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ABSTRACT

The newly discovered exponential and algebraic double-soliton solutions of the massive Thirring model in laboratory coordinates are placed in
the context of the inverse scattering transform. We show that the exponential double-solitons correspond to double isolated eigenvalues in the
Lax spectrum, whereas the algebraic double-solitons correspond to double embedded eigenvalues on the imaginary axis, where the continuous
spectrum resides. This resolves the long-standing conjecture that multiple embedded eigenvalues may exist in the spectral problem associated
with the massive Thirring model. To obtain the exponential double-solitons, we solve the Riemann-Hilbert problem with the reflectionless
potential in the case of a quadruplet of double poles in each quadrant of the complex plane. To obtain the algebraic double-solitons, we
consider the singular limit where the quadruplet of double poles degenerates into a symmetric pair of double embedded poles on the imaginary
axis.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0275411

I. INTRODUCTION

We address the massive Thirring model (MTM) in laboratory coordinates, which can be written in the following normalized form

i(u+uy) + v+ |ofu=0, Wy

i(ve—vy) +u+|uffv =0,
where u = u(x,t) and v = v(x,t) are complex functions of real variables x and . The MTM was introduced in Ref. 26 in the context of
quantum field theory as a relativistically invariant nonlinear Dirac equation in one spatial dimension. It was found in Ref. 21 (see also Refs.

14, 16, and 22) that the MTM is a commutativity condition for a Lax pair of linear equations, hence it is completely integrable by the inverse
scattering transform (IST) method. The Lax pair of linear equations for the MTM is given by

Oy =L(w,v, )y, Oy =A(u,v, )y, (1.2)

where { € C is the spectral parameter, = y(x,t) € C? is the wave function, and the 2-by-2 matrices L(u,v,{) and A(u, v, () are given by

R (U

v u

and
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A= 4(|u| +[v]*)os 2((?} 0) 2((u O) + 4(( +{)os.
Here the bar stands for the complex conjugation and o3 = diag(1, —1) is the third Pauli’s matrix. The compatibility condition 9;0xy = 0x0ry
in the linear system (1.2) coincides with the MTM system (1.1).
The IST method based on the Riemann-Hilbert (RH) problem has been applied for the Lax pair (1.2) in the recent works Refs. 9 and 24
(see also earlier works Refs. 17 and 27). The IST method is used to obtain global solutions and to study the long-time dynamics of the MTM
system (1.1) for the initial-value problem with the initial data (u, v)|i=0 = (140, Vo) decaying to zero at infinity. The decay condition on (u, vo)

is required to be sufficiently fast so that the functions and their first and second derivatives are square integrable with the weight \/1 + x*.%
Exponential solitons satisfy this requirement and each soliton corresponds to a quadruplet of simple poles of the RH problem in each quadrant
of the complex plane, or equivalently to simple isolated eigenvalues in the Lax spectrum of the linear system (1.2). However, algebraic solitons
decay as (u,v) = O(|x|™") as |x| — oo and hence they are not included in the IST method. Each algebraic soliton corresponds to a simple
embedded eigenvalue in the Lax spectrum located on the imaginary axis (no embedded eigenvalues exist on the real axis).

The algebraic solitons in the MTM were studied in Ref. 15, where the perturbation theory for embedded eigenvalues in the Lax spectrum
of the linear system (1.2) was developed. It was shown in (Ref. 15, Proposition 7.1) that a pair of simple embedded eigenvalues on the
imaginary axis is structurally unstable and moves into a quadruplet of simple isolated eigenvalues in each quadrant of the complex plane
under a generic perturbation of the initial data. A possibility of embedded eigenvalues of a higher algebraic multiplicity was also suggested
in (Ref. 15, Lemma 6.4) with some precise conditions on the spatial decay of eigenvectors and generalized eigenvectors at infinity. Such
embedded eigenvalues of higher algebraic multiplicity generally correspond to rational solutions of the MTM describing algebraic multi-
solitons. However, the existence of such rational solutions has not been established in the literature up to very recently, despite many works
on rational solutions in integrable systems (see, e.g., Refs. 6, 7, 10, 23, and 31-33).

Rational solutions of the MTM were constructed on the constant nonzero background in Refs. 5, 12, and 34. They are relevant to
dynamics of rogue waves on the modulationally unstable background but do not describe the dynamics of algebraic solitons at the zero
background. It was only recently shown in Ref. 8 (based on the Hirota’s bilinear method developed in Ref. 4) that the algebraic double-
solitons exist as the exact solutions of the MTM suggesting the existence of the higher-order algebraic solitons in a hierarchy of rational
solutions to the MTM. Within the bilinear method, it was not shown in Ref. 8 that the algebraic double-solitons correspond to the double
embedded eigenvalues in the Lax spectrum predicted in Ref. 15.

The main motivation for our work is to use the RH problem and to obtain the algebraic double-solitons of the MTM system (1.1) associated
with the double embedded eigenvalues in the Lax spectrum of the linear system (1.2). To derive this result, we construct the exponential double-
solitons associated with a quadruplet of double isolated eigenvalues in each quadrant of the complex plane and take the singular limit when
the quadruplet of double isolated eigenvalues transforms into a symmetric pair of double embedded eigenvalues on the imaginary axis.

The study of double eigenvalues has started with the pioneering work,”® where it was shown that the double eigenvalues of the associ-
ated spectral problem give the exponential double-solitons describing the slow (logarithmic in time) dynamics of two identical solitons of
the focusing nonlinear Schrédinger (NLS) equation. Properties of such exponential double-solitons were recently studied in nonintegrable
versions of the NLS equation in Ref. 20. The exponential double-solitons on the nonzero constant background were constructed in Ref. 25
after the development in the IST methods on the nonzero background in Ref. 3.

The double-soliton solutions in the closely related derivative NLS equation were constructed by using the Darboux transformations in
Refs. 11, 30, and 35. It was understood in Ref. 35 that the algebraic double-solitons arise from the exponential double-solitons in the singular
limit, for which the modified Darboux transformations have been developed in Ref. 11. The IST method was also employed in the context
of the derivative NLS equation to construct the exponential double-solitons from the double poles of the RH problem in Refs. 28 and 37-39.
Algebraic solitons of the derivative NLS equation and closely related equations were further considered in Ref. 18 and 29.

Although both the derivative NLS equation and the MTM system in characteristic coordinates are related to the same spectral
problem,' " the computational details for the MTM system in laboratory coordinates are different and technically more complicated. We
close this gap in the literature by presenting the exponential double-solitons of the MTM system (1.1) for the double isolated eigenvalues of
the linear system (1.2), see also Ref. 19 for the very recent work on exponential multi-solitons. The main application of this result is to obtain
the algebraic double-solitons and the double embedded eigenvalues in the singular limit, where the RH problem cannot be used.

For the spectral problem associated with the focusing NLS equation on a nonzero background, it was understood in Ref. 1 how to modify
the RH problem for the simple and multiple embedded eigenvalues at the end points of the continuous spectrum in order to construct the
rogue waves of high multiplicity.” This modification of the RH problem has not been developed so far for the spectral problem associated with
the derivative NLS equation and the MTM system on the zero background. It is still unclear how the simple or multiple embedded eigenvalues
can be constructed in the RH problem directly. We hope that our work will motivate further study of the associated spectral problems with
embedded eigenvalues.

This paper is organized as follows. Section II introduces the RH problem for the MTM and formulates the main results. The exponen-
tial double-solitons are constructed in Sec. ITI from the isolated double-pole solutions of the RH problem. The algebraic double-solitons are
obtained in Sec. I'V by taking the singular limit to the embedded double-pole solutions of the RH problem. Appendix A reports similar com-
putations for the exponential and algebraic single-solitons for convenience of readers. Appendix B reviews the construction of the exponential
double-solitons in the MTM system by using the bilinear Hirota method.
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Il. RH PROBLEM FOR MTM AND MAIN RESULTS
Assume that (u,v) — (0,0) as |x| — oo fast enough, see Lemmas 2.1 and 2.2 below for precise requirements on (u,v). We define the
matrix Jost functions for the linear system (1.2) from the boundary conditions:
i({z_(fz)x_*_i({z_'_{fz)t
® N 4 ° >
v ((xt) ( 0 e;((z(z)xi((z+(z)t) as  x — oo, (2.1)

For simplicity of notations, we will drop the dependence of y*) on (x,t). Since the Jost functions y*'({) represent the fundamental matrix
solutions of the linear system (1.2), they are related to each other by the scattering relations introduced for { € (R U iR)\{0} as

Sy YN (9 b(()) 20
v ()= (O(fb(() a(0)) (2.2)
where the symmetry of scattering coefficients a({) and b({) follows from the symmetry of matrix Jost functions:
&) [0 —1\—(») 0 1
y(0) = (1 0 )w (5)(_1 O). (2.3)

As is explained in Ref. 24, the linear system (1.2) can be folded to the squared spectral parameter A := {* in two different ways, one is
suitable near { = 0 and the other one is suitable near { = co. Following,” we will only consider the second transformation, from which we will
define the Riemann-Hilbert (RH) problem and solve it for the exponential double-solitons, see Theorem 2.1 below.

