elements.

The first section of this chapter analyzes the intensity-dependent optical response

of passive optical limiters. The limiters are realized using nonlinear periodic structures

that consist of alternating layers of materials possessing matched linear refractive indices

and opposite Kerr nonlinearities. The device performance is explored using an analytical

model and numerical simulations.

The second part of this chapter is devoted to the analysis of additional optical signal

processing functionality of the limiting device proposed. The performance of the resulting

optical switches and logic gates is explored for signal and pump beams having the same

and different wavelengths.

The material figures of merit pertinent to the limiting and switching elements pre-

sented in this chapter are derived and compared with the figures of merit introduced in

chapter 2.

65
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5.1 Structure and Modelling Approach

The structures analyzed consist of materials with matched linear indices, n01 = n02 = n0,

Kerr coefficients of opposite sign and equal magnitude, nnl1 = −nnl2, and the same layer

thicknesses, d1 = d2.

A refractive index profile of such structures is shown in Figure 5.1.
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Figure 5.1: Profile of linear refractive indices and Kerr coefficients of the limiting device.

The refractive indices of the two adjacent layers are n01 + nnl1I and n02 + nnl2I, where

n01 = n02 and nnl1 = −nnl2.

The steady-state response of such structures is described by Eqs. (4.29) and (4.30).

In obtaining analytical and numerical solutions, two boundary conditions were speci-

fied: A−(L) = 0, which stipulates that no radiation is incident on the structure from the

right, and A+(L) = A+1out =
√

Iout, which defines the transmitted intensity. Choosing

transmitted rather than incident intensity as a boundary condition allows analytical and

numerical study of both stable and multistable response of nonlinear periodic structures.

The results presented in this chapter were selectively verified using TMM (4.34) to
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(4.37).

5.2 Theory of All-Optical Limiting

The work presented in this section was published in Refs. [6, 122].

5.2.1 Analytical Solutions

To obtain the analytical solutions for the transfer characteristic of optical elements

proposed, Eqs. (4.29) and (4.30) are solved for A+(z) and A−(z) at a Bragg reso-

nance (k0 = 2k). The following expression is obtained for the envelope of the forward-

propagating wave in terms of the transmitted intensity, Iout = |A+out|2:

A+(z) =

√√√√√1 + 2 exp
[
−2πiIoutn2k(L−z)

Λnln

]
+ exp

[
−4πiIoutn2k(L−z)

Λnln

]
2 + 2 exp

[
−4πiIoutn2k(L−z)

Λnln

] |A+(L)| (5.1)

Taking the squared modulus of (5.1) yields the expression for the evolution of the intensity

of the forward propagating wave across the structure:

I(z) =

∣∣∣∣∣∣
1 + cos

[
2πIoutn2k(L−z)

Λnln

]
2 cos

[
2πIoutn2k(L−z)

Λnln

]
∣∣∣∣∣∣ Iout (5.2)

Solving expression (5.2) at the beginning of the structure (z=0) gives the relation between

incident and transmitted intensity:

Iin =
1

2

∣∣∣∣∣ 1

cos
(

4Iout

a

) + 1

∣∣∣∣∣ Iout, (5.3)

where a = 4nln

Nn2kπ
and N = 2L

Λ
is the number of layers in the structure.

Expression (5.3) gives Iin as a periodic function of Iout. Only solutions from the first

band of this function (4Iout
a

ranges from 0 to π
2
) are physically possible – the remaining

solutions imply a transmitted intensity larger than the incident intensity. The limiting

value of intensity is:

Ilimiting =
nln

2Nn2k

. (5.4)
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The limiting intensity (5.4) is inversely proportional to the product of the number of

layers in the structure and the strength of the nonlinear coefficient.

As numerical results will confirm, expression (5.4) gives the highest value of the

intensity that can be transmitted by the limiter. The result constitutes an analytical proof

of true, or ideal, limiting action: for the nonabsorbing periodic structure with matched

linear refractive indices and opposite Kerr coefficients, the transmitted intensity should

always lie below a fixed value for an arbitrarily intense incident steady-state illumination.

A figure of merit for the limiters is the dynamic range (DR) [123]. This quantity

(DR = TL
TH

) is defined as the ratio of the low-intensity transmission (TL) to the high-

intensity transmission (TH), measured at the highest energies employed [123]. The

analytical expressions derived for the structures analyzed predict that the transmission

of the proposed structures approachs zero as the incident intensity is sufficiently increased.

There is thus no theoretical limit to the DR of the idealized devices proposed, given that

the constituent materials exhibit nonlinearity that is fully described by the Eq. (2.7).
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5.2.2 Numerical Analysis

The response of the limiting nonlinear distributed feedback structures described above

was also studied numerically.
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Figure 5.2: Transmitted intensity as a function of incident intensity for limiting structures

with |nnl| = 0.01 for various numbers of layers.

Figures 5.2 and 5.3 demonstrate the limiting behaviour of the structures proposed

on linear and semi-logarithmic plots. The indices of refraction and nonlinear coefficients

of the constituent two materials the structures modelled were taken to be n01=n02=1.5

and nnl1=-nnl2=0.01, respectively. The normalized incident intensity was increased from

0 to 100. Here and throughout this work normalized intensity is assumed to have units

that are reciprocal to those of nnl. The response of the limiter was investigated for

various numbers of layers. In all cases the thicknesses of the layers were given the values

corresponding to a quarter-wave value at a wavelength λ0, d1=d2=
Λ
2
= λ0

4n01
.

Since the structure is considered to be made out of nonabsorbing materials with



70 Chapter 5. Theory of Steady-State Optical Limiting and Switching

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.001 0.01 0.1 1 10 100
Incident Intensity (units reciprocal to those of n nl)

Tr
an

sm
itt

ed
 In

te
ns

ity
 

(u
ni

ts 
re

ci
pr

oc
al

 to
 th

os
e 

of
   n

nl
) N  = 500

N  = 1000

N  = 1500

Figure 5.3: The transmitted intensity as a function of incident intensity on a semi-log

plot for limiting structures with |nnl| = 0.01 for different numbers of layers.

matched linear indices, the Bragg grating is hidden, and the transmitted intensity is equal

to the incident intensity for very low incident intensities. Increasing incident intensity

causes the effective refractive indices to change, forming a Bragg grating which reflects

some of the incident light, leading to the decreased transmitted intensity. As the incident

intensity is increased further, the effect of the pop-up nonlinear grating increases. This

causes the saturation of transmitted intensity at a given limiting intensity. This last

feature is most desired from the optical limiter. As shown in Figures 5.2 and 5.3 the

value of the limiting intensity decreases with increasing numbers of layers. Eq. (5.4)

proves that nonabsorbing, nonsaturating Kerr-nonlinear structures considered exhibit

true steady-state optical limiting for any number of layers.

Since the two materials have opposite Kerr characteristics, the center of the stopband

remains fixed at an initial spectral position. Unlike in cases in which only one material
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is nonlinearly active, the nonlinear periodic structures considered here are stable in the

intensity domain. The feasibility of fabrication of periodic structures made out of many

periods will be discussed in the section 12.3.2.
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Figure 5.4: The effective indices of refraction across the structure of 300 layers with

|nnl| = 0.01 and matched linear indices of nln = 1.5. This plot demonstrates the decay

of the intensity across the structure.

Figure 5.4 shows the evolution of the effective refractive index across a structure made

of 300 layers illuminated by the incident intensity equal to 1. The indices of refraction

of materials and the thicknesses of the layers are the same as in Figures 5.2 and 5.3.

This plot can be used to track the decay of the intensity as the light penetrates into the

limiter. The first few layers experience almost all of the incident intensity, whereas the

last ones see only a fraction of it. The index contrast at the beginning of the structure

is much greater than at the end. With the increased length of the structure the effective

refractive indices of the last layers more closely approach the value of the average index

n0.
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Figure 5.5: The evolution of the transmittance spectra with increasing number of layers

for structures with nnl = ±0.01. The nonlinear behaviour of the limiter is responsible

for the formation of a stopband at the desired frequency.

Figures 5.5 and 5.6 display the transmittance spectra of limiters analyzed. Figure 5.5

shows the spectra for the same systems as in Figures 5.2 and 5.3 for various numbers of

layers. The nonlinear indices of adjacent layers are matched in magnitude and opposite

in sign: the average index does not change with intensity, the Bragg frequency stays

fixed, and the device is optically stable within the intensity domain. As the number of

the layers in the structure is increased, the stopband becomes deeper and sharper.

Optical bistability occurs if the rate of shift of the photonic stopband with increasing

illumination exceeds the rate of growth of its depth at a given spectral position. Since

in the limiters analyzed the center position of the stopband stays fixed, bistability is not

manifest.
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Figure 5.6: The evolution of the transmittance spectra as a function of increased incident

intensity for the structure made of 300 layers with nnl = ±0.01. As the incident intensity

is increased the stopband becomes deeper and wider.

Figure 5.6 shows the transmittance spectra for a structure with 300 layers with nnl =

±0.01 for incident intensities of 0.5, 1, and 3. This plot again illustrates the limiting

behaviour. As the strength of the incident intensity is increased, the transmittance

decreases and the width of the stopband gets larger. Increasing the incident intensity

has the same effect on the transmittance spectrum as increasing the value of nnl since it

is the product of these two quantities which changes the effective refractive index.
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Figure 5.7: The limiting intensities as a function of the number of layers for |nnl| = 0.005,

0.01, and 0.02. The values obtained from numerical calculations shown on the plot as

squares, triangles and diamonds follow exactly the curves predicted by the analytical

model.

Figure 5.7 displays the limiting intensities as a function of the number of layers for

structures with |nnl| values of 0.005, 0.01 and 0.02 illuminated using light at the centre

of the stopband. The curves obtained from Eq. (5.4) were plotted for the same cases.

The points obtained from the numerical simulations appear in the predicted places on

these curves. Thus, the highest possible intensity that will be transmitted by a given

structure is inversely proportional to the nonlinear strength nnl and number of layers N ,

but directly proportional to n0, the average index of refraction of the two materials used.
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5.3 Theory of Optical Switching with Stable Nonlin-

ear Periodic Structures

The work presented in the rest of this chapter was published in Refs. [7] and [124].

This section will discuss how the optical limiters introduced in the previous section

can be used as optical switches and OR gates.

5.3.1 Optical Switching

In the optical switch considered, the increasing intensity of the pump beam is used

to control the transmittance of a signal beam. In order to distinguish the pump and

signal beam at the output of the structure, it may be desirable to use beams at different

frequencies. This scenario is analyzed using numerical simulations.

Figures 5.8 and 5.9 show the results of these simulations. In both figures the structures

analyzed have refractive indices as in Figure 5.2. The signal beam is on resonance λ0 =

2Λnnl and has a constant intensity of 0.1. The low-intensity signal does not perturb

significantly the characteristics of the grating. The frequency of the pump beam is varied

from 0.94ω0 to 1.06ω0. In Figure 5.8 the number of layers is kept constant at 100 and

the transmittance spectra of signal beam is obtained for pump intensities of 1, 2 and 4.

In Figure 5.9 the pump beam intensity is fixed at 1 and the number of layers is varied

(100, 300, and 500).
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Figure 5.8: Demonstration of the switching capability. The figure shows the transmit-

tance of the signal beam as a function of the frequency of the pump beam. The struc-

tures analyzed have refractive indices as in Figure 5.2. The signal beam is on resonance

λ0 = 2Λnnl and has a constant intensity of 0.1. The frequency of the pump beam is

varied from 0.93ω0 to 1.06ω0. The number of layers is kept constant at 100 and the

intensity of the pump beam takes values of 1, 2, and 4.

It is shown in Figures 5.8 and 5.9 that the highest transmittance of the signal beam

occurs when the frequency of the pump beam approaches the structural resonance of the

periodic medium. As the frequency of the pump beam moves away from the resonance,

the transmittance of the signal beam oscillates, eventually saturating far from the Bragg

resonance. If the frequency of the pump beam is far away from the Bragg resonance,

the transmittance of the pump approaches unity. The intensity of the pump beam is
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then constant throughout the structure. A uniform Bragg grating is formed. The signal

beam, which is Bragg-resonant with the structure, is substantially reflected.
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Figure 5.9: Transmittance spectrum of the probe beam for the structure analyzed in

Figure 5.8. Pump beam intensity is kept constant at 1 and number of layers is varied

(100, 300, and 500).

If, on the other hand, the frequency of the pump beam is close to the Bragg resonance,

the intensity of the pump beam decays substantially within the first part of the structure

and the refractive indices of only the layers at the beginning of the structure are strongly

affected; the signal does not see a strong Bragg grating throughout the entire structure.

The lowest value of the transmittance of the signal beam takes place at the first minimum

of the transmittance spectra. At this point the intensity of the pump beam inside the

structure is higher than the incident intensity. This spatial distribution of intensity
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represents a stationary gap soliton that was previously observed in bistable systems.
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Figure 5.10: Evolution of the pump beam intensity across a 100-layer structure for pump

frequencies of 0.83ω0, 0.97ω0, and ω0.

Figure 5.10 depicts the evolution of the pump beam intensity across the 100-layer

structure for |nnl| = 0.01, n0 = 1.5, and Ipump = 2. The curves presented correspond to

the pump beam at frequencies of 0.83ω0 (far from the Bragg resonance), 0.97ω0 (at the

first transmittance maximum), and ω0 (at the Bragg resonance).
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Figure 5.11: Transmittance of a signal beam as a function of the pump beam intensity.

The frequency of the probe beam is fixed at the Bragg resonance, while the frequency of

the pump beam takes values of (0.83ω0, 0.97ω0, and ω0).

Figure 5.11 shows the transmittance of the signal beam as a function of Ipump for the

same structure as in Figure 5.10 for the same three frequencies of the pump beam. As the

pump intensity is increased an effective index grating emerges. The value of the incident

intensity at which the probe beam experiences substantial decrease in the transmittance

depends on the frequency of the pump beam. For the pump frequencies of 0.83ω0 and

0.97ω0, the onset of probe switching takes place at lower incident intensities than if the

frequency of the pump is at the Bragg resonance.
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5.3.2 Logic OR Gating

The stable limiting and switching nonlinear periodic structures proposed above may be

used as OR gates.
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Figure 5.12: An OR gate realized using limiting and switching structures proposed.

If two beams are incident on the balanced structure considered in this chapter, and

only one beam is at a sufficiently high intensity, then the net transmitted intensity will

approach the limiting value described by Eq. (5.4). This situation corresponds to the

input logic state (0,1) or (1,0) and an output of 1. If the intensities of both beams are

high (analogous to an input of (1,1)), the transmitted intensity will approach the limiting

intensity as well. This OR gate behaviour is illustrated in Figure 5.12.
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5.4 Nonlinear Figures of Merit for Periodic Struc-

tures

Nonlinear figures of merit have been previously derived by comparing the switching and

absorption lengths for a number of nonlinear devices [14]. These devices require figures

of merit (2.15) ranging from 0.25 for the conventional distributed feedback grating to

1.75 for the X switch.

In order to quantify the usefulness of a given nonlinear material to optical limiting and

switching proposed above, pertinent material figures of merit are derived for this class of

devices. Scattering from the nonlinear grating will be a dominant signal processing effect

if its characteristic decay length (Lscatt) is shorter than the decay length due to effective

absorption (Lalpha)

Lscatt ≈
Λnav

|∆n|
=

λ

2|∆n|
< Lalpha =

1

αeff

. (5.5)

In (5.5) nav is the average index of the grating, and ∆n is the index contrast originating

from the nonlinear effect. Inequality (5.5) is solved to give

2|∆n|
αeffλ

> 1. (5.6)

Inequality (5.6) has been derived with the assumption that the nonlinear index change

is constant across the structure. Since in reality the intensity may decay across the

structure, an assumption that the average index change is half of that at the beginning

of the structure yields the lower bound for the figure of merit

F =
|∆n|
αeffλ

> 1. (5.7)

Figure of merit (5.7) is the same as Eq. (2.15) that was derived in chapter 2 and is used

throughout this thesis.
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5.5 Conclusions

This chapter proposed a novel approach to optical signal processing using nonlinear

periodic structures — it introduced the notion of stable intensity-domain optical response

that supports functional transfer characteristics.

This chapter proposed and analyzed the response of limiters realized using nonab-

sorbing nonlinear periodic structures with matched linear refractive indices and opposite

Kerr coefficients. The nonabsorbing limiters based on Kerr-nonlinearities should exhibit

the key properties desired of ideal optical limiters under steady-state illumination: the

transmitted intensity is clamped at a certain value. The limiters considered can be de-

signed to clamp transmitted intensity at a specific value due to the relationship derived

between the limiting intensity and the parameters of the structure. In the second part of

the chapter it was demonstrated through development and solution of a model that the

structures proposed can be used as optical switches and OR logic gates.



Chapter 6

Theory of Broadband Limiting with

Slightly-Disordered Nonlinear

Periodic Structures

It was found in chapter 5 that balanced nonlinear periodic structures with matched linear

indices and opposite Kerr coefficients can support optical limiting and switching. This

chapter explores the effect of weak disorder on the smoothness of the limiting spectrum

and on the strength of the limiting response. This is followed by analyses of the impact

of the disorder on the localization of light within nonlinear periodic structures that are

periodic on average.

The work presented here was published in Refs. [8, 125].

6.1 Spectral Analysis

As in the previous chapter, the nonabsorbing structures analyzed within the present

chapter are assumed to consist of materials with matched linear refractive indices, n01 =

n02 = n0, and Kerr coefficients of opposite sign and equal magnitude nnl1 = −nnl2.

83
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However, in contrast with the previous chapter, the layer thicknesses are not in general

equal d1 6= d2. The thickness of the ith layer di is allowed to vary uniformly the average

quarter-wave value dλ/4nln
within a specified range δ:

di = dλ/4nln
± δ (6.1)

Such structures were introduced in Section 4.3.4 and are illustrated in Figure 4.3. The

analyses presented in this chapter were performed by solving Eqs. (4.31) and (4.32)

numerically.

Figure 6.1 shows the effect of introducing a disorder into the limiting structures

proposed in chapter 5. The structures analyzed consist of 1000 layers and have linear

index 1.5 and magnitude of Kerr indices |nnl| = 0.003. The system was taken to be

illuminated with the light at a normalized intensity of 1. The individual layer thicknesses

were randomly and uniformly distributed within 1% , 7% and 10% of their quarter wave

value at the centre of the stopband ω0.

The spectral region on which a given structure acts increases with the degree of

disorder. For 1% deviation the transmittance spectrum is very similar to the unperturbed

response. For 7% deviation, most of the limiting strength is still concentrated close to

the centre of the unperturbed stopband. Increasing the degree of randomness to 10%

spreads the effective stopband over a wider spectral range.

Two new features are distinct when the transmittance spectra of the randomized

structures is compared with the transmittance spectra of the ordered structures of chapter

5:

• Increased disorder widens the spectral range over which the limiter exhibits nonlin-

ear refraction, but reduces its depth. Randomly varying he layer thickness decreases

the availability of wavevectors for which the Bragg condition is satisfied at a given

optical frequency close to the center of the original unperturbed stopband, but a

larger range of frequencies experiences some degree of backscattering. The strength
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Figure 6.1: Influence of the increased layer thickness randomization on the nonlinear

transmittance spectra.

of this backscattering is proportional to the number of coherent scatterers and the

proximity of the individual layers to the quarter-wave value at a given optical fre-

quency. A randomized system with a fixed number of layers will therefore have a

smaller number of strongly backscattering regions than the fully ordered system.

• The introduction of randomness makes it possible for a particular optical frequency

at a specific intensity to see a high transmittance even if it lies within the new, wider

effective stopband. For a randomized system there is a possibility of obtaining a

phase difference of close to 2π between the incident and reflected waves even for

the light at an optical frequency that is close to the center of the unperturbed

stopband. In this case, constructive interference between forward- and backward-
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propagating waves results in a transmittance spike. Such a behaviour — associated

with photonic defect states — is not observed within the stopband of a nonabsorbing

ordered structure made up of materials with opposite Kerr coefficients.