Hence we introduce the modified Jost functions as

{Aﬂur:nuo%ﬂ«yéw‘ﬂxﬂﬁﬂk @4

ngi) (A) . (_IT(’U,()I//Z(i)(()ei(cz_ciz)x"'ﬁ((2*’(72)2

where the subscripts indicate the columns of the 2-by-2 matrices and the transformation matrix is given by

oo-(: )

It follows from (2.1) that the modified Jost functions satisfy
©) (! ©) (0
n’(A) > e = o) ™ A) > e := L] o x oz

Moreover, ng) (M) satisfy the integral equations, from which the following properties were proven in (Ref. 24, Lemmas 3-5).

Lemma 2.1. Let (u,v) € L'(R) n L= (R) and (ux,vy) € L' (R). For every A € R\{0}, there exist unique bounded Jost functions nfi)(/\)
and ngi)()t). For every x € R, nfi) and ngi)
contour in the domains of their analyticity:

are continued analytically in C* and satisfy the following limits as |A| — oo and A — 0 along a

+ +
o e S &
and
}Lii% [nliwngi)()t)] = e +vey, }Llilé [nziwngi)()t)] =diey + (1 + iw)ey, (2.6)
where
i om i (o) soo 2 (uPloP)dy

Recall that A := {* and that A € R for { € (R U iR). Hence we define new scattering coefficients for A ¢ R\{0} as

ad) =a(0), Ba(A) = b)), B-(A) = {'B(O).
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After the folding transformation (2.4), the scattering relations (2.2) are modified as follows

yy - ) a(h) B-(1)e ™
n(A)=n (A)(—[ﬁ (A)efzie(A) a()) » (2.7)
where
o(1) = i(a A+ i(a A 2.8)

The following lemma was proven in (Ref. 24, Lemma 6).

Lemma 2.2. Let (u,v) € L'(R) n L (R) and (ux,vx) € L' (R). Then, a is continued analytically into C* with the following limits in C*:

Jim a(1) = ¢ i Ju (o) (2.9)
and i 2 2
}ll_)nf(l)(x(l) = erR (lul*+[v] )d}” (210)

whereas 8, are not continued analytically outside R and satisfy the limits
li A) =i A)=0.
Jim B (1) = limp. (1)

The RH problem for the modified Jost functions n*)(1) is constructed as follows. We first define the sectionally meromorphic matrix

P(1) e C*2 by
)
(n§+)(/1)’ "2(’1)), 1eCT,

a(d)
P() := = (2.11)
n (A (+ -
o A)) AeC.
( a) *" M)A
By using (2.5) and (2.9), we obtain the following limits as [\| — oo in the domain of meromorphicity of P(1):
e 0
lim P(}) = — P°°, 2.12
oo @ ( 0 n;“’) (212)

where P* = (P™) ™. We finally define a complex-valued function M(1) := (P>)~'P(\) which satisfies the normalized RH problem with the
following three properties:

e M(}) is meromorphic in C\R, with finitely many poles at {1;,...,1,} € C* and {A;,...,A,} € C” and specific normalization of the
principal part of Laurent expansions.

e M(A) — ILas|A| - oo, where I is the 2-by-2 identity matrix.

e M(A) is continuous on both sides of R with M, (1) := . (lAign ioM (1) satisfying

M.(1) = M_(M)V(L), LeR,

where

1
Fe ()M 147 ) (V) ")

It follows from (2.6) and (2.10) [see also (Ref. 9, Proposition 2.24)] that the potentials (¢, v) for solutions of the MTM system (1.1) can
be recovered from solutions of the RH problem by using the following asymptotic limits taken in the domains of meromorphicity of M(1):

u= mﬁn(h), v= }E%MZI(A). (2.13)
Solvability of the RH problem under some conditions of the reflection coefficients 7. (1) was studied in Refs. 9 and 24. In this work, we

consider the reflectionless case r..(1) = 0 for A € R in the particular case when M (1) admits a pair of double poles at g € C* and Ao € C~ due
to symmetry (2.3).
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It is well-known (see, e.g., Ref. 9) that a pair of simple poles of M(1) leads to a single-soliton solution. For completeness, we give details
of the RH problem with a pair of simple poles of M (1) in Appendix A. To simplify the presentation of soliton solutions, we should use the
basic symmetries of the MTM system. In particular, the relativistically invariant MTM system (1.1) admits the Lorentz symmetry

(1—6)1/4 ( X+ ct t+cx )
R [ ,
yt 1+c¢ Ji_2 12
utot)| e VIZE VIl e (-1, (2.14)
v(x,t) (1+c) v( X+ct  t+ex )
l-c Vi-& Vi-&
In addition, it admits the translational and rotational symmetries

[u(x,t)] R I:u(x+x0,t+to)ei9°

i, |> Xo, to, 6o € R. 2.15
v(x, t) v(x+x0,t+to)ele°:| 070,70 215

By using (2.14) and (2.15), the single-soliton solutions can be expressed in a short form:

u(x,t) = i(sin y)sech(x sin y— i%)eiit o

N (2.16)
v(x, t) = —i(sin y)sech(x sin y + ii)e e

where y € (0,7) is a free parameter. More general single-soliton solutions can be extended with speed parameter ¢ € (-1,1) by using (2.14)
and with two translational parameters xo, £y € R by using (2.15), where translation in 0 is linearly dependent from translation in ¢.

The normalized single-soliton solution (2.16) corresponds to a pair of simple poles of M(A) at Ag = ¢” € C* and Ag = ¢ € C~ with
y € (0,7), see Appendix A. The double-soliton solutions will also be constructed for a pair of double poles of M(1) at Ao = ¢’ e C* and
/10 = e_’y eC .

The following theorem gives the explicit representation of the double-soliton solutions. As we show in Appendix B, this representation
coincides with the explicit formula obtained by the bilinear Hirota method developed in Ref. 4.

Theorem 2.1. Let Ao = €” and Ay = ™" with y € (0,7) be a pair of double poles of M()) in the RH problem. Then, the solution (u,v) of
the MTM system (1.1) obtained from (2.13) is given by

N N
U= —, v=—2, (2.17)
D D
where
N, = 4i(sin y)?e ™ o 7+ s =3 ((x =) cos y+i(t—fo)sin y+i—e 772 cot y+ (x - %) cos y — i(t - fo) sin y]),
Ny = 4i(sin y)2e ™ i it cos =3 ((x—%0)cos y—i(t —fo)sin y—e ¥ " ""[2 cot y + (x - %) cos y +i(t — fo) sin y +1]),
and

_4x sin y—2i _2x sin y—i i 17 - 1 T
D=1+ ™72 gpm2esiny y(1+2(siny)2[coty+(xfo)cosy+;] +2(siny)4[t7to+2 - ,
sin y

where Xo,ip € R are arbitrary parameters in addition to arbitrary parameters c € (=1,1) and xo,t € R, which are obtained from the
transformations (2.14) and (2.15).

Remark 2.1. Parameter fy is trivially removed by using translational symmetries (2.15) with translations in 6y and to. Hence, the double-
soliton solutions of Theorem 2.1 only have two non-trivial parameters: y € (0,7) and %o € R.

Although the explicit form of double-soliton solutions in Theorem 2.1 can be obtained by algebraic methods such as Darboux transfor-
mations or the bilinear Hirota method, see Appendix B, the RH problem enables us to clarify the Lax spectrum of the double-soliton solutions,

in particular, the existence of a quadruplet {{o, Z 0, —Co» —Z o} of double eigenvalues, where each double eigenvalue is identified according to the
following definition.