The details of the transmittance spectra of structures with randomly-varying layer thick-

nesses depend on the random thickness fluctuations. It is not sufficient to specify statis-

tical properties of the structure and materials: the details of a given random trial will

determine the transmittance spectrum, in particular the location of any transmittance

maxima within the stopband.

With the increased degree of randomization the spectral characteristics of individual

structures differ from each other more significantly. This fact will be exploited to design

a broadband optical limiter with no transmittance maxima within the effective stopband.

Figure 6.2: A combined system consisting of broadband optical limiters with inserted

optical isolators. Decoupling among the constituent limiters eliminates transmittance

maxima within the effective stopband.

Figure 6.2 proposes inserting optical isolators between adjacent limiters. These isola-

tors are assumed to absorb only in the reverse (leftward) direction. Because the principle

of superposition does not apply to periodic structures — n structures each made up of

N layers differ in their response from a single n × N -layer stucture — combining the

limiters without eliminating feedback between adjacent structures will not eliminate the

occurrence of local transmittance maxima within the stopband of the combined struc-

ture. The maxima of the individual units may disappear from the transmittance spectra,

but new features originating from the combined periodic structure will appear.
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Figure 6.3: Combining randomized units in series eliminates transmittance maxima,

deepens and widens the effective stopband.

In Figure 6.3 the transmittance spectra of a limiter made up of increasing numbers

of 1000-layer units with 10% randomness, n0 = 1.5, and |nnl| = 0.002 is plotted. The

structure is assumed to be illuminated with an incident intensity of 3. The 1000-layer

units are separated by optical isolators. In the many-unit system with isolators, the

transmittance maxima which are present in the shorter systems are eliminated. A wide

stopband with no transmittance maxima is formed.
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Figure 6.4: A comparison of the transmission spectra for a single perfectly periodic 1000-

layer structure (the thin line) versus 5 combined randomized 200-layer units (the thick

line).

In Figure 6.4 the transmittance spectra of two 1000-layer structures are compared: a

combined system of five units with 200 layers and 7% randomization separated by optical

isolators, and a 1000-layer ordered system. The system with isolators acts on a much

wider range of optical frequencies.



6.2. Analysis of Intensity Transmittance 89

6.2 Analysis of Intensity Transmittance

It will be now theoretically demonstrated that the randomized systems exhibit true lim-

iting behaviour: the transmitted intensity is clamped below a fixed level at high incident

intensities.
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Figure 6.5: Transmitted versus incident intensity for various degrees of randomness at

various trials.

Figure 6.5 depicts the transmitted versus incident intensity for a structure of 100

layers with |nnl| = 0.01 for various degrees of randomness. The frequency of the optical

signal lies at the centre of the ordered stopband. All of the structures exhibit saturation

to a limiting intensity. A stronger randomization leads to a higher limiting intensity.

However, true limiting behaviour is preserved even in the presence of a high degree of

randomness. As it was shown in the previous chapter, the choice of Kerr indices of
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opposite sign and comparable magnitude is essential in order to preserve this limiting

behaviour. The structure would otherwise exhibit multistability. For a low degree of

randomization this behaviour is still preserved in disordered structures.
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Figure 6.6: The transmitted vs. the incident intensity for light at frequencies inside the

broadened stopband of a 10% randomized 100-layer structure.

A broadband optical limiter should display a limiting behaviour over its entire stop-

band. Since the width of the stopband is proportional to the index contrast, and in

the structures analyzed index contrast is proportional to Iin, it is necessary to keep the

incident intensity constant when comparing broadband characteristics of ordered and

randomized structures.

Figure 6.6 displays the transmitted versus incident intensity for a 100-layer structure

with |nnl| = 0.01 and 10% randomization at various frequencies. Even without elimi-
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nating feedback between adjacent nonlinear periodic structures, the combined systems

behave like limiters. However, unless the feedback is inhibited there is a possibility that

light at particular frequency will experience limiting at a much higher intensity than the

rest of the effective stopband (0.993ω0 in Figure 6.6). This behaviour manifests itself

with resonance spikes present in the transmittance spectra for a range of incident inten-

sities. The proposed elimination of backward feedback between adjacent units ensures

that the combined structure exhibits limiting behaviour over the entire stopband (i.e. no

resonance spikes) also at intermediate intensities.
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Figure 6.7: Transmittance versus incident intensity. Comparison between ordered and

10% randomized 100-layer structures at two frequencies.

In Figure 6.7 the transmittance (T = Iout/Iin) as a function of incident intensity for

the structure of Figure 6.6 and an ordered 100-layer unit is compared. Near ω0, ordered
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and disordered structures start to display limiting properties at comparable incident

intensities. For the off-centre frequencies (1.04ω0), randomized structures begin to display

limiting behaviour at lower intensities. This confirms that at a particular Iin the effective

broadband stopband is larger for a disordered structure.

6.3 Localization of Light
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Figure 6.8: Evolution of the intensity of the forward propagating wave across a 100-layer

structure. Impact of the increasing level of randomness for the incident intensity of 2 is

shown.

Figure 6.8 shows the evolution of intensity associated with the forward-propagating

wave across a 100-layer structure with |nnl| = 0.01 illuminated with an intensity of

2. These structures employ no isolators. As the degree of randomization is increased,
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the forward-propagating wave experiences weaker attenuation — its localization length

increases and the limiting strength decreases. For high degrees of disorder (20% and

30%), light exhibits localization within the structure.
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Figure 6.9: The localization of light within a 30% randomized structure. The figure

shows the impact of increasing incident intensity.

Figure 6.9 illustrates the localization of light within a 30% randomized structure for

various values of incident intensity. As the incident intensity is increased, a nonlinear

grating is formed and light becomes trapped within the structure. However, as is evident

from the comparison of curves corresponding to Iin = 3.5 and Iin = 7, for high incident

intensity the transmitted intensity is constant. This confirms the limiting behaviour of

nonlinear disordered structures that are periodic on average.
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As discussed previously, introducing disorder may result in certain frequencies ex-

hibiting a high transmittance even if these frequencies lie within the stopband of the

original, ordered structure. Figures 6.10 and 6.11 show that eliminating feedback be-

tween adjacent structures removes a transmittance maximum.
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Figure 6.10: The intensity of the forward-propagating wave across the structure in the

transmitting and limiting regimes.

Figure 6.10 shows the evolution of the intensity associated with the forward-propagating

wave in the limiting and transmitting states. A 500-layer structure with |nnl| = 0.002

and 7% randomization is considered to be illuminated with light at Iin = 1.56 at two

frequencies, 0.996ω0 and 0.995ω0. Within the limiting domain (0.996ω0) the intensity

decays across the structure. When the transmittance maximum is reached (0.995ω0), a
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gap soliton is formed.
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Figure 6.11: The intensity of the forward-propagating wave across a structure consist-

ing of five randomized 500-layer units. The inset shows the transmittance spectra for

structures with one and five units.

Figure 6.11 shows the evolution of the intensity of the forward-propagating mode

across a structure consisting of five 100-layer units with 7%-randomization separated by

isolators. The first unit is identical to that whose response is illustrated in Figure 6.10.

The degree of randomization, as well as the structural and material parameters, are the

same as in Figure 6.10. For the incident intensity of 1.56 and frequency 0.995ω0, light

is fully transmitted by the first periodic unit. On its own, this first segment does not

provide limiting, but instead possesses a transmittance spike for this particular choice
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of frequency and intensity for the incident wave. However, eliminating feedback in the

combined system removes the transmittance maximum.

6.4 Conclusions

This chapter analyzed further the limiting nonabsorbing structures introduced in chap-

ter 5. The limiters were assumed to exhibit a realistic degree of randomness in the layer

thicknesses. This enabled additional signal processing function of the broadband optical

limiting. It was shown that disordered structures exhibit true optical limiting over a

spectral range much greater than the limiting bandwidth of a perfectly periodic nonlin-

ear media. However, the limiting response of the disordered structure at a given optical

frequency may be diminished when compared to the response of perfectly periodic struc-

ture. The disordered structures exhibit localization of light over a spectral bandwidth

related to both the incident intensity and the degree of disorder. A method was proposed

to eliminate the spikes in the transmittance spectra of disordered structures by inhibiting

the feedback at certain spatial stages within a composite nonlinear periodic structure.



Chapter 7

Theory of Optical Signal Processing

with Out-of-Phase Balanced

Nonlinear Periodic Structures

Chapters 5 and 6 have explored the limiting and switching capabilities of balanced non-

linear periodic structures. This chapter will modify the limiting structures that have

matched linear indices. A structure with a shallow, built-in linear index grating that is

out-of-phase with the distribution of Kerr coefficients will be considered. This structure

will be shown theoretically to support additional signal processing functions.

The work presented in this chapter was published in Refs. [126–130].
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7.1 Structure and Modelling Approach

As in the devices proposed in previous chapters, the structures analyzed in this chapter

are assumed to be made out of materials with Kerr coefficients of opposite the sign

and equal magnitude (nnl1 = −nnl2). However, in contrast to the limiting structures of

chapters 5 and 6, the linear indices are not matched, (n01 6= n02) and layer thicknesses

are not in general equal, (d1 6= d2).

A new nonlinear periodic system is proposed:

• The structures analyzed herein are assumed to have a shallow built-in linear grating.

• The material with higher linear refractive index has a negative Kerr nonlinearity,

while the material with lower linear refractive index has a positive nonlinearity.

This structural and material arrangement will be referred to as an out-of-phase

nonlinear periodic grating.

The profile of an out-of-phase nonlinear periodic structure is shown in Figure 7.1.

The out-of-phase configuration (n0k < 0, nnl = 0) results in an effective refractive

index grating that, with increasing intensity, first closes and then reopens. The character

and optical stability of this response depends on the relative strengths of linear and

nonlinear coefficients. Eqs. (4.27) and (4.28) were used to simulate the response of the

devices proposed.

7.2 Basic Stability Condition

This section derives the conditions that ensure that the steady-state response of the

nonlinear periodic structures with built-in linear index grating is stable in the intensity-

domain.

The Bragg condition [121] for a medium with intensity-dependent refractive indices
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d1 Λ + d1 2ΛΛ
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n02 = nln − δn
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Figure 7.1: Profile of linear refractive indices and Kerr coefficients of a nonlinear periodic

structure in the out-of-phase configuration. The refractive indices of two adjacent layers

are n01 + nnl1I and n02 + nnl2I, where n01 < n02 and nnl1 = −nnl2 > 0.

is itself a function of intensity:

(n01 + nnl1I)d1 + (n02 + nnl2I)d2 =
λ0

2
(7.1)

The spectral position, λ0, of the centre of stopband in a periodic grating is given by

Eq. (7.1).

In order to achieve an optically stable device operation in the intensity domain, the

spectral position of the centre of stopband should stay fixed. This is expressed in terms

of two conditions:

n01d1 + n02d2 =
λ0

2

nnl1d1 + nnl2d2 = 0 (7.2)

Conditions (7.2) can be fulfilled only if the Kerr coefficients are of opposite sign. Solving
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for d1 and d2 gives:

d1 =
λ0

2
(
n01 − n02

nnl1

nnl2

)
d2 =

λ0

2
(
n02 − n01

nnl2

nnl1

) (7.3)

Expressions (7.3) specify the thicknesses of layers which, for a given pair of nonlinear

materials, ensure the optical stability of system. They fix the center of stopband at λ0

regardless of the value of incident intensity. The analysis in (7.1) to (7.3) is heuristic. In

reality, the intensity will vary from layer to layer, but only slowly between adjacent layers

in low-index-contrast structures. Then the approximation is valid in the incoherent case.

Results obtained through exact TMM methods confirm that the fulfilment of conditions

(7.3) results in a stable optical response.
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7.3 S-shape Transfer Characteristics

Figure 7.2 shows the transmitted intensity of the periodic nonlinear medium analyzed as

a function of incident intensity for various numbers of layers (N = 100, 400, and 1000).

Here and in the rest of this chapter the incident light is assumed to be at a wavelength

corresponding to the center of linear stopband, chosen according to Eqs. (7.3).
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Figure 7.2: The transmitted intensity for the structures with an out-of-phase effective

refractive index profile for various numbers of layers (N = 100, 400, 1000). The structures

have linear refractive indices of n01=1.5 and n02=1.52 and Kerr coefficients of nnl1=0.01

and nnl2=-0.01.

The structures analyzed consist of materials with the linear indices of refraction of

n01=1.5 and n02=1.52 and Kerr coefficients of nnl1=0.01 and nnl2=-0.01. In Figure 7.2

three regimes of operation are observed: at low intensities, the incident signal is reso-

nantly reflected; for intermediate incident intensity, the system goes through a region

of constant differential transmittance; for high incident intensity, the transmittance de-

scends back to zero.
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Figure 7.3 illustrates the physical mechanisms responsible for this behaviour. The

figure shows the evolution of intensity and the intensity-dependent refractive index for

various values of Iin across a 1000-layer structure with the same material parameters as

in Figure 7.2.

Figure 7.3: Local effective refractive index and the intensity across a 1000-layer structure

with material parameters as in Figure 7.2 for various values of incident intensity. The

total refractive index is given on the left vertical axis and the local intensity is given on

the right axis.

Light with low incident intensity (Iin = 0.3) is reflected by the built-in linear grating

and decays to a negligible value within the first part of the structure. As the intensity is

increased beyond Iin = n01−n02

2(|nnl1|+|nnl2|)
the nonlinearity modifies substantially the profile of

refractive index variation across the structure (Iin = 0.65). Since the layers with higher

linear index have a negative Kerr coefficient, and those with lower n0 have a positive nnl,
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increasing intensity initially decreases the difference between the total indices of refrac-

tion, reducing the net amplitude of the grating. The transmitted intensity is no longer

zero. When the incident intensity reaches Iin = n01−n02

(|nnl1|+|nnl2|)
, the grating disappears and

the structure assumed is completely transmitting. As the incident intensity is increased

further (Iin = 1.07) the grating (phase-shifted relative to the initial linear grating) forms

again, resulting in the limiting behaviour manifested in Figure 7.2. The transmitted

intensity is clamped at n01−n02

(|nnl1|+|nnl2|)
. In order to achieve such sharp characteristics, the

structures analyzed need to be at least 1000 layers long.

Figure 7.4 shows the idealized response of structures with strong built-in linear stop-

band (large number of layers or high linear index contrast) for different materials (dif-

ferent n0 and nnl). In order to describe analytically the response of such composite

structures, a new paramter a is defined:

a =
n01 − n02

|nnl1|+ |nnl2|
(7.4)

For a given choice of material parameter a, the idealized transmitted intensity Iout is

related to incident intensity by the approximate relation:

Iout =


0, for Iin < a

2
;

2Iin − a, for a
2

< Iin < a;

a, for Iin > a;

(7.5)

As the strength of the linear grating weakens (short structures or low linear index con-

trast) the transmission characteristics deviate near Iin = a
2

and Iin = a from the values

defined by Equation (7.5).

In a hard-limiter the output should be 1 for an input greater than or equal to 1,

and 0 otherwise [131, 132]. In Figure 7.5 an all-optical hard limiter with arbitrarily

steep transition stages is proposed. N limiters with a = 1 are positioned in series, with

optical isolators between each pair. These isolators are needed to eliminate a feedback

by allowing light to propagate in the forward direction and absorbing reflected light. The
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Figure 7.4: The idealized transmitted intensity for out-of-phase nonlinear periodic struc-

tures with different material parameters.

first nonlinear grating blocks incident radiation with intensity less than a
2
. However, the

intensity transmitted by the fist unit still ranges from 0 to a. This transmitted intensity

is then fed into the second unit and again, light with intensity lower than a
2

is blocked.

Light with intensity lower than a
2

seen by the second unit corresponds to light incident

on the composite device with intensity larger than a
2

and lower than 3a
4
. Generalizing for

N units, the following transmission characteristic is obtained:

Iout =


0, for Iin < a

(
1− 1

2N

)
;

2NIin + a(1− 2N), for a
(
1− 1

2N

)
< Iin < a;

a, for Iin > a;

(7.6)

Thus, given a sufficiently large number of units, the proposed non-absorbing, non-

saturating, Kerr-nonlinear device will behave as an arbitrarily abrupt all-optical hard

limiter. All of the intensities smaller than a will be reflected and all greater or equal to

a will be transmitted. The transmitted intensities will clamp at the value of a. Since a
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Figure 7.5: All-optical hard limiter. Arranging the proposed structures in series results

in an increasingly steep transition in the transfer characteristics. The inset shows how

the response of hard-limiter is modified with an increasing number of units.

is determined by linear and nonlinear indices, the choice of material biases the device at

the desired value.

7.4 Analog-to-digital converter

Figure 7.6 illustrates a four-bit analog-to-digital converter (A-to-D) utilized using the

out-of-phase structures proposed above. This approach is scalable to higher resolutions.

The nth additional bit requires n−1 limiters. The total number of limiters for an N -level

A-to-D converter is N(N−1)
2

. The separation of the incident and reflected signals can be

performed with nonreciprocal directional couplers or circulators [133,134].

The analog-to-digital converter illustrated in Figure 7.6 is constructed using limiters
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Figure 7.6: All-optical analog-to-digital converter. In the example considered, an analog

input of 5 is transformed to a digital word (0101).

biased at values a=8, 4, and 2. As an example, the A-to-D conversion of an analog

input 5 is illustrated. 5 is fully reflected by the first set of limiters (4th level) giving a

transmitted output of 0. In the third level 4 is transmitted and 1 reflected. The output

4 is normalized to yield the second digital output, 1. The reflected 1 is fed into the 2nd

level and is completely reflected. The 0 at the output of the 2nd level provides the third

digit. The signal 1 reflected from the 2nd level yields the lowest-order digit. Placing

delay lines behind second, third and fourth levels ensures that the four digital signals

arrive simultaneously at the corresponding receivers. An analog input of 5 is converted

to a (0101) digital word in a single byte interval. This approach provides a basis for
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all-optical, ultrafast decoding of multilevel intensity signals [135].

7.5 Logic Gates

Figure 7.7 illustrates the use of out-of-phase sturctures proposed in the construction of

OR and AND gates. Separate signals A and B are first combined into a single input.

The transmitted intensity is defined as the O1 output and the reflected value as the O2.

The hard limiter is assumed to have a = 1. If one of the inputs is 0 and the other 1,

the output at O1 is 1 and at O2 is 0. If both A and B inputs have the value of 1, 1 is

transmitted and 1 reflected. Thus, O1 yields the result of an OR operation and O2 the

result of logic AND.

a=1

A
B

O2

O1

O1 - OR gate

O2 - AND gate

A    B O1  O2
0    0
1    0
0    1
1    1

0    0
1    0
1    0
1    1

3 dB coupler

Figure 7.7: OR and AND gates. For two input beams A and B, the transmitted intensity

of the hard limiter biased at a = 1 implements the OR function while the reflected beam

implements the AND operation.

Figures 7.8 and 7.9 show the ideal transmitted and reflected powers of a hard-limiter
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biased at a = 2. As discussed above, the curve from Figure 7.8 enables the OR operation

while the Figure 7.9 curve represents the AND operation. Additionally if the device is

externally biased by a pump beam at input power Pin = 1 then the response curve of

Figure 7.9 is shifted towards the left by 1. In such externally-biased configuration the

device acts as an inverter over the region 0 < Pin < 1. Since the proposed devices enable

the inversion and AND logic operations, a complete set of logic gates can be constructed.

Figure 7.8: Ideal transmission characteristics of the out-of-phase nonlinear balanced

structure with material parameter a = 2. The transfer curve enables OR logic oper-

ation.

Figure 7.9: Ideal reflection characteristics of the out-of-phase nonlinear balanced struc-

ture with material parameter a = 2. This transfer curve enables logic AND and inversion

logic operations.
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7.6 Sensitivity of Transfer Curves to Fabrication Er-

rors and Absorption

This section analyzes the sensitivity of optical elements presented to realistic imper-

fections incurred during fabrication. The response of structures with built-in random

fluctuations in the layer thicknesses is simulated. Keeping all other parameters fixed, the

thicknesses of layers are allowed to be distributed uniformly over a predefined range.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2
Incident Intensity

Tr
an

sm
itt

ed
 In

te
ns

ity
 b

10%

0% and 5%

absorbing

Figure 7.10: Transmitted intensity as a function of incident intensity for the structure

with the same parameters as in Figure 7.3. The thicknesses of layers were allowed to

vary 0, 5, and 10% from their quarter-wave value. The effect of the linear absorption on

the transmittance is also shown.

Figure 7.10 shows the transmitted intensity as a function of incident intensity for the

structure with the same average parameters as in Figure 7.7. Layer thicknesses were

allowed to vary 5% and 10% from their quarter-wave value. For 5% deviation there is no

detectable difference in the responses of the imperfect device and the ideal device. Even in
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devices with 10% layer thickness fluctuations the transmitted intensity saturates to some

limiting value. The quantitative performance of the device is affected by fabrication

errors and realistic absorption of α = 6 cm−1, but qualitative features of the S-shape

transfer characteristics are preserved.

7.7 Conclusions

This chapter showed that the introduction of an out-of-phase linear grating to the limiting

structures from chapters 5 and 6 increases their ability to process optical signals by

permitting S-shaped transfer characteristics. The performance of all-optical hard limiters

was explored through analytical expressions and numerical simulations. The hard limiters

proposed could be used in optical A-to-D conversion, or to create a complete set of logic

gates. This devices should operate will even with substantial fabrication errors.

The optical elements proposed in chapters 5–7 represent a novel class of all-optical

stable signal processing devices. As shown in previous research on the theory of non-

linear optical signal processing, building-block functional elements may be combined to

implement more complex operations.



Chapter 8

Theory of Intensity-Domain Optical

Stability of Transfer Functions of

Nonlinear Periodic Structures

Chapters 5, 6, and 7 presented the broad optical signal processing functionality of nonlin-

ear periodic structures that are stable in the intensity domain. This chapter will explore

in detail the structural and material conditions for optical intensity-domain stability.

A significant portion of the analytical results presented in this chapter has been

derived in collaboration with Professor Dmitry Pelinovsky from McMaster University.

The author of this work has posed the problems, defined the structures, and carried out

the numerical simulations. Professor Pelinovsky derived the analytical expressions.

The work presented in this chapter was published in [136–138].
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8.1 Incoherent Light

The nonlinear periodic structures analyzed in this section are assumed to be made out of

material with the same linear coefficients, n01 = n02 = n0, and the same layer thicknesses,

d1 = d2. No general constraints are placed on the sign and magnitude of Kerr coefficients.

8.1.1 Transmittance expressions

Equations (4.23) and (4.24) are re-written in the following form:

i
dA+

dz
= k∆n̄nl

(
κA−e−3ikΛ/2 − A+

) (
|A+|2 + |A−|2

)
, (8.1)

i
dA−

dz
= k∆n̄nl

(
−κA+e3ikΛ/2 + A−

) (
|A+|2 + |A−|2

)
, (8.2)

where ∆n̄nl = (nnl1 + nnl2)/(2n0) is the average normalized nonlinear index and κ is a

product of variance of the nonlinear index and the resonance factor:

κ =

∣∣∣∣nnl1 − nnl2

nnl1 + nnl2

∣∣∣∣ sin(kΛ/2)

kΛ/2
. (8.3)

The nonlinear coupling between forward- and backward-propagating waves is de-

scribed by the κ terms in Eqs. (8.1) and (8.2). These terms provide stable limiting

behaviour for nnl1 = −nnl2. The other right-hand-side terms in Eqs. (8.1) and (8.2) are

associated with the oscillatory multistable behaviour. The transition to multistability

takes place when the self-coupling oscillatory terms overwhelm the mutually-coupling κ

terms. It will be shown that the threshold condition between these two regimes is given

by κ = 1, i.e. the stable limiting behaviour occurs for:∣∣∣∣nnl1 − nnl2

nnl1 + nnl2

∣∣∣∣ sin(kΛ/2)

kΛ/2
≥ 1. (8.4)

Under the assumption of nonabsorbing structures, the coupled system (8.1) and (8.2)

exhibits conservation of energy flow through the periodic structure:

|A+(z)|2 − |A−(z)|2 = Iout, (8.5)
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Figure 8.1 shows the transmitted versus incident intensity for structures of two differ-

ent lengths illuminated with light at a Bragg resonance kΛ = π. The nonlinear indices

are specified as nnl1 = 0.01 and nnl2 = 0 for two solid curves, where κ = 2/π. This is

the multistability regime in which the transmitted intensity oscillates between the values

determined by minimum and maximum transmittance. The transmittance is defined by:

T = 1−
∣∣∣∣A−(0)

A+(0)

∣∣∣∣2 . (8.6)

The maximum transmittance appears when A−(0) = 0, so that Tmax = 1. The minimum

transmittance is defined by the condition dA−(0)/dz = 0, which translates to A−(0) =

κA+(0)e3ikΛ/2 so that Tmin = 1− κ2.

When κ = 0, e.g. at nnl1 = nnl2, the optical structure is homogeneous for all in-

tensities and Iout = Iin. The area between oscillations in the input-output transmission

characteristics widens with the increasing values of κ. It is shown in Figure 8.1 that

the period of the multistable oscillations (measured in terms of Iin) becomes smaller for

longer structures (when N grows). As a result, more possible transmission levels are

present within a given range of incident intensities.

When κ reaches 1, Tmin vanishes. This marks the onset of stable optical limiting. In

the region κ ≥ 1, the coupling of the two contrapropagating waves dominates over the

phase-related oscillations and no multistability takes place. The stable limiting behaviour

is shown by a dashed curve in Figure 8.1 for the structure with parameters: nnl1 = 0.015,

nnl2 = −0.005, when κ = 4/π.

In order to find the limiting value for the transmitted intensity and to characterize the

features of the multistability regime, exact solutions to Eqs. (8.1) and (8.2) are obtained.

First, the distance z is scaled by Z = k∆n̄nlz and the amplitudes A±(z) are substituted

in the polar form:

A+(Z) =
√

Iout + Qei(Φ+Ψ) (8.7)

A−(Z) =
√

Qei(Φ+3kΛ/2). (8.8)
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Figure 8.1: The multistable and stable regimes of nonlinear periodic structures illumi-

nated with light at the frequency of Bragg resonance.

Here Q(Z) and Φ(Z) are the intensity and phase of reflected wave, and Ψ(Z) is the phase

mismatch between the incident and reflected waves. The coupled system (8.1) and (8.2)

reduces to the following form:

dQ

dZ
= −2 (Iout + 2Q)

√
Q(Iout + Q) κ sin Ψ (8.9)

dΨ

dZ
= (Iout + 2Q)

[
2− Iout + 2Q√

Q(Iout + Q)
κ cos Ψ

]
. (8.10)

The boundary conditions are Q(L) = 0 and Ψ(L) = π/2, where L = k∆n̄nll. The latter

condition is motivated by a negative slope of Q(Z) near Z = L. Subject to this boundary

condition, the integral of Eqs. (8.9) and (8.10) is found to be:

κ| cos Ψ| =

√
Q

Iout + Q
. (8.11)
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Using relation (8.11) the system (8.9) and (8.10) can be reduced to the single equation:

dΨ

dZ
= Iout

[
1 + κ2 cos2 Ψ

]
, (8.12)

which can be integrated further. The exact solution for Q(Z) follows from (8.11) and

(8.12) in the form:

Q(Z) =
κ2Iout sin2

[√
1 + κ2Iout(L− Z)

]
1 + κ2 cos

[
2
√

1 + κ2Iout(L− Z)
] . (8.13)

Expression (8.13) describes via (8.7) and (8.8) the evolution of the envelopes of the

forward and backward propagating fields in both stable and multistable regimes. The

two transmission regimes are separated by the condition κ = 1.

8.1.2 Multistable Regime

In the multistable regime, κ < 1, the transmittance T can be found from Eq. (8.6) and

(8.13) as:

T =
1 + κ2 cos

[
2
√

1 + κ2IoutL
]

1 + κ2 cos2
[√

1 + κ2IoutL
] . (8.14)

The points of maximum transmittance (Tmax = 1, Q(0) = 0) are given by the roots

Iout = In =
πn√

1 + κ2L
, n = 0, 1, 2, ... (8.15)

The distribution for the reflected wave Q(z) has exactly n nodes across the optical struc-

ture within the parameter range In ≤ Iout < In+1. The points of minimum transmittance

(Tmin = 1−κ2, dQ(0)/dZ = 0) are located exactly in the middle of each interval (In, In+1).

8.1.3 Stable Regime

In the stable regime, κ ≥ 1, the distribution of the reflected wave Q(Z) can be found for

Iout ≤ Ilim, where

Ilim =
π

4
√

1 + κ2L

[
1 +

2

π
arcsin

(
1

κ2

)]
. (8.16)

is obtained by setting the denominator of Eq. (8.11) to zero.
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At the limiting value, Iout = Ilim, the distribution Q(Z) diverges as Z → 0 so that

Iin →∞. True optical limiting is therefore achieved: the transmitted intensity is bounded

by its limiting value irrespective of the incident power (see the dashed curve at Figure 8.1).

0.95

1.15

1.35

0 0.5 1

Ilim/I0

1

2

0
π
1

π
2 Γ

Figure 8.2: The normalized limiting value of the output power Ilim/I0 as a function of

the inverse variance of the nonlinear index Γ at kΛ = π.

When n̄nl → 0, (i.e. when the Kerr coefficients are of equal magnitude and opposite

signs), the limiting intensity approaches the asymptotic value:

lim
n̄nl→0

Ilim = lim
κ̄→∞

Ilim =
πn0

2N |nnl1 − nnl2| sin(kΛ/2)
. (8.17)

Figure 8.2 shows the normalized limiting intensity (Ilim/I0) as a function of Γ at the

exact resonance kΛ = π, where Γ is the inverse variance of the nonlinear index given by

Γ =

∣∣∣∣nnl1 + nnl2

nnl1 − nnl2

∣∣∣∣ . (8.18)

When the inverse variance Γ is small, the normalized limiting intensity is close to but

smaller than 1. When Γ approaches the threshold boundary (8.4), which happens when

Γ = 2/π for the exact resonance, the normalized intensity approaches
√

2. Thus, the
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Figure 8.3: The limiting transmitted power Ilim as a function of the spectral position of

the illumination to spatial period ratio λ/(Λn0).

limiting intensity remains within 40% of its asymptotic value I0 for any value of the

material parameters within the stable regime.

The stable regime is facilitated by close proximity of the spectral position of the

incident illumination to the Bragg resonance. When the spectral position of light deviates

from the exact Bragg resonance λ0 = 2Λn0, the stable regime breaks down. This feature

is illustrated in Figure 8.3 by plotting the limiting transmitted intensity Ilim (8.16) versus

the wavelength ratio λ/(Λn0) for two values of Γ: Γ = 0 (a dashed curve) and Γ = 1/π

(a solid curve). The stable behaviour of the nonlinear periodic structure is affected

weakly by deviation of the spectral position of the illumination to longer-than-resonance

region. Wavelengths shorter than resonance wavelengths quickly undergo transitions to

the multistable regime.
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8.2 Coherent Light

The assumption of the incoherent illumination makes the analysis presented in chapters

5 to 7 easier. However, in order provide the complete theory of the intensity-domain

stability, the case of coherent illumination will be now discussed.

Equations (4.20) and (4.21) describe the response of structures analyzed under coher-

ent illumination. Only the steady-state response (∂A±/∂T = 0) on resonance (k = 2k0)

is considered. The governing equations become:

i
∂A+

∂Z
+ n0kA− + nnl

(
|A+|2 + 2|A−|2

)
A+

+ n2k

[(
2|A+|2 + |A−|2

)
A− + A2

+Ā−
]

= 0, (8.19)

−i
∂A−

∂Z
+ n0kA+ + nnl

(
2|A+|2 + |A−|2

)
A−

+ n2k

[(
|A+|2 + 2|A−|2

)
A+ + A2

−Ā+

]
= 0, (8.20)

Conservation of energy (8.5) has the same form as in the case of incoherent radiation.

Similarly, the boundary conditions are:

|A+(0)|2 = Iin, |A−(0)|2 = Iref , |A+(L)|2 = Iout, |A−(L)|2 = 0. (8.21)

The system (8.19) and (8.20) is integrable. Eq. (8.5) is used to parameterize the

solutions in the polar form:

A+(Z) =
√

Iout + Q ei(Φ−Ψ), A−(Z) =
√

Q eiΦ (8.22)

The system (8.19) and (8.20) can be reduced in the form (8.22) to the coupled system

for Q(Z) and Ψ(Z),

dQ

dZ
= −2

√
Q(Iout + Q) sin Ψ [n0k + n2k(Iout + 2Q)] , (8.23)

dΨ

dZ
= −3nnl (Iout + 2Q)− cos Ψ√

Q(Iout + Q)

[
n0k(Iout + 2Q) + n2k(I

2
out + 8IoutQ + 8Q2)

]
.

(8.24)
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The boundary conditions (8.21) are satisfied when Q(Z) and Ψ(Z) are connected by the

relation,

cos Ψ =
−3nnl

√
Q(Iout + Q)

2 [n0k + n2k(Iout + 2Q)]
. (8.25)

The coupled system (8.23) and (8.24) can be reduced with the help of Eq. (8.25) to a

single equation either for Q(Z) or for Ψ(Z). The outcome of this reduction depends on

the parameters nnl, n0k, n2k, and Iout of the model. Two different cases will be considered:

(i) nnl = 0 and (ii) nnl 6= 0.

8.2.1 Balanced Nonlinearity Management: nnl = 0

When the periodic structure consists of alternating layers with zero net-average Kerr

nonlinearity, the Eqs. (8.23) and (8.24) can be solved analytically. In this regime the

true all-optical limiting is predicted to be the strongest.

First, the case in which |n0k| ≤ n2kIout (i.e. the built-in grating is assumed to be

weak compared to the induced nonlinear index change) is considered. Direct integration

of Eq. (8.23) for Ψ(Z) = π/2 produces the explicit solution:

Q(Z) =
Iout(n0k + n2kIout) sin2 θ

n2kIout cos 2θ − n0k

, (8.26)

where θ =
√

n2
2kI

2
out − n2

0k (L− Z). It is clear that the solution Q(Z) is monotonically

decreasing between Z = 0 and Z = L and is defined for Iout ≤ Ilim, where Ilim is the

solution of:

−1 ≤ cos

[
2
√

n2
2kI

2
lim − n2

0kL

]
=

n0k

n2kIlim

≤ 1. (8.27)

It is obtained when the denominator of Eq. (8.26) vanishes.

Ilim is the limiting intensity for the case of the nonlinear periodic structure illuminated

with the coherent light. Typical transmission curves for n2k = 1 and three different values

of n0k are displayed in Figure 8.4. The transmitted intensity Iout is a one-to-one function

of the incident intensity Iin and is bounded by its limiting value Ilim (shown in Figure 8.4

using horizontal lines). Equation (8.27) permits to consider the limit in which the linear
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Figure 8.4: Balanced nonlinearity management with a linear built-in grating, where

nnl = 0, n2k = 1. Horizontal lines show the limiting intensity Ilim, while the dotted line

displays the regime of complete transparency: Iout = Iin. An out-of-phase (n0k = −0.02)

grating increases Ilim while an in-phase grating (n0k = 0.02) decreases it.

grating is weak compared to the nonlinearity management i.e. |n0k| � n2kIlim. In this

case, the limiting intensity can be approximated as:

Ilim =
π

4n2kL

[
1− 8n0kL

π2

]
. (8.28)

It follows from Eq. (8.28) that the limiting value becomes smaller for in-phase gratings

when n0k > 0 and grows for out-of-phase gratings when n0k < 0. No matter how large

the mismatch between linear and nonlinear refractive indices is, true all-optical limiting

is still achieved for out-of-phase gratings with sufficiently large input intensities. This

property is expressed by the estimate on the limiting intensity,

Ilim ≥
|n0k|
n2k

for n0k < 0 and nnl = 0 (8.29)

The in-phase gratings always support true all-optical limiting with no constraints on

the value for the limiting intensity Ilim.

The case when |n0k| > n2kIout (i.e. the case when built-in grating is stronger than
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the induced grating) is considered next. The solution (8.26) then becomes:

Q(Z) =
Iout(n0k + n2kIout) sinh2 φ

n0k − n2kIout cosh 2φ
, (8.30)

where φ = −iθ =
√

n2
0k − n2

2kI
2
out (L− Z). The behaviour of the wave profile Q(Z) across

the structure is now different depending on the sign of n0k. To obtain the the expression

for the limiting intensity, the denominator of Eq. (8.30) is set to 0.

In the case when n0k > 0 (in-phase gratings), the following solution is obtained:

cosh

[
2
√

n2
0k − n2

2kI
2
limL

]
=

n0k

n2kIlim

> 1. (8.31)

In contrast, in the case n0k < 0 (out-of-phase gratings), the limiting intensity cannot

be reached as the constraint |n0k| > n2kIout restricts values of the incident intensity within

the range that is insufficient to close the built-in linear grating. However, the constraint

of balanced nonlinearity, nnl = 0 still ensures that the response of such structures is

stable.
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8.2.2 Unbalanced Nonlinearity Management: nnl 6= 0

When nnl 6= 0, the connecting relation (8.25) can still be used to give the exact condition

when the limiting behaviour is possible, i.e. when Q(0) → ∞ for Iout → Ilim. Since

| cos Ψ| ≤ 1, the limiting regime exists when
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0
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n
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n

nl
 = 2

Figure 8.5: Transfer characteristics of nonlinear periodic structures with unbalanced

nonlinearity. The threshold between limiting regime and multistability is nnl = 4/3.

n2k ≥
3|nnl|

4
. (8.32)

In the opposite case, i.e. when n2k < 3|nnl|/4, no limiting regime is possible and

the system is bistable or multistable. Figure 8.5 shows the dependence Iout(Iin) for

n0k = 0, n2k = 1 and three values of nnl. The value nnl = 1 falls within the domain

(8.32) and therefore the structure displays the limiting regime. On the other hand, the

values nnl = 1.4 and nnl = 2 are outside of the domain (8.32) and the structure displays

multistability which shrinks for strongly unbalanced gratings, i.e. when nnl grows.
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8.3 Conclusions

Optical bistability has been previously predicted and demonstrated by other researchers.

However, prior to this work, no research has been published that would provide an

in-depth analysis of the conditions necessary for optical stability of nonlinear periodic

structures capable of supporting optical signal processing functions. In this chapter

such conditions were derived. They predict a threshold condition for optical stability in

terms of the material parameters and wavelength. This condition defines the regime in

which the rate of the shift of the central position of the nonlinear stopband exceeds the

rate of the growth of depth of the stopband at a given spectral position which leads to

bistability. It was proven that, in the stable regime, nonlinear periodic structures exhibit

saturation in the transmitted intensity at the limiting value. It was found that all-optical

limiting is best achieved in nonlinear periodic structures when the Kerr nonlinearity is

compensated exactly across the alternating layers, i.e. when the net-average nonlinearity

is zero and the spectral position of the stopband remains fixed with the increasing level

of illumination.
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Chapter 9

Theory of Pulse Shaping and

Compression in Balanced Nonlinear

Periodic Structures

Chapters 5 to 8 dealt comprehensively with the steady-state response of nonabsorbing

balanced nonlinear periodic structures. Since realistic optical signal processing would

involve mostly pulsed illumination, this chapter will examine the time-dependent response

of these structures. Time-domain analyses of non-solitonic pulse propagation through

balanced nonlinear periodic structures with and without built-in linear grating will be

presented.