Definition 2.1. We say that {y € C is a double eigenvalue of the linear system (1.2) if there exists an eigenvector yo € H'(R,C?) and a
generalized eigenvector y; € H' (R, C?) satisfying the following linear equations:

Oewo = L(1,v,80) w0, Orpo = A(u,v,0)vo (2.18)
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and
Oxy1 = L(1,0,0)yn + O L(u,v,80)wo, Oy = A(u,v,00)yn + OpA(u, v, (o) o, (2.19)

and there exists no second generalized eigenvector v, € H' (R, C?) satisfying the linear equation

1
Oxya = L(1,v, o) 2 + O L(1,v, o)y + 58§L(u, v, $0) Yo,

1
Oyr = A(u,v, Qo) v2 + OcA(u, v, Qo) Y1 + EﬁfA(u, v,0) Yo.

Furthermore, we say that {y € C is a simple eigenvalue if there exists an eigenvector yo € H' (R, C*) satisfying (2.18) but there exists no
generalized eigenvector y; € H' (R, C?) satisfying (2.19).

Remark 2.2. Since the spectral problem Oxy,, = L(u,v,{,)vy, is a second-order differential equation with the zero-trace matrix, it is clear
that there exists at most one linearly independent eigenvector wy € H' (R, C?) decaying to zero as |x| — co. However, no generalized eigenvector
y1 € H'(R,C?) exists for a simple eigenvalue (o € C because a Fredholm solvability condition is not satisfied for the linear inhomogeneous
equation sy, = L(u,v, )y, + OcL(1,v,{y)y,. If (o € C is a double eigenvalue, there exists the generalized eigenvector yy € H' (R, C?) of the
linear equation Oxy, = L(u,v,{)y, + O¢L(u,v,{,)y, but the Fredholm solvability condition is not satisfied for

1
Oxya2 = L(1,v,80)y2 + O L(1,v, o)y + 58§L(u,v,(o)t//o

so that no second generalized eigenvector v, € H' (R, C?) exists.

Based on the solution in Section 111, we prove that if (u,v) is given by (2.17), then {y := /Ao = 2" is a double eigenvalue of the linear
system (1.2) in the sense of Definition 2.1. The knowledge of eigenvectors and generalized eigenvectors satisfying (2.18) and (2.19) is partic-
ularly important when the exponential double-soliton solution of Theorem 2.1 converges as y — 7 to the algebraic double-soliton solution
obtained in Ref. 8. The following theorem states that the corresponding Lax spectrum includes the double embedded eigenvalue {,, = i of the
linear system (1.2) with only one eigenvector v, € H' (R, C?) and one generalized eigenvector y, € H' (R, C?) satisfying (2.18) and (2.19)
with {; = i.

Theorem 2.2. Let Ay = ¢ and Ay = ™" with y € (0,7) be a pair of double poles of M(A) with the solution (u,v) of the MTM system (1.1)
obtained in Theorem 2.1. With a proper choice of X and o, this solution transforms in the limit y — 7 to the form:

8.3 4.2 T AY? .
—2x7 —4ix" +2x —i—4i(t - fo) (i + 2x) + 8% ;
wag(6t) = 575 5 >3 AVENTND ! (2.20)
3X°+ SixT + 267 + 2ix — 5 — 4(t = £o)” + 4k (i + 2x)
and , ,
8 . . . ~ . ~
—3x" +4ix" +2x+i+4i(t—fo)(i —2x) + 8% i
vag(5,) = 75— L 221)

It = Sid v ox® —2ix— L —4(t- 1)’ - 4ko(i-2x)

where %o, fo € R are (new) arbitrary parameters in addition to arbitrary parameters c € (—=1,1) and xo,to € R, which are obtained from the
transformations (2.14) and (2.15). The linear equations (2.18) and (2.19) with (u,v) = (ualg, Vaig) and {y = i admit the eigenvector

vo=e T 'n, (2.22)

1

where T™! = [T(valg, z')T1 = ( 1) andng = (nm,noz)T is given by

[
i[x 2 2 2362—21‘(1f—1?)+l
_ pifiw P+l )dy 0)7 3
o1 =e 14 8.3 Y VTN >
3X =30 +2x7 = 2ix — 3 —4(t — o) — 4% (i - 2x)
22 ; 3.
oy = ¢~ 4 (P +luP )y —2ix” —4x +2(t —fo) + 3i it

%x4 - %ix3 +2x% = 2ix — i —4(t- 170)2 — 4% (i — 2x)

and the generalized eigenvector
y1 = 2ie” 2 T g+, T(v, ) vo, (2.23)
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where O;T (v, () = (2 (1)) andny = (nn,l‘llz)T is given by

L PPy —Lix® = 2x% — Jix+ x(t — fo) + 2i(t — fo) — 1 - 2i%
e It S 10— 2ix— L —a(t - o) — 4% (i- 2x)
3 =30 +2x7 = 2ix — 3 —4(t —fo)” — 4% (i - 2x)
1.3 _ .2 15 . . PN L 5 ; "

5 (P —3X — X0 = Px+ix(t—do) + 3i+3(t—fo) - 280 4

mp=ed a5 7 1 N2 1z [ :
3X =i +2x7 = 2ix — 3 —4(t — £o)” — 4k (i - 2x)

Remark 2.3. The eigenvector y,, and generalized eigenvector v, in (2.22) and (2.23) for the double embedded eigenvalue { = i satisfy the
criterion for the spatial decay in (Ref. 15, Lemma 6.4), namely wo = O(|x|™%) and y1 = O(|x|™") as |x| - co. Moreover, it follows from (Ref. 15,
Lemma 6.4) that no second generalized eigenvector v, € H' (R, C*) exists so that {, = i is a double eigenvalue of the linear system (1.2) in the
sense of Definition 2.1.

Remark 2.4. The algebraic double-soliton given by (2.20) and (2.21) reduces to the explicit expression obtained in Ref. 8 by using the
transformation

X=X, t—=-t, u—-u, v-—>-0,

due to a different normalization of the MTM system used in Ref. 8.

I1l. EXPONENTIAL DOUBLE-SOLITONS FOR A DOUBLE POLE

Here we study solutions of the normalized RH problem for the reflectionless potential . (1) = 0 for A € R with a pair of double poles of
M(A) atdo e Ctand Ao € C.

If m(A) is a meromorphic functon near Ay € C with a double pole at Ao, we represent the principal behavior of m(1) near Ao by the
Laurent expansion

szz)wm Res)-),m
(A - /10)2 A - /10

m(A) = + holomorphic at A = Ao, (3.1)

where P;:Z,\Dm and Res) ), m are some coefficients which are referred collectively as the residue coefficients.
The normalized RH problem for M(1) = (P*)™'P(1) can be rewritten in the form:

RH problem. Find a complex-valued analytic function M(\) in C\{R U {)\g, \¢}} with the following properties:
o M ()) has double poles at \g € C* and \g € C~ with the normalization

©) ©)
Resy_y, M = (P) " (6 Resyoy—2— ) P2, M = (P®)! (6 P2, )
« «

(=) (=)
_ n _, . o ,on ~
Resy_3,M = (P>)7! (RCSA:;\U:fl 0) , P)\iS\O‘M =(P>)"! (P)\i;\u(lfY O> ,

where 0 is a 2-by-1 zero vector.
e M(X\) — I as |A\| — oo, where I is the 2-by-2 identity matrix.
e M()) is continuous on both sides of R with My ()\) := (&i)m M (X) satisfying
Im(A)—=0

M.(N)=M_(\), AeR.

In order to regularize the RH problem, we subtract the residue conditions in both sides of the formula M, (1) = M_(1) and obtain the
following solution of the normalized RH problem:

_ -2
Res;-,M  Res, 3 M PA M PG M

M) =1+ + = + + . 32
() A—Ao A= (A-X)* (A-2Xo)? 2
The residue coefficients of M(1) = (P)™'P(1) near Ao and A in (3.2) follow from the representations (2.11) and (2.12).
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A. Computations of the residue coefficients

In order to compute the residue coefficients, we use the following result.

Lemma 3.1. Assume f and g be analytic in a complex region Q € C such that g has a double zero at zy € Q with g(z0) = g'(20) = 0,
g"(20) # 0, and f(z0) # 0. The residue coefficients of the Laurent expansion of f/g at z = z are given by

f_2f(z) _2f(20)g"(0) 2 f _2f(z0)

Res;—zy— = N .
g §'(=)  3[g"(20)] e g'(=0)

Proof. Under conditions of the lemma, we have
f(@) = f(z0) + f'(20)(z - 20) + O((z - 20)*),

§(2) = 538" (@) (- ) + 2" () (2~ )" + O((z - 20)")

from which the result follows by the Laurent expansion of f(z)/g(z). ]

Based on Lemma 3.1, we obtain the residue coefficients in the following proposition.