Numerical simulations that produced results presented in this chapter were carried

out in collaboration with Winnie Ye. The work presented in this chapter was published

in Refs. [139–141].
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9.1 Case I: n0k=0

The structures considered in this section are the same as in chapter 5. They have matched

linear indices nln1 = nln2 = nln and opposite Kerr coefficients nnl1 = −nnl2 = n2 in

the adjacent layers. The coupled-mode system (4.20)–(4.21) was used to simulate the

response of such nonlinear periodic structures. Throughout the simulations, the center

frequency of the incident pulses was fixed at the Bragg resonance ω0 = cnln

2Λ
. The average

index of refraction was taken to be nln=1.5.

The incident pulses were assumed to take the Gaussian form of:

Iin(T ) = Ipeak e−
(T−µ)2

ln 2σ2 , (9.1)

where Ipeak is the peak intensity of the pulse, µ is the time-delay of the pulse, and 2σ is

the pulse duration as the full width at half maximum (FWHM).

Figure 9.1 depicts the pulse energy transmittance as a function of pulse temporal

width for fixed incident intensity of Ipeak = 0.01|n2|. The graph shows that the limiting

behaviour of the device depends on the pulse bandwith.
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Figure 9.1: Pulse energy transmittance as a function of the pulse width for a fixed peak

pulse intensity of Ipeak = 0.01|n2|.

The long-duration pulses in Figure 9.1 exhibit the desired limiting behaviour because

their relatively narrow spectral bandwidth lies entirely within the induced stopband of the

nonlinear grating. This leads to bandwidth-independent transmittance. Short-duration

pulses, on the other hand, have a spectral bandwidth which exceeds the width of the

dynamic stopband, resulting in transmission of the spectral portion of the power which

lies outside of the stopband of the device. The transition region between regimes of

relative wide and narrow pulse bandwidths is indicated by the knee in the characteristics

of Figure 9.1. This occurs when the pulse bandwidth ∆ωpulse and the bandwidth of

nonlinear grating at the peak pulse intensity ∆ωgrating
peak become comparable:

∆ωgrating
peak =

8|nnl|Ipeak

πnln

ω0 ≈ ∆ωpulse. (9.2)
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Figure 9.2: Temporal intensity profiles of input and output pulses after transmission

through a 360-period long device for input pulse widths of: (a) 240 Λ
c

and (b) 570 Λ
c
.
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The decay of the pulse amplitude gives an example of the non-solitonic character

of propagation. The shape of Gaussian pulses is strongly distorted during propagation.

For a fixed pulse peak intensity, the degree of distortion depends on the length of the

structure and the length of the pulse. Figures 9.2(a) and 9.2(b) show the transmitted

pulse shapes through a 360-period long device for two different temporal widths.

Since the bandwidths of both pulses are narrower than the effective bandwidth of the

device, it is justified to study the intensity self-patterning of the pulses while neglecting

potential effects of incomplete reflectance across the spectrum. To explain the distortion

in transmitted pulses, the time-dependent transmittance of the induced nonlinear grating

is calculated and illustrated in Figure 9.3(a) and 9.3(b).

For the shorter pulse length of 240 Λ
c

in Figure 9.3(a), the forward- and backward-

propagating waves form their strongest instantaneous gratings at different times. The

backward-propagating wave gives rise to an additional delayed echo of the transmitted

pulse in the time-dependent transmittance, causing a dip in the transmitted pulse of

Figure 9.2(a). When the incident pulse is longer than the device, as in Figure 9.2(b), the

strongest instantaneous gratings are formed roughly at the same time period for forward-

and backward-propagating waves (Figure 9.3(b)). This results in a more uniform intensity

limiting throughout the entire temporal length of the pulse, than in the case of a shorter

pulse.
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Figure 9.3: Heuristic analysis of pulse shaping in a 360-period long nonlinear grating.

The time-dependent instantaneous transmittance is attributed to contributions from the

forward- and backward-propagating electric fields for an input pulse widths of: (a) 240

Λ
c

and (b) 570 Λ
c
.
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9.2 Case II: n0k < 0

This section considers propagation of pulses through the balanced nonlinear periodic

structures with a built-in out-of-phase linear grating. It was shown in chapter 7 that

under continuous-wave illumination such structures exhibit S- and N- transfer charac-

teristics capable of supporting optical switching, hard-limiting and logic gating. This

section will study how the out-of-phase linear grating allows for a dynamic balance of

the intensity-induced nonlinear grating as the pulse propagates through the structure.

In the following analysis the intensity Icl = |n0k|/n2k will be referred to as the closing

intensity. The closing intensity causes the nonlinear index change to balance completely

with the out-of-phase linear grating. When the balance between linear and nonlinear

grating closes the overall grating profile the device is locally transparent for a given

section of a pulse.

Figures 9.4(a) and 9.4(b) shown the pulse peak transmitted and reflected intensity

versus the pulse peak incident intensity of a 240 Λ
c
-long pulse that is assumed to be

launched at structures of various lengths with linear built-in out-of-phase gratings of

n0k = −0.01.

At small incident pulse intensities the linear built-in grating reflects most of the

light, resulting in a transmittance close to 0. The transmittance gradually increases as

the increasing intensity-induced nonlinear index change offsets the linear grating. The

closing and the reopening of the grating are responsible for the S -curve character of the

transfer function in Figure 9.4(a). As argued in the steady-state analysis of chapter 7,

the S-shape transfer characteristics support logic OR gate operation. The transmittance

is at its maximum when the peak intensity of the incident pulse is at the closing intensity.

Under these conditions, the pulse regions around the peak of the pulse bleach the grating,

permitting the propagation of pulse.
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Figure 9.4: (a) Peak transmitted intensity versus peak incident intensity of 240 Λ
c
-long

pulses for devices that are 140, 360, and 580-periods long (b) Corresponding reflected

peak intensity as a function of peak incident intensity.
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It is of practical importance to consider the influence of device length on transmitted

pulse shapes.
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140 Bragg periods
360 Bragg periods
420 Bragg periods
720 Bragg periods
1440 Bragg periods
2160 Bragg periods

0

2

1

In
te

ns
ity

 (I
cl
=∆
n l

n/2
|n

2|)

1.5

0.5

0

τ0 = 240 c
Λ

Time (τ0 )
3 61 2 4 5

0.86τ0

0.58τ0

0.46τ0

0.36τ0

0.12τ0

Figure 9.5: Output temporal response of the device with length L = 140 Λ, 360 Λ,

420 Λ, 720 Λ, 1440 Λ, and 2160 Λ, for a fixed input pulse with Ipeak = Iclosing and

FWHM = 240Λ
c
.

Figure 9.5 shows the transmitted temporal profiles of 240Λ
c
-long pulses with Ipeak =

Iclosing assumed to be launched on structures of various widths with the built-in linear

grating of ∆nln = −0.01. The initial stage of pulse compression occurs at distances

L < 700Λ, when the compressed Gaussian pulse preserves a single-peak structure. For

longer devices, further peak intensity increase is accompanied by a weak distortion near

the edges of the pulse. For devices with L > 1400Λ the pulse splits.
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Figure 9.6: Output transmitted pulse shapes when for incident pulses with peak intensity

of: (a) Ipeak = 0.5Iclosing and (b) Ipeak = 1.5Iclosing. The width of the pulse is FWHM =

240Λ
c

and the device length is equal to 360 Bragg periods.
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The compression effects are best observed when the peak pulse intensity Ipeak is set

to close the grating completely, i.e. Ipeak = Iclosing. If the intensity-induced nonlinear

grating is small compared to the out-of-phase linear grating, the transmittance is expected

to be lower due to the reflection by the linear grating. Figure 9.6(a) shows the low

transmittance and decay of the pulse with the peak intensity of Ipeak = 0.5Iclosing. Such

a peak intensity gives a maximum nonlinear grating of 0.005, which is lower than the out-

of-phase linear grating of ∆nln = 0.01. In the case of peak incident intensity being larger

than the closing intensity (as in Figure 9.6(b) with Ipeak = 1.5Iclosing), pulse compression

will be accompanied by a more severe temporal shape distortion than in the case of

Ipeak = Iclosing. The central part of this pulse with intensity higher than that of Iclosing,

i.e. the part of the pulse that creates the effective grating that is out-of-phase with the

initial linear grating, is most distorted.

9.3 Conclusions

This chapter examined the time-dependent response of nonabsorbing balanced nonlin-

ear periodic structures whose optical signal processing functionality was introduced in

chapters 4-8. It was predicted through theory that the intensity limiting and switching

functions of the devices proposed are supported in the case of pulsed illumination under

the assumption of instantaneous nonlinear response.

This chapter discussed the propagation of ultrashort pulses in stable systems with

no built-in grating, and with a built-in linear grating that is out-of-phase with the dis-

tribution of Kerr coefficients. In the absence of the linear grating, the transmittance of

pulses with small bandwidth, as compared to the bandwidth of the induced grating, is

independent of pulse width and exhibits peak intensity limiting. In the presence of a

built-in linear out-of-phase grating, the S -shaped transmittance characteristics and tem-

poral compression effects have been predicted due to the closing and re-opening of the
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effective refractive index grating. It was shown that the magnitude of the pulse distortion

depends strongly on the length of the device and peak intensity of the pulse.



Chapter 10

Experimental Assessment of the

Applicability of Specific Nonlinear

Optical Materials to Nonlinear

Periodic Devices

The literature review of chapter 3 concluded that the successful potential implementa-

tion of nonlinear periodic structures relies on: increasing their optical signal processing

functionality; and finding nonlinear materials with good figures of merit that can be

incorporated into periodic structures.

Chapters 5 to 9 proposed new methods of optical signal processing using nonlinear

periodic structures. By changing the structure and the materials of the optical elements

they could limit, switch, perform logic operations or analog-to-digital conversion. This

analysis was strengthened by studying the sensitivity of the response of the signal pro-

cessing elements proposed to weak disorder and to variations in the material parameters.

Chapters 10 and 11 constitute the experimental part of this thesis. They aim to

address the additional challenges that inhibit the successful implementation of nonlinear

137



138 Chapter 10. Experimental Assessment of the Applicability ...

periodic optical signal processing devices. Following the investigation and evaluation of

the nonlinear properties of promising materials in chapter 10, chapter 11 will demonstrate

the illumination-dependent response of novel nonlinear periodic structures.

This chapter is organized as follows:

Following the introduction of laser systems and experimental techniques used, this

chapter presents the results of the measurements of nonlinear properties of selected non-

linear materials. The survey of materials studied starts with the demonstration of the

non-resonant nonlinear response of two organic compounds: DR1 and MEH-PPV. The

next section of this chapter presents the results of direct measurements of resonant non-

linear properties of inorganic crystalline semiconductor MQWs and PbS semiconductor

nanocrystals. Throughout the search for the appropriate materials it was sought to max-

imize simultaneously both the magnitude of the nonlinear index change and the figures

of merit. The fulfilment of these requirements is fundamental to the applicability of a

given material to the large-index change theory proposed in the theoretical part of this

work.

The results presented in this chapter were published in Refs. [39,142–148].
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10.1 Experimental Apparatus

This section introduces the equipment and experimental techniques used to characterize

the linear and nonlinear properties of materials.

10.1.1 Laser Systems and Spectrophotometer

Two laser systems were used to measure the nonlinear refractive and absorptive properties

of the materials. The first laser system was also used to characterize the nonlinear

periodic structures described in chapters 11 and 12.

The first laser system is illustrated in Figures 10.1 and 10.2. It is composed of a com-

puter controlled Light Conversion TOPAS optical parametric amplifier (OPA) pumped

by a Quantronix Titan regenerative (RGA) and multipass (MPA) amplifier. The Titan

amplifier is itself pumped by a Quantronix YLF (modified YAG) pump laser and seeded

by a Coherent Verdi diode-pumped Ti-Sapphire laser Vitesse.

The Vitesse seed source produces broadband ultrashort 30 fs pulses at a repetition

rate of 80 MHz at a wavelength of 802 nm. The average power of this ultrafast pulse train

is 300 mW. The YLF pump laser provides high-energy 150 ns pump pulses at 527 nm at

a repetition rate of 1 kHz with an average power of 12–14 W.

Inside the Titan amplifier the seed and pump pulses are combined. First, the 30 fs

seed pulses are temporally stretched to 150 ps using a pair of gratings and only a part of

the initial bandwidth is selected for amplification. These stretched pulses are then sent

to the RGA where they are combined with a part of the YLF pump. The repetition rate

of the RGA cavity is controlled by the Pockels cell operating at a YLF repetition rate

of 1 kHz. The second stage of amplification takes place in the multipass amplifier. Here

the pre-amplified pulses are combined with the rest of the pump light in a Ti:Sapphire

crystal. The energy of the pulses coming out of the multipass amplifier is about 2.5 mJ.

The last stage of the Titan amplifier is a compressor in which the temporal width of each
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Figure 10.1: General layout of the first laser system used: 1. VITESSE seed laser

[λ=800 nm, rep. rate = 80 MHz, τ = 30 fs, power = 300 mW]; 2. YLF pump laser

[λ=533 nm, rep. rate = 1 kHz, τ = 150 ns, power = 12-16 W]; 3. TITAN amplifier

[λ=800 nm, rep. rate = 1 kHz, τ = 1.7 ps, power = 2.0 W]; 4. TOPAS OPA [280 nm <

λ < 2600 nm, rep. rate = 1 kHz, τ = 1.2 ps, 8 mW < power < 430 mW].

pulse is reduced to 1.2 ps using a pair of gratings. These bandwidth-limited pulses come

out at a repetition rate of 1 kHz, have a bandwidth of 0.7 nm, and an average power of

1.8 W.

In the TOPAS OPA various spectral components are produced from the 800 nm laser

illumination produced by the Titan. First, a superfluorescence is generated inside the

TOPAS in a BBO crystal. Using a diffraction grating, and by phase matching angle of

the nonlinear crystal, a parametric conversion (signal and idler beams) is achieved from
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1
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3.

4.

Figure 10.2: Picture of the OPA laser system at installation. The numbers 1 to 4 in the

figures correspond to the system components as explained in the caption of Figure 10.1.

the Titan pump light. By using a variety of crystals and nonlinear mixing techniques,

light at wavelengths ranging from 280 nm to 2.6 µm can then be generated from the

signal and idler beams. The average output power of the TOPAS varies from 8 mW to

400 mW depending on the wavelength range. The pulse width ranges from 0.9 to 2 ps

also depending on the wavelength.

The second laser system used in the measurements of nonlinear properties of materials

presented in this chapter was a Coherent Mira Ti:Sapphire laser pumped by an Innova 300

laser. The Innova 300 is an Ar-Ion tube source producing multi-line continuous-wave

illumination in the vicinity of a wavelength of 510 nm at at average power of up to 8
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W. The mode-locked Mira laser produces 150 fs pulses tunable from 780 nm to 900 nm

at a repetition rate of 76 MHz. The average power from the Mira ranges from 100 to

300 mW. In order to eliminate the heating effects, the effective repetition rate of the

pulse train produced by the second laser system was often reduced to 5 kHz with an

electro-optic Pockels cell switch. Pockels cell is made out of two crossed polarizers that

block incident illumination in the absence of high voltage bias. In the presence of high

voltage, the polarization of the incident light is rotated within the crystal, allowing full

transmittance.

The measurements of linear transmittance and absorbance were carried out with a

Cary 500 spectrophotometer that allows spectral tunability in the 300 nm to 2.9 µm

spectral range.

10.1.2 Z-scan Technique

Experimental Set Up

Measurements of nonlinear properties of materials were performed with a single-beam

z-scan experiment [149, 150]. Z-scan technique allows determination of both real and

imaginary parts of the nonlinear response. A layout of the z-scan experiment used in

this work is shown in Figure 10.3 [151].

Following parametric amplification in the TOPAS, filters and wavelength separators

were used to single out the desired wavelength. Two crossed polarizers with an in-

serted half-waveplate controlled the beam intensity. The laser beam was focused and

the transmittance through the sample was recorded as the position of the sample was

varied relative to the focal length of the lens. A reference beam detector was used to

monitor the fluctuations in the power of the incident laser beam. Z-scan was performed

in two configurations: with and without an aperture on the detector. Measurement with

an aperture in place allowed the determination of the sign and magnitude of the Kerr
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Figure 10.3: Schematic illustration of a z-scan experimental setup used in this work.

Diagram taken from Ref. [151].

coefficient, while measurement with no aperture allowed the determination of the sign

and magnitude of nonlinear absorption [149]. Labview software was used to collect data

and automate experiments.

Qualitative Description of Ideal Z-scan Traces

Figures 10.4 and 10.5 show high-quality, normalized closed and open-aperture z-scan

traces for a sample exhibiting negative diffractive nonlinearity and saturation of absorp-

tion.

When the sample is far from the focus, the intensity experienced by the sample is

low, and hence no transmittance change is recorded in the closed-aperture trace. As
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Figure 10.4: Ideal normalized closed-aperture z-scan trace for the sample with a negative

refractive nonlinearity.

the sample is translated towards the focal point, the level of illumination experienced by

the sample increases and the sample starts acting as a nonlinear defocusing lens. This

shifts the effective focal point away from the sample, making the size of the transmitted

laser beam at a closed-aperture detector smaller than the initial radius. An increased

transmittance is recorded by the closed-aperture detector, manifested by the peak in the

closed-aperture z-scan trace. As the sample moves closer towards the focus, there is less

space between the sample and focal point to shift the effective focal point, and hence

the closed-aperture transmittance decreases. When the sample is exactly at the focus

the closed-aperture transmittance is equal to the initial transmittance. As the sample

is translated past the focus the opposite response is recorded by the closed-aperture

detector. The sample defocuses again, increasing the size of the transmitted beam at the
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Figure 10.5: Ideal normalized open-aperture z-scan trace for the sample exhibiting satu-

ration of absorption.

closed-aperture detector and hence decreasing the nonlinear transmittance. When the

sample is moved away from the focus, the transmittance descents to its initial value.

If the material exhibits positive nonlinearity, then the closed-aperture trace is op-

posite to the one shown in Figure 10.4, i.e. it has valley-peak, rather than peak-valley

characteristics.

Unlike the closed-aperture measurement, the open-aperture measurement of a z-scan

experiment records changes in the absolute illumination-dependent transmittance (Fig-

ure 10.5). It provides information as to how much light is transmitted through the

sample depending on the proximity of the sample to the focal point. The open-aperture

scan provides information about the absorbing, rather than refracting, properties of the

sample analyzed. Regardless of the sample position, the open-aperture detector encom-
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passes the full transverse extent of the beam. Therefore the shape of the open-aperture

transmittance curve is symmetrical.

If the material exhibits saturation of absorption, then the open-aperture trace is a

symmetric peak (Figure 10.5). Multiphoton absorption manifests itself with a valley

centered at the focal point in the open-aperture z-scan trace.

Experimental Challenges Associated with the Z-scan Technique

There are many experimental challenges associated with obtaining z-scan traces of the

high quality shown in Figures 10.4 and 10.5. Apart from the requirements of the sample

scanned being nonlinear, there are additional experimental problems associated with: the

alignment of the experimental set up, the quality of the laser beam, and the quality of

the sample.

The z-scan measurement of the refractive nonlinearity using a closed-aperture de-

tector places very strict requirements on the collinearity and alignment of the optical

components in the path of the beam. Especially, the closed-aperture detector has to

collect the exactly central part of the beam transmitted through the sample. Unless the

aperture is well centered on the transmitted beam, the closed-aperture shape will look

distorted and results will be inconclusive.

As the beam is focused and defocused by the nonlinear sample, the size of the beam on

the open-aperture detector changes. It has to be ensured that, regardless of the position

of the sample during the experiment, the energy across the full transverse extent of

the beam is encompassed by the open-aperture detector. This may require additional

focusing in front of an open-aperture detector.

The quality of the laser beam used for z-scan experiments has to be high. Meaningful

interpretation of z-scan traces requires that the experiment be performed with the beam

whose transverse profile is either Gaussian or has a top-hat shape.

The stability in time and direction of the laser beam is also very important. Despite
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the presence of the reference detector in the z-scan set up, the power fluctuations of the

laser have to be significantly lower than the changes in the transmittance that are induced

by the nonlinear response. Spatial instability leads to different sections of the sample

being illuminated at various stages during the experiment, and destroys the collinearity

of the set up.

The OPA laser system often used throughout the work presented in this thesis in the

z-scan experiments produces light via harmonic generation and sum-frequency mixing

within certain spectral ranges. As is common in such systems, the transverse shape of

the beam is often distorted, and the temporal and pointing stability of laser beam are

often low. The beam spatial filtering and frequent system optimization are commonly

required.

The samples used in the z-scan experiment have to be of a high optical quality.

Surface roughness, compositional inhomogeneity, and non-parallelism of the facets are

most common problems associated with the sample quality. Roughness on the order of

the optical wavelength leads to scattering of the beam and destroys the coherent phase

transformation induced by the refractive nonlinear effect. The inhomogeneity of the

sample places very strict requirement on the pointing stability of the laser beam and on

the collinearity of the laser system. In addition, it decreases the reproducibility of the

experimental results. Non-parallel facets steer the beam away from the initially centered

closed-aperture detector.

If the problems associated with the sample quality are not too severe the techniques

of dividing high-power by low-power scans, or subtraction of normalized low-intensity

background from the normalized z-scan signal can be used to increase the quality of the

measured data prior to analysis.

There are specific problems associated with each type of sample analyzed in this work.

The highest quality samples were obtained by dissolving a nonlinear agent in an

optically linear solvent and placing the resulting liquid in a cuvette. In this case it had



148 Chapter 10. Experimental Assessment of the Applicability ...

to be ensured that the solution was well dissolved and no aggregation took place.

Thin films of organic materials spin-coated on glass substrates often suffer from in-

homogeneity and surface roughness. The preparation of sufficiently high-quality samples

requires careful control of the spin coating acceleration, speed, and duration, and appro-

priate choice of solvent viscosity.

Inorganic crystalline samples grown by molecular beam epitaxy resulted in very well

ordered layers with perfect top-surface quality. However, the back facet had to be polished

to eliminate phase distortion of the transmitted beam.

Thick samples of organic materials were fabricated with the press method. The non-

linear solid state materials were inserted between two flat glass slides, melted, pressed,

and then cooled down. Inhomogeneity and non-parallelism of the facets were most com-

mon problems associated with samples fabricated using this technique.

Interpretation of Results

To determine nonlinear coefficients from measured z-scan traces, the closed- and open-

aperture traces are normalized to their low-intensity value. Since the closed-aperture

traces are influenced both by the nonlinear refraction and nonlinear absorption, the

normalized closed-aperture traces are divided by the normalized open-aperture traces to

a yield purely refractive signature.

For the case of illumination with Gaussian pulses, the Kerr coefficient n2 can be

obtained from the divided trace using the following formula:

n2 =
1

0.406

α0λ

2πI

1

1− e−α0L

1

(1− S)0.25
∆Tp−v (10.1)

where α0 is the linear absorption, n0 is the linear index of refraction, I is the intensity

at the focus, L is the thickness of the sample, S is the transmittance of aperture when

the sample is far from the focus and ∆Tp−v is the change in transmittance between the

two peak-valley extrema of the divided normalized closed-aperture trace [149].
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In some nonlinear measurements the refractive nonlinearity is not a purely third-order

nonlinear effect, but a combination of nonlinear processes of various orders. In this case

it is more appropriate to estimate nonlinear index change ∆n, rather than n2 from:

∆n =
1

0.406

α0λ

2π

1

1− eα0L

1

(1− S)0.25
∆Tp−v (10.2)

To obtain the nonlinear absorption coefficient β from the open-aperture trace the

following formula is used:

β =
α0

I(1− e−α0L)

(
6.592T 2

min(max) − 15.791Tmin(max) + 9.213
)

(10.3)

where the Tmin(max) is the lowest (highest) normalized transmittance in the open-aperture

trace of the sample exhibiting multiphoton absorption (saturation of absorption).

Again, it is often more appropriate to estimate the change in the absorption ∆α = βI,

rather than the purely electronic coefficient β. The following formula should then be used:

∆α =
α0

1− e−α0L

(
6.592T 2

min(max) − 15.791Tmin(max) + 9.213
)

(10.4)

Expressions (10.3) and (10.4) provide correct estimates of nonlinear absorption if

the change in the open-aperture transmittance is less then 10%. Otherwise a different

approach is necessary to calculate the change in the absorption from the experimental

data.

In some of the results presented in this chapter the transmittance changes were sub-

stantially larger than 10%. In such cases, in extracting nonlinear absorption from the

data, the fluence across the sample was assumed to decay according to dP
dz

= −α0P +βP 2.

The change in the absorption was obtained from the change in the open-aperture trans-

mittance according to:

∆α =
(1− Tmin(max))e

−α0Lα0

(eα0L − 1)Tmin(max)
(10.5)
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Elimination of Cumulative Effects

If the relaxation time of the nonlinearity is shorter than the temporal pulse spacing

the nonlinear effect will accumulate in time. Such cumulative nonlinearities are usually

caused by the thermal effects and a relatively long time of heat dissipation. In most of

the experiments presented in this section it was desired to measure the influence of the

pulse on its own propagation rather than the cumulative effect.

Because the cumulative thermal nonlinear effects have long response time, their in-

fluence increases with the repetition-rate of the laser source. In order to eliminate the

heating effects during measurements with the 76 MHz repetition rate Mira, a Pockels cell

was used to reduce the repetition rate to 5 kHz.
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Figure 10.6: Normalized closed-aperture z-scan trace showing a negative nonlinear ther-

mal response of CS2 at a repetition rate of 76 MHz. The line corresponds to the nonlinear

refraction fit.

Figures 10.6 and 10.7 prove that this technique was successful. These two plots show
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Figure 10.7: Normalized closed-aperture z-scan trace showing ultrafast positive index

change of CS2 at a repetition rate of 5 kHz.

normalized closed-aperture z-scan traces of measurements taken on carbon disulphide

(CS2) at repetition rates of 76 MHz and 5 KHz. The nonlinear signature from the high

repetition rate scan results in a negative thermal refractive nonlinearity, while at the low

repetition rate the ultrafast refractive nonlinearity has a positive sign.

In general, the absence of measurable cumulative effect at a given repetition rate can

be verified by performing another experiment under identical experimental conditions

with the exception of different repetition rates. In the absence of cumulative effects the

normalized z-scan traces should be identical for the two repetition rates. All results

presented herein have been verified not to depend on the repetition rate, and hence are

of nonthermal origin.

Having introduced the laser sources and experimental technique used for nonlinear
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measurements throughout this work, the rest of this chapter will present the results from

the nonlinear measurements on a variety of materials.

This sections will follow how the research reported in this work has advanced the

field of nonlinear optical materials. Section 10.2 will describe the results from the mea-

surements of non-resonant nonlinearites. Section 10.3 will describe measured resonant

nonlinear response of selected materials.

10.2 Non-resonant Response of Nonlinear Materials

Because of the prospect of ultrafast nonabsorbing nonlinearities, the search for mate-

rials throughout this work has initially concentrated on determining the applicability

of non-resonant nonlinear response to optical signal processing using nonlinear periodic

structures. The real and imaginary parts of the nonlinear response of various material

systems were measured and the corresponding nonlinear figures of merit were computed.

10.2.1 Non-resonant Nonlinear Response of Azobenzene Dye

Disperse Red 1

Based on the published reports, it was determined that pseudo-stilbene type azobenzene

dyes represent one particularly promising group of nonlinear materials.

The structure of the pseudo-stilbene type azobenzene molecule is depicted in Fig-

ure 10.8. It consists of an azo group -N=N- between two benzene rings, and push-pull

donor and acceptor groups on the opposite sides of the benzene rings [152, 153]. For

simplicity, from here on the pseudo-stilbene type azobenzenes will simply be referred to

as azobenzenes. As shown in Figure 10.9 azobenzenes exhibit a fundamental absorption

maximum between 400 and 500 nm.

The measurement of the nonlinear properties of azobenzenes was initially performed at

the illumination wavelength of 760 nm on 2%, 5%, and 10% weight by weight solutions of
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Figure 10.8: The molecular structure of pseudo-stilbene type azobenzene molecule: the

azo group, two benzene rings, donor and acceptor groups.
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Figure 10.9: Absorption spectra of Azobenzene Dye Disperse Red 1. The absorption

peaks at 490 nm.

azobenzene dye Disperse Red 1 (DR1) dissolved in THF. DR1 was synthesized by Chantal

Paquet from the Chemistry Department at the University of Toronto. The results are

presented in Figure 10.10. The values of Kerr coefficient n2, nonlinear absorption β, and
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Stegeman W and T figures of merit are shown.

The values of nonlinear index of refraction range from −1.5 × 10−15 cm2/W to

−1.3 × 10−14 cm2/W. β coefficients range from 0.7 ×10−11 cm/W to 3.7 ×10−11 cm/W.

Both n2 and β increase with increasing concentration pretty linearly. This takes place

since the concentrations of the solutions are low enough that the molecules remain es-

sentially noninteracting.
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Figure 10.10: Results from the measurement of nonlinear properties at a laser wavelength

of 760 nm of the solution of azobenzene dye Disperse Red 1 in THF at concentrations

of 2%, 5%, and 10%. a) Kerr coefficients; b) two-photon absorption coefficients; c) W

figure of merit; d) 1/T figure of merit.

Since at 760 nm the DR1 is transparent the linear figure of merit, W , is very good (W
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of at least unity is considered good) . The nonlinear figure of merit, T , is also acceptable

(1/T larger than 1 is considered good).

10.2.2 Non-resonant Nonlinear Response of MEH-PPV/PMMA

Another material whose non-resonant nonlinear properties were examined was a poly-

mer blend of MEH-PPV (poly(2-methoxy, 5- (2 ′-(ethyl)hexyloxy)-p-phenylene vinylene)

within a PMMA (polymethyl methacrylate) host.

Poly(p-phenylene vinylene) (PPV) and its derivatives have been demonstrated to

exhibit appreciable ultrafast optical nonlinearities [154,155]. However, PPV is insoluble

and hence is not easily processable. To allow processability into solid-state samples, PPV

or one of its derivatives must be embedded within a soluble host.

In this work this was achieved by attaching MEH-PPV — a soluble derivative of

PPV — to the PMMA host. PMMA is a good candidate for the host material since it is

amorphous, has good optical transparency, and is readily processable into thin and thick

films. The thickness of the sample prepared by blade casting was 0.2 mm. The weight

ratio of MEH-PPV to PMMA was 0.2. A 0.2 mm sample of PMMA was also prepared to

allow the comparison of the its nonlinear response to that of the MEH-PPV composite.

The MEH-PPV was synthesized by Jiguang Zhang from the Chemistry Department

at the University of Toronto, while the film was prepared and nonlinear measurements

were taken by the author of this thesis and by Yunakun Lin from the Department of

Electrical and Computer Engineering at the University of Toronto.
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Figure 10.11: Linear absorption spectra of pure PMMA (dotted line) and MEH-

PPV/PMMA composite (solid line).

The linear optical losses, including absorption and scattering, are shown in Fig-

ure 10.11 for both MEH-PPV/PMMA composite and pure PMMA. For the composite,

the absorption peak is evident near 485 nm with the maximum absorption value of 135

cm−1. Above 600 nm, the optical loss gradually decreases to a minimum near 1050 nm.

At the wavelength of 840 nm, at which nonlinear experiments were carried out, the linear

loss was found to be 6.2 cm−1. Pure PMMA is essentially transparent from 380 to 1100

nm.
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Figure 10.12: Normalized open-aperture z-scan transmittances traces of MEH-

PPV/PMMA (circle) and pure PMMA (triangle) film samples using 100 femtosecond

pulses at λ=840 nm. The solid line is a theoretical fit to the open-aperture trace of

MEH-PPV/PMMA.

Figure 10.12 shows the results of the open-aperture z-scan measurement at 840 nm

for MEH-PPV/PMMA composite and for pure PMMA. The dip in a normalized trans-

mittance from MEH-PPV/PMMA suggests that MEH-PPV/PMMA exhibits two-photon

absorption with a calculated value of β=1.5±0.2 cm/GW. Multiphoton absorption from

pure PMMA is not observed.
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Figure 10.13: Normalized closed-aperture z-scan transmittance trace of MEH-

PPV/PMMA composite. The solid line is a theoretical fitting.

The nonlinear refractive index n2 was obtained from closed-aperture z-scan measure-

ments shown in Figure 10.13. The value of the Kerr coefficient was calculated to be n2=-

2.1±0.2×10−13 cm2/W with the maximum measured index change of ∆n = −9.02×10−4

at intensity of 6.1 GW/cm2. Together with the value of β and linear absorption mea-

surements this indicates that the 0.2 MEH-PPV/PMMA composite has figures of merit

W=1.7 and 1/T = 0.83 at 840 nm for 119 fs-wide pulses at the 5 kHz repetition rate

used in this experiment.
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10.2.3 Thermal Response of Organic Nonlinear Materials

While cumulative thermal nonlinearities are not at the focus of this work, the ther-

mal nonlinearities of various compounds were also examined to determine their strength

relative to the ultrafast nonlinearities. Results from the high-repetition rate z-scan mea-

surements on the two solid state samples are described below.
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Figure 10.14: Thermal nonlinear index change of solid samples of DR1/PMMA and MePh

as a function of intensity.

The two samples analyzed were: 2% DR1 attached to PMMA and metallorganic

compound poly(methylphenylferrocenylsilane) (MePh). The measurements were taken

with the Mira Ti:Saph oscillator at a repetition rate of 76 MHz at 840 nm. At this

wavelength both materials are transparent. The solid state samples were fabricated using

the press method by Chantal Paquet and were 1 mm thick. The results are summarized

in Figure 10.14.

Both materials exhibited negative nonlinear index changes that saturate at |∆n| <
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0.001 at intensities on the order of few GW/cm2. Thus, the thermal nonlinear index

changes measured at high-repetition rates are comparable to the ultrafast nonlinear index

changes measured at lower repetition rates. As the repetition rate was reduced to values

below 10 kHz, no cumulative nonlinearities were measured.

In summary, section 10.2, using selected examples, has proven that non-resonant

nonlinearities can provide index changes |∆n| < 0.001 with good figures of merit, when

illuminated with light at pulse intensities of the order of 10 GW/cm2.

10.3 Resonant Nonlinearities

Simultaneously with the measurements of the non-resonant nonlinear response experi-

mental research was carried out on the incorporation of nonlinear materials into peri-

odic structures. It was discovered that the fabrication of high-quality one- and three-

dimensional samples with more than few 10s of layers would be more involved than

anticipated initially. A relatively low number of layers, in turn, increases the magnitude

of the required induced ∆n that must be obtained in order for nonlinear grating response

to become observable.

Additionally since this work deals with the dynamic observable movement and change

of shape of the stopband, rather than with solitonic effects, new constraints arise on the

material coefficients. In order for the change in the nonlinear stopband to be observable,

the magnitude of ∆nnl has to be comparable to the magnitude of the built-in linear index

difference. This again translates into a requirement of large nonlinear index changes.

Throughout this work, the search for nonlinear materials that could be successfully

incorporated into periodic structures has moved away from small-index-change non-

resonant response towards resonant nonlinearities where index changes on the order of

∆n > 0.1 are achievable.
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Results of measurements of resonant nonlinear refractive and absorptive index changes

in two different sets of inorganic crystalline semiconductor MQWs and in strongly-

confined PbS nanocrystals are reported in this section.

10.3.1 Bandedge Saturation of Absorption in GaAs/AlGaAs

Multi-Quantum-Wells

As discussed in chapter 3 it has been previously predicted and in some cases demonstrated

at isolated wavelengths in the vicinity of 800 nm and 1.5 µm, that bandedge nonlineari-

ties in inorganic crystalline bulk and MQW semiconductors result in strong saturation of

absorption and large nonlinear index changes. Thus, it was decided to measure the non-

linear index changes directly to fully asses the applicability of the semiconductor band-

edge nonlinearities to optical switching. Nonlinear properties of two kinds of semicon-

ductor MQWs (In0.530Al0.141Ga0.329As/ In0.530Ga0.470As and GaAs/Al0.28Ga0.72As) were

measured. Both sets of samples were grown by Anthony SpringThorpe and Marcius

Extavour at Nortel Networks. In this subsection the measurements of the saturation of

absorption in GaAs/Al0.28Ga0.72As MQWs are reported over the wavelength range from

785 nm to 874 nm.

The samples analyzed here were grown using molecular beam epitaxy on a single-side

polished Si-doped 3′′ GaAs 001 wafer. A high degree of crystalline perfection within

the layers and uniform thickness of the layers within the sample were confirmed with a

double-crystal x-ray diffraction measurement. The cross-section of the samples is shown

in Figure 10.15.



162 Chapter 10. Experimental Assessment of the Applicability ...

Si-doped GaAs wafer (001)

50 nm GaAs buffer

barriers: 21nm Al0.28Ga0.72As
wells: 10nm GaAs

60 barriers and 61 wells in total

100 nm AlAs lift-off layer

Figure 10.15: Cross-section of the GaAs/AlGaAs MQWs sample analyzed. Sixty-one

10 nm GaAs wells and sixty 21 nm Al0.28Ga0.72As barriers were grown on on Si-doped

001 GaAs 3′′ substrate.

The samples were made out of sixty-one 10 nm GaAs wells and sixty 21 nm Al0.28Ga0.72As

barriers. The total thickness of the sample was 1.87 µm. The structure was finished off

with a GaAs well rather than with a Al0.28Ga0.72As barrier in order to avoid the oxidation

of aluminum. Figure 10.16 shows that photoluminescence spectra of the sample analyzed

peaked at 850 nm.
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Figure 10.16: Photoluminescence intensity of the Al0.28Ga0.72As/GaAs MQWs sample.

The bandgap of the Al0.28Ga0.72As/GaAs MQWs samples analyzed is larger than the

bandgap of the GaAs substrate on which the sample was grown. The sample had to

be separated from the wafer to allow transmission measurements. A 100 nm AlAs lift-

off layer was grown between the wafer and the sample. Because of its high aluminum

content, the lift-off layer allowed selective etching.

Following growth, the sample was cleaved and ground on a SiC paper to about 120 µm

total thickness. The sample was then bonded to the glass slide using clear wax with the

MQWs side facing the slide. The bonded sample was immersed in a 4:1 citric acid/

hydrogen peroxide solution at a room temperature. Citric acid was prepared in a 1:1

mass ratio with H20 and citric acid powder (C6H8O7+H20). The etch was complete

when the back of the sample regained a near-specular finish and the sample became

translucent. A typical etch took about 7 hours.

The linear absorption spectrum of the sample analyzed is shown in Figure 10.17.
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Figure 10.17: Absorption spectrum of the GaAs/Al0.28Ga0.72As MQWs sample.

Several excitonic steps are visible, with the first one around the photon wavelength of

850 nm being the most distinct. The nonlinear absorbing properties were measured in

the spectral region around the first two excitonic peaks.

The nonlinear absorption measurements were made using the z-scan technique with

the Mira Ti:Saph oscillator whose repetition rate was reduced to 5 kHz using the Pockels

cell. In Figure 10.18 the results of the measurements are shown. The nonlinear absorption

is shown as a function of fluence for wavelengths of 785, 800, 820, 844, 848, 855, and

874 nm.