Proposition 3.1. The residue coefficients of M(L) at A = Ao are given by

) ,
P2, = Agn(®) (), (3.3)
©) ,
Resiy, 12— = Age? @) (1) (o) + 17 (20) (206 (ho) + Bo ) . (3.4)
[24

where Ao and By are arbitrary coefficients. The residue conditions of M()) at A = Ay are given by

) _
_ n — = —2i o
PA:Z% 1(3( = 7A0)Lon§+)(/\0)e 2i0(A ), (35)
) o ) ] .
ResHO”l7 = —Aghge 2000 [(ng*’)’(xo) +n$" (Ro) (~2i6 (o) + Bo + Agl)]. (3.6)

Proof. By assumption, o = (¢ is a double zero of &(1) extended to C* by Lemma 2.2. Since it folows from (2.2) that

a(d) = a(¢) = det (v (). v (0)),

we conclude that there exists a constant ey such that

v (%) = v (). (3.7)

Furthermore, since (;, is the double zero of a({), we have
0=a' (%) = det((y{") i) + det (v, (1))

= det (37 —eo(y") + (47)')

(=l

=t
so that there exists another constant ko such that
W) (@) = eo(wi”) (%) + hoyt ™ (Go). (38)

By using transformation (2.4), we rewrite (3.7) as

8G:GG'Gl G20C 18quiBnoN €0

{7 (ho) = eoly ' n) (Ag) ), (3.9)
where 0(1) is given by (2.8). This expression agrees with (2.7) for a(A¢) = 0. By using transformation (2.4) again and the product rule, we
derive

()" (ho) = (200) ™ T(w, ) [ (1) (%) = 2608 Wy (G0) ]
+(20) 7 [0 (0. 00) Ty (@)e™,
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(ﬂg_))’(lo) = (2((?)71T('U,(O)[(V/Z(_))’(() + ZiCOQI(A())]eiH(AO) _ (2(3),1n§_)(/\0)
+ 23) 0T (v, 00) Wl ()M,
which imply due to (3.8) and (3.9) that
(ﬂgf))’(lo) = eZiO(Ao)[eo(()_l(niJr))'(/\o) + (2(3)—1(]10 + 4i60(09'(/\0) B eo(()_l)n§+)(lo):|) 610)

in agreement with the derivative of (2.7) at A = Ao.
We use the chain rule

o (1) = (20)7d'(O),
o«'(1) = (20)*[a" () - ¢ (D)),
(X/”(/\) _ (2()_3[61/”(() _ 3(—1a//(() + 3(_261,(()].

By using (3.9) and (3.10), we compute from the expressions in Lemma 3.1 that

-2 ngf) _ 8(3”57)(A0) _ 880(0

(+) 2i0(Xo)
P\, = = = A 3.11
A=Xo P au(co) a"((o) ny ( 0)6 ( )
and
Res.s 7 8B (n7) (M) 4ons” (o) [ () = 355" (80)]
=Ao a a//((o) 3[(1"((0)]2 > (3 12)
_ Beolo 2incn) (Y (Ao) + 1P (Mo) [ 216 (o) + o a"(G)
a" (&) ! ! 2e0l0  6Goa” (o) ) |
Let e " m(( )
e0Co 0 a 0
= s By = -—, 3.13
@) P ek sha (@) G139
then (3.11) and (3.12) are transformed into (3.3) and (3.4).
By using the symmetry condition (2.3), we have
0 1\_ 0 -1\_
v Q) = (_1 0)w§*)<<), v = (1 o )w§*>(<),
from which we obtain with the help of (3.7) and (3.8) that
v (Go) = ~aovsV (o)
and
(1) ©0) = (i) (o) ~ hoys ™ (G0).
Furthermore, by using the transformation (2.4) and its derivative, similarly to (3.9) and (3.10), we obtain
1) (L) = —2olons ) (lg)e 0
and
N7 —2i0(10)[ = 3 N 1, - 3 s 3 s
(1Y (Ro) = —e 2"<*0>[e0(0(n§+>)’(;t0) 3 (o~ %ot (o) + eofol)n§+)(/\0)].
By using these expressions we compute from Lemma 3.1, similarly to (3.11) and (3.12), that
) 5 73 .
2 n 820y (4 To)e20C0)
[ U 3.14
A=Ay & 51"((0) n, ( O)e ( )
and
Res, " = Sl a0tf 0y s n(”(Ao)(—zie’()‘uo) L b1 a"(%) ) (3.15)
= a a" (%) : : 2000 (o 600" (%) )] .
Using the same notations (3.13) for A and By, we transform (3.14) and (3.15) into (3.5) and (3.6). ]
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B. Computation of solutions of the linear algebraic system
Using the first column of M (1) in (3.2) for A € C,, we obtain from (3.5) and (3.6) that

) Ao/\()

Q) =nf™ [1+ (A= 10)(=2i6 (ho) + Bo + A5 ) [nl ™) (Ro)e 200H0) — ( (Y (Ag)e 2000,

4T oy
Using the second column of M(1) in (3.2) for A € C_, we obtain from (3.3) and (3.4) that

oo A i0(Ag A i0(Ao
nD (V) = ni®e + o) 20 [1+ (A= 20)(2i6 (ho) + Bo) ]nl) (ho)e ) + ()/\(nfﬂ)'(/lo)eza()‘ ),
— A0

We can close the algebraic system by evaluating (3.16) at A = Ao and (3.17) at A = Ay:
nf”(/\o) = n;rooel - Coio[l + (Ao - )10)(—21'9,(10) + By + ig‘)]ngﬂao)e—z;‘e(io) _ Coio(Ao —/io)(ngﬂ),(/io)e_zm(io),
n$" (Ro) = n3¥es + Co[1 - (Ao —A0) (26 (Ao) + Bo) ]n (10) € — Co(ho — o) (7)) (Ao )P,
as well as their derivatives at A = A and A = Ao respectively:
(n$) (Ao) = Colo[2(ho = 10) ™ =236 (Ro) + Bo + Ao [n ™ (Ro)e 700 4 ol (n ™) (o) 21,
(n$) (ho) = Co[2(Ao = Ao) ™" =26 (Ao) - Bo]nt™) (10) e — Co (™)) (Ao ) M),

where

Ao

Cyi= ————.
©T (- Ao)?

(3.16)

(3.17)

(3.18)

(3.19)

The following proposition solves the linear system (3.18) and (3.19) and derives the explicit representation for the exponential double-

soliton solution of the MTM system (1.1) by using the recovery formulas (2.13).

Proposition 3.2. The potentials u(x,t) and v(x, t) in (2.13) are expressed from solutions of the RH problem with a double pole by

u= v=—,

N N,
D D

where
_ —AaleeZie(A")(ZiG'(Ao) +Bo _Aal) _AalAO‘Co‘zioezxie(/\o)—zw(u)
x [4(Ag — o)™ + (=2i6' (Ao) + Bo + Ag Aoy = 31571,
N, = Aoe_w(;\“)(—ZiG'(io) +Bo) +Ao|C0|2)_toewa°)_4i6(}‘“)
x [=4(Ao = Ao) "+ (2i6'(Ao) + Bo)AoAy ' — 345" ].
and
D= 1+|Co[*Age! ) =48C0) 1y PR ) 2000 [6 4 2 (1 — Do) (~2i6' (o) + Bo + A5 - 2i6 (Ao) - Bo)
— (Ao —Lo)* (=26 (Ao) + Bo + 15" (2i6' (Ao) + Bo) |

Proof. By substituting (3.2), (3.3), and (3.4) into (2.13), we obtain

- i)

(=) -)
l oo ny”(A) | "’21 (A)
- Res)_ — P,z
%" e”‘*“[ o) | "B M a))
1

= = A0 () (ho) + Y (ho) (216 (o) + By =151 |,
0

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)
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where the second index for vectors n( ) and n2 ) denotes the corresponding components of 2-vectors. Similarly, by substituting (3.2), (3.5),

and (3.6) into (2.13), we obtain

<

- )

2O -)
_ 1 (1) 1 o2 n12 (/1)
SRR [ ) TR e

- ™A e*z"’(“’[(n(”) (o) + 183" (ho) (=236 (o) + Bo) ]

The linear system (3.18) and (3.19) can be rewritten for the vectors n1+) (Ao) and (nf+)) (Lo):
K( n) (o) ) _ (nl*“’e1 — Colo[1+ (Ao -;10)( 2i0 (Ao) + Bo + 15" |n3 e 2"9<‘0>e2)
(nY (ho) Colo[2(o = Ao) ™" = 2i6/ (Ro) + Bo + A5 |ng e 20000 ’
where
~ (KHH Knﬂ)
Knl Kl
with I being a 2-by-2 identity matrix and M;; being scalar entries given by
Kir = 1+ |Go[ Roe®® @720 [3 4 (A — R0) (236 (Ro) + Bo + Ag") = 2(Ao — A0) (246 (Ao) + Bo)
= (o —2Xo)*(-2i6"(Ao) + Bo + Ao ) (2i6" (Ao) + Bo) ],
Kiz = —|Cof2Aoe® ) 72000) (05 1) [2 + (Ao - Ao) (~2i6 (Ao) + Bo + 15 ") ],
K1 = —|Coho (Ao = Ao) "X 200 [4 4 (g — R ) (~2i6 (Ro) + Bo + 1 ")
~3(ho - Ao)(2i6' (Ao) + Bo) — (Ao — A0)*(2i6' (Xo) + Bo) (=260 (Ao) + Bo + Ag")],
Koz = 1+ |Cof Ao 72000 [3 4 (4 — R0) (=26 (Ro) + Bo + 45")].