At each wavelength analyzed, absorption decreases with increasing fluence, with most

drastic changes taking place at the shortest wavelengths. At wavelengths of 844 and



10.3. Resonant Nonlinearities 165

0

1000

2000

3000

4000

5000

6000

7000

0 0.5 1 1.5 2
Fluence (mJ/cm2)

A
bs

or
pt

io
n 

(c
m

-1
)

785 nm
800 nm
820 nm
844 nm
848 nm
855 nm
874 nm

Figure 10.18: Change in the absorption in the bandedge region of GaAs/AlGaAs MQWs

samples at wavelengths of 785, 800, 820, 844, 848, 855, and 874 nm.

848 nm, which are near the exciton peak, the threshold fluence for the onset of the

saturation of the absorption is the lowest.

In Figure 10.19 the saturation fluences, defined here as the fluence above which no

noticeable change in the transmission/absorption takes place, are shown. The saturation

fluences decrease with increasing wavelength. The curve deviates from the general trend

around the first excitonic peak. There the saturation fluences are larger than if they would

be following the monotonic dependence on the wavelength observed at other wavelengths.

The results presented above have provided information about the saturation of absorp-

tion in a broad wavelength range around the first two excitonic peaks of semiconductor
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Figure 10.19: Saturation fluences of the GaAs/AlGaAs MQWs sample.

GaAs/AlGaAs MQWs analyzed. In addition, the measurements were taken using a sin-

gle wavelength-tunable beam, rather than using a pump broadband-probe arrangement

as in previous reports.

To determine the usefulness of the GaAs/AlGaAs samples analyzed for nonlinear

switching using periodic structures it was also necessary to determine the real, refractive

parts of the nonlinear response. However, the surface quality of the lifted-off sample

was insufficient to allow meaningful interpretation and reproducibility of closed-aperture

z-scan measurements. Thus, it was necessary to look for an alternative material system.
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10.3.2 Resonant Nonlinear Properties of InGaAs/InAlGaAs Multi-

Quantum-Wells

Following the measurement of saturation of absorption in AlGAAs/GaAs MQWs sam-

ples another semiconductor MQW sample was examined. This subsection describes

the results of the characterization of refractive and absorptive nonlinear response of

In0.530Al0.141Ga0.329As/ In0.530Ga0.470As MQWs. This material offered two major advan-

tages as compared to GaAs/AlGaAs samples analyzed in previous section: the spec-

tral region where the sample was expected to display the desirable nonlinear response

overlapped with the telecommunication region, and the sample did not require surface-

damaging lift-off process.

No lift-off was necessary since the bandgap of the sample was smaller than the

bandgap of the wafer. As such, the wafer was nonabsorbing in the bandgap region

of the sample, and transmission measurements through the combined wafer-sample sys-

tems were feasible. Because the nonlinear response of sample is orders of magnitude

stronger than that of the wafer, the interpretation of the results was not complicated

by the presence of the wafer. All of the measurements were carried out at illumination

levels at which the two-photon absorption of the wafer was negligible. This was validated

experimentally.

Throughout the measurement of the nonlinear response of the InAlGaAS/InGaAs

samples it was sought to determine how large nonlinear index changes can be obtained

and what are the associated figures of merit.
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The cross-section of the InAlGaAs/InGaAs sample analyzed is shown in Figure 10.20.

Using molecular beam epitaxy, one hundred and twenty-one 10 nm In0.530Al0.141Ga0.329As

barriers and one hundred and twenty 5 nm In0.530Ga0.47As wells were grown on an S-doped

(001) 400 µ thick InP 2′′ substrate, resulting in a total thickness of the nonlinear sample

of 1.81 µm. Following the growth, the back side of the wafer was polished to allow

transmittance measurements.

S-doped InP wafer (001)

50 nm InP buffer

barriers: 10nm In0.530Al0.141Ga0.329As
wells: 5nm In0.530GaAs

10 nm InP

121 barriers and 120 wells in total

Figure 10.20: Cross-section of sample. One hundred and twenty-one 10 nm

In0.530Al0.141Ga0.329As barriers and one hundred and twenty 5 nm In0.530Ga0.47As wells

were grown on on S-doped 001 InP ′′ substrate.
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Figure 10.21: Photoluminescence spectra of the In0.530Al0.141Ga0.329As/In0.530Ga0.47As

sample.

In the Figure 10.21 the photoluminescence spectrum of the sample with a peak at

1516 nm is shown. High sample quality and periodicity of the nanolayers were confirmed

by the double crystal x-ray diffraction measurements.



170 Chapter 10. Experimental Assessment of the Applicability ...

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1250 1300 1350 1400 1450 1500 1550 1600

Wavelength (nm)

A
bs

or
bt

io
n 

(c
m

-1
)

heavy hole excitonlight hole exciton

Spectral range of 
measurements

Figure 10.22: Linear absorption spectra of the In0.530Al0.141Ga0.329As/In0.530Ga0.47As sam-

ple.

The linear absorption spectrum of the sample analyzed is shown in Figure 10.22.

Both the light hole exciton at 1453 nm and a heavy hole exciton at 1493 nm are clearly

visible. The nonlinear measurements were carried out near the heavy hole exciton and

bandedge spectral region 1480 to 1600 nm.
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Figure 10.23 shows the saturation of absorption at a room temperature in the sample

analyzed over the spectral range from 1480 to 1550 nm. The values of the nonlinear

absorption were extracted from Z-scans carried out at fluences of 46 µJ/cm2, 69 µJ/cm2,

92 µJ/cm2, and 116 µJ/cm2.
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Figure 10.23: Saturation of absorption in In0.530Al0.141Ga0.329As/In0.530Ga0.470As MQWs

at room temperature in the spectral range 1480–1550 nm at fluences of 46 µJ/cm2,

69 µJ/cm2, 92 µJ/cm2, and 116 µJ/cm2.

MQWs exhibit very strong absorption saturation in the vicinity of the bandedge

caused by the bandfilling effect. The excitonic step around 1490 nm is washed out at

higher fluences and the absorption decreases more than threefold throughout most of the

spectral range studied.
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Figure 10.24: Nonlinear index change in the In0.530Al0.141Ga0.329As/In0.530Ga0.470As

MQWs at the same experimental conditions as in Figure 10.23.

Figure 10.24 shows the nonlinear index change at the same fluences and wavelengths

as in Figure 10.23.

Direct measurements reveal negative nonlinear index changes with magnitudes larger

than 0.03 over the entire range studied. The largest value recorded is |∆n|=0.14 obtained

at 1510 nm at a fluence of 116 mJ/cm2. As the signal wavelength was increased beyond

the bandedge, the refractive index and absorption changes decreased.



10.3. Resonant Nonlinearities 173

Figure 10.25 shows the figures of merit calculated based on the results shown in

Figures 10.23 and 10.24.
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Figure 10.25: Figures of merit under the same experimental conditions as in Figures

10.23 and 10.24.

Band filling shifts the onset of absorption to higher energies. This shifts the real-

valued dielectric constant dispersion curve to higher energies. In the region 1480 to

1500 nm, moderate saturation of absorption and ∆n results in a comparatively poor

F. Both the linear refractive index and the absorption peak locally near the excitonic

feature (wavelengths 1500 nm - 1530 nm). A strong saturation of absorption in this

spectral region results in a large nonlinear index change, giving large F. In the 1510 nm -

1520 nm region index changes well in excess of 0.1, with F in excess of 1 are measured. In

the spectral region 1530 nm - 1550 nm, absorption is effectively washed out at increasing

fluences. This combined with moderate ∆n produced large F. At 1550 nm an index
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change of 0.04 with a very good F was measured.

The figures of merit presented in Figure 10.25 have been calculated according to

Eq. (5.7). As such, the figures of merit quantify the applicability of a given nonlinear

material to nonlinear optical switching in terms of the total transmitted fluence. During

the experiment the shape of the pulse would get distorted — the leading part of the

pulse would saturate the absorption of the materials, increasing the transmittance of the

trailing part of the pulse.

The strong saturation of absorption and large nonlinear index change reported in this

section are comparable in magnitude to effects previously reported in Refs. [33,156,157]

and predicted [30, 45, 112, 158–161] in other bulk and MQWs semiconductor materials.

The nonlinear index changes predicted in continuous-wave experiment of Ref. [45] are

calculated to be ∆n ≤ −0.05. The figures of merit as implied by the results in Ref. [45]

are higher than in the sample analyzed here, since Ref. [45] reports full saturation of

absorption. Measurements reported in Ref. [158] were taken at low intensity, when ab-

sorption was still high and nonlinear index change was low. The nonlinear figures of merit

presented in this subsection cannot be directly compared with those estimated from the

measurements in Refs. [30, 33, 156, 161]: the nonlinear pump-probe measurements and

corresponding analysis based on the nonlinear Kramers-Kronig transformation predict

how a strong beam at one wavelength influences weak signal at a different wavelength,

but do not provide direct information how the strong signal would influence its own

propagation.

The nonlinear response of samples analyzed in this section satisfies the requirements

necessary to become one of the constituents of a nonlinear periodic structures: the fig-

ures of merit of large nonlinear index changes measured are satisfactory. The decay time

of the nonlinearities was not measured but is expected to be on the order of several

nanoseconds. It could be drastically decreased using doping techniques [31]. The semi-

conductor In0.530Al0.141Ga0.329As/ In0.530Ga0.470As MQWs examined in this subsection
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will constitute one of the components of nonlinear periodic structures whose response

will be presented in the next chapter.

10.3.3 Resonant Nonlinear Response of PbS nanocrystals

In addition to studying the nonlinear resonant response of inorganic crystalline semicon-

ductor MQWs, the resonant nonlinearities of another system — strongly-confined PbS

nanocrystals — were characterized.

Semiconductor nanocrystals were identified as an interesting material system to study

since, as discussed in chapter 3, they combine potentially strong nonlinear response and

spectral tunability of linear and nonlinear properties with polymer-like processability. As

such, they could be incorporated into multilayer structures or colloidal crystals.

Ultrafast Nonlinearities of Commonly Used Organic Solvents

Since the nonlinear response of PbS nanocrystals was studied in solution, the nonlinear

properties of the solvents were first measured to permit correct interpretation of the

measurements of the solutions in which PbS was suspended.

To date, only scarce data existed describing the nonlinear properties of organic sol-

vents. The measurements reported were taken with nanosecond pulses at either the

fundamental (1064 nm) or Raman converted (1910 nm) wavelengths of the Nd:YAG

laser, or by using continuous-wave illumination at 633 nm [24,162–165].

This subsection presents the results of direct measurement of the linear and nonlinear

properties over a broad wavelength range from 1300 to 1580 nm of four commonly used

organic solvents: toluene, THF, chloroform, and cyclohexane.
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Figure 10.26: The linear absorption spectra of toluene, THF, chloroform, cyclohexane in

the 1300 – 1580 nm spectral range.

Figure 10.26 shows the linear absorption spectra of the organic solvents analyzed

in the wavelength range from 1300 nm to 1580 nm. The solvents exhibit absorption

resonances due to vibrational overtones. THF, toluene, and cyclohexane have broad,

complex absorption traces extending from about 1350 to 1500 nm. Over this spectral

range the measured linear absorption exceeds 0.5 cm−1. Chloroform has only one sharp

absorption peak from 1390 nm to 1430 nm with a maximum absorption value of 2.8 cm−1.
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Figure 10.27: The third order nonlinear Kerr coefficients of the compounds of Fig-

ure 10.26. The measurements were taken using picosecond pulses with intensity of

75 GW/cm2.

Figure 10.27 presents the nonlinear coefficients of toluene, THF, chloroform, and

cyclohexane over the same wavelength range as in Figure 10.26. The measurements were

taken using the z-scan method at the intensity of I = 75 GW/cm2 at a 1 kHz repetition

rate.

The nonlinear Kerr coefficients of the solvents analyzed did not exceed n2 ≤ 2× 10−15

cm2/W, and for most of the spectrum analyzed were below n2 < 1 × 10−15 cm2/W. The

Kerr coefficient of the toluene was always positive, while n2 of cyclohexane was always

negative. Chloroform and THF had shown n2 of both signs at various wavelengths in the
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spectral range studied. In general, toluene displays the strongest nonlinear properties

while THF the weakest. Around the 1310 nm and 1550 nm telecommunication wave-

lengths THF and cyclohexane displayed the nonlinear n2 coefficient below 1 × 10−16

cm2/W.
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Figure 10.28: The nonlinear absorption coefficients under the same conditions as in

Figure 10.28.

Figure 10.28 shows the results of the measurements of the nonlinear absorption of

chloroform and toluene. The nonlinear absorption of chloroform was measurable only at

wavelengths of 1320 nm and 1380 nm, with the values of ∆α/I = 2.8 × 10−11 cm/W

and ∆α/I = 11 × 10−11 cm/W respectively. The nonlinear absorption of toluene was

larger than 5 ×10−11 cm/W in the spectral range from 1300 nm to 1360 nm, and at
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1440 nm and 1480 nm. At 1560 nm toluene exhibited the largest measured value of

∆α/I = 16.8 × 10−11 cm/W. THF and cyclohexane displayed nonlinear absorption

below 1 ×10−11 cm/W.

Since the nonlinear response of the organic solvents studied was low, these were

considered to be good candidates for use as solvents for nonlinear measurements of the

solutions in which PbS nanocrystals were suspended.

Resonant Nonlinear Index Change, Saturation of Absorption, and Figures of

Merit of PbS Quantum Dots

This subsection reports results of the direct picosecond measurements of the saturation

of absorption and resonant nonlinear refractive index change in strongly-confined PbS

nanocrystals solution in chloroform.

The nanocrystals studied were synthesized by Margaret Hines from the Chemistry

Department, and by Larissa Levina from the Department of Electrical and Computer

Engineering, both at the University of Toronto. The details of the synthesis are pre-

sented in Ref. [61]. The size of the quantum dots was tunable by variations in reaction

parameters and growth conditions. Following the synthesis the solution in chloroform

was prepared at a concentration of 22 mg/mL. The solution was placed in a 1 mm thick

cuvette. The various samples of nanocrystals studied had mean diameters ranging be-

tween 4.8 ± 0.5 nm and 5.8 ± 0.5 nm. Since such dimensions are less than both the

exciton radius in PbS of 20 nm, and electron and hole wavefunctions radii of 9 nm, the

carriers in nanocrystals studied are strongly-confined.

Figure 10.29 shows the saturation of absorption in the nanocrystals with mean radii

of 5.5 ± 0.5 nm. The measurements were taken at room temperature at three different

fluences: 1 mJ/cm2, 2 mJ/cm2 and 3 mJ/cm2.

The absorption of the sample analyzed shows a very distinct peak at 1390 nm corre-

sponding to the first allowed electronic transition. With increasing fluence, the filling of
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Figure 10.29: The saturation of absorption in the 5.5 ± 0.5 nm PbS nanocrystals in

the wavelength range from 1150 to 1550 nm at fluences of 1 mJ/cm2, 2 mJ/cm2 and

3 mJ/cm2.

states (quantum confined to the nanocrystals) washes out the absorption. The saturated

absorption has a plateau with no residue of the excitonic peak. Compared to similar

measurements performed on semiconductor multi-quantum-wells, the saturation of ab-

sorption in nanocrystals is more extreme (ratio of 5.5:1 between initial and saturated

absorbtion) and takes place over a broader wavelength range [39,142].

Figure 10.30 shows the nonlinear index change under the same conditions as in Fig-

ure 10.29. A strong negative nonlinear refractive response was observed in the vicinity of

the absorption peak. It was attributed to the effects of saturation of absorption. As the



10.3. Resonant Nonlinearities 181

-30

-25

-20

-15

-10

-5

0

1150 1250 1350 1450 1550

Wavelength (nm)

R
ef

ra
ct

iv
e 

In
de

x 
C

ha
ng

e 
(  

 x 
10

 -5
)  

g

1 mJ/cm 
2 mJ/cm 
3 mJ/cm 

0

5

10

15

20

1150 1350 1550
Wavelength (nm)

A
bs

or
pt

io
n 

(c
m

-1
) 

b

0

5

10

15

20
α

2

2

2

∆n
 ×

-1
0 

-5

∆n

Figure 10.30: Nonlinear index change of PbS nanocrystals under the same conditions

as in Figure 10.29. The inset compares the linear absorption spectrum with spectral

position of the refractive index change measured at a fluence of 3 mJ/cm2.

laser wavelength was tuned towards 1550 nm or towards the valley around 1250 nm, the

refractive index and absorption changes decreased. For wavelengths below the 1250 nm

the increase in the absorption, saturation of absorption, and nonlinear ∆n corresponding

to the edge the second confined state were again recorded. The inset of Figure 10.30

compares the spectral positions of ∆n measured at 3 mJ/cm2 and the shape of the linear

absorption. The shape of |∆n| is very similar to that of the absorption, but is shifted

towards longer wavelengths by about 10 nm.

Because of the low concentration of solution, the nonlinear refractive index changes
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were all below |∆n| < 2 × 10−4. Using the approach presented in Refs. [166] and [167]

the nonlinear index change within a given nanocrystal was estimated. The nonlinear

index change of the nanocrystlas, ∆nNC , is related to index change measured in solution,

∆n, by ∆n = fvf
4∆nNC , where fv is the volume fraction and f is the local field factor.

The values were calculated to be f = 0.64 and fv = 2.9 × 10−3 for the sample analyzed.

The the linear index of PbS was taken to be nPbS = 2.37, the linear index of chloroform

nchloroform = 1.446, and mass density of PbS ρPbS = 7.61 g/cm3 [168]. For the sample

analyzed, these values would give ∆nNC ∼ 0.4 at 1400 nm. Since these calculations

were made based on the refractive index of bulk PbS rather than that of than quantum-

confined nanocrystals, they should be treated only as an order of magnitude estimate.

In addition, such record values for ∆n are not realizable for macroscopic samples. They

would require a concentration of nanocrystals approaching unity and the surrounding host

with the same linear refractive index as the PbS. More realistically, a volume fraction

of fv = 0.1 would theoretically ensure that all nanocrystals are separated by at least

one nanocrystal diameter from their nearest neighbors, and hence have noninteracting

excitonic wavefunctions. Based on such more realistic estimated parameters, nonlinear

index changes of 0.01 or more may be predicted.

The figures of merit, F, presented in Figure 10.31 were calculated from data presented

in Figures 10.29 and 10.30. The best figures of merit, 0.2 < F < 0.3, were recorded for

wavelengths longer than the wavelength corresponding to the excitonic peak. In this

range, strong saturation of absorption causes relatively large ∆n. As shown in the inset

of Figure 10.31, for wavelengths shorter than 1400 nm the dispersion in F traces shape

of the absorption spectrum but is shifted towards the longer wavelengths.
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Figure 10.31: Nonlinear figures of merit (FOM) of PbS nanocrystals under the same

conditions as in Figures 10.29 and 10.30. The inset displays the figures of merit recorded

at a fluence of 3 mJ/cm2 vs. the linear absorption spectrum.
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Following nonlinear measurements of the 5.5 ± 0.5 nm PbS nanocrystals, a study of

size dependence of the nonlinear properties was carried out. The results are presented

and discussed below.

The nonlinear response of two additional PbS samples was compared with the response

of the sample with the mean diameter of 5.5 ± 0.5 nm discussed above. These samples

had mean diameters of 4.8 ± 0.5 nm and 5.8 ± 0.5 nm. A concentration of 22 mg/mL

PbS in chloroform was used in all cases.
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Figure 10.32: Linear absorption spectra of the 22 mg/mL PbS nanocrystals in chloroform

solution for the samples with mean diameters of 4.8 ± 0.5 nm, 5.5 ± 0.5 nm, and 5.8 ±

0.5 nm.

Figure 10.32 compares the linear absorption spectra of the three samples. The exci-
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Figure 10.33: Nonlinear index change for the same samples as in Figure 10.32 as measured

at a fluence of 3 mJ/cm2.

tonic peaks of the three samples are at 1235, 1380, and 1480 nm. The strength of the

maximum absorption increases with the size of the nanocrystals. Similar widths of the

absorption peaks in the three samples suggest comparable polydispersity.

The nonlinear refractive index change measured at a fluence of 3 mJ/cm2 is shown in

Figure 10.33. For all samples analyzed, the maximum nonlinear index change takes place

at wavelengths about 25 nm longer than the wavelength corresponding to the absorption

peak. The magnitude of the maximum nonlinear index change increases with increasing

size of nanocrystals for the solutions in the same concentration: from −6× 10−5 for the

nanocrystals with 4.8 ± 0.5 nm mean diameter to −23× 10−5 for the nanocrystals with
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Figure 10.34: Nonlinear figures for merit of the three nanocrystal samples studied under

the same conditions as in Figure 10.33.

5.8 ± 0.5 nm mean diameter.

Figure 10.34 compares the figures of merit for the three nanocrystal samples analyzed.

A drastic decrease in the maximum figures of merit is observed with increasing size of

the nanocrystals for samples illuminated using a fixed fluence. The figures of merit of

the smallest nanocrystals analyzed do not exceed 0.13, while those of the 5.8 ± 0.5 nm

mean diameter approach 0.4.

Thus, both the magnitude of nonlinear response of strongly-confined nanocrystals and

the associated figures of merit were found to increase with increasing size of nanocrys-

tals. The physical origins of the size dependence of nonlinear response are not currently
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understood.

10.3.4 Resonant Nonlinear Response of DR1

Measurements of resonant nonlinear properties of the azobenzene dye Disperse Red 1

were not carried out in this work. However, based on the promising results published in

one report [57] DR1 was singled out as the nonlinear dopant for the three-dimensional

colloidal crystals whose nonlinear response is briefly described in the concluding chapter

of this work. Hence, a brief description of the resonant nonlinear response of DR1 is

necessary.

Figure 10.35: Trans-cis photoisomerization. Following resonant absorption, the azoben-

zene molecule changes its configuration, resulting in a decreased dipole moment.

Nonlinear index changes in excess of |∆n| = 0.1 in solid state samples of DR1 are

obtained in the λ < 590 nm spectral region in which the photochemical process of

trans-cis photoisomerization is triggered by absorption of photons. As illustrated in

Figure 10.35, light near the main absorption resonance causes the azobenzene molecule

to change from the trans to the cis configuration. During this process, the distance

between the two carbons from which the acceptor and donor groups extend reduces

from about 9.0 A to 5.5 A. This results in a drastic reduction in the molecule’s dipole
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moment, which reduces material’s polarizability, providing a large negative nonlinearity

with nonlinear index changes reaching ∆nmax = 0.12 under an illumination with 20 ps

pulses [57].

10.4 Conclusions

At the beginning of this thesis, the insufficient knowledge about efficient nonlinear ma-

terials was identified as one of the major obstacles on the road towards successful imple-

mentation of nonlinear periodic optical signal processing devices. This chapter strived to

address this issue by reporting measurements of the refractive and absorption nonlinear

properties of a variety of material systems.

It was demonstrated that while non-resonant nonlinear response can be characterized

by good figures of merit, the achievable nonlinear refractive index changes are insufficient

for the type of the devices proposed in the earlier chapters. Resonant response, on the

other hand, can result in sufficiently large index changes, with the tradeoff of significant

optical losses due to absorption. This was proven by reporting the results from the direct

measurements of the bandedge nonlinearities of the inorganic crystalline semiconductor

MQWs, and of the excitonic nonlinearities in strongly-confined PbS nanocrystals. These

measurements were carried out over much broader spectral region than previously re-

ported [42, 44, 45, 159]. In addition, in contrast to previously reported results the data

presented in this chapter permits calculation of the figures of merit [33,63,64]

The InAlGaAs/InGaAs MQWs analyzed in this work have displayed very large non-

linear index changes, ∆nmax = 0.14 with figures of merit exceeding unity. Based on the

nonlinear measurements of the PbS nanocrystal solution it was predicted that at high

concentration index changes on the order of few percent can be obtained. The resonant

figures of merit of PbS nanocrystals did not exceed 0.38.

Among the materials analyzed in this chapter, InAlGaAs/InGaAs MQWs were singled
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out as the most promising candidates for the fabrication of nonlinear periodic structures.
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Chapter 11

Measurement of the Transfer

Characteristics of Nonlinear

Semiconductor Bragg Gratings

Throughout this thesis it was argued that optical signal processing functionality of non-

linear periodic structures should be increased by the introduction of new structural and

material designs; the direct characterization of nonlinear materials that exhibit large non-

linear index changes accompanied by acceptable losses; and the fabrication of nonlinear

periodic structures in configurations that enable increased functionality.

The preceding chapters of this thesis introduced elements and systems capable of

performing complex signal processing functions and discussed characterization of various

material systems. This chapter presents the concluding contributions of this work — it

discusses the illumination-dependent response of nonlinear periodic structures operating

at 1.5 µ fabricated from the most promising materials analyzed in chapter 10.

The work presented in this chapter was published in Refs. [169] and [170].

191
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11.1 Experiments

11.1.1 Devices

The optical elements investigated in this chapter were grown using molecular beam epi-

taxy by Anthony SpringThorpe and Marcius Extavour of Nortel Networks.

The devices considered in this chapter, labelled sample A, optical element B, and

optical element C, are shown in Figures 11.1, 11.2, and 11.3. The structures were grown

on S-doped (001) InP 2” single-side polished InP substrates. 10 nm protective InP layers

were grown on top of all of the samples. Following growth, multilayer anti-reflection

coatings were deposited on the front surfaces of B and C, and the back sides of A, B, and

C were polished to allow transmittance measurements without scattering. High sample

quality and periodicity of the superlattice layers were confirmed by double crystal x-ray

diffraction measurements.

Sample A is made out of one hundred and twenty-one 10 nm In0.530Al0.141Ga0.329As

barriers and one hundred and twenty 5 nm In0.530Ga0.47As wells, resulting in a total

thickness of the nonlinear sample of 1.81 µm. It is the same sample whose nonlinear

response was discussed in section 10.3.2.

Optical elements B and C are both made out of two different sets of MQWs each. In

this chapter a pair of adjacent MQWs sets will be referred to as one Bragg period.

It was sought to meet two criteria in designing B and C. The periodicity of B and C

were chosen so that the constituent pairs of MQWs form a Bragg grating with spectral

resonance in the vicinity of 1.5 µm in both optical elements. Moreover, in order to

approximate matching of linear indices between the adjacent layers in the optical elements

B and C the average compositions of MQWs type 1, type 2, and type 3 of which the

layers made were chosen to be similar.

B is made out of MQWs type 1 and MQWs type 2 and consists of eight and a

half Bragg periods. MQW type 1 consists of eight 10 nm In0.530Al0.141Ga0.329As barriers
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S-doped InP wafer (001)

barriers: 10 nm In0.530Al0.141Ga0.329As

wells: 5 nm In0.530Ga0.47As

10 nm InP

121 barriers and 120 wells in total

50 nm InP buffer

Figure 11.1: The cross-section of the analyzed MQWs sample A. A is made out of

one hundred and twenty-one 10 nm In0.530Al0.141Ga0.329As barriers and one hundred and

twenty 5 nm In0.530Ga0.47As wells.

and seven 5 nm In0.530Ga0.47As wells. MQW type 2 is made out of three pairs of

5.5 nm In0.530Al0.141Ga0.329As and 2 nm In0.530Ga0.47As grown on the top of eleven 5 nm

In0.530Al0.141Ga0.329As barriers interleaved with ten 2.5 nm In0.530Ga0.47As quantum wells.

The total thickness of B is 1.855 µm.

C has eight and a half MQWs type 1/MQWs type 3 Bragg periods. MQWs type 3

consists of five 18 nm In0.530Al0.141Ga0.329As barrier layers separated from each other by

three 10 nm In0.530Ga0.47As and one 11 nm In0.530Ga0.47As well, giving a total thickness

of C of 2.083 µm.
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S-doped InP wafer (001)

50 nm InP buffer

MQW type 1

MQW type 2

5 nm In0.530Al0.141Ga0.329As

2 nm In0.530Ga0.47As

5.5 nm In0.530Al0.141Ga0.329As

2.5 nm In0.530Ga0.47As

5 nm In0.530Al0.141Ga0.329As

10 nm InP

10 nm In0.530Al0.141Ga0.329As

5 nm In0.530Ga0.47As

10 nm In0.530Al0.141Ga0.329As
MQW type 1

x 7 

9 MQW type 1 and 

8 MQW type 2 in total

x 3

x 10

Figure 11.2: The cross-section of optical element B. B is made out of MQWs type 1 and

MQWs type 2.

Samples B and C were designed with layers of similar average composition and Bragg

periodicity so that they would contain hidden gratings. The reflectivity of these gratings

should increase through illumination-dependent changes in the effective refractive indices

of the constituent MQWs.
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S-doped InP wafer (001)

50 nm InP buffer

MQW type 1

MQW type 3

18 nm In0.530Al0.141Ga0.329As

10 nm In0.530Ga0.47As

18 nm In0.530Al0.141Ga0.329As

11 nm In0.530Ga0.47As

18 nm In0.530Al0.141Ga0.329As

10 nm InP

10 nm In0.530Al0.141Ga0.329As

5 nm In0.530Ga0.47As

10 nm In0.530Al0.141Ga0.329As
MQW type 1

x 7 

9 MQW type 1 and 

8 MQW type 3 in total

x 3

Figure 11.3: The cross-section of optical element C. C is made out of MQWs type 1 and

MQWs type 3.
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11.1.2 Linear Optical Properties

The PL and linear transmittance spectra of A, B, and C, are shown in Figures 11.4 and

11.5. As demonstrated in chapter 11, MQW semiconductor samples experience strong

nonlinear response near PL peaks. Sample A has a PL peak and a strong excitonic feature

in transmittance at 1517 nm corresponding to the first allowed optical transition in the

constituent MQWs. In B there are two closely-spaced peaks, one at A’s peak wavelength

of 1517, and the other at 1493. The PL spectrum of C shows two PL peaks and excitonic

steps in transmittance: the lower-wavelength feature at 1517 nm due to MQWs type 1

and the longer-wavelength feature at 1600 nm corresponding to the lowest transition of

the second set of MQWs type 3.
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Figure 11.4: The photoluminescence spectra of semiconductor samples A, B, and C.
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Figure 11.5: The linear transmittance spectra of semiconductor samples A, B, and C.
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11.1.3 Experimental Apparatus

The experimental apparatus used in nonlinear reflectance and transmittance measure-

ments is shown in Figure 11.6. The laser beam was focused using a lens with a 55 cm

focal length onto samples placed perpendicular to the beam. The radius of the beam

waist at the focus, measured at the 1
e2 of the transverse beam intensity profile, ranged

from 91 µm at a wavelength of 1300 nm to 112 µm at 1600 nm. In order to monitor

incident power, a portion of the incident beam was sampled using a wedged beamsplit-

ter. This beamsplitter was also used to deflect a portion of the beam reflected from the

sample. The power transmitted through the sample, as well as a fraction of the reflected

power, were recorded as the incident power was varied. From this, the power-dependent

transmittance and reflectance of each structure were obtained.

SampleLens
Source

Transmitted Power 
Detector

Reflected Power 
Detector

Beamsplitter

Incident Power 
Detector

Figure 11.6: The experimental set up used in the nonlinear transmittance and reflectance

measurement.
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11.2 Results and Discussion

The nonlinear transmittance (T ) and reflectance (R) of the three structures A, B, and

C were measured in the wavelength range from 1300 nm to 1600 nm, at average incident

powers ranging from 0.3 µW to 100 µW. This corresponds to pulse energies between

300 pJ and 100 nJ and fluences ranging 1 µJ/cm2 from to 320 µJ/cm2. The results are

shown in Figures 11.7 – 11.14.

11.2.1 Nonlinear Response of Sample A

Figures 11.7 and 11.8 show the change in the transmittance (defined as T − Tinitial) and

reflectance (defined as R−Rinitial) of sample A. The insets show the intensity-dependent

evolution of T and R at two representative wavelengths 1420 nm and 1500 nm. At a given

wavelength, as the incident fluence increases, the absorption of the sample saturates due

to bandfilling. With decreasing absorption, T increases and the power reflected from the

back side of the wafer rises, increasing the total R. The time required for the free carriers

excited by the laser pulse to relax back to the valence band is at least a few hundreds of

picoseconds, which is much longer than the roundtrip of the pulse in the sample of few

ps. As a result the contribution to R from back reflection off of the wafer-air interface

varies as T 2. The shapes of the illumination-dependent transmittance and reflectance

spectra of Figures 11.7 and 11.8 follow the same trends which suggests that the only

contribution to the change in R is from the change in back reflection at the wafer-air

interface. The change in total R from the nonlinear reflectivity changes of the sample-air

and sample-wafer interfaces are negligible.

The largest changes in T and R of sample A are observed around the excitonic peak of

MQW type 1 in the vicinity of 1.5 µm. Here the threshold for the saturation of absorption

is the lowest. The number of unoccupied carrier states needed to be saturated increases

with decreasing wavelength. As a consequence, the change in R and T is decreased for
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Figure 11.7: The change in the absolute transmittance of sample A in the spectral range

1300 nm to 1600 nm, at incident powers of 0.3 µW, 1 µW, 3µW, 10 µW, 30 µW, and

100 µW.

a fixed incident power. For wavelengths longer than the wavelength corresponding to

the bandgap (λ > 1520 nm) there is a small negative change in T and R due to two

photon absorption in the InP substrate. As has been verified experimentally, two photon

absorption is a much weaker nonlinear effect than saturation of resonant absorption

in sample A and under the conditions reported: it requires a higher requires a higher

fluence × length product to be observed. Near 1525 nm the effect of saturation of

absorption in sample A and two photon absorption in the substrate cancel each other

almost exactly. As a result the change in both T and R of sample A is negligible at this
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Figure 11.8: The change in absolute reflectance of sample A under the same conditions

as in 11.7.

wavelength.
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11.2.2 Nonlinear Response of Optical Element B

The nonlinear reflectance and transmittance spectra of optical element B are shown in

Figures 11.9 and 11.10. The nonlinear response of B in the absorbing region (λ < 1540

nm) is similar to that of sample A: T and R increase with increasing incident power.

Thus, the major nonlinear effect in B is again saturation of absorption. However, at some

spectral ranges the corresponding R−Rinitial and T −Tinitial curves do not resemble each

other as closely as in sample A. In fact, at some wavelengths the responses of R and T

show opposite trends.
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Figure 11.9: The nonlinear transmittance response of the optical element B under the

same conditions as in Figure 11.7.

At high incident powers the change in T around the excitonic peak of 1.5 µm is
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Figure 11.10: The nonlinear reflectance response of the optical element B under the same

conditions as in Figure 11.7.

diminished with respect to the change in T at other wavelengths above the bandgap.

This behaviour is opposite to that observed in sample A, where the change in T was the

most pronounced around the bandgap. The largest change in R of B is near 1500 nm

at low incident powers and around 1460 nm at high incident powers. 1460 nm is a

significantly shorter wavelength than the absorption onset of MQWs type 1 of B which

takes place around 1520 nm. Also, in Figure 11.9, for moderate powers (1 µW, 10 µW,

30 µW) there is a dip around 1480 nm which becomes a plateau in the range from 1480 nm

to 1520 nm at 100 µW. This is again in contrast to the behaviour seen in Figure 11.10,

in which there is no dip around 1480 nm. For powers of 30 µW and 100 µW the change
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in R is very distinctly peaked at 1460 nm.

The insets of Figures 11.9 and 11.10 show the change in R and T as function of the

incident power for 1460 nm and 1500 nm. As is also evident from the spectral plot, the

change in R at 1460 nm is initially lower than the change in R at 1500 nm, but then

becomes higher for incident powers larger than 10 µW. In contrast the change in T of B

at 1460 nm is always greater than or equal to the change in T at 1500 nm.

Similarly to the response seen in sample A for wavelengths longer than the lowest

transition level of MQWs type 1, the two photon absorption of the InP substrate is the

only measurable nonlinear effect. Again, near 1520 nm the effect on the nonlinear change

in R and T of the saturation of absorption and two photon absorption cancel each other

out.



11.2. Results and Discussion 205

11.2.3 Nonlinear Response of Optical Element C

In Figures 11.11 and 11.12 the nonlinear T and R response of the optical element C is

shown. Saturation of absorption is again the dominant nonlinear effect. Similarly to B,

the R and T change curves show opposite trends in certain spectral regions.
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Figure 11.11: The nonlinear transmittance response of the optical element C under the

same conditions as in Figure 11.7.

The change in T is peaked near the exciton at 1500 nm for incident powers of 3 µW

and 10 µW and then becomes increasingly flat in the range from 1400 nm to 1500 nm.

This is in contrast to the behaviour in Figure 11.12 - change in R is peaked at 1500 nm

for all incident powers.

The insets in Figures 11.11 and 11.12 confirm the different response of R and T .
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Figure 11.12: The nonlinear reflectance response of the optical element C under the same

conditions as in Figure 11.7.

Whereas the change in T at 1500 nm is initially larger than or equal to the change in T

at 1420 nm, the change in R at 1500 nm is always larger than the change of R at 1420

nm.

Since the optical element C absorbs beyond 1600 nm, 2PA from the wafer is not

observable – the saturation of absorption dominates across the entire spectrum analyzed.
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Figure 11.13: The nonlinear changes in the relative transmittance in A, B, and C.

The differences in the nonlinear response of the three samples analyzed are further

displayed in Figures 11.13 and 11.14, where the relative changes in transmittance Trel

= T
Tinitial

and Rrel = R
Rinitial

of A, B, and C are shown. These results correspond to the

maximum recorded changes, measured at 100 µW. The three samples show Trel between

1.5 and 2 for the spectral region λ < 1500 nm. The Trel of sample A is the largest near

the excitonic peak of 1500 nm. Trel of B is diminished around 1500 nm, while Trel of C

is flat in the region 1350 nm < λ < 1500 nm.
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Figure 11.14: The nonlinear changes in the relative reflectance in A, B, and C.

The Rrel of B and C peaks around 1450 nm, while Rrel of sample A peaks again

around 1500 nm. The large difference in the maximum Rrel, of sample A (≈1.25) and

Rrel of B and C (≈2.8 and ≈2.3, respectively) is because only B and C have antireflection

coatings and much lower initial reflectance.
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11.3 Analysis of Experimental Results Using the Mod-

els Developed in Chapters 4-9

The results of section 11.2 are strongly influenced by the saturation of absorption. Be-

cause the structures were designed with nonlinear Bragg reflection in mind, it is of interest

to identify trends which would give evidence of nonlinear contradirectional coupling, the

mechanism central to this work. This section will use a modified theoretical model from

chapters 4 – 9 to interpret the experimental results from section 10.2 and to isolate

various nonlinear contributions to the response observed.

The nonlinear steady-state transfer matrix model discussed in detail in section 4.3.5.

was extended to account for absorption, saturation of absorption, and saturation of the

nonlinear index change. Instead of Eq. (4.7) the following expression was substituted for

the complex effective index of refraction of an mth layer:

nm = nm0 +
n2mP

1 + P
Psatm

+ i
κ0m

1 + P
Psatm

(11.1)

where n0m is the linear refractive index, n2m is the nonlinear coefficient, κ0m is related to

the linear absorption by κ0m = α0mλ
4π

, P is local average power, and Psatm is the saturation

power. The n2 used in Eq. (11.1) is not an unltrafast Kerr coefficient (expressed in units

of inverse intensity), but a nonlinear coefficient that has units of inverse power. Resonant

nonlinearities give rise to index changes proportional to power (or fluence) rather than

to the instantaneous peak intensity.