By Cramer’s rule, we obtain the first components of vectors n; ) (o) and (n; +) ) (Ao):

I’ll Kzz n1 KZI

) (o) = () (ho) =

where D = K11K2 — K12K7; recovers (3.23) after cancellation of several terms proportional to |C0| Substituting (3.
in the form (3.20) with
Nu = —/\aleeZiG(AO) [—KZI + Kzz (21'6,(/10) + Bo - /161 )]
which yields (3.21) after cancellation of several terms proportional to |Co|*.
For the vectors n, )()Lo) and (n, +) )'(Ao), the linear system (3.18) and (3.19) can be rewritten as

< +)(/\o) [ ex+ Co[1= (Ao — X0) (26" (Ao) + Bo) |ni™ 2000)
(n(+)) o))\ G20k ~10)™" - 2i6 (o) — Bo]ni™ zleuo) ,

where
i I~<11H I~<12H
Kul Kpl

Ky = 1+ |CoPhpe? @00 -20C0) [3+2(h - Ao)(~2i6' (Ao) + Bo + 45") — (Ao — o) (2i6 (Ao) + Bo)
— (Ao - Ao)* (=26 (ho) + Bo + Ao ") (216’ (Ao) + Bo) ],
K1z = |Co Aee?®0)-2000) () 10)[2 = (Mo = 10) (2i6 (o) + Bo) ],

with

(3.25)

(3.26)

26) into (3.24), we get u

J. Math. Phys. 66, 101529 (2025); doi: 10.1063/5.0275411
Published under an exclusive license by AIP Publishing

66, 101529-11

8G:GG'Gl G20C 18quiBnoN €0


https://pubs.aip.org/aip/jmp

Journal of

i : ARTICLE i -
Mathematical Physics pubs.aip.org/aip/jmp

a1 = |CoP Ao (Ao = Ao) ") 2000 [4 4 300 — A0) (~2i6 (Ro) + Bo + A5 ")
- (Ao - io)(ZI@I(Ao) + Bo) - (/10 = io)z(Ziel(Ao) + Bo)(—Zl’e,(io) + Bo + ial)],
Koz = 1+ |CoRoe? @0 =20C0) 13— (45 — 10)(2i6 (Xo) + Bo)]-

By Cramer’s rule, we obtain the second components of vectors ngﬂ (M) and (nng) ) (Ao):

s
-n, K

n (Ao) = 5

C () () =

K
n 22 , (3.27)
D

where D = KKz, — K12Ka1 = Dis given by (3.23). Substituting (3.27) into (3.25), we get v in the form (3.20) with
ND = Aoeiﬂe(}w) |:—f<21 + kzz(—ZiGl(io) + Bo)],

which yields (3.22) after cancellation of several terms proportional to |Co|*. O

C. Proof of theorem 2.1

In order to rewrite the recovered potentials of Proposition 3.2 in the simplified form of Theorem 2.1, we set Ao = ¢” € S' n C* with
y € (0,7). A more general solution is obtained with the Lorentz symmetry (2.14).
Since Ay = e”, we obtain

2i6(Ao) = —x sin y + it cos y,
4i0' (Ao) = i(x +1t) +i(x —t)e 7,
and complex conjugate for —2i0(Ao) and —4i6’ ().
- 3iy 3i;
Let us define Ag = (Ao — /10)2){3/ ® = —4(sin y)? e, which yields Cp = e . A more general solution with two translational parameters
X0, to € R can be obtained by the translational symmetry (2.15) or by including two additional parameters in Ay € C. Then it follows from
(3.21), (3.22), and (3.23) that
N, = 2i(sin y)?e ™ 50 Vi s A (x+t+(x- t)e " — 2iBy + 2ie”"
—e I Y 4(sin )+ (x4t + (x— )€™ + 2By + 2ie” )e X - 6ieiiy]),
. : 3i ;. -
N, = 2i(sin y)e ™ ¥ 77 <8 ) (x+t+ (x—t)e’” +2iBy
— e I Y 4(sin p) T+ (x4t + (x—£)e Y = 2iBy) e + 6ieiy]),
and
D=1+ ¢ ¥y maxsin ’H'y[6 +4(sin y)(x + t+ (x—t) cos 2 + i(By — By + €"))
+ (sin p)’(x +t+ (x— t)e™” +2iBy + 2ie” ) (x + t + (x — t)e > - 21'B0)].
By using trigonometric identities, we reduce expressions for Ny, N, and D to the form:

TENTH[) cot y + x cos p — it sin p + iBoe ]),

N, = 4i(sin y)?e ™ o 7+ cos =3 (x cos y+it sin y— iBoe” +i—e
N, = 4i(sin y)’e ¥ 17 < ra (x cos y—it sin y+ iBoe — e ¥ ™ YV [2 cot y+ x cos y + it sin y — iBoe” + i),
D=1+ ¥y gpmxsin y7iy[3 +2(sin y)(2x(cos ) + 2t(sin y)* +i(By — By + "))
+2(sin y)*(x cos y — it sin y + iBoe ” +1i)(x cos y + it sin y — iBoeiy)].

By selecting By = —ie™"[%) cos y + ify sin y] with arbitrary parameters %, and #, we obtain the same expressions for N, and N, as in
Theorem 2.1. Regarding the expression for D, we obtain

D=1+ ¥y gpm2xsin ’H‘y[S +2(sin p)[2(x — %) (cos y)* + 2(t — o) (sin y)* + i cos y —sin y]

+2(sin y)*[(x — %) cos y —i(t — o) sin y + i][ (x — %) cos y + i(t — fo) sin M1}

8G:GG'Gl G20C 18quiBnoN €0
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—2xsin y—iy

Expanding the bracket multiplied by 2e yields

3 —2(sin y)* + 2i(sin y)(cos y) + 4(sin y)(cos y)*(x — %) + 2(sin ) (¢t - fo)
+2(sin y)*(cos y)*(x — %0)* + 2i(sin y)*(cos y)(x — %) + 2(sin y)* (t - £o)’

.92 2
. . T agsin e
=1+ 2(sin y) [coty+(x Xg)cos y+ 2] +2(sin y) [t to + T y:| )

which coincides with the expression for D in Theorem 2.1.