As an effect of the changes in the expression for the refractive index, the idealized

non-absorbing response predicted in chapters 4 – 9 is not observed in the simulation

results that follow. It is found in what follows that the dominant effect is the saturation

of absorption and the effect of nonlinear Bragg scattering is relatively weak.

The results of the simulations are shown in Figures 11.15 and 11.16. The change in

the transmittance and reflectance with increasing incident power was computed for two

structures illuminated at a wavelength of 1.5 µm.
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Figure 11.15: Simulated results of a change in the absolute transmittance and reflectance

of a sample of uniform nonlinear absorbing material.

Figure 11.15 shows the predicted response of the structure made out of eight and a

half Bragg periods of a single layer structure — a sample that, like the sample A from

section 10.2, has no linear or nonlinear index contrast. In agreement with the previous

measurements with the same laser source presented in section 10.3.2, the coefficients of

the constituent material were taken to be α0 = 6000 cm−1 and n2 = - 6 × 10−9 W−1. This

gave a maximum induced nonlinear index change of ∆n = -0.14 at the correct intensity.

According to ellipsometric measurements, the linear index of refraction of the constituent

MQWs is n0 = 3.47. Saturation power was estimated to be 100 µW. A constant reflection

at the back facet-air interface of Rback−air= 0.28 was assumed, while the front facet of

the simulated samples was taken to be anti-reflection coated.
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The response displayed in Figure 11.15 has the same character as the response of

sample A demonstrated in the Figures 11.7 and 11.8, the illumination-dependent changes

in R and T shown in Figure 11.15 are of a similar shape. With increasing intensity the

absorption saturates. Since no nonlinear Bragg scattering is present, both T and R

increase monotonically.
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Figure 11.16: Simulated results of a change in the absolute transmittance and reflectance

of a sample with a pop-up Bragg grating.

Figure 11.16 shows the modelled nonlinear response of the structure analogous to B

and C in the spectral ranges 1480 – 1520 nm (sample B) and around 1500 nm (sample C).

The structure analyzed is assumed to be made out of eight and a half Bragg periods in

which one of the constituent materials has the properties of the material in Figure 11.15,

while the other material is nonabsorbing and linear (α0 = 0 and n2 = 0). The materials

are assumed to have matched linear indices (n01 = n02 = 3.47). Again, the dominant

feature in the simulated nonlinear response is the saturation of the absorption which
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results in the initially increasing R and T . However, for higher incident power the effect

of the growing Bragg grating becomes evident: as the reflectance continues to increase,

the transmittance saturates.

As discussed in section 11.1 and proposed for the optical limiters and switches con-

sidered in chapters 5, 6, 8 and 9, the optical element B is made out of two sets of MQWs

whose linear indices are initially closely matched. As the intensity increases absorption

of MQWs type 1 becomes saturated, at the same time changing its effective refractive

index. A Bragg grating appears in the vicinity of 1.5 µm. As the simulation results pre-

sented in Figure 11.16 confirm, this dynamic Bragg grating enhances R and diminishes

T in the range 1480 nm to 1520 nm. Since only one set of layers in optical element B

exhibits nonlinearity, the nonlinear response observed falls within the multistable regime

discussed in chapter 8.

A similar reasoning explains the response of the optical element C around the wave-

length of 1500 nm. The enhanced change in R and diminished change in T around this

spectral region suggest a growing photonic stopband around 1500 nm. In C, both sets

of MQWs exhibit saturation of absorption and refractive nonlinearity. However, the ex-

pected nonlinear index change of MQWs type 1 is much larger than that of MQWs type

3, and hence a net index contrast emerges.

The numerical simulations presented in this section combined with the experimental

measurements of previous section of this chapter confirm the hypothesis of an emerging

photonic stopband.

11.4 Conclusions

Following the theoretical part of this thesis and the search for suitable nonlinear materials

described in chapter 10, this chapter discussed the fabrication and characterization of

nonlinear periodic elements with an emerging photonic stopband.
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An illumination-dependent response of nonlinear periodic structures was demon-

strated. Measurements of nonlinear transmittance and reflectance of semiconductor one-

dimensional structures were reported. The first MQWs sample showed strong saturation

of absorption, which was mostly visible around the excitonic peak. Two of the structures

analyzed had a built-in periodicity which gave rise to a power-dependent Bragg grating

with a resonance near 1.5 µm. The nonlinear response of these two Bragg periodic samples

was influenced by both nonlinear absorption and nonlinear contradirectional coupling.

The effect of the nonlinear pop-up grating and the effect of saturation of the absorp-

tion were distinguished from each other by a comparison of the behaviour of nonlinear

periodic structures with that of a pure MQWs.

In analogy to the theory of chapters 5, 6, 8 and 9, the Bragg grating of the nonlinear

periodic elements analyzed was hidden at low levels of illumination and emerged at

increased incident powers. However, in contrast to the optical limiters and switches

modelled in the theoretical chapters, only one set of layers was nonlinear, the structures

were absorbing, and the saturation of absorption was the dominant effect. The following

concluding chapter will discuss potential venues to overcome these experimental and

theoretical challenges.
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Chapter 12

Summary, Original Contributions,

Future Prospects

12.1 Perspective and Approach Taken During this

Work

Prior to this work, the regimes of optical stability and multistability of nonlinear periodic

structures had not been systematically explored. The optical response of this rich physical

system, and promising applied system, had not been mapped out in full through theory

and experiment. This work has developed and explored comprehensively the theory

of the optical signal processing functionality of nonlinear periodic structures that are

stable within the intensity domain. A nonlinear response within one interesting nonlinear

periodic regime was demonstrated experimentally.

This thesis proposed a number of all-optical devices that employ an illumination-

dependent dynamic photonic stopband. It was desired that these devices be capable of

supporting novel signal processing functions, complementary to previously demonstrated

bistable and solitonic systems.

This investigation began with a simple numerical and analytical model that was

215
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formulated to demonstrate the most important aspects of the underlying theory. This

simple model was then expanded to enable analysis of more elaborate nonlinear periodic

devices and systems permitting more involved optical signal processing operations in the

steady-state and in the time domain.

The next research step was a systematic search for appropriate materials that could

serve as building blocks for the devices proposed. Throughout this work, the experimental

analysis of materials concentrated on finding organic and inorganic materials with large

refractive index change and good figures of merit. Additional work was carried out to

allow the incorporation of the nonlinear materials into inorganic and organic structures

that were periodic in one and three dimensions.

12.2 Original Contributions of this Work

The original contributions of this thesis can be divided into theoretical and experimental

contributions.

12.2.1 Theoretical Contributions

This work developed comprehensive generalized theory of stable nonlinear periodic struc-

tures. It was demonstrated theoretically that by optimizing material and structural pa-

rameters of nonlinear periodic devices, a wide array of optical signal processing functions

could be obtained.

An all-optical limiter was proposed that clamps the output level below a design-

specific limiting intensity. This was followed by a theoretical demonstration of the appli-

cability of the structures proposed to all-optical switching. The intensity- and spectral-

dependencies of the proposed all-optical nonlinear periodic switches were analyzed. It

was shown that a signal can control its transmittance depending on its intensity and

wavelength, or, alternatively, a pump beam can be used to control the transmittance of
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the signal.

This work predicted through theory that the introduction of a controlled degree of

disorder into structures that are periodic on average increases the effective operational

bandwidth of the proposed limiting and switching devices. The formation of station-

ary gap solitons and localization of light in weakly disordered structures was analyzed

with respect to the degree of disorder, structural and material parameters, and optical

frequency.

The theory of stable limiting and switching in nonlinear periodic structures was ex-

tended to account for additional signal processing functions. It was shown that modifica-

tions to the structure of the periodic devices proposed can allow all-optical hard-limiting,

analog-to-digital conversion, and logic gating.

In addition to comprehensive numerical simulations, analytical and empirical expres-

sions were derived that describe the response of the proposed all-optical limiter, switch,

hard-limiter, logic gates, and analog-to-digital converter.

Following the demonstration of potential applicability to optical signal processing

of the optically stable devices proposed in chapters 4 – 7, it was desired to develop

a generalized stability analysis. This was accomplished in chapter 8, which presented

a comprehensive analytical and numerical study of the phenomena of intensity-domain

optical stability and multistability of nonlinear periodic structures. Regimes in which

periodic structures exhibit different kinds of optical response were quantified for the first

time in terms of material and structural parameters.

The analysis of the response to pulsed illumination of the devices proposed followed.

It was shown that the lack or presence of an initial built-in out-of-phase linear refractive

index grating leads to phenomena of pulse intensity limiting and pulse compression.

In summary, by elaborating the analytical and numerical models, the theoretical part

of this work proposed and comprehensively contextualized an array of applications for

nonlinear periodic structures.
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12.2.2 Experimental Contributions

The second part of this thesis dealt with experimental investigation of nonlinear mate-

rials and nonlinear periodic structures. It was sought to find and characterize directly

nonlinear materials that exhibited large nonlinear index changes with good figures of

merit and to incorporate them into nonlinear periodic structures.

A number of nonlinear material systems were analyzed with respect to their ap-

plicability to nonlinear switching. This thesis presented and discussed the results of

the measurements of resonant, ultrafast, and thermal illumination-dependent refraction

and absorption in inorganic crystalline semiconductors, strongly-confined nanocrystals,

and organic materials. The primary concern of the material research part of this work

was to obtain materials with large nonlinear index change while preserving acceptable

figure of merit. Two classes of materials, InGaAs/InAlGaAs multi-quantum-wells and

strongly-confined semiconductor PbS nanocrystals, were characterized and were proven

to demonstrate the most promising nonlinear characteristics in their bandgap and exci-

tonic spectral regions.

Nonlinear periodic optical elements were fabricated and analyzed. Experimental non-

linear transmission and reflection measurements of one-dimensional semiconductor non-

linear periodic structures supported by numerical analyses enabled the isolation of the

contributions of nonlinear absorption and refraction. A Bragg grating that remained

hidden at low levels of irradiation was seen to emerge with increasing incident fluence.

The significance of the this work is evidenced by publications in scientific and engineer-

ing journals [6–8,39,126,136,138,139,145–147,169,171] and presentations at international

conferences [122,124,125,127–130,137,140,142–144,148,170].
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12.3 Future Prospects

Many challenges remain on the road towards further realization and optimization of the

nonlinear periodic devices proposed in this work.

12.3.1 Further Search for Suitable Nonlinear Materials

There remains a substantial uncertainty regarding which nonlinear materials are the best

candidates for nonlinear periodic devices. Various research groups have used different

approaches and conventions while measuring and interpreting nonlinear data. There is a

lack of systematic broadband measurements of large nonlinear index changes and, most

importantly, associated figures of merit in different classes of nonlinear materials. Most

of the experimental reports lack sufficient data to estimate the nonlinear figures of merit.

While this work selectively addressed many of these points, the number of degrees of

freedom in materials research is enormous. The results presented in this thesis suggest

that the best figures of merit associated with large index change are exhibited by the bulk

and MQW direct-bandgap semiconductors. The figures of merit of the PbS nanocrystals

characterized throughout this thesis are about a third of the measured figures of merit of

InGaAs/InAlGaAs MQWs. However, an increase in the nanocrystal figures of merit was

noticed with increasing nanocrystal size and decreasing polydispersity. To compare fairly

the figures of merit of nanocrystals with those of bulk and MQWs semiconductors, further

research is needed. New classes of nanocrystals of various sizes should be characterized. If

nanocrystals would prove to have figures of merit exceeding unity then, given their size-

tunability and processability in organic hosts, they would constitute a very attractive

group of nonlinear materials.

Organic materials also need to be characterized more thoroughly. The measured res-

onant figures of merit of organic materials are about an order of magnitude lower than

those of bulk and MQWs semiconductors. Such figures of merit are insufficient for nonlin-
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ear optical switching. However, organic materials provide a broad possibility of structural

modification so that their nonlinear properties could potentially be enhanced. As will be

shown in the next section of this chapter, organic materials are natural candidates for

the constituents of three-dimensional nonlinear periodic structures.

In addition to finding materials with good figures of merit, further work is needed

to maximize the speed of their nonlinear response. Well-established growth and doping

techniques exist that enable drastic reduction in the relaxation times of bulk and MQWs

semiconductors. No such techniques have been introduced for semiconductor nanocrys-

tals or organic materials. Particularly in the case of semiconductor nanocrystals, multiple

experimentally-controllable degrees of freedom – nanocrystal composition, diameter and

doping; surface properties and interface with the surrounding organic and polymer ma-

trix; nanocrystal concentration – provide multiple avenues to engineering the recovery

time of resonant nonlinear materials based on quantum dots.

More research is needed in order to demonstrate experimentally the existence of non-

linear materials with refractive nonlinearities of both signs. To date, there has been no

direct experimental demonstration of large positive refractive nonlinearity in semiconduc-

tors. Based on the nonlinear Kramers-Kronig relations, bulk and MQWs semiconductors

have been predicted to exhibit positive nonlinearities for wavelengths shorter than the

wavelengths corresponding to the first excitonic step. This, however remains to be di-

rectly verified experimentally.

Recently, there has been one report of direct observation of large positive nonlinear

refractive index in organic material [172]. Similar to the behaviour predicted in semicon-

ductors, this positive index change has been observed for wavelengths shorter than the

main resonance. The measurement was performed in the visible spectral range and is

not directly applicable to switching at telecommunication wavelengths.

The search for nonlinear materials with large index changes of both signs, good fig-

ures of merit, and fast response would greatly benefit from theoretical work carried out
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in parallel. A comprehensive theory is needed: to understand various complex nonlin-

ear processes exhibited by different classes of nonlinear materials; to predict the sign

and strength of nonlinear response; and to determine the upper bounds of nonlinear

coefficients and figures of merit.

12.3.2 Incorporation of Nonlinear Materials into Periodic Struc-

tures

To fabricate nonlinear periodic devices, the appropriate nonlinear materials have to be

incorporated into periodic structures.

Epitaxial techniques permit fabrication of planar bulk and MQW semiconductor one-

dimensional nonlinear periodic structures. Established etching techniques also allow

fabrication of corrugated semiconductor waveguides.

Recent advances in the fabrication of colloidal crystals permit the preparation of

three-dimensional nonlinear periodic structures from organic materials and nanocrystals

incorporated in organic and glass hosts. Infiltration techniques and composite core-

shell colloidal crystals provide additional degrees of freedom in modifying the nonlinear

response. Nonlinear colloidal crystals can be deposited on semiconductor and organic

waveguides to provide effective nonlinear coupling into and out of the waveguide, or to

provide a nonlinear Bragg reflection within the waveguide.

Throughout this work, dye-doped three-dimensional nonlinear periodic structures

have been fabricated and characterized in addition to the one-dimensional semiconductor

Bragg gratings discussed in chapter 11. Preliminary testing of these colloidal crystals has

been carried out and the results are reported below.

The three-dimensional colloidal crystals analyzed were prepared in three steps. First,

a nonlinear monomer was synthesized. The monomer was then polymerized forming

spherical colloids. Finally, the colloids where deposited on a glass substrate in an ordered,

periodic form. The spheres were 260 nm in diameter and the samples were 21 periods
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thick on average. These steps were carried out by Chantal Paquet from the Chemistry

Department at the University of Toronto [173].

Disperse Red 1 azobenzene dye was chosen as the nonlinear dopant since DR1 was

previously demonstrated to exhibit a strong refractive nonlinearity in the absorbing spec-

tral range 490 – 590 nm [57]. This nonlinear response of DR1 was discussed at the end

of chapter 10.

The nonlinear reflection measurements were taken with the same experimental set up

as described in chapter 11 in Figure 11.6.
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Figure 12.1: Differential nonlinear reflectance from colloidal crystal 1 compared to its

initial reflectance.

Figure 12.1 shows the movement of the stopband by showing the change in reflectance

at increased incident powers. Measurements were taken in the spectral range 470 nm

to 600 nm at average incident powers ranging from 1 µW to 1 mW corresponding to
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fluences ranging from 3 µJ/cm2 to 3 mJ/cm2. For comparison, the linear reflectance of

the colloidal crystal analyzed is shown as well. The change in the reflectance is most

dramatic around the blue edge of the stopband while it is most strongly diminished near

its red edge. To first order, the change in the reflectance is proportional to the derivative

of the reflectance spectra taken with respect to the average refractive index. A nonlinear

decrease in the reflectance near the left side of the top of the stopband observed in

Figure 12.1 indicates that the stopband moves towards the lower wavelengths.

This behaviour is anticipated given the expected refractive negative nonlinearity of

the DR1 dye in the spectral range analyzed. However, the magnitude of the effect is

lower than expected. Index changes as large as ∆n = 0.1 have been predicted around

the wavelength 570 nm [57]. Such large index changes should cause a change in the

position of the center of the stopband in the vicinity of 10% and a strong decrease in

the amplitude of reflectance inside the stopband. As will be discussed below, the weaker

than expected nonlinear response is attributed to a strong disorder present in the sample

and to nonlinear response of DR1 smaller than previously reported [57].

The changes in the reflectance outside of the stopband are attributed to the saturation

of absorption of DR1 combined with back reflection from the glass slide – air interface.

A number of other samples were prepared and characterized in the same way as

colloidal crystal 1.

In Figure 12.2 the nonlinear response of colloidal crystal 2 is shown. Unlike in colloidal

crystal 1, the response of colloidal crystal 2 is characterized by a strong decrease in the

stopband. As demonstrated in the inset of Figure 12.2, at the center of the stopband

(570 nm) the reflectance decreases from 0.56 to 0.35 when the incident power is increased

from 3 µW to 3 mW. Moreover, no shift in the central position of the stopband is

observed. For wavelengths shorter than 530 nm the reflectance increases with increasing

incident power. The saturation of absorption is again the dominant nonlinear response

in this spectral region.



224 Chapter 12. Summary, Original Contributions, Future Prospects

0

0.01

0.02

0.03

0.04

0.05

0.06

470 490 510 530 550 570 590

Wavelength (nm)

R
ef

le
ct

an
ce

100 µW
1 µW

1 mW

0
0.01
0.02
0.03
0.04
0.05
0.06

1 10 100 1000 10000

Incident power (   W)

Re
fle

ct
an

ce

µ

Figure 12.2: Nonlinear reflectance from colloidal crystal 2. The inset demonstrates how

the reflectance at 570 nm decreases with increasing incident power

The discrepancies between results obtained from the two colloidal crystals character-

ized above were attributed to the fabrication imperfections and weaker than predicted

nonlinearity of the constituent materials. The weaker nonlinearity measured can be

caused by the fact that the 1 ps pulses used in this work were 20 times shorter than

those used in Ref. [57] while the time required for the trans-cis photoisomerization of

azobenzenes embedded in a solid can be longer than subpicosecond as measured in solu-

tion [174,175].
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12.3.3 Extension of Theoretical Models

In addition to the search for better nonlinear materials and the quest to devise and

optimize the fabrication of periodic structures, there is a need for more comprehensive

theoretical analysis. New theoretical models should allow the simulation of propaga-

tion of light in nonlinear periodic structures while fully accounting for time-dependent

refractive and absorptive linear and nonlinear material parameters. Waveguiding and

multi-dimensional periodic structures should also be theoretically analyzed beyond the

planar one-dimensional configuration, to predict and understand the response of the

devices. Such multi-dimensional devices can provide additional angular degrees of free-

dom that should increase the optical signal processing functionality of nonlinear periodic

structures.

12.4 Final Comments

This work has advanced the field of optical signal processing using nonlinear periodic

structures. New signal processing devices and systems were proposed, nonlinear opti-

cal materials were characterized, and nonlinear periodic structures were fabricated and

analyzed.

At present there remain many obstacles on the road towards wider implementation

of nonlinear periodic structures. However, the available structural and material degrees

of freedom offer an enormous opportunity for improvement. This work has pointed out

and demonstrated new ways for increasing the optical signal processing functionality of

nonlinear periodic structures.
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