D. Computations of eigenvectors and generalized eigenvectors

An eigenvector of the linear system (2.18) is given by wf” (&) for & = e? with y € (0, 7), which decays exponentially as |x| - co due to
(2.1) and (3.7). By using the transformation (2.4), we obtain

v (@) = T (0,0)]7'0 (ho), (3.28)

where
[T(v,0)] " = ( _11 _rr)
_e 2

and nf+) (Xo) with Ag = €” is obtained from the linear system in the proof of Proposition 3.2. By Cramer’s rule, as in (3.26), we obtain

l Kz
n$+)(lo) = BP (—Coj.otZZie(M)(Kzzbl . K1zbz))’ (3.29)
where
by =1+ (Ao —A0)(—2i0 (Ao) + Bo + A5"),
by = (Ao —10) " (2 + (Ao = Ao)(=2i6'(Ao) + Bo + A1),
and we recall that P> = diag (n]>°,n3 ") with
o0 = oS (o) _ oo,
By using the same definitions of Ag and By as in the proof of Theorem 2.1, we obtain
Kiz = —4i(sin y)%e > ™ 7(cot y + (x — %) cos y — i(t — fo) sin y),
Kz =1+ (sin p)e > " 7(3 cot y + 2(x — %) cos y — 2i(t — fo) sin y — i)

which yields the second component of the vector n§+) (Ao) in the explicit form:

_o- v . . 3iy
_COAOe—mG(}»O) (Kzzb1 " Klzbz) = _gxsin y—it cos y—7’
x (e +2 sin y[(x — %) cos y — i(t — fo) sin y] — ¢ ¥ V72,

Solutions of the Lax pair of linear Eq. (1.2) depend analytically on the spectral parameter { near { = e . As a result, derivative of the
solution in { at { = ( satisfies the system (2.19) for the generalized eigenvector and generates the generalized eigenvector provided that the

derivative of the solution decays exponentially as |x| — co. Hence, we define here (1//1(+) )"({) and confirm the exponential decay as |x| - oo
which follows from (2.1), (3.7), and (3.8). _
By differentiating the transformation (2.4) in A = * at Ay = {¢ = ¢”, we obtain

(1) (@) = 200" [T(0,00)17 (1) (ho) + 2006 (o) (%) = & 8T (0, Oy (" (%), (3.30)

where tpf+) (¢o) is given by the exponentially decaying eigenfunction (3.28) and

8G:GG'Gl G20C 18quiBnoN €0
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FIG. 1. The surface plots of |u(x, t)|? + |uv(x, t)|? for the exponential double-soliton solutions with (a)

0 T(0,0) = (0 0).

0 1

Hence, in order to obtain (y/f+) )" (), we only need to compute (n§+) )"(Ao) and use the transformation (3.30). By Cramer’s rule, as in (3.26),
we obtain

ON 1 o ~Ka
1Y o) = =P . - . (331)
( 1 ) ( ) D (Co/\oe ZG(AO)(KHZJZ +K21b1))

Proceeding similarly, we obtain
Kijp=1+e > ’H‘y(3 +2(sin y)e”[(x — %) cos y —i(t — o) sin y + i]

+4(sin y)e ?[(x - %) cos y +i(t — o) sin y] + 4(sin y)*[(x — %) cos y — i(t — o) sin y + i][ (x — o) cos y + i(t — fo) sin 1)

Ko = siri ye_zx sin y_iy(Z + (sin y)e”[(x — %) cos y—i(t — fo) sin y + i]

+3(sin y)e ?[(x - %) cos y +i(t — o) sin y] + 2(sin y)*[(x — %) cos y — i(t — o) sin y + i][ (x — %) cos y + i(t — fo) sin 1)
which yields the second component of the vector (n§+) )"(Ao) in the explicit form:

Co/ioe_ZiG(;‘“)(Knbz +Kyby) = —ie”™ sin y—it cos y_%)y( cot y+ (x— %) cos y—i(t—1p)sin y

—2x sin y—3iy[

te cot y + (x — %) cos y +i(t — fo) sin y +i]).

Remark 3.1. The explicit expressions (3.29) and (3.31) confirm that both the eigenvector (3.28) and the generalized eigenvector (3.30) decay
exponentially as x — o0 since D — 1 as x — +00 and D ~ ¢” ™72 g5 5 _co,

E. Numerical illustration of the exponential double-solitons

We plot the exponential double-soliton solutions of Theorem 2.1 in Fig. 1 for three different values of y. The translational parameters
in (2.17) are set to X = ﬁ and fp = #ﬂy The solutions describe scattering of two identical solitons which slowly approach to each other,

overlap, and then slowly diverge from each other. Similar solutions for the cubic NLS equation were constructed for the first time in Ref. 36.
We shall find the approximate distance between the two identical solitons for large |x| + |¢|. It follows from the bilinear equations, see
Refs. 4 and 8 and Appendix B, that

NP NP9

D

2 2 .

+ 2i— log —. 3.32
ff + o = P <21 log (6.32)
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FIG. 2. The contour plots of [u(x, t)|* + [v(x, t)|? for the solutions of Fig. 1 with (a) y =

50 y= %" (c)y= %" The red line represents the dependence (3.33) for [¢| > 1.

Therefore, we just need to investigate the behavior of D for large |x| + |¢|. The dominant terms of D as |x| + |¢| — oo are given by
D~ e—Zx sin y—iy(e—lx sin y—iy + 4(Sil’1 y)4t2)

from which we obtain that
In J¢|
|x| ~ ——, as ||+ || = oo. (3.33)
sin y

The dependence (3.33) for |¢| > 1 is shown in Fig. 2 by red line together with the contour plots from Fig. 1.

IV. LIMIT TO THE ALGEBRAIC DOUBLE-SOLITONS

Here we take the limit y — 7 of the exponential double-solitons in Theorem 2.1 to derive the algebraic double-solitons. We show that
the algebraic double-solitons correspond to the double embedded eigenvalue {, = i in the linear systems (2.18) and (2.19). In order to obtain
nontrivial limits, we change the arbitrary parameters %o and fo used in Sec. 111 as

1 . 1
> to=to+ ——.
sin y 2 sin y

Xo = Xo + (4.1)

The two computations below give the proof of Theorem 2.2.

A. Computations of (2.20) and (2.21)

Let y := m — ¢ and consider the limit ¢ - 0". Taylor’s expansions yield
oo 13 5
siny=e- &+ o(e),
82
cosy=-1+ 77 O(e).

To obtain (2.20) and (2.21), we only need to substitute (4.1) into D, N, and N, given below (2.17) and collect together the coefficients of
Taylor expansion at powers &, &2, &%, and &', With the substitution ( 4.1), we rewrite D as

o o 92
D=1+¢ 2y ppm2xsin y_'y(l +2(sin y)2|:(x — %0)cos y+ %] +2(sin y)* (¢ - to)z).

. . 2 4
Expansion as € — 0 gives nonzero terms at powers &, &, and *:

2

8G'G5'Gl G20T JoqWBAON €0

& —4930(i—2x+3€0),
e —4%0(i - 2x) (i — 2x + %),
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1 1 N 2
- 2x)* + 3 (i=20)(i - 6x) - 4(t - f0)* = 250 (i — 2x)° (i — 2x + %) + 3 %0(8% — 16x + 5i).
With the transformation (4.1), we rewrite N, and N, as

N, = 4i(sin y)?e ™ o 7+ s yf%(—cot y+ (x— %) cos y+i(t—fo)sin y + %

_ g xsin y_iy[cot y+ (x— %) cos y—i(t—fo)sin y+ %])

and

N, = 4i(sin y)Ze ™ S 77t cosv=3 (7cot y+ (x— %) cos y—i(t—fo)sin y + %

_ g xsin )’_iy[cot y+ (x— %) cos y+i(t—to)sin y+ %])

The expressions in the parentheses for N, and N, are multiplied by

o 2 —x sin yxit cos y— 2 2 Fit
4i(sin p) e ™ M IELONITE L 4™ as e 0.

Since the expansions of the exponential factors in powers of ¢ do not modify the limit of ¢ — 0, we collect nonzero terms in the expansions of
N,e "% and N, e at powers €%, ¢, and *;

E 8320,
€1 4%(i—2x),
1 . 4 20
er S(i-20 4550 (i- 200 — it - ) (i - 20) + gl - S
and
82: 83%(),
e 4fo(i-2x),
1 . 4 20
e 220+ 550 (i- 220" + 4i(t — o) (i - 20) + gl - S

By rescaling %) = %o&’, we now obtain the nontrivial limit at the power &*:

_ 4 8 1 A
limDe ™ = —x* - Zix® + 26% — 2ix — — — 4(t - to)2 — 4% (i - 2x),
=0 3 3 4
it — 8 A v
lim N,e"e ™ = —§x3 +4ix” + 2x + i — 4i(t — fo) (i — 2x) + 8%o,
pt
it — 8 A v
lim Nye et —§x3 +4ix” + 2x + i + 4i(t — 1) (i — 2x) + 8%,
E—>

which yields the explicit expressions (2.20) and (2.21) from the quotients given by (2.17).

B. Computations of (2.22) and (2.23)

We substitute the phase shift (4.1) into nf” (Ao) and (nf” ) (Ao) given in (3.29) and (3.31). These expressions define the eigenvector
and the generalized eigenvector of the linear systems (2.18) and (2.19) for {, = e by (3.28) and (3.30) respectively. By using y := w — € and
expanding in powers of ¢, we derive (2.22) and (2.23). )

After the substitution (4.1), we rewrite K»; and —Coloe 2000) (Ka2b1 + Ki2b2) in (3.29) as follows:

—2x sin y(

Ky, =1+ (sin y)e cot y+2(x — %) cos y — 2i(t — fo) sin y)

8G:GG'Gl G20C 18quiBnoN €0
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and

3iy

—Coioe_Zia(Ao) (KZZbI n Klzbz) - ™ sin y—it cos y— =}t
. . ) .o i
x (e'y +2 sin y[fcot y+ (x—xo) cos y—i(t — fo)sin y + E]
Expansion as ¢ — 0 gives nonzero terms at powers ¢',and €.

e The coefficients of K;:

1 R
e . 2Xo,

L1
e 2x*—2i(t - fo) + 5~ o,

o The coefficients of 7C0/10€72i6(i°) (Kz2b1 + K1z bz)ei' o8 ¥,
et - 2ik,

2 .2 Ay 3L L o
€ 2ix +4x-2(t—fo) — EI + 3%0 + 2ixXo.
Rescaling £ = %o¢” yields the nontrivial limit at the power &:

: -2 2 . » 1
lim Kype ™~ = 2x" = 2i(t — fo) + =
=0 2
and
e—>0
By using (3.28) and (3.29), taking the limit
yo = limey{" (&),
we obtain (2.22) with
ng = lirréeznf”(/\o)
&£

given below (2.22) in the explicit form.

_ e—2x sin y—2iy).

_ = _2i0(d _ir\ — . 3
lim (—Co/loe ZQ(AU)(Kzzbl + K12b2)6 lt)s 2 = —2ix2 —4x + Z(t— to) + El

To obtain a nontrivial limit for the generalized eigenvector, we rewrite the expression (3.30) in the equivalent form:

(1) (%) = 2000 = 10) 987 (%) = 260 [T(0,60)] 7 [ (1) (Ao) + (i (Ao) = 20k — L0) ™)™ (A0) ]

~ &0 T (0, v (),

After the substitution (4.1), we rewrite —K3; and Coioe_z"g(i") (Ki1bz + Kz1b1) in (3.31) as follows:

~Ky = —2ie " y_iy[sin y[(x- %0)%(cos y)* + (t - £9)*(sin y)z] +i(t—fo)sin y cos y+ %]

and
=~ 3 —2i0(A . —x sin y—it _3i
Co/loe i6( O)(Knbz +K21b1) = —1e X Sy cos y=yy

X ((x— %0) cos y—i(t— fo)sin y + é e y_3iy[

Expansion as & -0 gives nonzero terms at powers &', &', and & for both components of the

(i6' (Ao) = 2(Ao - 10)™)n (A0).

(x—%o) cos y+i(t—fo)sin y+ é])

numerator of (n§+))'()lo)+
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e The coefficients of —K;; + (ie’(/\()) - 2(10 - io)_l)Kzzi
& = 2ik,
e ingy + 208,
2 4, 5 1.3 .2, 4. N .2 2 .2 1 . s
e gzxo +x(t—fo) - gzx +2ix" %o — gzx + Kot + 3xKo — 4ixKy — 2x~ — 2K, — > +2i(t - fo).
e The coefficients of

Co/ioe_zw()}o)[Kubz + K21b1 - (i9'()t0) - 2(/\0 - /io)_l)(Kzzlh + Klzbz)]eit cosy :

e — 2%,

e 6ixy — 5xX0,

it 4 . s .2 5. 13 15 5 155 , 2, .. . 35

ee : ix(t—ty) —itxo—ix +—-i— =X — —x+3(t—ty) + — Xo — 6x X9 — itXo + —ixXo.
( 0) 0 1 3 4 ( 0) 12 0 0 0 2 0

Rescaling %) = Xo&” yields the nontrivial limit at the power &
. o 3 \-1 2 _ 1.3 2 4. » RS S
hrra [~Ka1 + (i6' (o) —=2(ho — Ao) ™' )Kna]e * = —3i - 2x" - §1x+x(t— fo) +2i(t - fo) - 3 2i%o
P

and

hn(} Coioeizie(il)) [K11b2 + Koibr - (ie,(AO) =20 - i0)71)(K22}71 + K12b2):|€7“£72

13 .,
=—Zx —ix

15 s 5 s
- —x+ix(t—1to) + —i+3(t— to) — 2%o.
3 4 ix( 0) 41 ( 0) = 2%

By using (3.30) and (3.31), taking the limit
yie= me[ (1) (@) ~ 2000 = 10) 97 () .
we obtain (2.23) with
ny o= mez[(nﬁ*))’(ao) + (6 (ho) - 2(Ao —10)—1)4*)(%)}

given below (2.23) in the explicit form.
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APPENDIX A: SINGLE-SOLITON FROM A SIMPLE POLE

pubs.aip.org/aip/jmp

Here we consider solutions of the normalized RH problem for the reflectionless potential 7 (A) = 0 for A € R with a pair of simple poles
of M(A) at Ay € C* and 1o € C. The normalized RH problem for M(1) = (P*°)™'P(A) can be rewritten in the form:

o M () has simple poles at Ay € C* and )y € C~ with the normalization

() =)y
. 1 00\ — 5 N2 ()‘0> . 'y 00\ — ny </\0> o
Resy_, M = (P¥) '(0’ Oy )7 Resm M = (PR "5 0

where 0 is the 2-by-1 null vector.
o M()\) — T as |A| = oo, where I is the 2-by-2 identity matrix.

e M()) is continuous on both sides of R with My (\) := : (1A1)1n M (\) satistying
m(A)—+0

M.(\)=M_(\), AeR.

RH problem. Find a complex-valued analytic function M (\) in C\{R U {\y, Ao} } with the following properties:

The solution of the RH problem is immediately given by

ReS)L:,\DM Res/\:/ioM

M(x,t,A) =1 =
(x,51) + T + i

(A1)

In order to compute the residue terms, we note from (2.11) that A is a simple zero of a(1) extended to C* by Lemma 2.2. Since it follows

from (2.2) that

a(1) = a(¢) = det (v () ¥5 (),

we define () := /Ao and a constant by € C such that the columns of v ({) satisfying (2.1) are related at { = {, by

¥ (%) = boy ™ (G).

(A2)

Since g € C™, it follows from (2.1) and (A2) that 1//2(_) (o) decays to zero exponentially fast both as x — +o0. Hence it is the eigenvector of

the linear system (1.2) for { = (.
By using the transformation (2.4), we can rewrite (A2) in the form:

{7 (o) = bola ' nlH) (Ag) M),

where 6(1) is given by (2.8). By using (A3), we compute the residue term as follows

=)
- 1y, (M) - bo (+) 2i9(/\))
Res,P=|0 -2 ]|=10 ny 7 (Ao)e™ ).
e ( a'(%)) ( GOy )

By using the symmetry condition (2.3), we have
0 1\_ 0 -1\_
W= o wo-(] o
then (A2) can be transformed into
v (@) = ~boys” (o).

Using the transformation (2.4), we obtain )
I’lg_) (/10) = —BOZO”§+) (io)e_be(/\o),

from which we compute the other residue term by using (A5):

)3 73 _
m (k) & bog 2\ -20(h) &
Resk_hpz(l o)=(_&,§jlz)ng+>ao)e“> 6),

&' (Ao)

(A3)

(A4)

(A5)

(A6)
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We recall that M(1) = [P*]'P(1) with P™ = diag (n{°,n3 ) with nj> = n}°°, see (2.12). Using the first column of (A1) at 1 = Ao
due to (A4) and the second column of (A1) at A = Ao due to (A6), we obtain a closed system of linear algebraic equations:

n§+)(lo) =n e - Jofo_ n§+)()-to)e_2iea°) (A7)
Mo — Ao
and i c ‘
n§+)()to) =ni%e + — n$+)()to)ez'eu“), (A8)
Mo = Ao
where e; = (I,O)T, e = (0, I)T, and
o= b
CT Gd ()

Then, from (A7) and (A8), we have

- by o —2i0(1 Xolcol? 1 il
1 Oho) = i =er - 0fo_ +eo 20000), olo| 2000-20010) () () )

Ao—do 27 (Mo = Ao)?
1 (Ro) = nf=es + . co " oo 2000 g (,110[60)30)2 ZiG(Ao)*ZiG(io)n§+)(i0).

By using (2.13), we obtain the explicit solutions to the MTM system (1.1) in the form

— Co ot T 7y N -2i0000) Goe 200
— limM -_h oo i o) _ _ _
u=lim 12(1) = To niony (Ao)e A (lio‘ \;(,\)2 2i0(Ao)—2i0(1 o)
and
- —2i0(A,)
. . (+) -2i0(Ao) _ coe
v= }LE%MZI(A) - Coi’ll (X)I’lz (A )e _ (/10|CP|Z) eZiG(/\n)—ZiQ(/io)'
do—10)?

To simplify the expressions for the single-soliton solution (u,v), we pick A¢ = ¢” with y € (0,7) on S' N C*. A more general solution
can be obtained with the Lorentz symmetry (2.14). If Ay = €”, we obtain from (2.8) that

2i0(ho) = —ax + ift,
where « = sin y and f = cos y. In addition, we choose
y
co = 2i sin ye?

and obtain the single-soliton solution in the form

_ux—iﬁt+% l)/ ”
. ; —i
u(xa t) = ZI(XW =i sech(ocx - E) e (A9)
and ‘
—rxx—iﬂt—% i .
- _9; - Y bt
v(x, t) = —2ia o ey = sech(ocx+ 5 ) e, (A10)

which coincides with (2.16) since « = sin y and 5 = cos y. A more general solution with two translational parameters xo, fo € R can be obtained
by using the symmetries (2.15) or by introducing two translational parameters in the expression for ¢y € C.

Finally, we write the explicit form of the eigenvector 1//1(+) (%), see (A2), which satisfies (2.18) with (u,v) given by (A9) and (A10) and

with {y = e%. By using the transformation (2.4), we write

v (%) = [T (0,0)] P (o),

where

8G:GG'Gl G20C 18quiBnoN €0
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and
ptoe, — Jafyyre0p20(e) o)
T’l(+)(lo) — _ Ao—Ao
1 _ ol 6219(»10)—2%)(/10)
(Ao=1o)?
+o0o
1 n
= T oax—iv —ox—iBt— 3
l+e 2ax—iy P ipt—=] ”3-00
1 N . Zy eotx+%y+£ e (Juf+]v?)dx
= —secn|ax + — s a0 .
2 2\ vt oy
We note that

1 2 2 f sinzy
- dx = dx =y.
4/R(|u‘ +lvldx r cosh (2 sin y x) + cos y oy

Hence we can write

ip\ [[e@t 1B F i (ul+lof)dx
i0(o) . (+) _ 1 iy g2 2 T 44
e n " (o) = Esech(ochr 2)( R P+ | (A11)

which decays exponentially to 0 as x — +oo. Since [T(v,{)]™" is bounded, then 1//1(+) (&) € H'(R,C?) is an exponentially decaying
eigenvector of the linear system (2.18).

The algebraic soliton appears in the singular limit y — 7, where {; — i. The simple eigenvalue (, = i is embedded into the continuous
spectrum of the Lax system (1.2), which is located on R U (iR). By writing y := 7 — ¢ and taking the limit € — 0 in (A9) and (A10), we obtain

ulot) = 7o v =

(A12)

The eigenvector v, for the simple embedded eigenvalue , = i of the linear system (2.18) with (u, v) given by (A12) is obtained from (A11) in
the limit € — 0 in the explicit form:

iv —if\e272

— 247 arctan (2x)
o (+) 1 1 0 2
Yo = 161_I>I(1)€l//1 ((0) - 1+ 2ix(' i 2_Z_jarctan (2x) |’ (A13)
where we have used the elementary integral

1 X 2 2 /x 2 s
- ul” + v )dx = ———dx = — +arctan (2x).
ol o= [ = (2x)

Based on the explicit expression (A13), we confirm that yo € H' (R, C?) is an algebraically decaying eigenvector of the linear system (2.18)
such that |yo(x)| = O(|x|™") as |x| = oco.

APPENDIX B: EXPONENTIAL DOUBLE-SOLITONS IN THE BILINEAR HIROTA METHOD

Here we obtain the exponential double-soliton solutions by using the bilinear Hirota method developed in Ref. 4. To proceed with
computations, we use the parameterization from Ref. 8 and write the general exponential two-soliton solutions in the form:

(B1)

8G:GG'Gl G20C 18quiBnoN €0
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where
f =1+ efzfri)'l + efzfz*i}'z +A12e*251*252*i)’1*i}'2 —4~/8,6, sin ” sin )}Ze*frfz*%)’l*%}’z
518—1('11—11:) 62ei(’7‘_’72)
(5187%%“’2) _ 6ze§(}’1+}'2)) (5165(}’#1’2) _ 528*%}'1*}'2))
h= _&le—&—im pi—p2 —Zfz+iy2 _ &Ze—fz—iqz pi—p2 —251+iy1
pr+p2 pr+p
and

o

- @6*51*i41 (p1 P2 ) =25, +3iy, + igﬂe*fz*iﬂz (Pl P2 ) —28,+3iy
P pr+p2 p2 pr+p2 ’

with arbitrary parameters y; € (0,7), 8 > 0, (x;,t;) € R?, and uniquely defined for j = 1,2 as
. iy,
pj= i5je_’y’, o = 2\/(?jsin yje%,
1 - 1 -
fj = Siny]'(i((sj' + (Sj 1)x+ 5(81 - (Sj l)t +x]‘),

1= cosyj(%(aj -8 )+ %(51- +8; )t + tj),

and

o (BB -2 cos(n-p)
PN+ 02010, cos(yr+2) )

Due to Lorentz transformation (2.14), we can consider the exponential double-solitons with zero speed, for which we take §; = §, = 1. In

addition, we use translational symmetry and replace e*12 by e™*2 sin (y‘ & ) in all expressions.
Considering f, we obtain

f=1+sin ( nry )[525‘4"1 + eiz&fi“] + sin“(w)eﬂ%ﬂ&—wmn
2

_EI_EZ_%YI_%)’Z

+2 siny; sinyze cos (111 = 12).

We now define the small parameter ¢ from y, = y + eand y, = y — € and take the limit € — 0 for a given y € (0,7). In order to get a nontrivial
limit, we also define the translational parameters x;, from the power series:

& = (siny1)(x+x1) =log(€) + a(x —x0) + ef(x— %) — %ez a(x—%) + O(e),
& = (siny:)(x+x2) =log (€) + a(x — x0) — ef(x— %) — %eza(x—ffo) + 0O(&),

with new translational parameters Xo, %0, X0 € R and with « = sin ¥, B = cos y. Similarly, we define the translational parameters ¢, from the
power series:

A ~ 1 ~
= (cosp)(t+ 1) = =2 +B(t—to) —ealt — o) - Eezﬁ(t— fo) + O(),
T ~ 1 “
f2 = (cosy2)(t+1) = 2 +B(t—to) + ealt —fo) - E62/3(t —fo) + O(€),
with new translational parameters to, fo, ;0 € R. With these choices, we expand the expression for f in powers of € and obtain the following

explicit expression
linaf =1+ e_zg_’y[Z +a”(2B(x—%o) +i)’ +4a’ (t - fo)z] +e 2 (B2)
e
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where & := a(x — xp).
Considering h, we obtain

i iy \ 2
+ i e e + bt
h=-2 Sin)’l sin (%)e §i—im— 1+ ( e_iyl . eiyz ) SinZ(yl ] )2 )e 28, +iy,

iy —1) —1)2
. s (VTP —h-ig-2 e " —e 2 V1Y) ad+ip
—2 sin in | —— 2 11+ - - in
siny; s 2 e T S 3 e

With the choice of the translational parameters above, we expand the expression for / in the powers in e and obtain the following explicit
expression

e—

limh = 4ia2e 3 [— cot y + B(x — %) —ia(t—fo) + % - e"zs_”'(cot y+ Bx— %) +ia(t—fo) + %)], (B3)

where 71 := B(t - tp).
Considering g, we obtain

) g
+ _E i+ e — e + 28,430
g=2siny; sin (7))1 5 2 )e Gi=im+ 3 1+ ( . ) sinz(yl . V2 )e 28,431y,

) .
i ~1 —1y2
. (VY2 —g—ig+ 2 € —€ 2 V1t Y2\ —og 430y
+2 siny; sin (T e 2 1+ T sin 2 e .

With the same computations, this yields the following explicit expression

linég = —giole S [— cot y + B(x - %o) —ia(t - fo) — % - e_25+iy(c0t y+B(x— %) +ia(t—fy) - %)], (B4)
The exponential double-solitons are given by the explicit expression (B1) with f, h, and g given by (B2), (B3), and (B4). By using translational
symmetry, we can redefine

1 ~ - 1

Xo — Xo — , to—>to—

sin y 2 sin y

to obtain exactly the same expressions as in Theorem 2.1 for f = D, h = N,,and g = N..
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